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We present optically and electrically tunable conductance modifications of a site-controlled quantum-dot
memristor. The conductance of the device is tuned by electron localization on a quantum dot. The control
of the conductance with voltage and low-power light pulses enables applications in neuromorphic
and arithmetic computing. As in neural networks, applying pre- and postsynaptic voltage pulses to the
memristor allows us to increase (potentiation) or decrease (depression) the conductance by tuning the time
difference between the electrical pulses. Exploiting state-dependent thresholds for potentiation and
depression, we are able to demonstrate a memory-dependent induction of learning. The discharging of the
quantum dot can further be induced by low-power light pulses in the nanowatt range. In combination with
the state-dependent threshold voltage for discharging, this enables applications as generic building blocks
to perform arithmetic operations in bases ranging from binary to decimal with low-power optical excitation.
Our findings allow the realization of optoelectronic memristor-based synapses in artificial neural networks
with a memory-dependent induction of learning and enhanced functionality by performing arithmetic
operations.
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I. INTRODUCTION

In the human brain the interconnection of neurons via
synapses results in a massively parallel computational
network [1]. Synapses, the connections between neurons,
are constantly formed or eliminated [2,3] and learning is
associated with the modification of their strength that
regulates the transmission of action potentials [4]. This
modification is controlled by the superposition of action
potentials generated by pre- and postsynaptic neurons.
According to the model of spike-timing-dependent plas-
ticity (STDP), the relative timing of pre- and postsynaptic
spikes is crucial for dynamic potentiation or depression
[5–8]. In neural networks, neuronal activities do not
necessarily result only in changes of synaptic strength,
but they also result in a varying capability for the induction
of potentiation or depression [9,10], which ensures intrinsic
convergence of synaptic strength [11]. Recently, STDP was
demonstrated with memristors [12–15] and interconnecting
memristors with neurons, STDP-based learning rules can
be emulated in self-learning visual cortices [16]. The
memory resistance (memristance) of memristors [17,18]
can originate from different physical mechanisms such as
self-heating, chemical reactions, ionic transfer, spin polari-
zation, or phase transitions [19]. In addition, a memristive
operation mode was observed for floating-gate transistors

wired as diode-connected transistors [20,21]. Floating-gate
transistors are nonvolatile memories based on field-effect
transistors that store information by means of localized
charge on an additional gate located between the channel
and the control gate [22,23]. Silicon-based floating-gate
transistors are used in commercially available nonvolatile
flash memory devices such as USB memory sticks and
solid-state hard drives. Current Si-based devices with
feature sizes of 20 nm show room-temperature retention
times of more than ten years, and write and access times of
about 1 μs and 10 ns, respectively [24]. Novel approaches
in the design of these memory devices, e.g., a three-
dimensional layout similar to the tri-gate transistor, further
tend to push their feature size limits and thus aims to keep
track with Moore’s law [25]. However, silicon is an indirect
band-gap semiconductor, which makes it impracticable for
optical applications. Thus device concepts based on low
dimensional direct band-gap semiconductors are especially
appealing for an optical and electrical control of charge or
spin states. Here, quantum-dot structures based on III-V-
semiconductor materials with their atomlike energetic
structure in combination with a direct band gap enable
optoelectronic applications such as lasers [26], single
photon sources [27], entangled-light-emitting diodes
[28], spin memories [29,30], and floating-gate transistors
[31]. Realizing STDP on a state-of-the-art optoelectronic
semiconductor platform would thus allow the realization
of electro-photo-sensitive artificial synapses and brain-
inspired computing with optical interconnects.
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Here we present an electro-photo-sensitive memristor
suitable for neuromorphic and arithmetic computing.
The conductance of the device emerges from different
amounts of quantum-dot (QD-)localized charges which can
be controlled and altered by electrical and low-power
optical pulses. Applying nature-inspired voltage pulses
to emulate the action potentials of pre- and postsynaptic
neurons, the conductance of the device is raised (potentia-
tion) or lowered (depression) by changing the time differ-
ence between the onsets of the pulses. We further observe a
dependence of the conductance change on the initial
state, which was set by the past biasing procedure.
Thus, previous input pulses are memorized and the
capability for the induction of learning changes accord-
ingly. Finally, we demonstrate an optical control of the
memristance. Combining the optical tunability with the
state-dependent threshold for potentiation, the device is a
basic component for the realization of arithmetic operations
with low-power optical pulses.

