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Long carrier spin lifetimes are a double-edged sword for the prospect of constructing “spintronic” logic
devices: Preservation of the logic variable within the transport channel or interconnect is essential to
successful completion of the logic operation, but any spins remaining past this event will pollute the
environment for subsequent clock cycles. Electric fields can be used to manipulate these spins on a fast
time scale by careful interplay of spin-orbit effects, but efficient controlled depolarization can only be
completely achieved with amenable materials properties. Taking III-VI monochalcogenide monolayers as
an example 2D semiconductor, we use symmetry analysis, perturbation theory, and ensemble calculation to
show how this longstanding problem can be solved by suitable manipulation of conduction electrons.
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I. INTRODUCTION

Manipulation of electron spin orientation in polarized
ensembles provides a basis for new logic devices and
circuits with potential advantages over present-day charge-
based designs [1]. It is widely believed that whenever spin
encodes the logic state, semiconductor materials with the
longest spin lifetime are the most suitable choice for
transport channels between injection and detection con-
tacts. However, once a logic operation is completed,
residual spins can—and will—interfere with those involved
in future operations. Can we design a device with a
controllable spin lifetime? In this scheme, otherwise robust
spins would vanish from the channel by an externally
induced, fast, and tunable depolarization mechanism upon
completion of every logic operation.
The present paper presents a solution to this challenge,

making use of two-dimensional semiconductor materials
having a strong uniaxial spin-orbit field anisotropy. In
this scheme, spins are initially aligned parallel or antipar-
allel to a long-lived quantization axis at injection or
generation. After spin transport to other parts of the device
and completion of a logic operation, a clocked voltage
pulse at an electrostatic gate generates an electric field in
the transport channel that induces a Bychkov-Rashba
effective magnetic field [2]. This magnetic field, due to
the structural inversion symmetry-breaking electric field
and spin-orbit interaction, is noncollinear to the spin axis
and thus rotates the spins via precession onto an orthogonal
axis. The physical logic environment is then reset for the
next operation.
One realization of such an anisotropic material is the

zinc-blende [110] quantum well, whose spin relaxation

properties have been thoroughly studied using optical
orientation methods [3–6]. However, fabrication of this
system requires epitaxial growth and the active layer is
buried deep within the bulk. An alternative approach to
meet our requirement for anisotropy without sophisticated
crystal growth or the constraint of deep encapsulation is
through the use of inversion-asymmetric van der Waals
layered materials obtainable by exfoliation or vapor-
deposition methods.
Through detailed theoretical symmetry analysis, we have

identified several such two-dimensional materials with the
requisite anisotropic spin-orbit properties. The most prom-
ising candidate material system we have found is the
group-III-metal–monochalcogenide monolayer (G3M-MCs)
system. In this inversion-asymmetric two-dimensional
material system (examples include GaSe and InS), the
spin-orbit-induced k-dependent Dresselhaus effective mag-
netic field [7] is oriented perpendicular to the monolayer
plane and scales as a cubic function of the wave number
k [8]. Spin-up and spin-down are then the natural eigen-
states, immune to Dyakonov-Perel (DP) spin relaxation
which would otherwise cause precessional dephasing upon
momentum scattering for any other polarization axis [9].
An electrostatically controlled Bychkov-Rashba field—
which is always perpendicular to both the quasimomentum
k and the electric field Ez, thus oriented in plane—can be
used to rotate spins toward the plane and achieve
depolarization.

