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We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate
defines a one-dimensional channel on a modulation-doped GaAs=AlGaAs heterostructure, through which
the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the
length of the split gates increases. However, for the subset of devices showing good quantization, there is no
correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point
model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing
for devices of the same gate length exceeds the variation in the average values between devices of different
lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction
and the strength of the “0.7 anomaly”: the conductance value of the 0.7 anomaly reduces as the barrier
curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-
dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the
background potential are crucial in determining the potential landscape in the active device area such that
nominally identical gate structures have different characteristics.
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I. INTRODUCTION

Low-dimensional devices which exhibit quantum-
mechanical effects are routinely created using nanostruc-
ture gates on modulation-doped heterostructures. Often,
devices with similar gate designs can display very different
characteristics at cryogenic temperatures due to unpredict-
able local variations in the electrostatic landscape. In this
paper, we investigate the impact of gate size on two
important quantum properties of split-gate devices: the
conductance quantization [1,2] and the occurrence of the
0.7 anomaly [3]. Experimental and theoretical techniques
are used to determine the lateral and longitudinal potential

profile in the one-dimensional (1D) channel. We find the
0.7 anomaly is governed by the electrostatic potential,
regardless of gate size. However, fluctuations in the back-
ground potential due to ionized dopants often overwhelm
the effect of changes in gate size in defining the potential
landscape in the 1D channel.
The split gate is the simplest mesoscopic device that can

be used to study how device behavior is affected by gate
size. The conductance through a split gate [4] is quantized
in multiples of G0 ¼ 2e2=h as a function of the voltage
applied to the gates [1,2] due to the formation of 1D
subbands. For an ideal 1D conductor, this quantization
occurs as long as the transport remains ballistic. The effect
of split-gate size can be investigated either by varying the
lithographic dimensions [5–8] or by fabricating several
split gates in close proximity which act in series to modify
the potential of a single 1D channel [9–12]. So far, it has
been shown that the split-gate voltage (VSG) at which the
conductance through the 1D channel is pinched off occurs
closer to zero for longer and narrower devices [5,6].
Additionally, the quality of conductance quantization
degrades as the gate length increases [8,13]. This latter
effect is related to the higher probability of encountering an
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impurity in the channel with longer or wider split gates and
fluctuations in the background disorder potential which
modify the potential landscape in the channel area.
Some studies of the effect of split-gate size have focused

on the 0.7 anomaly [6,7,10], a conductance feature which
occurs near 0.7G0 [3,14,15], which arises from enhanced
electron interactions at low conductance. A reduction in the
conductance of the 0.7 anomaly for longer split gates has
been reported [7]. Another study using split gates in series
has shown periodic modulations in the value of the 0.7
anomaly as a function of 1D channel length [10]. The
origin of the 0.7 anomaly is currently debated; the theories
proposed for its occurrence include spontaneous spin
polarization [3,16], the Kondo effect [10,17–19], Wigner
crystallization [20,21], and inelastic scattering plus the
local enhancement (smeared van Hove singularity) of the
1D density of states [22,23].
We use a multiplexing scheme [24–29] to measure 95

split gates of seven different sizes on a GaAs=AlGaAs
modulation-doped heterostructure. We study the impact of
split-gate dimensions using data obtained from a large
number of devices fabricated on a single chip and measured
during one cooldown. Multiple devices of each dimension
are measured to provide statistical information. Table I
summarizes howmany devices of each length and width are
measured.
Our technique allows us to systematically compare

incremental changes in gate design. This is important in
the context of device development, where it may be
necessary to design a device with a specific set of operating
parameters or find ways of improving a particular design.
The traditional approach to nanostructure measurement
requires many cooldowns to build up the statistical infor-
mation that we obtain in a single cooldown.

