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Topological insulators first observed in electronic systems have inspired many analogues in photonic and
phononic crystals in which remarkable one-way propagation edge states are supported by topologically
nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the
degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our
construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate
that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell
result in a topological transition that we verify by the Chern number calculation and edge-mode analysis.
We develop a complete model based on the tight binding to uncover the physical mechanisms of the
topological transition. Both the model and numerical simulations show that the topology of the band gap is
tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich
the design and use of acoustic topological insulators.
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I. INTRODUCTION

Topological order, a mathematical concept of conserved
properties under continuous deformations, was first intro-
duced as a new property of the full energy band along with
the discovery of the integer quantum Hall effect (QHE)
[1,2]. The topological invariant of a two-dimensional (2D)
energy band is called the Chern number, a quantity that
characterizes the quantized collective behavior of the wave
functions of the band. When the sum of the Chern numbers
of all the bands below a band gap is not zero, a so-called
“topological insulator” emerges. A fascinating property of
these topological insulators is that they support a topo-
logically protected one-way propagation edge state without
backscattering on their surfaces. Though topological
insulators were first observed in electronic systems [3],
the concept has been successfully extended to other wave
systems because of similarities in the band structures
of those systems. The photonic [4–8], elastic [9–19], and
mechanical [20–22] analogues of electronic topological
insulators have been proposed.
One possibleway to achieve a nonzeroChern number is to

capitalize on the physics of the QHE and break the time-
reversal (T ) symmetry, which is feasible in photonic crystals
by introducing magnetic fields. However, breaking the T
symmetry is fundamentally difficult in acoustic systems
because ordinary acoustic materials generally conserve their
T symmetry. Very recently, Alù and co-workers [23] tackled
this problemby introducing a rotation flow in thebackground
field to break the T symmetry in an acoustic system. Later,

their solutionwas generalized to phononic crystals to achieve
acoustic topological insulators [9,10,14,23].
Most of the progress in this area [9,10,14] was made with

latticeswithC6v symmetry inwhich there exists aDirac cone
protected by the T symmetry at the K point of the Brillouin
zone. The existence of the Dirac cone is attributed to the
symmetry of the lattice; it is not affected by the geometric
size of the inclusions in the crystal [24]. Because of the linear
dispersion of the Dirac cone, breaking the T symmetry may
open a nontrivial band gap and introduce edge states [25].
This process can be described by a two-band model [2].
Recently, another kind of linear dispersion, namely, a Dirac-
like cone, was found at the center of the Brillouin zone of
lattices with bothC6v andC4v symmetries [26,27]. Different
from Dirac cones, Dirac-like cones arise from accidental
degeneracy of a single mode and a doubly degenerate mode
and are sensitive to the geometric size of the inclusion. They
are, therefore, protected by both the T symmetry and the
particular geometric parameters of the crystal. We wonder
what the consequences will be, in particular, how the three
bands associated with the Dirac-like cone evolve and what
the topological invariant is, if breaking the symmetry and
altering the geometric size of the crystal occur simulta-
neously. A comprehensive understanding of the degrees of
freedom needed to modulate the topological invariant in
such systems will provide a physical picture of the mech-
anisms of the band-gap opening at the Brillouin zone center,
further expanding our ability to tailor acoustic waves.
To thoroughly investigate this problem, we construct a 2D

phononic crystal (PC) with C4v symmetry. By carefully
adjusting the size of the crystal’s building block, we find a
Dirac-like cone in its band structure associated with a triply
degenerate state at the Brillouin zone center. We observe that
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the degeneracy can be lifted by altering the geometrical
parameters of the inclusion or by introducing airflow,
and both ways can introduce a band gap at the frequency
of the degeneracy. We develop a tight-binding model to
systematically study the underlyingmechanisms of the band-
gap opening, which reveals that altering the geometry of the
inclusion is equivalent to changing the coupling coefficients
between the neighboring lattices and that introducing airflow
indicates a Zeeman-type perturbation of the on-site energy.
By calculating the Chern numbers of the bands, we find that
the induced band gaps exhibit different topologies. Purely
changing the geometric size of the inclusion does not give rise
to nontrivial band gaps,whereas introducing airflowdoes.We
further explore the system by combining the two ways of
breaking the degeneracy. A somewhat unexpected result is
that breaking the T symmetry is not sufficient to yield a
nontrivial band gap if the geometric size of the inclusion is
below a certain critical point. This critical point is called the
topological transition point, and its value depends on the
intensity of the introduced airflow. Such a topological
transition behavior can also be captured by the tight-binding
model in conjunction with a perturbation theory, which gives
a Hamiltonian similar to the quantum anomalous Hall
model [28].
Based on this interesting finding, we demonstrate, with