II. MECHANISM AND MATERIALS

The depolarization mechanism we describe is illustrated
in Figs. 1(a)–1(d). In (a), spin-polarized electrons oriented
normal to the channel surface are injected electrically from
a ferromagnet with perpendicular magnetic anisotropy
(such as the CoFeB=MgO system [10] and Co=Ni or
Co=Pd ultrathin multilayer system [11]) or generated via
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optical interband excitation with polarized light [8]. The
out-of-plane spin-orbit Dresselhaus field stabilizes spins
aligned (or antialigned) to it from extrinsic fluctuations
(such as magnetic impurities, random strain gradient,
substrate potential fluctuation, etc.), allowing them to travel
through the channel without appreciable depolarization. In
Fig. 1(b), we show that after a logic operation is completed
(such as spin torque or exchange from polarized electrons
manipulating the magnetization of a ferromagnetic contact
[12]), a perpendicular electric field pulse provided by a
transverse electrostatic gate induces a Bychkov-Rashba
effective magnetic field oriented in the plane. Its combi-
nation with the intrinsic Dresselhaus field results in a total
effective magnetic field misaligned with the spins, at an
angle θB. In Fig. 1(c), we show spin precession around the
total spin-orbit field. With a carefully engineered gate
voltage pulse amplitude and duration, spins precess into
the plane, eliminating the ensemble projection onto the
original quantization axis when the electric field vanishes.
As shown in Fig. 1(d), the channel is then cleared of out-of-
plane spin, and any remaining in-plane polarization is
quickly depolarized by precessional dephasing. Residual
spins are eliminated, preparing the channel for the next
logic cycle (which may be affected by the up or down
orientation of the injector ferromagnet from upstream
circuit elements).
Several questions must be answered before this scheme

can be considered viable: Which perpendicularly polarized
carriers (conduction electrons or valence holes, immune
to DP) suffer the least relaxation by secondary spin-flip
mechanisms? What is the magnitude of both the
Dresselhaus and Bychkov-Rashba coefficients for this
band, and are they compatible with achieving complete
depolarization in electric fields of reasonable strength?
What is the relationship between optimized gate-pulse

duration and electric field, and is it consistent with
the requirements imposed by an upper bound set by
momentum-scattering time? In the following sections,
we apply symmetry analysis, lowest-order perturbation
theory, and ensemble integration to address these and other
essential questions.
Before proceeding to the next section, we must first

address an important issue regarding our choice to focus on
the lesser-known G3M-MC monochalcogenide materials
(GaSe, InS, etc.), in contrast to the better-known TMDC
dichalcogenide system (WS2, MoSe2, etc.). In monolayers
of both materials, the internal Dresselhaus magnetic field
(proportional to the spin-subband splitting) is always
oriented out of plane [13]. However, gap-edge states of
G3M-MCs are located around the Brillouin-zone center Γ
point, while those of TMDCs are at the zone-edge KðK0Þ
points. As a result, the internal spin-orbit effective
magnetic-field dependence on crystal momentum k is
drastically different in each case: spin splitting scales as
k3 in G3M-MCs, vanishing at Γ due to Kramers’ degen-
eracy there, but in TMDCs, the spin splitting close to the
band extrema is enormous in magnitude and independent of
the wave vector k. The smallest spin splitting can be found
in the MoS2 conduction band at 4 meV, equivalent to a
magnetic field of many tens of tesla; to compete with it, the
voltage-induced Bychkov-Rashba field will require sim-
ilarly enormous and impractically obtainable electric fields.

III. PERPENDICULAR SPIN LIFETIME

We first justify our expectation of a long out-of-plane
spin lifetime, and motivate the choice of conduction-band
electron manipulation in n-type G3M-MC monolayers, as
opposed to holes in p-type material.

A. Spin mixing

Although spins aligned to the Dresselhaus field are
immune to DP relaxation, they are still subject to the
Elliott-Yafet (EY) mechanism. EY spin relaxation is driven
by carrier scattering events that couple to minority spin
components of the wave function. These impure admix-
tures are introduced by the effect of spin-orbit interaction
and so EY is generally present in all materials regardless of
inversion (a)symmetry.
Spin-orbit interaction can be treated as a perturbation

within k · p̂ theory, where it generates two terms in the
envelope Hamiltonian: a k-independent term ðℏ=4m2

0c
2Þ

∇V × p̂ · σ and a k-dependent term ðℏ2=4m2
0c

2Þ∇V×k·σ.
In two-dimensional systems when k · z ¼ 0, the latter takes
on the form

ℏ2

4m2
0c

2

�
ðkxσy − kyσxÞ

∂V
∂z þ kyσz

∂V
∂x þ kxσz

∂V
∂y

�
: ð1Þ

Since only σx and σy have off-diagonal elements, only the
first term (proportional to ∂V=∂z) can perturb the wave