II. DETAILED OUTLINE

The device and heterostructure used in this experiment
are described in Sec. III. In Sec. IV, we compare the
accuracy of conductance quantization between split gates
of different dimensions and find a rapid reduction in the
quality of quantization as the gate length increases. We
obtain the average values of the pinch-off voltage and
definition voltage as a function of gate length and width

which show how the pinch-off voltage occurs closer to zero
for longer and narrower split gates, as expected from
electrostatics [30]. For longer gates, the voltage at which
the 1D channel is defined also occurs closer to zero, and the
1D subband spacing reduces.
A key finding of this paper is that the background

disorder potential is at least as important as the split-gate
dimension in governing the potential landscape in the 1D
channel (Sec. V). The impact of background disorder is
shown in three separate ways. First, the spread in both the
measured 1D subband spacing and the estimated 1D barrier
curvature for split gates at fixed gate lengths exceeds the
variations in the mean value of these parameters between
devices of different lengths. Second, the strength of the
coupling between the split gates and the 1D channel does
not monotonically increase with device length. A mono-
tonic increase is expected if one considers only the electric
field generated by the gates themselves. Third, changes in
the 1D barrier curvature from device to device, which
indicates the length of the 1D channel, do not depend on the
split-gate length.
In Sec. VI, we directly compare the 0.7 anomaly in

devices of different gate lengths. This is possible since,
for a noninteracting system, the shape of the conductance
trace depends on ℏωx;1. We use a technique developed in
Ref. [28] to remove the trivial geometric dependence from
the conductance data, leaving differences that are only due
to electron interactions. Our data are consistent with
Ref. [28] in that the 0.7 anomaly occurs at lower conduct-
ance values for devices with a shallower longitudinal
barrier. However, the present data set is gathered from
devices of different dimensions (the data in Ref. [28] are
from lithographically identical gates). By obtaining the
same result from devices with various dimensions, we show
that the electrostatic length of the 1D channel is the decisive
factor governing the conductance of the 0.7 anomaly.

III. METHODS

The sample is fabricated on a GaAs=AlGaAs hetero-
structure in which the 2DEG forms 90 nm below the
surface of the wafer, separated from a 40-nm-wide Si-doped
AlGaAs layer by a 40-nm spacer layer of undoped AlGaAs.
The carrier density and mobility are 2.0×1011 cm−2 and
3.0 × 106 cm2V−1 s−1, respectively, determined by meas-
uring a Hall bar on a nearby piece of the wafer. The electron
mean free path is 22 μm.
The split gates are arranged in an array of total area

1.5 × 1.95 mm2. A schematic diagram of a split gate is
given in Fig. 1(a). The split gates are defined using
electron-beam lithography and metalized by thermally
evaporating Ti=Au. A two-terminal constant-voltage tech-
nique is used to measure the differential conductance
through the split gates as a function of gate voltage, using
an ac excitation voltage of 100 μV at 17 Hz. All measure-
ments are carried out at 1.4 K and B ¼ 0 T.

TABLE I. Number of devices of each width and length.

Devices measured Width (μm) Length (μm)

15 0.4 0.4
14 0.4 0.7
15 0.4 1.0
6 0.4 1.3
15 0.6 0.4
15 0.6 0.7
15 0.6 1.0
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The device measured here is different from that used in
our previous work on multiplexed split gates [24–26,28].
The earlier work used an array of identical split gates,
where both the length and width were 0.4 μm. The multi-
plexed array measured here contains split gates of seven
different length and width combinations and is fabricated
on a higher-mobility heterostructure. This paper presents a
self-contained story of the influence (or lack thereof) of the
gate length on conductance in 1D devices. We investigate
the effect of split-gate dimensions on device yield, 1D
conductance properties, the electrostatic potential profile,
and the 0.7 anomaly.

IV. CONDUCTANCE PROPERTIES AS A
FUNCTION OF SPLIT-GATE SIZE

A. Electrical properties

We begin by investigating the effect of split-gate length
and width on the definition voltage Vd and pinch-off
voltage Vp. Figure 1(a) shows a typical plot of the
conductance as a function of the voltage applied to the

split gate VSG. A 1D channel is formed when the 2DEG
beneath the gates is fully depleted, indicated by a sudden
change in the gradient of the conductance trace [corre-
sponding to voltage Vd and conductance Gd in Fig. 1(a)].
As VSG decreases further, the conductance reduces (show-
ing a series of plateaus) until the channel is completely
pinched off (marked by Vp).
Figure 1(b) shows a scatter plot of Vp against L, in which