II. DEVICE LAYOUT

Figure 1(a) shows a scheme of the device, which is based
on a GaAs=AlGaAs heterostructure with precisely posi-
tioned InAs QDs (highlighted in green). The fabrication
process is described in detail in Ref. [32]. The memristive
operation is realized by short circuiting the source with the
gate contacts [see Fig. 1(b)] [20,21]. This wiring scheme is
known as the diode-connected transistor and can, for
example, be used as temperature sensor [33]. In our case,
the transistor is a quantum-dot floating-gate transistor. In
analogy to synapses in neural networks, where the

plasticity is controlled by the action potentials of pre-
and postsynaptic neurons, we apply two independent
voltage pulses labeled as pre- and postsynaptic pulses to
the two terminals of the device. The voltages Vpr and Vpo

are applied to the drain and source contacts, respectively
[see Fig. 1(b)]. The current I is measured as voltage drop
across a resistor with R ¼ 1 MΩ in series to the channel.
All measurements are conducted at 4.2 K.

III. MEMRISTOR CHARACTERISTICS

Figure 1(c) depicts the current-voltage characteristic of
the device. A closed voltage sweep of the voltage applied to
the drain and gate contacts between−3.8 and 4.6 V shows a
pinched hysteresis loop, the fingerprint of memristors [34].
The low and high conductance values between −1 and 1 V
are explained by different amounts of QD-localized elec-
trons n with more charges corresponding to the smaller
conductance. V th is the width of the plateau with almost
zero conductance and is linear dependent on the amount of
localized electrons [21]. The QD becomes charged for
voltages below Vc ≈ −1.9 V ðΔn > 0Þ and discharged
above Vd ≈ 4.4 V ðΔn < 0Þ. In Fig. 1(c), Vc and Vd are
highlighted with the red vertical lines. Hence, the conduct-
ance of the device is altered by changing the amount of
QD-localized charges which depends sensitively on the
time and the voltage value spent above the discharging or
below the charging voltage.
The pinched hysteresis loop can be analyzed by the

width V th of the plateau with almost zero conductance [21].
Figure 1(d) displays the discharging voltage in dependence
on V th. V th is increased by reducing the minimum bias
voltage during the voltage sweep cycle in Fig. 1(c). Lower
minimum voltages lead to more localized electrons and
enhanced V th [21]. A linear increase of Vd is observed for
raising V th. Strukov et al. explained the dependency of the
threshold voltage on the state of the memristor with
nonlinearities in ion movements [35]. Here, we describe
the shift of the discharging voltage by means of a charge-
dependent gate efficiency. Charging the QD with electrons
lowers the gate-channel capacitance. The quantum-dot
charge-dependent gate-channel capacitance emerges from
the depletion of the channel via localized electrons on the
quantum dot which effectively leads to a variable effective
gate-channel distance with different charge accumulation
interfaces. Thus, discharging the QD leads to larger
capacitances. Controlling the amount of localized charge
with the lateral gates, a hysteresis in the capacitance-
voltage curve is evident, which is the fingerprint of
memcapacitors [19,36]. For reduced capacitances, larger
absolute gate voltages are required to shift the potentials of
the QD and the two-dimensional electron gas by the same
energy. Thus, the charging and discharging voltages are
reduced and increased, respectively.
For excitation with constant parameters (voltage range,

sweep time), the pinched hysteresis loop as well as the
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FIG. 1. (a) Scheme of the memristor. The positions of the QDs
are highlighted in green. (b) Circuit diagram of the memristor. Vpr
is applied to the top contact of the wire and the lateral gates. Vpo is
applied to the bottom contact of the wire. (c) Current-voltage
characteristic of the device. Vc and Vd are the threshold voltages
for charging and discharging, respectively. (d) Linear dependency
between the discharging voltage and V th.
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threshold voltages Vd and Vc are highly reliable even after
many voltage and temperature cycles with small deviations
in the threshold voltages for charging and discharging in
the order of 50 mV. The energy-barrier height surrounding
the floating gate, around 0.4 eV for the presented device, is
significantly lower compared to silicon-based floating-gate
transistors (3.2 eV) which leads to small retention times of
several days at 4.2 K and stable pinched hysteresis loops up
to temperatures of about 165 K [21]. Room temperature
operation may be possible by tuning the material compo-
sition of the III-V compound semiconductors representing
the QD and the surrounding matrix [31]. On the other hand,
the reduced barrier height enables faster write and erase
times and smaller operation voltages. A particular advan-
tage of III-V-semiconductor-based compared to Si-based
floating-gate devices is the tunability of the energy barrier
by changing the material composition. This may enable the
realization of fast write times and room-temperature reten-
tion times comparable to Si-based devices [31].