numerical experiments, the existence of a tunable state in
phononic crystals. When the geometric size of the inclusion
or the intensity of the airflow exceed the topological
transition point, the state changes from a localized state
(attributed to the trivial band gap) into a topology-protected
one-way edge state (a result of the nontrivial band gap) that
is immune to backscattering.

II. MODEL AND RESULTS

A. Sample

The 2D PC considered here is composed of a square
array of acoustic waveguides. The unit cell is a hollow ring
attached by four subwavelength rectangular waveguides as
illustrated in Fig. 1(a). The lattice constant is a ¼ 2 m, and
the inner and outer radii of the ring are r0 ¼ 0.35 m and
r1 ¼ 0.5 m, respectively. The width of the rectangular
waveguide is d, which can be adjusted. Inside the ring,
the air flows counterclockwise (we assume that the flow is
confined within the ring). The acoustic wave propagation in
such a structure is protected by the T symmetry if there is
no airflow, but it behaves according to the following
equation if an irrotational airflow is introduced [29]:

− ρ

c2
iωðiωϕþ ~v ·∇ϕÞ

þ∇ · (ρ∇ϕ − ρ

c2
ðiωϕþ ~v ·∇ϕÞ~v) ¼ 0; ð1Þ

where ϕ represents the velocity potential, ρ and c denote
the mass density and the velocity of sound in air, respec-
tively, ω is the angular frequency of the acoustic wave, and
~v is the velocity field of the airflow.
We startwith a PCwithout the introduction of airflow.The

band-structure calculation performed by COMSOL Multiphysics

(a finite-element software) shows that there are three
eigenmodes that degenerate at the Γ point when the width
of the waveguide (d) equals 0.073 36 m and a Dirac-like
cone appears. [See the blue curve in Fig. 1(b)]. The
corresponding pressure-field distributions are shown in
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FIG. 1. (a) Schematics of a unit cell of our
phononic crystal. The ring is connected by
rectangular waveguides. The lower inset illus-
trates the reciprocal lattice. (b)–(d) Band struc-
ture of the phononic crystal whose rectangular
waveguide has a width of d0 ¼ 0.073 36 m,
d1 ¼ 0.04 m, and d2 ¼ 0.1 m without an air-
flow (shown in blue curves) and with a circu-
lating airflow at v ¼ 10 m=s (shown in red
curves). When airflow is introduced, the Chern
numbers are marked on their corresponding
bands under the band gap.
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Fig. 2(a); two of these distributions share a similar pattern
and aremarked in the figure asφpx andφpy, and the third one
is marked as φd. It is known that the degeneracy of the three
states is accidental [26] because φd deviates from φpx and
φpy if the width of the waveguide changes. Because of the
C4v symmetry at theΓ point,φpx andφpy always degenerate,
regardless of the size of the waveguide. Shown in the blue
curves in Figs. 1(c) and 1(d) are the band structures for PCs
with d1 ¼ 0.04 m < d0 and d2 ¼ 0.1 m > d0, respectively.
The eigenfrequency of the doubly degenerate state is lower
(higher) than that of the single state if the width is smaller
(larger) than d0. We plot in Fig. 2(b) the eigenfrequencies of
the single state φd and the doubly degenerate state φpx and
φpy as functions of the width of the waveguide and find an
intersection point at d0 indicating the occurrence of the
accidental degeneracy of the three states. The band struc-
tures shown in Figs. 1(b)–1(d) exhibit that for a PC with
narrow waveguides, there exists a complete band gap. For
example, a band gap exists in the 133.1- to 147.0-Hz

frequency range when d ¼ d1. It closes at d ¼ d0, but no
complete band gap appears when the waveguide becomes
wider, even though the accidental degeneracy is lifted and
there is a directional band gap as shown in Fig. 1(d).We also
notice two doubly degenerate points in the corner of the
Brillouin zone, i.e., the M point. They always degenerate
even as d changes and, therefore, are deterministic.