the triangles (circles) represent data for W ¼ 0.4 ð0.6Þ μm.
The diamonds or error bars show average values or
standard deviation for each L. Both sets of data show
Vp becoming closer to zero with increasing L [5,6]. The
trend is more pronounced for W ¼ 0.6 μm, where jVpj is
nearly double that ofW ¼ 0.4 μm. These trends arise from
simple electrostatics, since for a given VSG, the electric
field is stronger in the center of the channel for longer and
narrower split gates [30]. An additional effect also occurs: a
longer wire is more likely to be affected by fluctuations in
the background disorder potential due to ionized donors.
These fluctuations can modify the confining potential and,
therefore, Vp. The larger spread in Vp forW ¼ 0.6 μmmay
reflect the increased role of disorder. However, the spread
as a percentage of the mean is similar for both W’s.
Figures 1(c) and 1(d) show Vd against L for theW ¼ 0.4

and 0.6 μm devices, respectively. In both cases, the
magnitude of Vd reduces as L increases, which can be
attributed to the higher electric field strength in the center of
the channel for longer devices. For each L, the range and
average values of Vd are similar for both widths.

B. Yield

We investigate the role of disorder as a function of device
length and width. The values of the conductance plateaus
are used to define a yield criterion, since when disorder
affects the transmission through a 1D channel, the con-
ductance plateaus deviate from the expected values. For
systematic analysis, the data are first corrected for series
resistance (Rs) using Rs ¼ 1=G at VSG ¼ 0 V (i.e., the
open-channel resistance). Two cases (A and B) are con-
sidered. Case A follows Ref. [24] and requires the first two
conductance plateaus to occur within �0.1G0. Case B
extends this to include the third plateau.
Figures 2(a) and 2(b) show the number of devices which

pass the yield criterion as a function of L, for W ¼ 0.4
and 0.6 μm, respectively. The triangles and circles indicate
the devices which passed for cases A and B, respectively.
Fewer devices show accurate conductance quantization as
W or L increases [8,13] due to the increased likelihood of
encountering impurities in the 1D channel and greater
variation in the background potential. Including the third
plateau in the analysis gives a stricter yield criterion and
leads to a lower yield.
The specific form of the relationship between yield and

length in Fig. 2 is not clear: it is necessary to measure more
than 15 devices of each L to obtain this information.

FIG. 1. (a) Typical trace of conductance G as a function of the
voltage applied to the split gate VSG. The vertical and horizontal
dotted lines indicate the 1D definition voltage (Vd) and con-
ductance (Gd), respectively. The left-hand arrow indicates pinch-
off voltage Vp. The inset shows a schematic split-gate device with
dimensions L and W labeled. Source and drain Ohmic contacts
are marked S and D, respectively. (b) Scatter plot of pinch-off
voltage as a function of split-gate length L. The triangles (circles)
represent data from devices of width W ¼ 0.4 ð0.6Þ μm. The
diamonds and error bars show the mean and standard deviation
for each L, respectively, offset horizontally by 0.1 μm for clarity.
Panels (c) and (d) show Vd as a function of L, for W ¼ 0.4 and
0.6 μm, respectively.
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Quantifying the exact nature of the correlation between
yield and length is an interesting avenue for future research
which may provide information about disorder correlation
lengths or dominant disorder effects in the 1D channel.

V. DEPENDENCE OF THE ELECTROSTATIC
POTENTIAL LANDSCAPE ON GATE LENGTH

Having characterized the length and width dependence
of two electrical properties of the 1D conductance trace
(Vp and Vd), we now consider the length dependence of the
potential profile for a subset of devices. We first investigate
the transverse confining potential by extracting the 1D
subband spacing [31]. We then study the longitudinal
potential by estimating the curvature of the barrier in the
direction of electron transport [25]. The following mea-
surements and analysis are performed using devices with
W ¼ 0.4 μm, since a higher percentage of split gates with
W ¼ 0.6 μm were affected by disorder.

A. dc bias spectroscopy

dc bias spectroscopy is used to measure the 1D subband
spacing [31] for 18 split gates. Figure 3(a) shows an
example gray-scale plot of the transconductance
dG=dVSG as a function of source-drain bias VSD and
VSG [dark (light) region corresponds to high (low) trans-
conductance]. The data are corrected to remove all sources
of series resistance such as Ohmic contact resistance (the
method used is described in detail in the Supplemental
Material of Ref. [32]).
As jVSDj increases, dark regions representing peaks in

the transconductance diverge into two (highlighted by the
dashed lines), corresponding to the bottom of the 1D
subband reaching either the source or drain chemical
potential [33]. Two lines cross when VSD is equal to the
energy difference between consecutive 1D subbands, giv-
ing the 1D subband spacing ΔEn;nþ1 (n is the subband
index). For example, ΔE2;3 is marked in Fig. 3(a).

