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We present a density-matrix-based transport model applicable to quantum cascade lasers which
computes both linear and nonlinear optical properties coherently and nonperturbatively. The model is
applied to a dual-active-region midinfrared quantum cascade laser which generates terahertz radiation at the
difference frequency between two midinfrared pumps. A new mechanism for terahertz generation is
identified as self-detection, ascribed to the beating of current flow following the intensity, associated with
stimulated emission. This mechanism peaks at optical rectification but exhibits a bandwidth reaching
significantly into the terahertz range, which is primarily limited by the subpicosecond intersubband
lifetimes. A metric is derived to assess the strength of self-detection in candidate active regions through
experiment alone, and suggestions are made for improvement of the performance at frequencies below
2 THz.
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I. INTRODUCTION

The quantum cascade laser (QCL) has emerged as a
leading candidate for a coherent light source in both the
terahertz and midinfrared (mid-IR) spectral ranges. Mid-IR
QCLs were demonstrated first and have since advanced to
watt-level powers in continuous-wave operation at room
temperature, enabling widespread commercialization and
applications [1,2]. Terahertz QCLs, on the other hand, have
been the greater challenge and despite tremendous effort
have reached a limit in operating temperature around
200 K, attributed to thermally activated longitudinal-
optical- (LO-)phonon scattering and other sources [3–8].
The temperature limitation has been one major hindrance
to the commercialization of these devices which can surely
find applications in a diverse range of scientific and
engineering fields [9,10].
So far, the only successful approach to room-temperature

terahertz output in QCLs has been to harness the power of
mid-IR QCLs for nonlinear, rather than direct, generation.
Devices have been developed in which two mid-IR QCL
active regions share the same cavity, and the terahertz
difference frequency between two mid-IR pumps is gen-
erated through a second-order nonlinear susceptibility
(χð2Þ) that originates within the active region itself. In this
way, various groups have demonstrated milliwatt-level
peak power, microwatt-level average power, and tunability
from 1.7 to 5.25 THz, all at room temperature [11–15].
Given these successes, it is now worthwhile to take a

close look at the origin of the difference frequency
susceptibility. The mechanism is typically described as a

resonant interaction between the upper radiative subband
and two lower subbands in the active region’s injector
system (see, for example, the highlighted subbands in
Fig. 1). Association with the lasing transition boasts the
inherent advantage that population inversion prevents the
pump absorption that typically accompanies resonant non-
linearities. However, it is somewhat of an oversimplifica-
tion to attribute the nonlinearity to only a few subbands,
given the large number of subbands in the injector region.
A more complete theoretical analysis was undertaken using
an Ensemble Monte Carlo method to calculate the steady-
state populations under lasing conditions; a perturbative
“sum-over-states” (SOS) expression was then applied to
calculate χð2Þ considering all possible subband combina-
tions [16–18]. Inclusion of all terms in the SOS expression
lent agreement to the notion that χð2Þ is dominated by the
resonant processes around the lasing transition, at least for
biases near the injection resonance.
However, the use of the SOS expression for χð2Þ is still

not a complete description for a number of reasons. First, it
does not properly treat the effects of permanent dipoles
(diagonals of the position operator): these effects are
important in QCLs where the state separations are com-
parable to the dipole elements, and inclusion of these terms
in the SOS expression results in an unphysical translational
variance. Second, since the SOS expressions are perturba-
tive, they cannot naturally account for high-field effects
such as electromagnetically induced transparency and
others that require higher order. Third, as the SOS expres-
sion is intended for a finite-sized entity such as an atom or a
molecule, it cannot capture the full dynamics in an
extended system such as a QCL with a large number of
repeated modules that have conduction currents flowing*bburnett@ucla.edu
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between them. A visualization of the various processes
which might contribute to terahertz generation is given
in Fig. 1.
In this paper, we employ a density-matrix-based trans-