FIG. 1. Spin-polarization control using pulsed spin-orbit fields.
Panel (a) shows a charge carrier with quasimomentum k and
long-lived spin s⊥, perpendicular to the plane and parallel to the
Dresselhaus magnetic field BD. In (b), electric field E∥s⊥ creates
a Bychkov-Rashba spin-orbit field BBR⊥E, k in the plane. Spins
then precess about the total field Btotal at angle θB, as shown in (c).
When the electric field vanishes, any residual in-plane spins s∥
are quickly dephased by the Dresselhaus field, as shown in (d).
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function with opposite spin admixtures. This term clearly
has the same spatial symmetry properties as the polar vector
z; using the language and notation of group theory, it is a
basis function for the irreducible representation (IR) Γ−

2 , as
in Table I.
All components of the operator p̂ exist regardless of

the dimensionality, so the k-independent spin-orbit
interaction is

ℏ
4m2

0c
2

�
σx

�∂V
∂y pz −

∂V
∂z py

�
þ σy

�∂V
∂z px −

∂V
∂x pz

�

þσz

�∂V
∂x py −

∂V
∂y px

��
: ð2Þ

The σx, σy spin-mixing terms transform as the in-plane
components of an axial (pseudo)vector fxz; yzg (the IR Γ−

3 ,
see Table I).
With the assistance of the basis functions (Table I) that

capture the symmetries of spin-orbit perturbations and
different bands, it is straightforward to examine how spin
mixing is introduced. Here we focus on the gap-edge states.
The valence-band spatial wave functions are invariant to all
of the point-group symmetry operations, and thus transform
as a scalar, 1 (corresponding to IR Γþ

1 ). The k-dependent
spin-orbit perturbations thus cause first-order corrections
of opposite spin from remote bands with Γ−

2 (z-like)
symmetry, since h1j∂V=∂zjzi is nonvanishing. Similarly,
opposite spin components are induced to the valence band
by k-independent spin-orbit perturbations from remote
bands with Γ−

3 (fxz; yzg-like) symmetry. The same argu-
ment can be applied to the conduction band, which is
odd with respect to mirror inversion about the plane, and
so transforms like z (Γ−

2 ). The conduction-band wave
function will thus acquire spin admixtures with spatial
symmetries of Γþ

1 from k-dependent and Γþ
3 from

k-independent perturbations.

B. Phonon symmetry

In-plane acoustic phonons in these materials have x, y
(Γþ

3 ) symmetry and therefore only play a role in spin-
preserving momentum scattering. These events couple the
spin-majority components of the wave functions and
affect the charge mobility but not spin relaxation. In the
following, we discuss the influence on spin relaxation due
to carrier scattering with flexural phonons and optical

phonons, and justify that in both cases, the spin of electrons
in the conduction band is more robust than holes in the
valence band.
Because out-of-plane flexural phonons have no cutoff

and a quadratic dispersion relation to lowest order (and
hence a constant density of states, as opposed to the
vanishing linear DOS for the in-plane acoustic phonons),
scattering with them usually dominates the EY spin lifetime
in two-dimensional materials [14–16]. These phonons have
a spatial symmetry of z (Γ−

2 ) and so will drive spin
relaxation in both the valence and conduction bands by
coupling majority spin to admixtures introduced by the
spin-flip terms of the k-dependent spin-orbit interaction
in Eq. (1).
The conduction-band dispersion is quadratic around the

Brillouin zone center, so thermal electrons filling these
states will have very small k and thus negligible Γþ

1 spin
admixtures. The valence band, however, has a distorted
“caldera” shape and so thermally occupied holes at the
band edge—on the caldera rim—have a substantial k. This
in turn leads to a strong wave-function admixture with
components having Γ−

2 character. As a result, we expect
that the valence-band states will be far more susceptible
than conduction-band states to spin relaxation caused by
the unavoidable presence of flexural phonons.
The k-independent perturbation Eq. (2) exacerbates the

problem for holes. This spin-orbit term leads to spin flips in
both conduction and valence bands via scattering with
in-plane optical phonons sharing the same Γ−

3 symmetry of
the two spin-mixing terms in Eq. (2). The cutoff energy of
this type of phonon in G3M-MC monolayers is ≈25 meV
[17] and is therefore expected to seriously affect spin
relaxation at room temperature. The strength of EY spin
relaxation due to scattering with these optical phonons is
proportional to the minority-spin-mixing amplitude of the
eigenstates, which is far larger in the Γþ

1 highest valence
band (an 8% probability as opposed to 0.1% in the
conduction band) [8] due to the close proximity of Γ−