B. Theoretical model

To understand better the behavior of the above-
mentioned band structures, we develop a tight-binding
model to describe the associated dispersion relation
[30,31]. We note that the eigenmodes at the Γ point are
calculated with the periodic boundary condition imposed. If
a unit cell is placed in the free space, modes with similar
symmetries denoted as Φpx, Φpy, and Φd also exist. By
taking the symmetry of these free-spacemodes into account,
we write the kernel of the Hamiltonian in the basis of state
Φd,Φpy, andΦpx (denoted as jdi, jpyi, and jpxi) as follows:

H0 ¼

2
64
Ed þ 2t11x ðcos kxaþ cos kyaÞ; −2it12x sin kya; 2it12x sin kxa;

2it12x sin kya; Epy þ 2t22x cos kyaþ 2t22y cos kxa; 0;

−2it12x sin kxa; 0; Epx þ 2t22y cos kyaþ 2t22x cos kxa

3
75; ð2Þ

where Ed, Epx, and Epy are the on-site energy of the rings,
and tijm ¼ hΦið~rÞjHjΦjð~rþ ~rmÞi represents different types
of first-neighbor coupling coefficients between the
above-mentioned free-space modes. Here, Φiði ¼ 1; 2; 3Þ

correspond to Φd, Φpy, and Φpx, respectively. ~rmðm ¼ x; yÞ
are lattice vectors. Equation (2) is simplified by considering
the symmetry, for example, t22x ¼ t33y . Both the on-site
energy and the coupling coefficients are functions of the
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FIG. 2. (a) Pressure-field distributions of three
Bloch eigenstates at Γ point marked as φd, φpx,
and φpy. Dark red and dark blue indicate the
positive and negative maxima. (b) The eigen-
frequency of the eigenstates varies as functions
of d when no airflow is introduced. The black
and red curves correspond to the eigenfrequen-
cies of φd and φpx (φpy) eigenstates, respec-
tively. Purple area indicates the system has a
complete band gap. (c) The eigenfrequency of
φd, φpþ , and φp− versus the velocity field of the
induced airflow. (d) The same as (b) but an
airflow with v ¼ 10 m=s is introduced. The
purple and blue areas indicate the regions with
a trivial and nontrivial band gap, respectively.
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sizes of the rings and the rectangular waveguides. The wave
functions inside the waveguide contribute to the coupling
coefficient, which is, therefore, a function of the width of
the waveguide. At Γ point (kx ¼ ky ¼ 0), Eq. (2) becomes a
diagonal matrix, and its diagonal terms are nothing but the
eigenvalues of the Hamiltonian, which are Es þ 4t11x ,
Epy þ 2t22x þ 2t22y , and Epx þ 2t22x þ 2t22y . These eigenval-
ues are proportional to the eigenfrequencies of the modes
φd, φpy, and φpx, respectively. The on-site energy does not
change due to the fixed size of the ring. The coupling
coefficients are proportional to the width of the rectangular
waveguide because the waveguide is narrow enough, and it
supports only the fundamental waveguide mode. We can,
therefore, expect that the eigenvalues of the Hamiltonian
(or the eigenfrequencies of the three modes) depend
linearly on the width of the waveguide, which qualitatively
agrees with the numerical simulations presented in
Fig. 2(b). At d ¼ d0, all the eigenvalues of the Hamiltonian
become identical. Both the tight-binding model and the
simulation of the real systems suggest that d0 is a transition
point, as there exists only a band gap when d < d0. This
band gap is topologically trivial as the T symmetry is
preserved.
When airflow is introduced, the T symmetry breaks.

Here, for simplicity but without loss of generality, we
choose the following velocity field distribution [10,14]:

~vðx; yÞ ¼
� −vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ;

vxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �
¼ v~eθ; ð3Þ

where ~eθ is the azimuthal unit vector along the counter-
clockwise direction, and v is the amplitude of the velocity
field. The advantage of choosing such a velocity field
distribution lies in the constant radial component of ~v. The
velocity field is invariant under time reversal, and it is not
difficult to see that the system, as well as its describing
equation [Eq. (1)], is no longer symmetric to the time
reversal. As a result, the doubly degenerate state of φpx and
φpy split and so do their corresponding on-site energy.
From the field patterns shown in Fig. 2(a), where there is no
airflow, we find that the φpx and φpy modes are mainly
from the resonance inside the ring when the circumference
of the ring approximately equals the wavelength, whereas
the φd mode is mainly from the resonance inside the
rectangular waveguide. Intuitively, circulating airflow will
not affect the eigenfrequency of φd by much, but it will

change the eigenfrequencies of φpx and φpy. In fact, it
changes the eigenfrequencies of linear combinations of φpx

and φpy, i.e., φp� ¼ ðφpy � iφpxÞ=
ffiffiffi
2

p
. The choice of φp�

is consistent with the change of the symmetry from a C4v
point group into a C4 point group when the T symmetry is
broken. According to the superposition principle, the
acoustic wave circulates inside the ring at different veloc-
ities, cþ v and c − v, which leads to the splitting of the
resonance frequencies as follows: ω� ¼ ðc� vÞ=Rav,
where Rav ¼ ðr0 þ r1Þ=2 is the average of the inner and
outer radii, and ω0 ¼ c=Rav is the eigenfrequency of the
degenerated modes φpx and φpy without the airflow [32].
We use COMSOL to calculate the eigenfrequencies of the
three modes and plot them in Fig. 2(c) as functions of the
velocity field. This plot indeed shows the linear behavior in
the splitting of the eigenfrequencies of φpþ and φp− and the
almost constant eigenfrequency of φd as v increases,
supporting our analysis. Therefore, the external velocity
field may be viewed as an analogue to a magnetic vector
field that gives rise to the Zeeman effect. In the following,
we incorporate the external velocity field into the tight-
binding model that we derived earlier to explore the
characteristics of the system without the T symmetry.
Considering the external velocity field, we write the new

Hamiltonian as

H ¼ H0 þHz; ð4Þ

whereHz represents the Zeeman-type Hamiltonian induced
by the external velocity field on the basis of jdi, jpþi, and
jp−i. As mentioned before, the external velocity mostly
couples to the Φpy and Φpx modes, while it almost does not
couple to the Φd mode, and we superpose the Φpy and Φpx

modes linearly and construct a new basis jp�i ¼
ðjpyi � ijpxiÞ= ffiffiffi

2
p

. Under the basis of jdi, jpþi, and
jp−i, the Zeeman-type Hamiltonian is written as

Hz ¼

2
64
0 0 0

0 Δz 0

0 0 −Δz

3
75;

where Δz is the coupling constant and depends on the
external velocity field. We rewrite the H0 by using basis
transformation and get the total Hamiltonian

H ¼

2
664

Edð~kÞ;
ffiffiffi
2

p
t12x ðsin kxa − i sin kyaÞ; − ffiffiffi

2
p

t12x ðsin kxaþ i sin kyaÞ;ffiffiffi
2

p
t12x ðsin kxaþ i sin kxaÞ; 1

2
½Epyð~kÞ þ Epxð~kÞ� þ Δz; 1

2
½Epyð~kÞ − Epxð~kÞ�;

− ffiffiffi
2

p
t12x ðsin kxa − i sin kyaÞ; 1

2
½Epyð~kÞ − Epxð~kÞ�; 1

2
½Epyð~kÞ þ Epxð~kÞ� − Δz

3
775; ð5Þ
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where Edð~kÞ, Epyð~kÞ, and Epxð~kÞ are diagonal terms of the
originalH0 under the old basis. Near the point, we consider
the case when Edð0Þ is much closer to ½Epyð0Þþ
Epxð0Þ�=2þ Δz than ½Epyð0Þ þ Epxð0Þ�=2 − Δz. This
condition makes it possible to project out the jp−i state
by a perturbation theory and deduce the following reduced
Hamiltonian under the basis of (jdi,jpþi) to the linear term
in ~k,

HA¼
�

Edð0Þ;
ffiffiffi
2

p
it12x ðkyaþ ikxaÞ;

− ffiffiffi
2

p
it12x ðkya− ikxaÞ; 1

2
½Epyð0ÞþEpxð0Þ�þΔz

�
:

ð6Þ

The details can be found in the Appendix. Equation (6) is a
typical description of the quantum anomalous Hall (QAH)
model [28] and indicates a topological transition occurring
at Edð0Þ ¼ ½Epyð0Þ þ Epxð0Þ�=2þ Δz.
Since Edð0Þ, Epyð0Þ, and Epxð0Þ depend on the wave-

guide width d, andΔz is a function of external velocity field
v, the occurrence of the topological transition should depend
on both quantities. Figure 3 illustrates a phase diagram of the
topological property of the band gap as a function of
waveguide width and the strength of the external velocity
field. The line in the middle represents the topological
transition. Figure 3 indicates that the topology of the band
gap is tunable by modulating d and v. This fact will benefit
the design of tunable topological insulators.
To verify the conclusion we draw from the tight-binding

model with broken T symmetry, we introduce an airflow at
v ¼ 10 m=s into the systems that have been presented in
Figs. 1(b)–1(d) and plot the corresponding band structures
as red curves in the same figures. As expected, the branch
associated with φd is mostly unaffected, and the branches
associated with φpx and φpy do not degenerate at the Γ
point. Consequently, complete band gaps open for the cases

when d ¼ d0 [Fig. 1(b)] and d ¼ d2 [Fig. 1(d)]. For the
case of d ¼ d1 [Fig. 1(c)], introducing the airflow reduces
only the range of the band gap from 133.1 and 147.0 Hz to
138.2 and 141.3 Hz without opening a new band gap.
Meanwhile, the degeneracies at theM point are lifted for all
three cases because of the broken T symmetry. The
changes in the band structures after introducing the airflow
suggest that there will be a topological transition point at
d ¼ dt for a particular v. The lifted degeneracy by
introducing the airflow will (or will not) lead to a new
band gap when d ≥ dt (or d < dt). To better demonstrate
the transition process, we plot in Fig. 2(d) the eigenfre-
quencies φd and φp� calculated by COMSOL as functions of
waveguide width. It is not difficult to see that the eigen-
frequency of φd is the same as that of φpþ at dt, across
which band inversion of φpþ and φd occurs. This band
inversion is a consequence of combined changes of width
of the waveguide and the intensity of the airflow. Here, we
point out that dt is different from d0, as dt corresponds to
the point at which the two eigenvalues of HA [Eq. (6)] are
identical, and d0 is the point at which the three eigenvalues
of the original Hamiltonian without the airflow [Eq. (2)] are
the same. It can be easily proven that dt < d0.
The band-inversion process predicted by Eq. (5) is

verified numerically. In the following, we affirm this band
inversion is associated with a topological transition. To do
this, we need to evaluate the “gap Chern number,” a
topological invariant that can characterize a band gap. A
general way to calculate this invariant is to sum the Chern
numbers, which are expressed by the following equation of
all bands below the band gap:

C ¼ i
2π

X
n

Z
BZ

∇~k × ðhunð~kÞj∇~kjunð~kÞiÞd2~k; ð7Þ

where unð~kÞ is the Bloch function of the nth band at ~k. It is
possible to substitute the numerically simulated eigenstates
on the band into Eq. (7) to compute the Chern number, but
this is computationally challenging. It is also possible to use
the Hamiltonian including the airflow [Eq. (5)], solve for the
eigenvectors, and plug them into Eq. (7). However, the
vector potential is dependent on the frequency [9], which
makes the calculation of the Chern number over the whole
Brillouin zone difficult because the Hamiltonian is valid
only near the high symmetry points. Fortunately, only the
region near the broken degeneracy points generates a non-
vanishing “Berry flux,” which contributes to the band’s
Chern number [33], indicating that we can construct
Hamiltonians at the points of degeneration to determine
the Chern numbers of the four bands. Thismethod is utilized
in determining the Chern number of the bands connected by
Dirac cones in phononic crystals with broken T symmetry
and with C3v or C6v symmetry [10]. Recently, the Chern
number was found to be constrained by the symmetry
properties of the eigenstates at high symmetry points [34].

