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Quantum amplification is essential for various quantum technologies such as communication and
weak-signal detection. However, its practical use is still limited due to inevitable device fragility that brings
about distortion in the output signal or state. This paper presents a general theory that solves this critical
issue. The key idea is simple and easy to implement: just a passive feedback of the amplifier’s auxiliary
mode, which is usually thrown away. In fact, this scheme makes the controlled amplifier significantly
robust, and furthermore it realizes the minimum-noise amplification even under realistic imperfections.
Hence, the presented theory enables the quantum amplification to be implemented at a practical level. Also,
a nondegenerate parametric amplifier subjected to a special detuning is proposed to show that, additionally,
it has a broadband nature.
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I. INTRODUCTION

The amplifier is clearly one of the most important
components incorporated in almost all current technologi-
cal devices. The basic function of an autonomous amplifier
is simply to transform an input signal u to y ¼ Guwith gain
G > 1. However, such an amplifier is fragile in the sense
that the device parameters change easily, and eventually
distortion occurs in the output y. This was indeed a most
serious issue which had prevented any practical use of
amplifiers in, e.g., telecommunication. Fortunately, this
issue was finally resolved back in 1927 by Black [1,2];
there are a huge number of textbooks and articles reviewing
this revolutionary work, and here we refer to Refs. [3,4].
The key idea is the use of feedback shown in Fig. 1; that is,
an autonomous amplifier called the “plant” is combined
with a “controller” in such a way that a portion of the
plant’s output is fed back to the plant through the controller.
Then the output of the whole controlled system is given by

y ¼ GðfbÞu; GðfbÞ ¼ G
1þ GK

; ð1Þ

where K is the gain of the controller. Now, if the plant has a
large gain G ≫ 1, it immediately follows that GðfbÞ ≈ 1=K.
Hence, the whole system works as an amplifier, simply
provided that the controller is a passive device (i.e., an
attenuator) with K < 1. Importantly, a passive device such
as a resistor is very robust, and its parameters contained in
K almost do not change. This is the mechanism of robust
amplification realized by feedback control. Note, of course,
that this feedback architecture is the core of an operational
amplifier (op-amp).
Surely there is no doubt about the importance of

quantum amplifiers. A pertinent quantum counterpart to
the classical amplifier is the phase-preserving linear

amplifier [5,6] (in what follows, we simply call it the
“amplifier”). In fact, this system has a crucial role in diverse
quantum technologies such as communication, weak-signal
detection, and state processing [7–14]. In particular, recent
substantial progress in both theory and experiments [15–24]
has further advanced this field. An important fact is that,
however, an amplifier must be an active system powered
by external energy sources, implying that its parameters are
fragile and can change easily. Because of this parameter
fluctuation, the amplified output signal or state suffers from
distortion [25–27]. As a consequence, the practical appli-
cability of the quantum amplification is still severely limited.
That is, we are now facing the same problem we had
90 years ago.
To make the discussion clear, let us here describe

the general quantum-amplification process. Ideally, the
amplifier transforms a bosonic input mode b1 to ~b1 ¼
g1b1 þ g2b

†
2, where b2 is an auxiliary mode, and the

coefficients satisfy jg1j2 − jg2j2 ¼ 1 from ½ ~b1; ~b†1� ¼ 1.
Hence, the output ~b1 is an amplified mode of b1 with
gain jg1j > 1. A typical example of an amplifier is the
optical nondegenerate parametric amplifier (NDPA), in
which case g1 and g2 are frequency dependent as shown
later. However, note again that the system parameters,

FIG. 1. Classical feedback-amplification scheme:G is thegainof
an autonomous amplifier, andK is the gain of a passive controller.
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especially the coupling strength of the pumped crystal,
cannot be kept exactly constant, and eventually the ampli-
fied output mode ~b1 has to be distorted.
Now the motivation is clear; we need a quantum version

of the feedback-amplification method described in the first
paragraph. The contribution of this paper is, in fact, to
develop a general theory for quantum feedback amplifica-
tion that resolves the fragility issue of quantum amplifiers.
The key idea is simple and easy to implement, i.e.,
feedback of the auxiliary output mode ~b2 through a passive
controller to the auxiliary input mode b2. Indeed, it is
proven that the whole controlled system possesses a strong
robustness property against parameter fluctuations, which
thus enables quantum amplifiers to be implemented at a
practical level. This type of control scheme is, in general,
called coherent feedback [28–33], meaning that an output
field is fed back to an input field through another quantum
system without involving any measurement process; hence,
an excess classical noise is not introduced in the feedback
loop. Now note that the auxiliary output ~b2 has some
information about ~b1 due to their entanglement, though ~b2
is usually thrown away in the scenario of quantum
amplification. Thus, we have an interpretation that the
presented scheme utilizes the signal-recycling technique
[34] for reducing the sensitivity, unlike the conventional
use of it for enhancing the sensitivity of the gravitational-
wave detector.
In addition to the above-described main contribution,

some important results are obtained. First, we see that the
controlled system reaches the fundamental quantum noise
limit [6] even if some imperfections are present in the
feedback loop. This means that precise fabrication of the
feedback control is not necessary, which thus again
emphasizes the feasibility of the presented scheme. Next,
this paper proposes a type of NDPA subjected to a special
detuning that circumvents the usual gain-bandwidth trade-
off in the amplification process. A drawback of this
modified amplifier is that, as shown, it is very sensitive
to the parameter fluctuation. The presented theory has a
distinct advantage in such a situation; that is, this issue
can now be resolved by constructing a feedback loop.
Therefore, as a concrete application of the theory, this paper
proposes a robust, near-minimum-noise, and broadband
amplifier.
Finally, note that there are a variety of quantum ampli-

fiers considered in the literature such as an optical back-
action-evasion amplifier [35]; however, the schematic
presented in this paper is essentially different from all
those modifications in the following sense. While those
modified amplifiers have their own purposes for improving
the performance or achieving the goal in some specific
subjects (e.g., backaction evasion), the feedback scheme is
a device-independent and purpose-independent fundamen-
tal architecture that must be incorporated in all amplifiers.
In fact, in the classical regime, the “operation” part of an

op-amp has its own purpose (e.g., differentiation and
integration), but any op-amp does not work without
feedback.