3

lower valence bands.
In light of these issues, we conclude that the spin lifetime

for valence-band holes is much shorter than electrons in
the conduction band of G3M-MC monolayers. We there-
fore restrict our subsequent analysis to the latter carriers.
For electrical injection of spin-polarized electrons into
the conduction band, n-type conductivity is desirable, as
is usually the case in GaS [18] and InSe [19], whereas GaSe
is usually p-type [18,20]. Controllable n-type doping
during synthesis is therefore desirable in this case. On
the other hand, spin injection via optical orientation during
photocarrier generation is insensitive to the doping nature,
while electron spin relaxation due to exchange with holes
(Bir-Aronov-Pikus mechanism [21]) should play a minor
role thanks to the relatively spin-pure gap-edge states (as
compared with degenerate valence edge states in cubic
systems). In both doping cases, back-gate bias tuning may

TABLE I. Basis functions (BFs) of some irreducible represen-
tations (IRs) in the Γ-point D3h group. The assignment of plus
and minus superscripts to IRs follows the convention of even
and odd parity with respect to the operation of in-plane mirror
reflection.

IRs Γþ
1 Γþ

3
Γ−
2 Γ−

3

BFs 1 fx; yg z fxz; yzg
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be necessary to reduce the background Bychkov-Rashba
field induced from structural inversion asymmetry intro-
duced by the presence of the substrate.

IV. CONDUCTION BAND DRESSELHAUS AND
BYCHKOV-RASHBA COEFFICIENTS

The proposed mechanism to exploit the spin-orbit
anisotropy for channel reset depends crucially on our
ability to generate an in-plane Bychkov-Rashba field that
rivals the out-of-plane Dresselhaus field in magnitude.
Only then will a sufficient component of spin precess into
the orthogonal in-plane orientation. Here, using third-order
perturbation theory to calculate the magnitudes of these two
fields, we demonstrate the feasibility of this scheme.
First of all, following the same scheme of evaluating the

valence-band Dresselhaus spin splitting [8], we can esti-
mate the magnitude γc of the conduction-band Dresselhaus
termHD ¼ γck3 sin 3ϕσz using perturbation theory to third
order in k · p̂. The dominant terms, reminiscent of those in
the analogous calculation for III–V semiconductors [22],
correspond to perturbation paths through both the spin-
orbit-split lower valence and upper conduction bands.
Referring to Fig. 2(a), where horizontal lines represent
the spin-dependent Γ-point states, one obtains a magnitude

γc ¼
ℏ3

m3
0

X
i;j¼Γ−

3v;c

hΓ−
2cjpyjiihijpyjjihjjpyjΓ−

2ci
EiEj

¼ jP1QP5j
�

1

E2E3

−
1

E1E4

�
; ð3Þ

where P1 and P5 are proportional to off-diagonal matrix
elements of the momentum operator p̂x;y, i.e., P1ð5Þ ¼
ðℏ=m0ÞhΓ−

2cjp̂x;yjΓ−
3vðcÞi, and Q is the matrix element

ðℏ=m0ÞhΓ−
3vjp̂x;yjΓ−

3ci. E1 and E2 (E3 and E4) are the
energies of the spin-split Γ−

3v (Γ−
3c) bands relative to Γ−

2c.

Calculation of the electrostatic gate-induced Bychkov-
Rashba coefficient can be treated similarly within pertur-
bation theory. As shown in Fig. 2(b), the dominant path is
via the closest Γþ

1v and Γ−
3v valence bands. Here, the out-of-

plane electric field Ez directly couples the gap-edge Γ−
2c and

Γþ
1v states because they are of opposite reflection parity. The

k · p̂ perturbation [with the same parameter P1 as in
Eq. (3)] strongly couples the Γ−

2c and Γ−
3v states that share

the same in-plane plane-wave origin [8]. Coupling between
the two intermediate states is by the k-independent spin-
orbit term in Eq. (2), which is related to the strong spin-
mixing coefficient αv of the Γþ

1v valence band. The
Bychkov-Rashba coefficient can then be evaluated by

βc ≈ jP1eEhziαvj
E1þ−3−

E2
g

; ð4Þ

where hzi is on the order of the monolayer thickness and
E1þ−3− is the energy difference between Γþ

1v and Γ−
3v.