0dtd

FIG. 3. Phase diagram of the topology property of the band gap
with combined modulation of the width of the waveguide and the
intensity of the airflow. Topological transition occurs across the
solid line.
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The point group of ~k at the Γ point becomes C4 when the
airflow is introduced.We consider all theCm-invariant points
below the band gap in a Cn-invariant insulator for each m
dividing n. The gap Chern number modulo n is related to the
eigenvalues of correspondingCm operators of all these points:

iC ¼
Y
j

ξjðΓÞξjðMÞζjðYÞ; ð8Þ

where j is the label of bands under the band gap, ξ and
ζ are the respective eigenvalues of the Ĉ4 and Ĉ2 operators on
the eigenstates at high symmetry points. Table I presents the
calculated results from Eq. (8) indicating the various topo-
logical properties of the band gaps. The band gaps with
different Chern numbers are highlighted in different colors in
Fig. 2(d) and marked by numbers in Figs. 1(b)–1(d). From
Fig. 2(d), we find that the Chern number remains zerowhen d
is smaller than dt even with broken T symmetry, and it
changes to one when d is larger than dt. When d becomes
even larger, a band inversion between φd and φ− states also
occurs, but it does not contribute to the gap Chern number.
The results on the Chern number calculation support the
prediction of the tight-binding model and clearly suggest the
existence of a topological transition that occurs bymodulating
the geometric parameters of the inclusion in a system with
broken T symmetry, which renders additional freedom to
manipulate the gap Chern number in the 2D case.

C. Examples and discussion

Insulators with non-zero gap Chern numbers are topo-
logically nontrivial. A property in such insulators is the
presence of a gapless edge state between gaps with different
topological invariants [1]. The band structure of an 8 × 1
supercell with d ¼ 0.1 m and v ¼ 10 m=s is calculated to
confirm the existence of such gapless edge states. This
supercell is infinite along the x direction and is terminated
by rigid boundaries (topologically trivial) in the y direction.
Figure 4(a) shows the band structure of such a supercell. It

exhibits one one-way edge mode, which agrees with the gap
Chern numbers. The dispersion relation highlighted in blue
(red) marked as A (B) is associated only with modes having
a positive (negative) group velocity. At a given frequency,
the modes corresponding to the A and B branches are
confined on the opposite edges of the supercell as shown in
Fig. 4(b). The A and B branches support modes bounded on
the bottom and top edges, respectively. This property leads
to one-way propagation at the edge. At some particular
frequencies located inside the gap region of the bulk mode,
there exists only an edge mode, implying that there is no
backward scattering into the bulk. The features exhibited in
Figs. 4(b) and 4(b) ensure the existence of topologically
protected one-way propagation of the edge modes.
To demonstrate the existence of acoustic one-way edge-

mode propagation, we perform finite-element simulations
of some finite-sized samples. The first sample is composed
of 8 × 24 unit cells as shown in Fig. 5(a). The upper,
bottom, and right boundaries of the sample are hard walls
that can be treated as insulators with zero Chern numbers.
A plane-wave radiation condition is set on the left boun-
dary. A point source with frequency 139 Hz, a common
band-gap frequency for various widths d is located in the
bottom boundary. Also, in the bottom boundary there is a
defect introduced by removing the airflow inside the ring,
which is marked as a green circle in Fig. 5(a). The pressure-
field distribution unambiguously shows that the sound
wave propagates counterclockwise and circumvents the
defect without backscattering.
Changing the topological invariant by varying the

geometry also allows us to create the interface states.
Another finite-sized sample with 8 × 25 lattices is pre-
sented in Fig. 5(b). Its upper half contains 4 × 25 lattices in
which the width of the waveguide is d1; its lower half
contains the other lattices in which the width of the
waveguide is changed into d2. A point source is located
on the interface between the upper and lower halves. The

TABLE I. Eigenvalues of the symmetry operators of eigenstates
at different high symmetry points and resulting contributions to
the gap Chern numbers. Subscripts 1 and 2 correspond to the
bands with eigenfrequencies from low to high.

d1 d0 d2

Ĉ4Γ1 −i −i −1
Ĉ4M1 −i −i −i
Ĉ2Y1 −1 −1 −1
Ĉ4Γ2 i −1 −i
Ĉ4M2 i i i

Ĉ2Y2 −1 −1 −1
Cgap 0 1 1

a a

(a) (b)