II. MODEL OF PHASE-PRESERVING LINEAR
QUANTUM AMPLIFIER

Let us begin with a specific model: the NDPA. This is an
optical cavity system with two internal modes a1 and a2.
They are orthogonally polarized and obey the following
Hamiltonian:

H ¼ ω1a
†
1a1 þ ω2a

†
2a2 þ iλða†1a†2e−2iω0t − a1a2e2iω0tÞ;

with λ ∈ R the coupling strength between the modes,ωi the
resonant frequencies of ai, and 2ω0 the pump frequency.
Also, in the above expression the rotating-wave approxi-
mation is taken under the assumption 2ω0 ≈ ω1 þ ω2. The
system couples with a signal input b1 and an auxiliary
(idler) input b2 with strength κ. Then, in the rotating frame
at frequency ω0, the dynamics of the NDPA is given by the
following Langevin equations [10,36,37]:

da1
dt

¼
�
−
κ

2
− iΔ1

�
a1 þ λa†2 −

ffiffiffi
κ

p
b1; ð2Þ

da†2
dt

¼
�
−
κ

2
þ iΔ2

�
a†2 þ λa1 −

ffiffiffi
κ

p
b†2; ð3Þ

where Δ1 ¼ ω1 − ω0 and Δ2 ¼ ω2 − ω0 are detuning.
Also, the output equations (boundary conditions) are
given by

~b1 ¼
ffiffiffi
κ

p
a1 þ b1; ~b†2 ¼

ffiffiffi
κ

p
a†2 þ b†2: ð4Þ

Now the Laplace transformation of an observable xt in the
Heisenberg picture is defined by

xðsÞ ≔
Z

∞

0

e−stxtdt;

where ReðsÞ > 0. Then the Laplace transforms of b1, etc.,
are connected by the following linear equations:

~b1ðsÞ ¼ g1ðsÞb1ðsÞ þ g2ðsÞb†2ðsÞ;

g1ðsÞ ¼
ðs − κ

2
þ iΔ1Þðsþ κ

2
− iΔ2Þ − λ2

DðsÞ ;

g2ðsÞ ¼
−κλ
DðsÞ ;

DðsÞ ¼
�
sþ κ

2
þ iΔ1

��
sþ κ

2
− iΔ2

�
− λ2:

The stability analysis can be conducted in the Laplace
domain; that is, for the amplifier to be stable, all roots of the
characteristic equations of the transfer functions (i.e., poles)
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must lie in the left-hand complex plane. In the above case,
particularly when Δ1 ¼ Δ2 ¼ 0, the characteristic equation
is DðsÞ ¼ s2 þ κsþ κ2=4 − λ2 ¼ 0; hence, κ2=4 − λ2 > 0
must be satisfied to guarantee the stability of the NDPA.
The quantum-amplification process is described in the

Fourier domain s ¼ iω with ω the frequency; that is, we
consider the linear transformation at the steady state,
~b1ðiωÞ ¼ g1ðiωÞb1ðiωÞ þ g2ðiωÞb†2ðiωÞ. Note that g1 and
g2 satisfy jg1ðiωÞj2 − jg2ðiωÞj2 ¼ 1 for all ω. In particular,
when Δ1 ¼ Δ2 ¼ 0, the amplification gain at the resonant
frequency ω ¼ 0 is given by

jg1ð0Þj ¼
κ2 þ 4λ2

jκ2 − 4λ2j ;

and it takes a large number nearly at the threshold
λ ≈ κ=2 − 0. Thus, ~b1 is in fact an amplified mode of b1
with gain jg1j.
The above example can be generalized; any phase-

preserving linear quantum amplifier is modeled as an open
dynamical system with two inputs and two outputs. Let us
represent the input-output relation in the Laplace domain as
follows: � ~b1ðsÞ

~b†2ðsÞ

�
¼ GðsÞ

�
b1ðsÞ
b†2ðsÞ

�
;

GðsÞ ¼
�
G11ðsÞ G12ðsÞ
G21ðsÞ G22ðsÞ

�
; ð5Þ

where b1ðsÞ is the Laplace transformation of b1, etc. The
transfer function matrix GðsÞ at s ¼ iω (i.e., the scattering
matrix) satisfies

jG11ðiωÞj2 − jG12ðiωÞj2 ¼ jG22ðiωÞj2 − jG21ðiωÞj2 ¼ 1;

G21ðiωÞG�
11ðiωÞ −G22ðiωÞG�

12ðiωÞ ¼ 0 ∀ω: ð6Þ

Thus, jG11ðiωÞj represents the amplification gain.