Depending on the average wave vector of the electrons,
the Bychkov-Rashba term HBR ¼ βckðcosϕσy − sinϕσxÞ
can be tuned from zero up to a value comparable with
(or even dominant over) the weak Dresselhaus term
γck3 sin 3ϕσz.
Using parameters appropriate for the conduction band

of monolayer GaSe (αv ≈ 0.3, Eg ≈ 3 eV, P1 ≈ h2=ma,
a ≈ 3.75 Å, E1þ–3− ≈ 0.3 eV), we obtain an expected
Bychkov-Rashba energy on the order of 1 meV for
electrons with k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�kBT
p

=ℏ ≈ 0.1ðπ=aÞ at T ¼
300 K in an electric field E ¼ 1 MV=cm, readily obtain-
able with thin-film dielectric insulators and low gate
voltages [23], and of the same order as the Dresselhaus
splitting at the same k along Γ − K calculated from a
tight-binding band-structure calculation (cubic polynomial
fitting the Dresselhaus spin-split dispersion gives γc ≈
1.044 eVÅ3) [8,24–26]. By incorporating on-site electro-
static energy into the calculation, we can fit the linear
conduction-band splitting along Γ-M (where the
Dresselhaus effect vanishes) to recover βc: For Ga(Se)
atoms 1.2(2.3) Å [27], from the basal plane, our numerical
results yield βc=E ≈ 2.4 meVÅ=ðMV=cmÞ.

V. ENSEMBLE SUMMATION

Of course, not all electrons have the same k and, hence,
feel different Dresselhaus and Bychkov-Rashba fields.
Thus, the shortest possible electrostatic gate-pulse-width
optimizing precession-induced depolarization of the out-
of-plane component of these electrons is dependent on
which states comprise the nondegenerate electron density
n ¼ D2dkBT expðEF=kBTÞ, where D2d is the (constant)
density of states, kBT is the thermal energy, and EF ≲
−kBT is the Fermi energy relative to the conduction-band
minimum.

FIG. 2. Matrix-element perturbation pathways allowing the
calculation of spin splitting in the Γ−

2 conduction band of
monochalcogenide monolayers via two distinct mechanisms:
(a) “bulk inversion asymmetry” Dresselhaus coefficient, and
(b) “structural inversion asymmetry” Bychkov-Rashba coeffi-
cient. Not to scale.
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An initially out-of-plane spin precesses around an
effective magnetic field at an angle θB with the surface
normal, and therefore has an out-of-plane projection

Szðωt; θBÞ ¼ cosωtsin2θB þ cos2θB: ð5Þ

The in-plane spin components are

Sxðωt; θBÞ ¼ sinωt sin θB;

Syðωt; θBÞ ¼ sin2
ωt
2
sin 2θB;

where the y direction lies in the plane formed by the initial
spin vector and the effective magnetic field.
Because the spin-orbit Hamiltonian terms HBRðk;ϕÞ

and HDðk;ϕÞ are time-reversal invariant, equilibrium
ensemble averages over the in-plane components hSxi
and hSyi for initially perpendicularly polarized spins
vanish identically for all t. This can clearly be seen in
Fig. 3, where we show the typical threefold symmetry of
in-plane spin components of thermally occupied states
in k space when the precession frequency ω is set by
the Bychkov-Rashba and Dresselhaus fields with ℏω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβckÞ2 þ ðγck3 sin 3ϕÞ2

p
, and the effective spin-orbit field

orientation varies as tan θB ¼ βc=ðγck2 sin 3ϕÞ.
The ensemble average over the out-of-plane component

hSzðtÞi does not vanish, except for precisely timed gate
pulses. Summing over all filled conduction electron states
in k space (again assuming Boltzmann statistics), we have

hSzðtÞi ¼
6C
π

Z
π=3

0

Z
∞

0

Szðωt; θBÞe−Ck2kdkdϕ; ð6Þ

where C ¼ ðℏ2=2m�kBTÞ, and we have exploited the
sixfold symmetry of the Dresselhaus field magnitude in
the angular integration bound.
Notice that Eq. (6) is independent of the Fermi energy