IV. SPIKE-TIMING-DEPENDENT PLASTICITY

Two function generators are used to emulate the voltage
pulses in Fig. 2(a), that are applied to the two terminals of
the device [see Fig. 1(b)]. The general shape of the pulses is
chosen to mimic an action potential measured in the axon
of a squid [37]. Simple rectangular pulses are not used,
because they only enable us to either emulate potentiation
or depression with a single set of pulses [21]. However, the
transition from potentiation to depression solely triggered
by the timing of the pulses is essential to mimic STDP and
requires pulse shapes with positive and negative ampli-
tudes. These pulse shapes allow us to change the voltage
difference across the memristor from negative to positive
by inverting the temporal order of the two pulses. Thus,
charging or discharging of the QD can be induced depend-
ing on the order of the pulses. Because of the asymmetric

charging and discharging voltages of the device, at least
one pulse needs to be asymmetric. Thus, we used ampli-
tudes of (þ4.2, −3.1) and (þ2.0, −2.0) V for Vpr and Vpo,
respectively. The pulse widths are 10 ms. The time differ-
ence Δt between the pulses is the crucial parameter of
STDP. Here, the postsynaptic pulse is applied after the
presynaptic pulse for positive time differences and
vice versa.
For the present device, the performance is mainly

governed by the voltage difference Vpr − Vpo between
the two terminals. Depending on Δt, the temporal voltage
difference can exceed the threshold voltages for charging
and discharging [see red highlighted areas in Fig. 2(b)] for
their respective times Tc and Td. These time intervals
depend on Δt, i.e., TcðΔtÞ and TdðΔtÞ, as sketched in
Fig. 2(c). For simple rectangular pulses, either Tc or Td
would be zero and independent on Δt. Thus, tuning the
time difference does not allow the observation of a
transition from depression to potentiation. For the pulses
in Fig. 2(a), the dominant processes are charging (high-
lighted in yellow) for negative and discharging (highlighted
in green) for positive time differences. The time-dependent
tunneling from the two-dimensional electron gas to the QD
(charging) and from the QD to the two-dimensional
electron gas (discharging) can be described by a capacitor
model [38]. The dependency of n on Tc and Td is given by

nðΔtÞ ¼ n0 þ nþ

�
1 − exp

�−TcðΔtÞ
τc

��

− n−
�
1 − exp

�−TdðΔtÞ
τd

��
: ð1Þ

n0 is the initial amount of QD-localized charges. The
second and third term of Eq. (1) represent charging and
discharging characteristics with time constants τc and τd,
respectively. nþ and n− are constants that represent the total
amount of transferred charges.
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FIG. 2. (a) Scheme of pulse trains for negative (left) and
positive (right) time differences Δt. The different voltages are
applied to the two terminals of the memristor. Depending on Δt,
Vpr − Vpo can exceed Vc and Vd [highlighted in red in (b)]. The
time intervals in the charging and discharging regions versus Δt
are shown schematically in (c). For positive and negative time
differences, the QD is discharged (green area) and charged
(yellow area), respectively.
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FIG. 3. (a) Conductance versus number of applied pulses for
different Δt. G remains almost unaltered for large time
differences (Δt ¼ �5.3 ms), but decreases and increases for
Δt ¼ −0.7 and þ0.7 ms, respectively. (b) Relative conductance
change versus Δt. In the interval of Δt ¼ �4 ms, ΔG can be
tuned efficiently and either depressed or potentiated depending
on the sign of Δt.
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Figure 3(a) shows the conductance of the memristor
versus the number of applied pulses N for different Δt.
Here, one pulse is defined as the pair of the pulses depicted
in Fig. 2(a). Ten consecutive pulses are applied for constant
time differences. Each pulse is followed by a readout pulse
with amplitude 2.8 V and width 5 ms to determine the
conductance G. For large time differences (�5.3 ms), the
conductance remains almost unaltered up to ten pulses.
Smaller time differences lead to an increase and decrease
of the conductance with N for þ0.7 and −0.7 ms, respec-
tively. These observations are due to changes in the voltage
difference across the memristor as a function ofΔt. Varying
time differences lead to different time intervals TcðΔtÞ and
TdðΔtÞ. For Δt ¼ �5.3 ms, they are almost zero and thus
Td=τd ≈ 0 and Tc=τc ≈ 0. Consequently, the amount of
QD-localized charges in Eq. (1) remains unaltered with
nðΔtÞ ≈ n0 and Δn ≈ 0. For Δt ¼ �0.7 ms, the temporal
signal exceeds the threshold voltages for times Tc and Td
greater than zero [see Fig. 2(c)]. For negative Δt, the
charging dominates over the discharging process with
Tc=τc > Td=τd, and the QD becomes charged with addi-
tional electrons [see Eq. (1)]. Discharging the QD domi-
nates for positive time differences.
To explain the influence of the amount of QD-localized