A B

FIG. 4. (a) Band structure of a 1 × 8 supercell (d ¼ d2,
v ¼ 10 m=s). Dispersion relations of the edge states are shown
in colored curves, and the bulk bands are plotted in gray curves.
Red and blue curves represent different edge modes. (b) The
pressure-field distribution of edge modes for A, k ¼ −0.1π=a and
B, k ¼ 0.1π=a.
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frequency remains at 139 Hz. According to our previous
analysis, this frequency is located inside the band gaps of
both the upper and lower lattices. The band gap is trivial for
the upper lattices and nontrivial for the lower lattices. This
means that no energy will penetrate into the upper lattices
and that there should be an interface state. The pressure
field shown in Fig. 5(b), indeed, demonstrates the existence
of the interface state and the unidirectional behavior of the
propagation of the sound wave due to the different
topologies of the band gaps of the upper and lower lattices.
As supported by the results shown in Fig. 5, the topology

of the band gap can be tuned by changing the geometry of the
PC. On the other hand, according to the tight-binding model
and symmetry analysis presented earlier, varying the velocity
field is another effectiveway to tune the topology of the band
gap. In Fig. 6(a), we plot the eigenfrequencies of φd and φpþ
as functions of the velocity field for a lattice with a fixed
waveguidewidth, i.e., d ¼ 0.065 m. Similar to Fig. 2(d), we
use purple and blue to indicate the regions for trivial band
gaps and nontrivial band gaps, respectively. We compare the
sound-wave propagation in two finite-sized samples. They
share the samegeometric configuration and are excited by the
same source, but they are exposed to distinct airflows. The
onewith velocity field v ¼ 5 m=s [Fig. 6(b)] exhibits typical
trivial band-gap behavior as the acoustic pressure field is
almost localized around the source, whereas the other one
with velocity field v ¼ 15 m=s [Fig. 6(c)] exhibits one-way
edge states propagating counterclockwise.

IV. CONCLUSION

In conclusion, we report on our design of a tunable PC
that exhibits topologically nontrivial band gaps by breaking
the T symmetry and modulating the geometric parameters
of the inclusion. The mechanisms that lead to band-gap
opening by breaking the T symmetry and by varying the
geometric parameters of the inclusion as well as their
interplay are studied systematically by using a tight-
binding model, a rigorous symmetry analysis, and numeri-
cal simulations. We find a topological transition point that
is related to both T symmetry and the geometric size of the
inclusion, which suggests that the topology can be changed
by tuning the strength of the velocity field and/or the size.
The transition from a localized state to a robust one-
way propagated edge mode is verified by our numerical
experiments. Our findings can inspire designs of acoustic

(a)

(b)

FIG. 5. Demonstration of properties resulting from nontrivial
band gaps by tuning the geometric size of the phononic crystal.
The source indicated by a star is a point source at 139 Hz.
(a) Topologically protected one-way propagation that is immune
to defects (marked by a green circle) and without backscattering.
Here, the width of the waveguide is d ¼ d2 and the velocity of the
airflow is v ¼ 10 m=s. (b) One-way interface state propagation
on the interface between two different lattices. The width of the
waveguide is d ¼ d1 in the upper half and d ¼ d2 in the lower
half. The arrows in (a) and (b) indicate the directions of
propagation of the edge or interface mode.

(b)

(c)

(a)

FIG. 6. (a) The eigenfrequencies of the eigenstates vary as
functions of v. Black and red curves correspond to the φd and φpþ
modes, respectively. The purple and blue areas indicate the region
of the band gap with a different topological invariant, where the
intersection is the topological transition point. (b) The simulated
pressure-field distribution excited by a point source in a phononic
crystal with airflow (v ¼ 5 m=s). (c) The same as (b), but the
velocity field of the airflow is v ¼ 15 m=s. In both cases, the
rectangular waveguide in the phononic crystal has a width of
d ¼ 0.065 m. The source has a frequency of f ¼ 138.4 Hz and is
marked by a star. The arrow indicates the direction of propagation
of the edge mode.
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topological materials, which should improve applications
that require one-way propagation.
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APPENDIX EFFECTIVE HAMILTONIAN
WITH AIRFLOW

The Hamiltonian with the airflow under the basis of jdi,
jpþi, and jp−i is expressed as follows [the same as Eq. (5)],

H ¼

2
64

Edð~kÞ;
ffiffiffi
2

p
t12x ðsin kxa − i sin kyaÞ; − ffiffiffi

2
p

t12x ðsin kxaþ i sin kyaÞ;ffiffiffi
2

p
t12x ðsin kxaþ i sin kxaÞ; 1

2
½Epyð~kÞ þ Epxð~kÞ� þ Δz; 1

2
½Epyð~kÞ − Epxð~kÞ�;