EF. The result of our calculation is therefore independent of
the carrier density (which may change upon application
of the Bychkov-Rashba field, due to the capacitive field
effect from the gate potential), provided the assumption of
nondegenerate Boltzmann statistics remains valid.
Examples of this time evolution at T ¼ 300 K are shown

in Fig. 4(a), for Bychkov-Rashba parameters βc ¼ 3, 6, and
12 meV Å (generated by electric fields E ≈ 1–5 MV=cm),
γc ¼ 1.044 eVÅ3, and m� ¼ 0.655m0, as obtained from a
tight-binding model for GaSe [8]. The out-of-plane spin
projection hSzðtÞi initially decreases, but only for βc larger
than a critical value β0c ≈ 6 meVÅwill it vanish completely
(at an optimal time t0 < t0 ≃ 7 ps). This value can be
approximated by the condition BBR ¼ BD for thermal elec-
trons, at β0c ≃ γcð2m�kBT=ℏ2Þ and t0 ≃ πℏ2=β0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�kBT

p
.

If the in-plane Bychkov-Rashba field disappears at the end
of an electric field pulse of this duration, the ensemble will
remain unpolarized and spin-channel reset will be achieved.
Beyond t > t0, the spin projections for βc > β0c undergo

a damped oscillation, becoming negative before passing

FIG. 3. Spin orientation in k space for a thermal ensemble of
initially perpendicularly polarized spins at T ¼ 300 K, with
βc ¼ 6 meVÅ, at t ¼ πℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β3c=γc

p ≃ 3.22 ps. In-plane spin
vectors are plotted for several states where Sz ¼ 0. Dashed
curves mark k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βc=ðγc sin 3ϕÞ
p

, where θB ¼ π=4. Here, γc ¼
1.044 eVÅ3 and m� ¼ 0.655m0, as appropriate for the conduc-
tion band of monolayer GaSe. An animation of spin evolution
from 0–10 ps is included in Supplemental Material [28].

FIG. 4. (a) Time evolution with βc ¼ 3, 6, and 12 meV Å.
Symbols indicate optimum times (pulse widths) for minimum
out-of-plane projections. (b) Bychkov-Rashba parameter βc
dependence of optimized pulse width that minimizes this spin
projection. Inset: minimum spin projections over the same βc
range. Values of γc and m� are the same as in Fig. 3.
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through zero again and saturating at a positive value.
The asymptotic values of these spin projections as t→∞
correspond to the case where spins are fully dephased,
and ensemble averages hcosωt; sinωti ¼ 0. In other
words, only the incoherent part of the spin projections
[second term in Eq. (5)] remains [29].
We can calculate the optimum time t0 for a range of

Bychkov-Rashba parameter βc values as shown in
Fig. 4(b). For very small values of βc <β0c, when t0 > t0,
the ensemble out-of-plane spin component never reaches
zero. In this case, our calculated t0 corresponds to the
minimum hSzi. Using parameters appropriate for GaSe,
this constraint sets a minimum gate-induced electric field
of ≈1 MV=cm, consistent with our previous calculation
comparing the magnitudes of Dresselhaus and Bychkov-
Rashba terms.

VI. DISCUSSION

The short gate pulses of only several picoseconds
suggested here set a rigid bound for the speed of digital
spintronic devices making use of the proposed mechanism.
However, this coherent precession scheme assumes that
carriers are in the collisionless limit set by the momentum-
scattering-time. In practice, longer gate pulses (and corre-
spondingly lower perpendicular electric fields) will likely
be more practical; if this duration is maintained far longer
than the momentum-scattering time, a DP-like dephasing
and ensemble depolarization will accomplish a similar
result.
However long the gate-pulse duration, its rising edge

must be abrupt to induce the coherent precession we
model. If the gate rise time is substantially more than
the precession frequency, the initially perpendicular spins
will simply follow the instantaneous spin-orbit field via
adiabatic passage; full depolarization of the out-of-plane
spin will then be impossible.
For this scheme to work, it is essential that there exist

occupied regions in k space where the magnitude of the
Bychkov-Rashba field is greater than the Dresselhaus field.
This statement does not necessarily imply that materials
with the smallest Dresselhaus coefficient should be sought:
a moderate value stabilizes spins against dephasing from
fluctuating spin-orbit fields generated by, e.g., inhomo-
geneous strain [30]. We thus suggest that, under the right
conditions, other platforms with the right configuration of
spin-orbit coupling, such as zinc-blende [110] quantum
wells with a lowest-order Dresselhaus term ∝ k cosϕσz,
may also be effective in enabling spin-channel reset by
controlled depolarization.
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