charges on the conductance, we use the current-voltage
characteristic of a floating-gate transistor

I ¼ βðVg − VtuÞVb − β
V2
b

2
; ð2Þ

with Vg and Vb being the gate and bias voltages, respec-
tively, Vtu the threshold voltage, and β the transconduct-
ance [20]. Charging the floating gate (here: QD) with
electrons shifts Vtu of the nearby transistor with Vtu ¼
ne=C (e represents elementary charge, C represents
QD-gate capacitance) towards larger values [39].
Additionally the carrier density and the conductance of
the transistor are reduced for larger n [40]. In the mem-
ristive operation mode we have Vg ¼ Vpr and Vb ≤ Vpr.
Hence, the second term in Eq. (2) can be neglected. With
Vtu ¼ ne=C it follows that the conductance G ¼ I=Vb ∝
ne=C is linearly dependent on the amount of QD-localized
charges which in turn can be altered by the times spent in
the charging and discharging regions [see Eq. (1)].
Applying N consecutive pulses, the conductance change is

GNðΔtÞ −G0 ∝ −nþ
�
1 − exp

�−NTcðΔtÞ
τc

��

þ n−
�
1 − exp

�−NTdðΔtÞ
τd

��
: ð3Þ

G0 is the initial conductance andGN is the conductance after
applyingN pulses. For negative and positive time differences
we have TcðΔtÞ=τc > TdðΔtÞ=τd and TcðΔtÞ=τc <
TdðΔtÞ=τd, respectively. Thus, for a given time difference,

one term is negligible leading to the exponential decline of
GN −G0 forΔt ¼ −0.7 ms and the exponential increase for
Δt ¼ þ0.7 ms [see Fig. 3(a)].
Figure 3(b) shows the relative conductance change after

a single pulse ΔG ¼ ðG1 −G0Þ=G0 versus Δt. For each
measurement,G0 is set to 0.8 μS prior to the first pulse [see
Fig. 3(a)]. The relative conductance change depends
exponentially on the time difference and can be tuned
efficiently within a time interval of about 4 ms. Thus, the
relative conductance change is zero for large magnitudes of
the time difference. The experimental data for positive and
negative time differences can be fitted with single expo-
nential fit functions A expðΔt=τÞ [see Eq. (3)]. The param-
eters are A ¼ 130% and τ ¼ −0.4 ms for positive and
A ¼ 175% and τ ¼ 1.6 ms for negative time differences.
The different time constants for charging and discharging
(see Ref. [38]) result in a broader time window for
depression than for potentiation.