Figure 3(b) shows cumulative 1D subband spacings
ΔEn;m as a function of Vp for 18 devices. The spacing
between the first and second (ΔE1;2), first and third (ΔE1;3),
and first and fourth (ΔE1;4) subbands is shown (unique
symbols represent devices of different L described in the
legend). The data for ΔE1;3 and ΔE1;4 are vertically offset
by 1 and 4 meV, respectively, for clarity.
In each case, ΔEn;m reduces as Vp becomes closer to

zero. We plot the cumulative data to better accentuate this

FIG. 2. Percentage of devices showing clean quantization as a
function of split-gate length L. Panels (a) and (b) show data for
widths W ¼ 0.4 and 0.6 μm, respectively. The triangles (circles)
indicate devices for which the first and second (first, second, and
third) plateaus occur within �0.1G0, after correcting for series
resistance.

FIG. 3. (a) Gray-scale diagram of the transconductance
dG=dVSG as a function of VSG and source-drain bias VSD, from
a typical device with dimensions L ðWÞ ¼ 0.4 (0.4). Black
(white) regions correspond to high (low) transconductance,
i.e., transitions between plateaus (the plateaus themselves).
The 1D subband spacings are estimated by the crossings of
peaks in the transconductance [31] highlighted by dashed lines.
Subband spacing ΔE2;3 is labeled for illustrative purposes.
(b) Cumulative 1D subband spacings ΔEn;m as a function of
pinch-off voltage Vp. The blue, red, and green symbols corre-
spond to ΔE1;2, ΔE1;3, and ΔE1;4, respectively. Unique symbols
represent devices of each size, as described in the legend. The
error bounds show the cumulative error in the estimate. Data for
ΔE1;3 and ΔE1;4 are offset vertically by 1 and 4 meV, respec-
tively, for clarity. (c)–(e) Scatter plots of ΔEn;nþ1 against L for
n ¼ 1, 2, and 3, respectively (to avoid confusion, the error bars on
individual data points are not shown). The diamonds show the
average for each L (offset horizontally by 0.1 μm for clarity), and
error bounds indicate the average error.
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trend, although the spacing between consecutive subbands
[shown in Figs. 3(c)–3(e)] all show a downward trend
with Vp. The trend can be attributed to the weakening
of the electric field at pinch-off for smaller jVpj, since the
confinement is shallower which leads to closer subband
spacings.
Figures 3(c)–3(e) show individual 1D subband spacings

as a function of L. Figures 3(c), 3(d), and 3(e) show ΔE1;2,
ΔE2;3, and ΔE3;4, respectively. The diamonds represent
average values for each L (offset horizontally for clarity),
and error bounds show the average error for each L [34].
The average subband spacing reduces with L in agreement
with electrostatic modeling of a saddle-point potential
[6,30]. However, the spread in ΔEn;nþ1 for individual
values of L is larger than or similar to the average change
in ΔEn;nþ1 across all values of L. Since variations in device
characteristics likely arise from fluctuations in the back-
ground potential, these data highlight the importance of
unique electrostatic environment near each split gate. They
suggest that background variations are as significant as the
lithographic dimensions in governing the potential land-
scape in the device active area.

B. Coupling between the split gate and the 1D channel

The degree of coupling between the split gate and the 1D
channel is given by lever arm α ¼ ΔE=eΔVSG, where α ¼
∂VSD=∂VSG (estimated from dc bias spectroscopy mea-
surements). Figure 4(a) shows α1 (the lever arm for the first
subband), as a function of L for 18 split gates. The
diamonds indicate the average value offset horizontally
for clarity. The error bounds indicate the average error [34].
The lever arm α1 almost doubles between L ¼ 0.4 and

0.7 μm. This trend is expected since α scales with ΔE,
which, for a given ΔVSG, will be larger in the center of a
channel formed by a longer gate. However, as L increases
further, α1 reduces, deviating from the expected trend.
These data are discussed in more detail in Sec. V D. The
same trend also occurs for subbands 2 and 3.
Figure 4(b) shows α1 as a function of ΔE1;2. Data from

each length split gate are represented using different
symbols described in the legend. Overall, no trend is
apparent. Data from the same length devices appear to
be grouped, and a weak positive correlation exists for the
L ¼ 0.4 μm data. No correlation exists for longer devices,
consistent with the increased effect of disorder.