III. THEQUANTUMFEEDBACKAMPLIFICATION

A. Feedback configuration

Our control scheme is based on coherent feedback; that
is, the controller is also given by a quantum system and is
connected to the plant through the input and output fields.
Note that, if a measurement process is involved in the
feedback loop, it inevitably introduces additional noise.
Now we take a passive system (e.g., a beam splitter and an
optical cavity) as the controller, with two inputs b3 and b4
and two outputs ~b3 and ~b4; note that a single-input and
single-output passive system has a gain equal to 1 and thus
does not work as an attenuator. We represent the input-
output relation of this system in the Laplace domain as
follows:

� ~b†3ðsÞ
~b†4ðsÞ

�
¼ KðsÞ

�
b†3ðsÞ
b†4ðsÞ

�
;

KðsÞ ¼
�
K11ðsÞ K12ðsÞ
K21ðsÞ K22ðsÞ

�
: ð7Þ

Here, the creation operator representation is taken to make
the notation simple. Because of the passivity property, the
transfer function matrix KðsÞ is unitary in the Fourier
domain; i.e., KðiωÞ†KðiωÞ ¼ I holds for all ω.
We now consider connecting the controller to the plant.

But unlike the classical case, where both the plant and the
controller can be a single input-output system and the
arbitrary split or addition of a signal is allowed, designing a
feedback scheme in the quantum case is not trivial. For
example, we could divide ~b1 into two paths by a beam
splitter and use one of them for feedback purpose, but in
this case the resultant whole controlled system is not a
minimum-noise amplifier. Instead, this paper proposes the
following feedback connection as shown in Fig. 2:

~b2 ¼ b3; b2 ¼ ~b4; ð8Þ
which is, of course, equivalent to ~b†2 ¼ b†3 and b†2 ¼ ~b†4.
Note that in Fig. 2 practical unwanted noises d3;…; d6 are
illustrated, but these modes are ignored for the moment.
From Eqs. (5), (7), and (8), the whole controlled system,
with inputs b1 and b†4 and outputs ~b1 and ~b†3, has the
following input-output relation in the Laplace domain:� ~b1ðsÞ

~b†3ðsÞ

�
¼

"
GðfbÞ

11 ðsÞ GðfbÞ
12 ðsÞ

GðfbÞ
21 ðsÞ GðfbÞ

22 ðsÞ

#�
b1ðsÞ
b†4ðsÞ

�
;

where

GðfbÞ
11 ¼ ½G11 − K21ðG11G22 −G12G21Þ�=ð1 − K21G22Þ;

GðfbÞ
12 ¼ ðG12K22Þ=ð1 − K21G22Þ;

GðfbÞ
21 ¼ ðG21K11Þ=ð1 − K21G22Þ;

GðfbÞ
22 ¼ ½K12 þ G22ðK11K22 − K12K21Þ�=ð1 − K21G22Þ:

FIG. 2. Coherent feedback configuration for the autonomous
amplifierG (plant).d3,d4,d5, andd6 areunwantednoisyinput fields.
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The matrix entries satisfy the condition corresponding
to Eq. (6), i.e., jGðfbÞ

11 ðiωÞj2 − jGðfbÞ
12 ðiωÞj2 ¼ 1 ∀ ω, etc.

Finally, as remarked in Sec. II, for the whole controlled
system to be stable, the controller should be carefully
designed so that all poles of GðfbÞ

ij ðsÞ must lie in the left-
hand complex plane, as demonstrated in Sec. V.

B. Robust amplification via feedback

We now focus on the output of the controlled system in
the Fourier domain, i.e.,

~b1ðiωÞ ¼ GðfbÞ
11 ðiωÞb1ðiωÞ þ GðfbÞ

12 ðiωÞb†4ðiωÞ;

and the amplification gain jGðfbÞ
11 ðiωÞj especially when the

original gain jG11ðiωÞj is large. Note that GðfbÞ
11 looks

somewhat different from the classical counterpart (1);

hence, it is not immediate to see if jGðfbÞ
11 ðiωÞj can be

approximated by a function of only the controller.
Nonetheless, the analogous result to the classical case
indeed holds as shown below.
For the proof we use Eq. (6) (below, we omit the variable

iω). First, from jG21jjG11j ¼ jG22jjG12j together with the
other two equations, we have jG11j ¼ jG22j and jG12j ¼
jG21j. Also G11G22 −G12G21 ¼ G22=G�

11 holds. Here, in
the limit jG11j → ∞, it follows that

jG11G22 −G12G21j
jG11j

¼ jG22j
jG11j2

¼ 1

jG11j
→ 0:

This implies that ðG11G22 −G12G21Þ=jG11j converges to
zero in this limit. As a consequence, we have

jGðfbÞ
11 j ¼

����G11=jG11j − K21ðG11G22 −G12G21Þ=jG11j
1=jG11j − K21G22=jG11j

����
→

���� G11=jG11j
−K21G22=jG11j

���� ¼ 1

jK21j
:

Hence, in the frequency range where the plant has a large
gain jG11ðiωÞj ≫ 1, the whole controlled system amplifies
the input b1ðiωÞ with gain jGðfbÞ

11 ðiωÞj ≈ 1=jK21ðiωÞj > 1.
Therefore, we obtain the desirable quantum robust ampli-
fication method via feedback; that is, thanks to the fact that
the passive controller is much more robust compared to the
original amplifier, even if G11 changes while maintaining a
large value, the whole controlled system carries out robust
amplification with stable gain 1=jK21j.