V. STATE-DEPENDENT PLASTICITY

The conductance change of the memristor depends
not only on the timing of the voltage pulses, but also on
the initial conductance value G0 as shown in Fig. 4.
Figures 4(a) and 4(b) illustrate the conductance versus N
for various G0 and time differences of þ0.9 and −1.1 ms,
respectively. The amplitudes of the voltage pulses are
ðþ4.2;−2.8Þ V for Vpr and ðþ2.0;−2.0Þ V for Vpo.
Again, the conductance increases and decreases for positive
and negative time differences, respectively. Consequently,
the conductance change after one pulse G1 −G0 versus G0
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FIG. 4. (a) G versus N for different initial conductance values
G0 and time difference ofþ0.9 ms. (b) Conductance versus pulse
number for different G0 and Δt ¼ −1.1 ms. (c) G1 − G0 for
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is positive (potentiation) for Δt ¼ þ0.9 ms and negative
(depression) for Δt ¼ −1.1 ms [see Fig. 4(c)]. While
G1 −G0 decreases linearly for depression, it shows a
nonlinear response with a maximum at 1 μS for potentia-
tion. The initial conductance corresponds to an initial
amount of QD-localized charges n0 and thus controls the
threshold voltages for charging and discharging [as shown
in Fig. 1(d) for Vd]. For decreasing n0 (corresponds to
increasing G0), the discharging voltage is lowered and the
charging voltage is raised linearly because both are propor-
tional to n0e=C. Thus, larger initial conductance values
enhance the times Td and Tc for constant bias voltages
which in turn lead to larger absolute values of G1 −G0 [see
Eq. (3)]. The proportionality between Vc and n0 is directly
reflected in the linear G1 −G0 (G0) curve for a time
difference of −1.1 ms. For potentiation, the linear increase
is superimposed by a decline, which originates from the
saturation of the conductance at the maximum value
(discharged QD). In Eq. (3), n− correspond to the number
of electrons that tunnel out of the QD. This number is
limited by n, i.e., n− ≤ n. For G0 > 1 μS, the number of
tunneling electrons equals n. Consequently, this number is
reduced for increasing G0 which according to Eq. (3)
lowers the absolute conductance change.
Figure 4(d) presents the relative conductance change

after a single pulse versus the initial conductance. ΔG is
almost constant and independent on the initial conductance
value for depression, but ranges from 0% to 120% for
potentiation. Similar findings in hippocampal neurons
showed relative changes of synaptic strength (absolute
change divided by initial value) that depend on the initial
strength for potentiation but are constant for depression,
which is an important stability feature of STDP models
[8,11]. The reason, therefore, is that the synaptic strength
triggers postsynaptic activity, and thus a constant relative
change for potentiation would cause infinite synaptic
strengths. A dependency of the relative change on the
initial strength prevents this positive feedback and ensures
converging synaptic strengths [11]. With the relative
conductance change dependent on the initial conductance
value, memristor-based synapses thus allow prevention of
the positive feedback in artificial neural networks, where
the pulses are generated intrinsically by postsynaptic
activities, and ensure converging conductances.
Conductance traces versus N for 200 consecutive pulse

pairs are displayed in Fig. 5(a). In the following, pulse pairs
of pre- and postsynaptic pulses with negative and positive
time differences are labeled as depression and potentiation
pulses, respectively. The data in Fig. 5(a) is measured by
applying Nd depression pulses with time difference of
−1 ms, followed by Np potentiation pulses with time
difference of þ1 ms. The amplitude of Vpr is raised from
4.2 to 4.5 V to realize large positive-conductance changes.
The curves represent Nd ¼ Np ¼ 5, 10, and 20 from
top to bottom. Since the conductance can be decreased

for negative and increased for positive time differences, it
alternates periodically by inverting the temporal order of
the pulses. The conductance value Gd after Nd depression
pulses (before potentiation) shows an exponential decay
versus Nd, as shown in Fig. 5(b). The dashed line
represents the exponential fit function according to
Eq. (3). The conductance reduction per pulse is lowered
for larger Nd and thus many pulses are necessary to reduce
Gd to zero. Information learned by previous potentiation is
stored for a long time because of the intrinsic nonvolatile
memory functionality of memristors. The storage capability
enables long-term storage (several days at 4.2 K for the
present device) of conductance values even for zero bias,
which is advantageous compared to simple RC circuits that
also show exponential conductance reductions.
Conductance traces for different numbers of depression

and potentiation pulses Np ¼ 200 − Nd are presented in
Fig. 5(c) for 400 consecutive pulse pairs. The number of
potentiation pulses ΔN to raise the conductance up to 50%
of the maximum value increases for larger Nd (lower Gd).
The exponential increase of ΔN versus Nd in Fig. 5(d)
can be explained bearing in mind that the application of
more depression pulses leads to an enhanced amount of
QD-localized charges. Thus, the threshold voltage for
discharging shifts towards larger values [see Fig. 1(d)]
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and the time interval Td for the consecutive potentiation is
lowered. According to Eq. (3), more pulses are needed to
compensate the reduction of Td. This explains the expo-
nential ΔN − Nd dependence as shown in Fig. 5(d). A
correlation between the thresholds for potentiation and
depression on the initial synaptic strength (here G0) is also
observed in the goldfish Mauthner cell [41]. Our findings of
the ΔN − Nd dependence enables the implementation of a
memory-dependent induction of learning. Here, the number
of depression pulses controls the strength before potentia-
tion is induced by learning. The increase ofΔN for largeNd
(small initial strengths) implies that potentiation and thus
learning is more effective for larger initial strengths, which
corresponds to the memory of previous learning processes.