C. Curvature of the 1D potential barrier

We now estimate the curvature of the potential barrier
in the transport direction ℏωx by assuming the confining
potential is described by a saddle-point model [35]. We
achieve this by fitting the measured data with a conduct-
ance calculated using the Landauer-Büttiker formalism
[25,28] simulating a system of noninteracting electrons
traversing a saddle-point potential with transmission

probability Tn¼f1þexp½−2πðE−EnÞ=ℏωx;n�g−1, where
En is the energy of the bottom of subband n. The
saddle-point approximation can be used for the first few
subbands, even for devices with a large length-to-width
ratio, since G is governed by transmission through the
narrowest part of the channel.
Figure 4(c) shows the measured conductance (solid line)

and the fit (dashed line) for an example device, as a
function of VSG. The fit is achieved as follows:
Transmission probability Tn is calculated for the first three
subbands individually as a function of E, using an initial

FIG. 4. (a),(b) Lever arm α1 as a function of lithographic length
L and 1D subband spacing ΔE1;2, respectively. The diamonds in
panel (a) represent the mean for each L (offset by 0.1 μm for
clarity), and the error bars indicate the average error. (c) Exper-
imentally measured conductance G as a function of split-gate
voltage VSG, for an example device (solid line). The dashed line
shows a fit to the data using a modified saddle-point model. The
transition between plateaus gives an estimate of barrier curvature
ℏωx;n. (d) Characteristic length of the potential barrierffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=m�ωx;1

p
as a function of gate length L. The diamonds and

error bars represent the average value and the average error,
respectively (offset by 0.1 μm for clarity). (e) Curvature of the
potential barrier ℏωx;1 as a function of ΔE1;2. (f) Lever arm α1 as
a function of the characteristic length of the potential barrier. The
different symbols in panels (b), (e), and (f) represent data for
different length split gates as defined in the legend above
panel (b).
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input of ℏωx;n ¼ ΔEn;nþ1. Subband-dependent lever arms
αn measured for each device individually are used to
convert E to a voltage scale. A minimization routine then
optimizes ℏωx;n to find the best fit between the calculated
and measured traces. The use of subband-dependent values
of ℏωx;n reflects how the barrier profile for higher subbands
is modified by the increased presence of electrons. The sum
of Tn for n ¼ 1, 2, and 3 gives the final trace shown by the
dashed line in Fig. 4(c).
The transition between G ¼ 0 and 0.5G0 is almost

independent of temperature up to at least T ≈ 1.5 K [3].
Therefore, for n ¼ 1, the fit is performed with T ¼ 0, such
that the calculated conductance Gn ¼ G0Tn. For higher
subbands, a temperature dependence is observed exper-
imentally; therefore, for n ¼ 2 and 3, we calculate Gn at
T ¼ 1.4 K using

Gn ¼ G0

Z
dE

�
− ∂f
∂E

�
Tn; ð1Þ

where f is the Fermi-Dirac distribution. We find that using
either T ¼ 0 or T ¼ 1.4 for n ¼ 1 does not affect the trends
observed [28].
Good fits are obtained for 11 of the 18 split gates. For the

other seven devices, conductance plateaus are weakened or
suppressed due to strong disorder effects; therefore, these
data are discarded in the following analysis. The saddle-
point model assumes a parabolic potential barrier, which
has a characteristic length lx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=m�ωx;n

p
, where m� is

the effective mass of the electrons. Barrier length lx is,
therefore, the distance over which the potential changes
by ℏωx=2.
Figure 4(d) shows lx;1 as a function of L. The diamonds

show the average l̄x for each L, and error bounds indicate
the average error offset horizontally for clarity. We expect
the barrier length to scale with the gate length. However,
our data show the opposite trend with l̄x initially reducing
for L from 0.4 to 0.7 μm. This change is very small
compared to the change of L: Δl̄x ≃ 2.5 nm (a decrease of
11%), as L increases by 75%. As L increases further, l̄x
then increases slightly. For our devices, therefore, the split-
gate length is not a good indicator of the length of the
potential barrier.
For L ¼ 0.4, 0.7, and 1 μm, the spread of lx;1 at fixed L

is larger than or similar to the overall change in average lx;1
as L varies. This spread highlights the crucial importance of
the background potential in determining the electrostatic
landscape in the active device area, even between devices
with nominally identical length. The importance of the
background potential is further highlighted by Fig. 4(e),
which shows ℏωx;1 as a function of ΔE1;2. For a given L,
there is no correlation between these parameters. The trends
for subbands 2 and 3 are similar.