C. Feedback gain synthesis

Here we conduct a quantitative analysis on the robust-
ness property, which provides a guideline for synthesizing
the feedback gain K. To see the idea clearly, let us again
consider the classical case (1). Let ΔG be the fluctuation
that occurs in the plantG; then the fluctuation that occurs in
the whole controlled system GðfbÞ is calculated as

ΔGðfbÞ ¼ Gþ ΔG
1þ ðGþ ΔGÞK −

G
1þGK

≈
ΔG

ð1þGKÞ2 ;

which as a result leads to

ΔGðfbÞ

GðfbÞ ¼ 1

1þ GK
ΔG
G

: ð9Þ

Hence, the gain sensitivity to the unwanted fluctuation
can be reduced by the factor 1=j1þ GKj by feedback.
Equation (9) suggests to us not to design G and K
separately; rather, what determines the performance of
the controlled amplifier is the loop gain GK. Actually,
while the controlled amplification gain GðfbÞ ≈ 1=K can be
made bigger by taking a smaller value of K, we should
not design a too small K such that GK ≈ 0; in this case,
Eq. (9) yields ΔGðfbÞ=GðfbÞ ¼ ΔG=G, and thus there is no
improvement in the sensitivity. The so-called Bode plot
developed by Bode (e.g., see Ref. [38]) is a powerful
graphical method for synthesizing K as well as G, and it is
now the standard tool for general feedback circuit design.
Now let us try to establish the quantum version of the

above discussion. Note in advance that a straightforward
calculation, like Eq. (9), cannot be carried out in the
quantum case, but nonetheless a similar useful equation
for determining the controller parameter K21 is shown.
First, due to jG11j ¼ jG22j and G11G22 − G12G21 ¼
G22=G�

11, we find

GðfbÞ
11 ¼ jG11j2 − K21G22

G�
11ð1 − K21G22Þ

¼ G22

G�
11

G�
22 − K21

1 − K21G22

;

which thus leads to

jGðfbÞ
11 j ¼ jG�

22 − K21j
j1 − K21G22j

:

The fluctuation of the controlled gain is given by

ΔjGðfbÞ
11 j ¼ jðG22 þ ΔG22Þ� − K21j

j1 − K21ðG22 þ ΔG22Þj
−

jG�
22 − K21j

j1 − K21G22j
:

Then, from the general relation jxþϵj≈jxjþðxϵ�þx�ϵÞ=2jxj
with x, ϵ ∈ C and jϵj ≪ 1, the normalized fluctuation of
the amplification gain of the controlled system can be
explicitly calculated as

ΔjGðfbÞ
11 j

jGðfbÞ
11 j

¼ 1 − jK21j2
jG�

22 − K21j2
Re

�
G�

22 − K21

1 − K21G22

ΔG22

	
: ð10Þ

Next, noting that jG22j¼ jG11j≫1 and thus jK21j≪ jG22j,
we find from Eq. (10) that
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����ΔjGðfbÞ
11 j

jGðfbÞ
11 j

���� ≈ 1

jG22j2
����Re� G�

22

1 − K21G22

ΔG22

	����:
Thus, from the general relation jReðxyÞj ≤ jxjjyj with x,
y ∈ C, it follows that����ΔjGðfbÞ

11 j
jGðfbÞ

11 j

���� ≤ 1

j1 − K21G22j
jΔG22j
jG22j

: ð11Þ

Equation (11) has a similar form to Eq. (9) and indeed
provides us a guideline for feedback design. That is, as in
the classical case, the balance of K21 and G22 determines
the ability of the controlled system to suppress the
fluctuation [note that jΔG22j ≥ ΔjG22j ¼ ΔjG11j]. In par-
ticular, we now deduce a similar conclusion as in the
classical case; if we choose a too small K21 in addition to
jG11j ≫ 1 such that the loop gain K21G22 is almost zero,
then substituting the relation

ΔjG11j ¼ ΔjG22j ¼ ReðG�
22ΔG22Þ=jG22j

into Eq. (10) we obtain ΔjGðfbÞ
11 j=jGðfbÞ

11 j ¼ ΔjG11j=jG11j.
That is, in this case the fluctuation is not at all suppressed
via feedback. To design an appropriate controller gain K21,
the Bode plot of the loop gain K21ðiωÞG22ðiωÞ is useful.

IV. QUANTUM NOISE LIMIT

Let us define the noise magnitude of b by

hjΔbj2i ≔ 1

2
hΔbΔb† þ Δb†Δbi; Δb ¼ b − hbi:

Then, through the ideal amplification process ~b1 ¼
g1b1 þ g2b

†
2, the noise magnitude must be also amplified

as hjΔ ~b1j2i¼ jg1j2hjΔb1j2iþ jg2j2=2, where b2 is assumed
to be in the vacuum. This implies the degradation of the
signal-to-noise ratio:

gðS=NÞ ¼ jh ~b1ij2
hjΔ ~b1j2i

¼ jhb1ij2
hjΔb1j2i þA

<
jhb1ij2
hjΔb1j2i

¼ ðS=NÞ:

Hence, the added noise

A ≔
jg2j2
2jg1j2

¼ jg1j2 − 1

2jg1j2

quantifies the fidelity of the amplification process [5,6]. In
particular, in the large amplification limit jg1j → ∞ we find
A → 1=2, which is called the quantum noise limit.
Up to now, the ideal setup is assumed, and the controlled

system is driven by only the signal b1 and the auxiliary
input b4, implying that it actually reaches the quantum
noise limit in the large amplification limit. Hence, here we

consider the following general case where some excess
noise exists, as illustrated in Fig. 2; the plant is subjected to
an unwanted noise d3 that enters into the system in the form
~b1 ¼ G11b1 þ G12b

†
2 þ G13d3; the controller is also

affected by a noise d4; furthermore, the feedback trans-
mission lines are lossy, which is modeled by inserting
fictitious beam splitters with additional inputs d5 and d6.
Note that d3;…; d6 are all annihilation modes. Then the
output of the whole controlled system has the form

~b1 ¼ GðfbÞ
11 b1 þ GðfbÞ

12 b†2 þ GðfbÞ
13 d3 þ GðfbÞ

14 d†4 þ GðfbÞ
15 d†5

þGðfbÞ
16 d†6:

Then, if the excess noises are all vacuum, the added noise in
the feedback-controlled amplification process, denoted by
AðfbÞ, satisfies

lim
jGðfbÞ

11
j→∞

AðfbÞ ¼ lim
jG11j→∞

AðoÞ ¼ 1

2
þ jG13j2
jG11j2

; ð12Þ

where AðoÞ is the added noise of the plant. The proof of

Eq. (12), including the detailed forms of GðfbÞ
k , is given in

Appendix A. This is a very useful result for the following
reasons. First, in the large amplification limit the two added
noises AðfbÞ and AðoÞ are equal; as a consequence, the
second term in the right-hand side of Eq. (12) is a function
of only the plant and cannot be further altered by feedback
control. Hence, we have the following no-go theorem: If the
original amplifier does not reach the quantum noise limit
(i.e., limjG11j→∞jG13j=jG11j > 0), the controller can never
remove this excess noise. On the other hand, notably, the
imperfections contained in the controller and the feedback
transmission lines do not appear in Eq. (12). This means
that a very accurate fabrication of the feedback controller is
not necessarily required, which is a desirable fact from a
practical viewpoint. Thus, if the original amplifier operates
with the minimum added noise, the controlled system
reaches the quantum noise limit as well even if some
imperfections are present in the feedback loop.

V. APPLICATION TO OPTICAL
BROADBAND AMPLIFICATION

In any practical situation, it is important to carefully
engineer an amplifier so that it has a proper frequency
bandwidth in which nearly constant amplification gain is
realized. On the other hand, it is known in both the classical
and quantum cases that, particularly for an amplifier with a
single pole, the effective bandwidth becomes smaller if the
amplification gain is taken to be bigger. That is, there is a
gain-bandwidth constraint. However, this constraint is not
necessarily applied to a more complex amplifier with
multiple poles. In fact, recently in Ref. [21], the authors
propose a hybrid amplifier composed of two cavity modes
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and an additional optomechanical mode that circumvents
the gain-bandwidth constraint. In this section, we study
another system that is also free from this constraint, that yet
does not need an additional degree of freedom. Then, the
effectiveness of feedback is discussed, demonstrating its
ability to make the system robust.

A. NDPA with special detuning

The plant system is the NDPAwith dynamics (2) and (3)
and output (4). Here we consider the ideal case where the
unwanted noises d3;…; d6 shown in Fig. 2 are not present.
Without any invention, this system is subject to a gain-
bandwidth constraint [10], but now let us take the specific
detuning as Δ1 ¼ Δ2 ¼ λ. The transfer function matrix of
this system is then given by

GðsÞ ¼ 1

ðsþ κ=2Þ2
�
s2 − κ2=4þ iκλ −κλ

−κλ s2 − κ2=4 − iκλ

�
:

The maximum gain is jG11ð0Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16λ2=κ2

p
, which

becomes larger by increasing λ. Remarkably, this ampli-
fication can be carried out without sacrificing the band-
width. Figure 3(a) shows the three cases corresponding to
λ ¼ κ, 3κ, 5κ, all of which have the same effective
bandwidth ∼κ=10. A clear advantage of this system is in
its implementability; that is, it is composed of only optical
devices, and there is no need to prepare an auxiliary system
such as an optomechanical oscillator. Also, note that the
system is always stable (the pole of the transfer function
matrix is −κ=2); that is, in a proper parameter regime such
that the linearized model given by Eqs. (2) and (3) is valid
[39], there is no clear upper bound on λ, in contrast to the
standard NDPA which imposes jλj < κ=2.

B. The feedback effect

Next, let us consider the feedback control of this
amplifier, again in the ideal setup. Here, as shown in
Fig. 4, a beam splitter with transmissivity α and reflectivity
β is taken as a controller. This device has no internal
dynamics, and its transfer function matrix is constant:

KðsÞ ¼
�
α β
β −α

�
; α; β ∈ R:

Thus, K21 ¼ β represents the attenuation level. The ampli-
fication gain of the whole controlled system is then

GðfbÞ
11 ðsÞ ¼ ð1 − βÞs2 þ βκs − ð1þ βÞκ2=4þ iκλ

ð1 − βÞs2 þ κsþ ð1þ βÞκ2=4þ iβκλ
:

This expression shows that, as expected from the general
theory discussed in Sec. III B, in the limit jG11ðiωÞj → ∞
(i.e., λ → ∞) the gain becomes jGðfbÞ

11 ðiωÞj → 1=β in a
certain frequency bandwidth. To determine the attenuation
level β, we need the stability condition; it is shown in

Appendix B that, for all the poles of GðfbÞ
11 ðsÞ to lie in the

left-hand complex plane, the parameters must satisfy

jλj < κ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

β2ð1 − βÞ

s
: ð13Þ

This yields jβj < κ=2jλj when β2 ≪ 1; hence, let us here
choose λ ¼ 5κ, leading to jβj < 0.1. Figure 3(b) shows the

gain jGðfbÞ
11 ðiωÞj for the two cases β ¼ 0.1 and β ¼ 0.05

together with the plot without feedback (i.e., β ¼ 0). We
then observe that the gain of the controlled amplifier
becomes smaller than that without feedback; in exchange
for this reduced gain, the controlled amplifier obtains a
great robustness property against the parameter fluctuation
as demonstrated later. Note that a larger value of β (thus
smaller amplification gain) induces a wider frequency
bandwidth; hence, the controlled NDPA has the gain-
bandwidth constraint. But the point here is rather that
the gain and bandwidth can be easily tuned by just
changing the reflectivity of the beam splitter. That is, an
easily adjustable amplification can be realized, and this is
also a clear advantage of feedback.