VI. OPTICAL CONDUCTANCE CONTROL

So far, the presented results may be reproducible with
Si-based floating-gate transistors with advantages of
reduced dimensionality, room-temperature operation, and
CMOS compatibility [24]. The presented device is based
on a GaAs=AlGaAs heterostructure and it is thus fully
compatible with other III-V-based and state-of-the-art
optoelectronic semiconductor devices. Because of its direct
band gap, the material offers better absorption coefficients
compared to similar silicon-based device realizations and
hence allows to control the memristance by electrical and
low-power optical pulses as shown in Figs. 6 and 7. For the
optical excitation, a red light-emitting diode (LED) with
wavelength λ ¼ 632 nm is placed beside the device. The
LED illuminates the whole device as illustrated in Fig. 6(a).
No (shadow) masks with tunable transmission or micro-
scope objectives are used to focus the light, which would be
essential to control single devices in a network. The
reported light powers correspond to the full LED emission
power and are hence an upper limit of the light power that
influences the device operation. Figure 6(b) depicts current-
voltage characteristics under cw illumination. The LED is
operated below the threshold voltage with output powers
below 1 nW (the detection limit of our photosensor). For a

current of 10 μA, the excitation power equals 1 nW. For
increasing LED currents and hence light powers, the width
of the plateau with almost zero conductance around zero
bias and therefore the amount of localized charges
decreases. Thus, the QD can be discharged optically. We
explain the optically activated discharging by intraband
absorption, which depopulates the quantum dot when an
electric field is present [42].
Figure 7(a) shows the conductance of the memristor

versus number of excited light pulses. Instead of cw
illumination as in Fig. 6(b), the memristor is excited with
pulses with widths of 10 μs and different light powers.
Before the measurement (N ¼ 0), the QD is charged and
thus the conductance is low. For a light power of 1700 nW,
the conductance starts to increase after 140 pulses and
saturates at 3.5 μS after 2000 pulses. For decreasing light
power, more pulses are required to raise the conductance
above zero. The conductance remains unaltered for 2000
pulses with a power of 3 nW and below. Because the
amount of transferred electrons is controlled by the width
and the power of the light pulses, i.e., the number of
incoming photons, larger excitation powers enables dis-
charging with shorter light pulses. In Ref. [43], photo-
induced charging of the QD in a similar structure is
demonstrated with light in the telecommunication range.
Thus, we believe that the presented device allows bidirec-
tional, light-induced conductance changes.

VII. ARITHMETIC COMPUTING

The device with its optical control of the QD-localized
charge and state-dependent threshold voltage for discharg-
ing is a basic component to perform arithmetic operations
with optical pulses. Figure 7(b) displays the conductance
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versus pulse number for optical and electrical excitation.
We excite the memristor with 10 consecutive light
pulses with a light power of 1 nW and a width of 10 ms
[see Fig. 7(c) for the time trace of the applied pulses]. Each
optical pulse (green) is followed by an electrical pulse
(blue) with an amplitude of 4.46 V and a width of 10 ms.
After each pulse pair, we determine the conductance of the
memristor by applying a readout pulse with amplitude
1.3 V. Before the measurement [N ¼ 0 in Fig. 7(b)], the
QD is charged by an initializing pulse with an amplitude of
−3.8 V and thus the conductance is small. Applying only
electrical pulses (switched off LED), the conductance
remains almost unaltered up to ten pulses. Because the
discharging voltage is larger than the amplitude of 4.46 V,
the QD is not completely discharged and the conductance is
not affected. For electrical and optical excitation, the
conductance is raised successively. Each light pulse par-
tially discharges the QD and thus enhances the conductance
and reduces the discharging voltage [see Fig. 1(d)]. After
the 9th pulse, the discharging voltage is smaller than the
electrical pulse amplitude of 4.46 V and the QD becomes
fully discharged. A steep increase of the conductance
occurs, as shown in Fig. 7(b). With the well-pronounced
conductance enhancement after the 9th pulse, the mem-
ristor is suitable for basic arithmetic operations as counting
or adding in base 10. From 1 to 9 pulses, the conductance
increases from 0.09 to 1.16 μS and for the tenth pulse a
sudden raise of the conductance to 2.2 μS is observed. An
addition can be performed by applying specific numbers of
optical pulses that represent the addends. Multidigit oper-
ations are required if the sum of the addition exceeds the
base and can be realized by combining several memristors
and reset circuits to a network [44]. The reset circuits set
the state variable to the initial value (reset to zero) and
additionally provide the carry signal for the next significant
bit. After the operation, the conductance corresponds to a
certain pulse number, which is the result of the addition. In
analogy to the implementations in Ref. [45], subtraction,
multiplication, and division can be performed. The large
conductance enhancement after the tenth pulse is possible
only because of the state-dependent threshold voltage for
discharging and allows triggering the reset with high
accuracy and low impact of undesirable readout noise.
For practical applications, this well-defined conductance
state for a discharged QD triggers the release of an
initialization pulse, which can be employed by additional
circuitry (on-chip fabrication of comparator). In analogy to
synapses in neural networks, the memristor combines
processing of information and memory. The result of the
arithmetic operation is stored as conductance of the
memristor. Similar results have been reported for phase-
change materials with much larger excitation powers [45].
Here, the direct band gap leads to high absorption coef-
ficients and the device structure with a single QD control-
ling the memristance allows tuning of the conductance state