D. Disorder potential fluctuations

Our data indicate that the disorder potential is very
important in determining the potential landscape in the 1D
channel, and fluctuations in the disorder potential leads to
deviations from the expected dependence on gate size. For
example, the lever arm α depends only on split-gate length
up to L ¼ 0.7 μm [Fig. 4(a)], as discussed in Sec. V B. This
may imply a correlation length of potential fluctuations
close to this value. The correlation length may set an
“effective” device length, leading to deviations from the
expected trend for gates which would otherwise define a
potential profile exceeding this length.
We now compare our results with calculations of the

effect of potential fluctuations in the 2DEG on split-gate
devices [36]. In Ref. [36], the quality of quantization was
seen to degrade as a function of gate length (calculations
were performed for 0.2- and 0.6-μm-long split gates, both
0.3 μm wide). The quantization was also affected by the
positioning of donors creating different distributions of the
disorder potential.
The donor density for the heterostructure modeled in

Ref. [36] is similar to ours, and the position of the donors
was assumed to be random. The calculations are performed

for a δ-doped heterostructure with Nð2DÞ
D ¼ 4 × 1012 cm−2,

separated from the 2DEG by 42 nm of undoped
AlGaAs. For comparison, our heterostructure contains a
40-nm Si-doped AlGaAs layer with a doping density

Nð3DÞ
D ¼ 1.1 × 1018 cm−3, separated from the 2DEG by

40 nm of undoped AlGaAs. We can estimate an effective
2D dopant density by assuming the doping layer is

infinitesimally thick, which gives Nð2DÞ
D ¼4.4×1012 cm−2,

corresponding to a lateral spacing of less than 0.01 μm. The
disorder correlation length given in Ref. [36] of around
0.2 μm is not dissimilar to the value of 0.7 μm beyond
which α deviates from the expected gate-length
dependence.
The lever arm α is determined from dc bias spectroscopy.

As discussed in Ref. [37], the role of electron-electron
interactions is important for measurements with a finite dc
bias. Since electron interactions are enhanced at the top of
the 1D potential barrier [22,23,38], i.e., the interaction
strength depends on the electrostatic profile, it is likely that
variations in the potential between devices can significantly
influence individual device behavior.
Figure 4(f) shows the dependence of α as a function of

the characteristic barrier length lx;1. The data do not show a
clear correlation [despite the apparent mirroring of data in
Figs. 4(a) and 4(d)]. This highlights the sensitivity of device
behavior to the exact potential environment.
Information on the length of fluctuations in the

potential landscape can also be obtained from observations
of Coulomb blockadelike resonances in conductance
traces. These resonances can occur when the length of
1D channel is commensurate with the length scale of
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disorder fluctuations such that distortions of the potential
profile form quantum dots in the 1D channel [39,40].
However, lower-temperature measurements are needed to
clearly resolve these peaks in our devices.
Additional experiments can be devised to further inves-

tigate length scales of disorder fluctuations. For example,
measuring identical split gates on a number of hetero-
structures with different thicknesses of undoped AlGaAs
separating the 2DEG from the doped AlGaAs layer. As the
2DEG moves closer to the ionized impurities, the fluctua-
tions in the background potential seen by the 2DEG will
become sharper. The increased disorder typically manifests
in a lower mobility for wafers with a smaller spacer spacing
[41,42]. Greater disorder also leads to increased distortions
in the 1D potential defined by split gates and degrade the
quality of the conductance quantization, lowering the yield
as defined in Sec. IV B.
So far, our discussion has focused on measurements

on a modulation-doped GaAs=AlGaAs heterostructure.
Another means of obtaining information on the role of
disorder is to perform measurements on undoped hetero-
structures where the absence of Si donors results in a
reduction of background disorder [43], leading to more
reproducible behavior both between split-gate devices
[44,45] and after thermal cycling [46]. Measuring an array
of devices on an undoped structure will also provide insight
into the degree to which disorder affects nanostructures
fabricated on undoped heterostructures [47].