C. Robustness property

As repeatedly emphasized in this paper, the main
strength of feedback is that the controlled system possesses
a robustness property. To see this, let us consider an

(b)(a)

FIG. 3. (a) Gain profile of the specially detuned NDPAwithout
feedback. (b) Gain profile of the feedback-controlled system with
parameters λ ¼ 5κ and various β.

FIG. 4. The NDPA (plant) and its coherent feedback; by simply
feeding the auxiliary output ~b2 back to the auxiliary input b2
through just a beam splitter, the robustness property is drastically
improved, as discussed in the main text.
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imperfect case as follows. First, the device parameters are
fragile; the coupling strength λ fluctuates in such a way
that λ ¼ ð1þ 0.1ϵ0Þλ0, where λ0 is the nominal value;
similarly, the detunings Δ1 and Δ2 can be slightly deviated
from λ, which is modeled by Δ1 ¼ ð1þ 0.001ϵ1Þλ and
Δ2 ¼ ð1þ 0.001ϵ2Þλ. Here ðϵ0; ϵ1; ϵ2Þ are independent
random variables subjected to the uniform distribution in
½−1; 1�. In addition to this fragility, we assume that the
signal mode a1 is subjected to optical loss, which is
modeled by adding the extra term −γa1=2 −

ffiffiffi
γ

p
d3 to the

right-hand side of Eq. (2), with γ the magnitude of the loss
and d3 the unwanted vacuum noise. The feedback trans-
mission lines are also lossy, which is modeled by Eq. (A6).
The blue lines in Fig. 5 are 50 sample values of the

autonomous gain jG11ðiωÞj in the case λ0 ¼ 5κ and
α1 ¼ α2 ¼ 0.99. That is, in fact, due to the parameter
fluctuation described above, the amplifier becomes
fragile and the amplification gain significantly varies.
Nonetheless, this fluctuation can be suppressed by feed-
back; the red lines in Fig. 5 are 50 sample values of the

controlled gain jGðfbÞ
11 ðiωÞj with attenuation level β ¼ 0.1,

whose fluctuation is indeed much smaller than that of
jG11ðiωÞj [40]. [Note that, because the fluctuation of

jGðfbÞ
11 ðiωÞj is very small, the set of sample values looks

like a thick line.] That is, the controlled system is certainly
robust against the realistic fluctuation of the device
parameters.

D. Added noise

Finally, let us investigate how much the excess noise is
added to the output of the controlled or noncontrolled
specially detuned NDPA. Again we set λ0 ¼ 5κ, and the
feedback control is conducted with attenuation level
β ¼ 0.1. Also, the same imperfections considered in the
previous subsection are assumed; that is, the system suffers
from the signal loss (represented with γ) and the probabi-
listic fluctuation of the parameters (λ, Δ1, Δ2); furthermore,
the feedback control is implemented with the lossy trans-
mission lines (represented with α1 and α2).
With this setup Fig. 6 is obtained, where the red solid

lines are sample values of the added noise at the center

frequency ω ¼ 0 for the controlled system, AðfbÞ given by
Eq. (A11), while the blue dotted lines represent those of
the noncontrolled system, AðoÞ given by Eq. (A3). (In the
figure it appears that six thick lines are plotted, but each is
the set of 50 sample values.) Figure 6(a) shows AðfbÞ and
AðoÞ versus the signal loss rate γ=κ, where for the controlled
system we fix α1 ¼ α2 ¼ 0.5 (that is, the feedback trans-
mission lines are very lossy). Also, Fig. 6(b) shows the
added noise as a function of α1 ¼ α2, with fixed signal
loss γ=κ.
The first crucial point is that, in both Figs. 6(a) and 6(b),

AðfbÞ and AðoÞ are close to each other. This is the fact that
can be expected from Eq. (12), which states that AðfbÞ and
AðoÞ coincide in the large amplification limit. It is also
notable that, for all sample values,AðfbÞ is smaller thanAðoÞ
[41]; in other words, the feedback controller reduces the
added noise, although in the large amplification limit this
effect becomes negligible as proven in Eq. (12). Another
important feature is that, as seen in Fig. 6(a), the signal
loss γ is the dominant factor increasing the added noise, and
the feedback loss 1 − α1ð¼ 1 − α2Þ does not have a large
impact on it, as seen in Fig. 6(b). As consequence, when γ
is small, the controlled amplifier can perform amplification
nearly at the quantum noise limit 1=2, with almost no
dependence on the feedback loss; this fact is also consistent
with Eq. (12).
In summary, the specially detuned NDPAwith feedback

control functions as a robust, near-minimum-noise (if
γ ≪ κ), and broadband amplifier.

VI. CONCLUSION

The presented feedback control theory resolves the
critical fragility issue in phase-preserving linear quantum
amplifiers. The theory is general and thus applicable to
many different physical setups, such as optics, optome-
chanics, superconducting circuits, and their hybridization.
Moreover, the feedback scheme is simple and easy to
implement, as demonstrated in Sec. V. Note also that the
case of phase-conjugating amplification [42,43] can be
discussed in a similar way; see Appendix C.

(a) (b)

FIG. 6. The added noise of the controlled amplifier with
attenuation level β ¼ 0.1 and that of the noncontrolled one
(i.e., β ¼ 0) versus (a) γ=κ with fixed α1 ¼ α2 ¼ 0.5 and
(b) α1 ¼ α2 with fixed γ=κ. In both figures, the red solid lines
represent AðfbÞ, while the blue dotted lines are AðoÞ, at ω ¼ 0.