by absorbing only a low number of photons. The optical
control of the QD charge thus employs an efficient and low-
power possibility for arithmetic operations of light pulses.
Figure 8(a) depicts the conductance versus number of

applied light pulses with power of 1 nW and different
widths of 3.1, 4.4, and 5.6 ms. The initializing pulse is
lowered to −4.0 V and the electrical pulses raised to 1.5
(readout) and 5.0 V. For a width of 3.1 ms, the conductance
increases above 2.5 μS for the tenth pulse. Raising the
width to 4.4 and 5.6 ms, only 8 and 6 pulses are required to
discharge the QD, respectively. The color plot in Fig. 8(b)
shows that the number of pulses required to discharge the
QD can be tuned from one to ten and thus arithmetic
operations from binary to decimal bases are possible. The
large width of the light pulses (in the order of ms) is chosen
to be comparable to the width of the electrical pulses.
Arithmetic operations are also demonstrated in Ref. [46]
with an optoelectronic resistive switching memory.
However, light pulses with widths of seconds are used
and a linear dependency between the current of the device
and the pulse number is shown. Here, the nonlinear
increase of the conductance allows us to clearly distinguish
the states after the 9th and 10th pulse for base-10
operations. In addition, the base can be controlled by the
width of the light pulses. This is especially beneficial to
perform divisions in analogy to Ref. [45], where the
number of pulses until a given threshold is exceeded has
to be equal to the divisor. Thus, the device is advantageous,
because it allows us to tune the number of pulses that are
required to exceed the threshold solely by the width of the
optical pulses.
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VIII. CONCLUSION

In summary, we present an electro-photo-sensitive
memristor suitable for neuromorphic and arithmetic com-
puting. Similar to synaptic strength in neural networks,
the conductance is controlled by the time difference of
incoming voltage pulses. In addition, the threshold voltages
to switch the conductance of the device are shown to be
state dependent, which emerges from the interplay of a
memristance with a memcapacitance. In contrast to other
realizations of memristors [47–49], memristance and mem-
capacitance switching of the presented device are observed
between different terminals. The memristance is measured
in the two-terminal geometry and the memcapacitance
between the lateral gates and the wire. Thus, the state of
the device controls the charging and discharging voltages
via the gate-channel capacitance (intrinsic feedback). This
may enable the implementation of memory-dependent
induction of learning or the realization of counters and
integrate-and-fire neurons. Here, we exploit the feedback to
show the capability of performing arithmetic operations in
different bases with clearly distinguishable reset states.
The large pulse widths of several ms and low operation

temperature prevent immediate application of the presented
device in artificial neural networks. The maximum oper-
ation temperature of the device may be enhanced to room
temperature by tuning the material composition of the
quantum dots and the surrounding matrix [31,50]. The
widths of the pulses can be reduced by increasing
the amplitude and power of the electrical and optical
pulses, respectively. Write times of 6 ns have been already
reported for InAs quantum dots in a GaAs matrix [51]. The
presented results demonstrate the capability of emulating
synaptic functionalities in combination with performing
basic arithmetic operations in different bases and may
trigger future research regarding the material composition
to enhance the maximum operation temperature. With
operation at room temperature, the device may be
employed in memristor-based non–von Neumann archi-
tectures to implement brain-inspired computing with a
memory-dependent induction of learning.
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