VI. 0.7 ANOMALY IN DIFFERENT
LENGTH SPLIT GATES

In this section, the 0.7 anomalies from devices of
different gate lengths are compared. Following Bauer et al.
[23], we refer to the conductance between 0.5G0 and G0 as
the “subopen” regime. Additionally, we refer to experi-
mentally measured (fitted) conductance data as Ge (Gf).
Direct comparison of the 0.7 anomaly between devices is

possible by removing the trivial—that which can be
accounted for in a noninteracting scenario [35]—
dependence of the conductance transition between G ¼ 0
and G0 on the barrier curvature. This is achieved by
offsetting the conductance traces horizontally to align
Gf=G0 ¼ 0.5 to VSG ¼ 0 and scaling each VSG axis by
α1e=ℏωx;1 [28]. The differences in conductance that remain
are only due to electron interactions. The strength of these
interactions still depends on the barrier shape [22,23].
Figure 5(a) shows the fitted conductance Gf for the

first subband as a function of the scaled voltage axis
κ ¼ α1eVSG=ℏωx;1. Data from all 11 split gates are plotted.
The traces collapse onto a universal curve since these data
are obtained using a noninteracting model. Figure 5(b)
shows the corresponding Ge=G0 data after applying the
same scaling procedure. For κ ≤ 0, the traces collapse onto
a very similar curve. For κ > 0, differences occur due to the

0.7 anomaly (a spread in Ge=G0 > 1 arises due to the
different ΔE1;2). The variation in the 0.7 anomaly between
traces is related to the varying barrier curvature from device
to device.
In order to compare the 0.7 anomaly between devices,

Ge=G0 is plotted as a function of ℏωx;1 in Fig. 5(c), for six
fixed values of κ. From bottom to top, κ increases from
−0.5 to 0.75 in steps of 0.25 [corresponding to the vertical
lines in Fig. 5(b)]. For κ ¼ −0.5, −0.25, and 0, Ge=G0 is
independent of ℏωx;1. This is expected since Ge=G0 is

FIG. 5. (a) Fitted conductance Gf=G0 for the first 1D
subband from 11 devices. Data are collapsed onto a universal
curve by aligning Gf=G0 ¼ 0.5 with VSG ¼ 0, then scaling VSG

by α1e=ℏωx;1. (b) Corresponding experimentally measured
conductance Ge=G0, where the data are offset and scaled
using the same parameters as (a). For Ge=G0 < 0.5, the traces
collapse onto a similar curve. Above 0.5G0, variations arise
due to the differences in the 0.7 anomaly. (c) Ge=G0 as a func-
tion of barrier curvature ℏωx;1 at fixed values of the scaled
voltage axis κ. From bottom to top, κ increases from −0.5 to 0.75
in steps of 0.25 [corresponding to vertical dashed lines, left
to right, in panel (b)]. The dashed lines show a linear least-
squares fit to Ge=G0 for each value of κ, as a guide to eye.
(d) ConductanceGe=G0 as a function of spacing between the first
and second 1D subbands ΔE1;2. In panels (c),(d), data points for
each length split gate are indicated by the symbols defined in the
legend.
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below or close to 0.5. Unique symbols are used to represent
data from split gates of each length. The dashed lines are
linear fits as a guide to the eye [48].
In the subopen regime, Ge=G0 reduces with decreasing

ℏωx;1. This is consistent with our previous work [28].
However, in Ref. [28], an array of identical-length split
gates was measured in which differences in the electrostatic
profile between devices arose only from variations in the
background potential. In Fig. 5(c), data from split gates of
different lengths all follow the same trend line for a given κ.
This implies that the profile of the longitudinal barrier—
rather than the gate length—is the most significant factor
governing the conductance value of the 0.7 anomaly.
The data in Fig. 5 are presented in a similar way as Fig. 2

of Ref. [28] for ease of comparison. We emphasize that
these are entirely different data sets from separate devices.
The similarity arises because the same technique developed
in Ref. [28] to analyze the 0.7 anomaly is applied here.
The importance of device-specific confining potential