FIG. 5. The upper blue lines represent the gain profile of the
specially detuned NDPA without feedback, jG11ðiωÞj, while the

lower red lines correspond to the controlled case jGðfbÞ
11 ðiωÞj with

β ¼ 0.1. In both cases, λ0 ¼ 5κ.
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In a practical setting, the controller synthesis problem
becomes complicated, implying the need to develop a more
sophisticated quantum feedback amplification theory,
which indeed was established in the classical case
[3,38,44]. The combination of those classical approaches
with the quantum control theory [45–47] should advance
this research direction. Another interesting future work is to
study genuine quantum-mechanical settings, e.g., probabi-
listic amplification [26,48–50]. Finally, note that feedback
control is used in order to reach the quantum noise limit, in
a different amplification scheme (the so-called op-amp
mode) [10,51]; connection to these works is also to be
investigated.
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APPENDIX A: PROOF OF EQ. (12)

First, we again describe the setup of the imperfect system
depicted in Fig. 2, in a more detailed way. The plant system
is subjected to an unwanted noise d3, such that the input-
output relationship is given by

"
~b1ðsÞ
~b†2ðsÞ

#
¼

�
G11ðsÞ G12ðsÞ G13ðsÞ
G21ðsÞ G22ðsÞ G23ðsÞ

�264 b1ðsÞ
b†2ðsÞ
d3ðsÞ

375: ðA1Þ

The transfer function matrix in this case satisfies

jG11j2 − jG12j2 þ jG13j2 ¼ jG22j2 − jG21j2 − jG23j2 ¼ 1;

G21G�
11 −G22G�

12 þG23G�
13 ¼ 0; ðA2Þ

for all s ¼ iω. Thus, the added noise of the plant system is
given by

AðoÞ ¼ jG12j2 þ jG13j2
2jG11j2

¼ jG11j2 þ 2jG13j2 − 1

2jG11j2

¼ 1

2
−

1

2jG11j2
þ jG13j2
jG11j2

: ðA3Þ

This leads to

lim
jG11j→∞

AðoÞ ¼ 1

2
þ jG13j2
jG11j2

; ðA4Þ

where the second term is assumed to exist. Note that in a
more general setup some creation noise modes (e.g., d†3)
can be contained in Eq. (A1), but this modification does not
change the conclusion. The controller also contains an
unwanted noise field d4 in the following form:

"
~b†3ðsÞ
~b†4ðsÞ

#
¼

�
K11ðsÞ K12ðsÞ K13ðsÞ
K21ðsÞ K22ðsÞ K23ðsÞ

�2664
b†3ðsÞ
b†4ðsÞ
d†4ðsÞ

3775: ðA5Þ

The point here is that only the creation modes appear in
Eq. (A5), unlike Eq. (A1) that involves both creation and
annihilation modes; this is indeed due to the passivity
property of the controller. Finally, the transmission lines
(optical fields) for feedback are assumed to be lossy. This
setting is modeled by inserting two fictitious beam splitters;
the beam splitter in the output field ~b2 has transmissivity α1
and reflectivity δ1, and also the beam splitter in the output
field ~b4 has transmissivity α2 and reflectivity δ2 (we assume
αi, δi ∈ R without loss of generality). Then, the coherent
feedback connection is represented by the following
relations:

b†3 ¼ α1 ~b
†
2 þ δ1d

†
5; b†2 ¼ α2 ~b

†
4 þ δ2d

†
6: ðA6Þ

Combining Eqs. (A1), (A5), and (A6), we end up with

~b1 ¼ GðfbÞ
11 b1 þ GðfbÞ

12 b†4 þ GðfbÞ
13 d3 þ GðfbÞ

14 d†4 þ GðfbÞ
15 d†5

þGðfbÞ
16 d†6;

where

GðfbÞ
11 ¼ ½G11 − α1α2K21ðG11G22 − G12G21Þ�=G;

GðfbÞ
13 ¼ ½G13 − α1α2K21ðG13G22 − G12G23Þ�=G;

GðfbÞ
12 ¼ α2G12K22=G; GðfbÞ

14 ¼ α2G12K23=G;

GðfbÞ
15 ¼ α2δ1G12K21=G; GðfbÞ

16 ¼ δ2G12=G;

and G ¼ 1 − α1α2K21G22. Note that the transfer functions
satisfy at s ¼ iω

jGðfbÞ
11 j2 − jGðfbÞ

12 j2 þ jGðfbÞ
13 j2

− jGðfbÞ
14 j2 − jGðfbÞ

15 j2 − jGðfbÞ
16 j2 ¼ 1: ðA7Þ

Here we derive some preliminary results that are used
later. First, Eq. (A2) leads to jG21G�

11 −G22G�
12j2 ¼

jG23j2jG13j2; together with the other two equations, we
then have����G11G22 − G12G21

G11

����2
¼ 1þ

����G22

G11

����2 − jG12j2 þ jG21j2 þ 1

jG11j2
: ðA8Þ

Similarly,
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����G13G22 −G12G23

G11

����2 ¼����G22

G11

����2−����G23

G11

����2 − 1: ðA9Þ

Furthermore, we can prove that jG22=G11j → 0 never hold
in the limit of jG11j → ∞ as follows. If jG22=G11j → 0, this
leads to G21=G11 → 0 and G23=G11 → 0 and, furthermore,
jG12=G11j → 1 and jG13j → 1 from Eqs. (A2) and (A8);
then using Eq. (A9) we have G23 → 0 and accordingly
G21G�

11 −G22G�
12 → 0, which leads to a contradiction.