− ffiffiffi
2

p
it12x ðsin kxa − i sin kyaÞ; 1

2
½Epyð~kÞ − Epxð~kÞ�; 1

2
½Epyð~kÞ þ Epxð~kÞ� − Δz

3
75; ðA1Þ

where Edð~kÞ¼Edþ2t11x ðcoskxaþcoskyaÞ, Epyð~kÞ ¼Epyþ
2t22x coskyaþ2t22y coskxa, Epxð~kÞ ¼ Epx þ 2t22x cos kxaþ
2t22y cos kya. This Hamiltonian is sufficient to predict the
topological invariant of the band gap and the topological
transition by modulating the width of the rectangular
waveguide and external velocity field. For illustration
purposes, we choose the case presented in Fig. 1(c) as
the starting point, in which introducing a weak airflow does
not lead to a topologically nontrivial band gap, while if the
airflow becomes stronger, topological transition occurs. In
this case, Epxð0Þ ¼ Epyð0Þ < Edð0Þ without the airflow.
When the airflow is introduced, it is possible to achieve
Epxð0Þ − Δz < Epyð0Þ þ Δz ≈ Edð0Þ, indicating it is

legitimate to employ a perturbation theory to project the
jp−i state out and to get the effect Hamiltonian under the
basis of jdi and jpþi.
We write H as H ¼

�
HA HAB

H†
AB HB

�
with an eigenvalue

problem

�
HA HAB

H†
AB HB

��ϕA

ϕB

�
¼ E

�ϕA

ϕB

�
to be solved. We

are interested in getting an effective HA;eff such that
HA;effϕA ¼ EϕA. To do this, we can replace ϕB with an
expression of ϕA, which is ϕB ¼ ðE −HBÞ−1H†

ABϕA and
obtain HA;eff ¼ HA þHABðE −HBÞ−1H†

AB.
In our case, we have

HA ¼
�

Edð~kÞ;
ffiffiffi
2

p
t12x ðsin kxa − i sin kyaÞ;ffiffiffi

2
p

t12x ðsin kxaþ i sin kxaÞ; 1
2
½Epyð~kÞ þ Epxð~kÞ� þ Δz

�
;

HAB ¼
�− ffiffiffi

2
p

t12x ðsin kxaþ i sin kyaÞ;
1
2
½Epyð~kÞ − Epxð~kÞ�

�
;

HB ¼ 1

2
½Epyð~kÞ þ Epxð~kÞ� − Δz:

In the spirit of perturbation, if the eigenvalue of HA differs much from that of HB, we can approximate the eigenvalue E of
HA;eff by the zero-order eigenvalue of HA. Then ðE −HBÞ−1 can be approximated as 1=ð2ΔzÞ, and

HABH
†
AB ¼

"
2ðt12x Þ2½sin2ðkxaÞ þ sin2ðkyaÞ�; − ffiffi

2
p
2
t12x ðsin kxaþ i sin kyaÞ½Epyð~kÞ − Epxð~kÞ�;

− ffiffi
2

p
2
t12x ðsin kxa − i sin kyaÞ½Epyð~kÞ − Epxð~kÞ�; 1

4
½Epyð~kÞ − Epxð~kÞ�2

#
:

Since Epyð~kÞ − Epxð~kÞ ¼ 2ðt22x − t22y Þðcos kya − cos kxaÞ
corresponds to high-order term of ~k for the case
kx ≈ ky ≈ 0, all four elements of matrixHABH

†
AB correspond

to second-order perturbation and can be neglected. Thus, the
effective HA;eff is just HA and can be regarded as a Dirac
equation in the region kx ≈ ky ≈ 0, which is written as
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HA ¼
�

Edð0Þ;
ffiffiffi
2

p
t12x ðkxa − ikyaÞ;ffiffiffi

2
p

t12x ðkxaþ ikxaÞ; 1
2
½Epyð0Þ þ Epxð0Þ� þ Δz

�
;

ðA2Þ

The new Hamiltonian (A2) is exactly the same as the well-
known QAH model, and there exists a topological transition
point when ½Epyð0Þ þ Epxð0Þ�=2þ Δz ¼ Edð0Þ, which is
also confirmed by the numerical calculation from both
Eqs. (A1) and (A2).
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