has been highlighted in Ref. [49], which summarizes
numerous studies of the 0.7 anomaly as a function of
carrier density. The conductance of the 0.7 anomaly has
been seen to both increase and decrease as a function of
carrier density. These conflicting trends likely arise due to
the extreme sensitivity of the 0.7 anomaly to differences in
the electrostatic potential between devices [49].
The trend in Fig. 5(c) is also consistent with the split-

gate-length dependence reported in Ref. [7]. The 0.7
anomaly occurred at lower values as the gate length
increased (three devices were measured, with lengths of
0, 0.5 and 2 μm). A stronger link between the longitudinal
profile and gate length may exist for devices measured in
Ref. [7] because they are fabricated on an undoped
heterostructure [50], where the absence of dopants may
lead to smaller variations in the background potential.
Calculations of the conductance transition between zero

and G0 using the inelastic scattering model plus the local
density-of-states enhancement [22,23] predict a lowering of
the conductance in the subopen regime as ℏωx decreases.
These calculations are shown in Fig. S14(b) in the
Supplemental Material of Ref. [23] and are in agreement
with our data. Unfortunately, our data do not allow us to
distinguish between theories for the occurrence of the 0.7
anomaly since the same trend is predicted in both the
spontaneous spin polarization [51] and Kondo scenarios
[52], as discussed in Ref. [28]. However, the inelastic
scattering scenario is the only theory for which detailed
calculations are performed as a function of ℏωx.
Figure 5(d) shows Ge=G0 as a function of 1D subband

spacing ΔE1;2. There is a slight reduction of Ge with
increasing ΔE1;2 in the subopen regime, although the trend
is weak. As seen in Fig. 2(b), a larger ΔE1;2 occurs for
devices with a more negative pinch-off voltage. This
suggests a possible explanation for the trend in Fig. 5(d):
the strength of the transverse confinement is stronger for the

devices with larger ΔE1;2, leading to an increase of the
strength of electron interactions, thus, affecting the con-
ductance value of the 0.7 anomaly. This relationship may be
understood within the framework of the inelastic scattering
model, which makes predictions of the effect of the electron
interaction strength on the conductance of the 0.7 anomaly.
For example, Fig. S14(c) of the Supplemental Material for
Ref. [23] shows a reduction of the conductance in the
subopen regime with increasing interaction strength for a
constant barrier curvature. As a final point of interest, the
trends in Figs. 5(c) and 5(d) do not depend on the split-gate
length, compatiblewith the inelastic scatteringmodel which
is based purely on the shape of the potential barrier.

VII. CONCLUSION

We have systematically studied the effect of changing
split-gate size on device behavior, using a multiplexing
technique which allows many nanostructure devices to be
compared on a single cooldown. Multiple devices of each
size are measured, providing statistical information on the
variance of conductance properties between individual
designs. In total, we measure 95 split gates with seven
different length and width combinations. Increasing the
gate length and/or reducing the width moves the average
voltage required to define a 1D channel and the pinch-off
voltage closer to zero. The 1D subband spacing also
reduces for devices with longer gates. Further, the percent-
age of devices displaying accurate quantization of con-
ductance reduces dramatically as the area of the channel
increases.
The electrostatic environment in the 2DEG is very

influential on the 1D potential profile. The significance
of the background potential is highlighted by three key
results reported here. First, the spread in values of the 1D
subband spacing and the 1D barrier curvature for a given
gate length are as large as the overall variation in the
average values of these properties over the range of gate
lengths measured. Second, the lever arm α, which depends
on the coupling between the gate and the 1D channel, does
not continue to increase as a function of gate length beyond
L ¼ 0.7 μm, a deviation from the expected result. Third,
the curvature of the longitudinal potential barrier estimated
using a saddle-point model is not strongly related to gate
length.
These results imply that (i) gate size cannot be relied

upon as a good indicator of the length of the 1D channel,
and (ii) the background disorder potential is at least as
significant as gate size in determining the potential land-
scape in the 1D channel.
The 0.7 anomaly is compared between split gates of

different lengths. The conductance value of the 0.7
anomaly reduces as the barrier curvature becomes shal-
lower rather than depending specifically on the split-gate
length. The particular confining potential in each device
and, principally, the barrier curvature, may be the primary
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factor governing the conductance of the 0.7 anomaly at a
given temperature and magnetic field.
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