Now we are concerned with the amplification gain jGðfbÞ
11 j

in the limit jG11j → ∞. It is given by

jGðfbÞ
11 j ¼

���� 1 − α1α2K21ðG11G22 −G12G21Þ=G11

1=G11 − α1α2K21ðG22=G11Þ
����

≈
���� −1
α1α2K21ðG22=G11Þ

þ ðG11G22 −G12G21Þ=G11

G22=G11

����:
The second term is upper bounded, because from Eq. (A8)

����G11G22 −G12G21

G11

����
����G22

G11

���� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1


����G22

G11

����2
s

ðA10Þ

and also jG22=G11j does not converge to zero. Therefore,
we need K21ðG22=G11Þ → 0 (hence, K21 → 0) to have the

condition jGðfbÞ
11 j → ∞.

Finally, the added noise in the controlled system is
computed as follows:

AðfbÞ ¼ jGðfbÞ
12 j2 þ jGðfbÞ

13 j2 þ jGðfbÞ
14 j2 þ jGðfbÞ

15 j2 þ jGðfbÞ
16 j2

2jGðfbÞ
11 j2

¼ jGðfbÞ
11 j2 þ 2jGðfbÞ

13 j2 − 1

2jGðfbÞ
11 j2

¼ 1

2
−

1

2jGðfbÞ
11 j2

þ jGðfbÞ
13 j2

jGðfbÞ
11 j2

; ðA11Þ

where Eq. (A7) is used; also note that all the noise fields are
now vacuum. The third term is given by

jGðfbÞ
13 j2

jGðfbÞ
11 j2

¼
����G13 − α1α2K21ðG13G22 − G12G23Þ
G11 − α1α2K21ðG11G22 − G12G21Þ

����2: ðA12Þ

Then from Eq. (A8) we find����K21

G11G22 −G12G21

G11

����2 ≤ jK21j2þ
����K21

G22

G11

����2 → 0;

in the limit K21ðG22=G11Þ → 0 and K21 → 0. Also
jK21ðG13G22 −G12G23Þ=G11j → 0 holds due to Eq. (A9).

As a consequence, the added noise in the limit jGðfbÞ
11 j → ∞

is given by

lim
jGðfbÞ

11
j→∞

AðfbÞ ¼ 1

2
þ jG13j2
jG11j2

:

Hence, together with Eq. (A4), we obtain Eq. (12).
The point of this result is that, due to the strong

constraint on the noise input fields, which is represented
by Eq. (A7), the added noise does not explicitly contain the
terms that stem from the creation input modes d†4, d

†
5, and

d†6. This is because of the passivity property of the
controller (A5) and the feedback transmission lines (A6)
that are composed of only the creation modes.

APPENDIX B: PROOF OF EQ. (13)

The stability of the controlled amplifier is guaranteed if
and only if all the poles of GðfbÞðsÞ lie in the left-hand
complex plane. In our case, those are given by the solutions
of the following characteristic equation:

ð1 − βÞs2 þ κsþ ð1þ βÞκ2=4þ iβκλ ¼ 0:

In the standard case where the coefficients of the character-
istic equation are all real, the Routh-Hurwitz criterion can
be used for the stability test, but now the above one contains
an imaginary coefficient. Hence, here we set s ¼ xþ iy,
x, y ∈ R, transforming the above equation to�

xþ κ

2ð1 − βÞ
�
2

− y2 ¼ κ2β2

4ð1 − βÞ2 ;

y ¼ −βκλ
2ð1 − βÞxþ κ

:

The poles are given by the intersections of these curves in
the complex plane; Fig. 7 shows the case for βλ > 0.
Hence, for the poles to be left in the complex plane, the
parameters must satisfy

FIG. 7. The poles represented by the cross points between two
curves.
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βλ <
κ

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
:

Considering the other case (i.e., βλ < 0), we end up with
the stability condition (13).
Note that, as demonstrated above, in general the stability

analysis becomes complicated for a complex-coefficient or
higher-order transfer function. The Nyquist method [44] is a
very useful graphical tool that can deal with such cases,
although an exact stability condition is not available.
Another way is a time-domain approach based on the
so-called small-gain theorem [52,53] that produces a suffi-
cient condition for a feedback-controlled system to be stable;
the quantum version of this method [54] will be useful to
test the stability of the controlled feedback amplifier.

APPENDIX C: PHASE-CONJUGATING CASE

The Hermitian conjugate of the second element of
Eq. (3) is given by ~b2 ¼ G�

21b
†
1 þ G�

22b2. That is, the output
~b2 is the amplified signal of the conjugated input b†1, with
gain jG21j; this is called the phase-conjugating amplifica-
tion. The feedback control in this case is almost the same as
for the phase-preserving amplification. We consider the
ideal feedback configuration shown in Fig. 2 (i.e., the noise
fields d3;…; d6 are ignored) and now focus on the auxiliary

output ~b3 ¼ ðGðfbÞ
21 Þ�b†1 þ ðGðfbÞ

22 Þ�b4. Then the amplifica-
tion gain is evaluated, in the large amplification limit
jG21j → ∞, as

jGðfbÞ
21 j ¼

���� K11

1=jG21j − K21G22=jG21j
���� →���� K11

−K21eiθ

����
¼ jK11j

jK21j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jK21j2
− 1

s
:

In the first line of the above equation, we have used
jG22=G21j2 ¼ 1þ 1=jG21j2 → 1; also the last equality
comes from the unitarity of K, i.e., jK11j2 þ jK21j2 ¼ 1.
Therefore, when the original amplification gain is large
(jG21j ≫ 1), the controlled system works as a phase-
conjugating amplifier with gain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=jK21j2 − 1

p
> 1. As

in the phase-preserving case, this controlled gain is robust
compared to the original one jG21j.
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