port model to provide a look at the origin of the terahertz
difference frequency susceptibility, taking as an example
system a dual-active-region mid-IR QCL reported in the
literature [14]. The model is translationally invariant,
nonperturbative, and takes into account the periodic nature
of the active region. No a priori distinction is made
between the displacement current associated with intersub-
band transitions and the conduction current associated with
current flow through the device, and in doing so, we find
that both can contribute significantly to terahertz gener-
ation. In particular, we show that an important and
previously underappreciated mechanism is the beating of
conduction current by stimulated emission across the lasing
transition, which becomes dominant over the displacement

current contribution for frequencies in the lower-terahertz
range (<2 THz).
The paper is organized as follows. Section II describes

the method by which the transport and optical properties
are calculated using a steady-state density-matrix solver
and extraction of the velocities. Section III gives results and
analysis on the active region used in Ref. [14], where it is
demonstrated that beating of conduction current is largely
responsible for terahertz generation. Section IV summa-
rizes the findings, and details on the steady-state density
matrix solver, velocity extraction, and subband electron
distributions are given in Appendixes A–C.

II. METHOD

Our density-matrix solver is adapted from Ref. [19] to
compute difference frequency susceptibility. Density-
matrix transport models have been applied to specific
QCL systems since their conception [20–24], but analytic
formulations become prohibitively cumbersome for
designs consisting of more than three to four levels. To
address this limitation, generalized density-matrix models
have recently been presented for modeling of arbitrarily
complex designs [19,25,26], with the further extensions of
coherent optical response and spatial periodicity first made
in Ref. [26]. Our density-matrix model for QCLs coher-
ently includes optical fields at more than one frequency.
Each element in the density matrix is an average over

the subbands: diagonal elements are, therefore, the subband
population fractions, and off-diagonal elements are the
coherences between subbands averaged over the in-plane
wave vector. The goal is to solve for the steady-state density
matrix of the electronic system (ρ), whose evolution
follows a quantum dissipative form:

_ρ ¼ − i
ℏ
½H; ρ� þ

X
X

C†
XρCX − 1

2
ðC†

XCXρþ ρC†
XCXÞ

þ pure dephasing… ð1Þ

The first term of the right side is the coherent Liouville–
von-Neumann evolution driven by the Hamiltonian H,
which in our case will include subband energy structure,
tunneling, and the optical fields. The

P
X terms are the

Lindblad contribution for transitions, where X is a label
for each transition process, and CX is the associated
“jump” operator. The pure dephasing terms are for proc-
esses which reduce coherences but do not alter the subband
populations.

A. Hamiltonian and density-matrix structure

Following Refs. [19,26], we assume that the Hamiltonian
and density matrix have block periodic form to follow the
repetitive structure of a QCL:
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FIG. 1. Top: Conduction-band-energy diagram for the two
active regions which are combined in series. The states partici-
pating in lasing are highlighted. Bottom: Three possible mech-
anisms of difference frequency generation. Atomlike processes
involve an intersubband polarization due to off-diagonal dipole-
matrix elements, enhanced by resonance with the energy struc-
ture. Permanent dipole effects are depicted as the modulation of
an intersubband transition energy ΔE by an optical field at ω3,
which will modulate the susceptibility of another pump at ω2

close to resonance, producing a χð2Þ. The energy modulation is a
first-order Stark effect made possible by spatial separation of the
subbands and does not require resonance of ω3. Self-detection
can be described as an increase in current responding to the
intensity beat note. Mechanisms outlined in red have yet to see
thorough theoretical description.
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Each term in parentheses is a submatrix of size N × N,
where N is the number of states per module. Subscript 0
signifies an intramodule submatrix, and �1 refers to the
intermodule elements. The module energy difference is
accounted for in the matrix Δ ¼ Emod1N .
Each submatrix including the module energy difference

is further decomposed into components at arbitrary
frequencies labeled by α:

Hp ¼
X
α

HðωαÞ
p eiωαt; ð4Þ

ρp ¼
X
α

ρðωαÞ
p eiωαt; ð5Þ

Δ ¼
X
α

ΔðωαÞeiωαt: ð6Þ

The optical field enters into the calculation in an electric
dipole sense [HðωαÞ ¼ qEðωαÞz, where EðωαÞ is the optical
field and z the position operator]. Although this treatment
destroys translational invariance in H, application of the
Liouville–von Neumann equation will access only
differences in the diagonals of z, ensuring translational
invariance in the complete model. An important conse-
quence of the electric dipole treatment, however, is that the
module energy difference fluctuation in Eq. (6) is crucial in
the treatment of optical nonlinearities. Note that both of
the�ωα are included: allowing this generality in ρ amounts
to not making any “rotating-wave approximation” as
explained in Ref. [26]. A method for solving the entire
steady state is given in Appendix A.

B. Scattering calculations and subband filling

Transitions are added into the steady-state solver through
the Lindblad terms in Eq. (1), where the jump operator
for the transition from state i to f is CX¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=τi→fÞ
p jfihij.

The transition time τi→f is averaged over the initial subband

electron distribution. In this work, we include transition
processes due to interface roughness, LO phonons, alloy
disorder, and ionized impurities. The same processes are
calculated for pure dephasing, although their inclusion in
the solver is trivial (shown in Appendix A). The scattering
calculations are made following Ref. [27].
Some assumptions must be made, which make the model

inexact. The usual fitting parameters in QCL simulations
are the interface roughness correlation length Λ and
average height Δ, for which we find good agreement with
experiment using the choices Λ ¼ 25 nm, Δ ¼ 0.8 Å. In
addition, screening must be included in the impurity and
LO-phonon calculations, for which we use an isotropic
Debye model. Previous studies have found this approxi-
mation to be reasonably accurate when the Debye screening
length LD is of the order of or longer than the module
length (in our case, LD ≈ 26 nm with Lmod ¼ 65.5,
69.2 nm for the two-layer sequences studied) [28,29].
The subband filling statistics in QCLs under operating

conditions are an area of intense study and are known to
have a large impact on the overall transport characteristic.
A laser is inherently a nonequilibrium device, and in a QCL
equilibrium is broken in more aspects than only the
subband populations. Two additional effects are important:
the subband electron temperatures Te tend to be signifi-
cantly higher than the lattice (phonon) temperature TL, and
subband distributions can often be noticeably nonequili-
brium, with hot electrons residing high in the subband,
particularly in the lower lasing states [30–32]. In our model,
we capture an approximation of both effects by assuming
all subbands to be Boltzmann distributed with Te ¼ 500 K,
but with a certain amount of hot electrons superimposed as
a Gaussian distribution at higher energy (centered at
140 meV above the subband minimum in light of elastic
scattering across the radiative transition). The fraction of
hot electrons is made highest in the lower lasing subbands
(30%), decreases steadily to zero moving downstream
through the injector, and remains at zero for the upper
lasing states. More detail is given in Appendix C. This
phenomenological scheme is designed to reflect the carrier
distributions observed in detailed Monte Carlo simulations
which resolve the in-plane k states [30]. Including these
nonequilibrium distributions is particularly important to
obtain approximate quantitative agreement with experi-
mentally observed current densities within the mid-IR
lasers, which is central to the mechanism of difference
susceptibility that we identify.
The results of the scattering calculations give upper-state

lifetimes near 500 fs and pure dephasing times at the sub-
100-fs level.

C. Extraction of transport and optical properties

The steady-state density-matrix solution encodes all the
known information of the electronic system, and from it we
can extract all the transport and optical properties including
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current, gain, and nonlinear susceptibility. Because we have
an infinitely long chained system with periodic boundary
conditions, the polarization is not a uniquely defined
quantity, as it can in general depend on the boundary
positions; therefore, all quantities must be derived from the
velocity, which is uniquely defined. Supposing we have, in
general, a time-evolution superoperator for the density
matrix X (_ρ ¼ Xρ); the velocity expectation value is then

hvi ¼ Trðz_ρÞ ¼ TrðzXρÞ ¼
X
ab;cd

zabXab;cdρcd: ð7Þ

In other words, we must evaluate the full sum with all
possibilities of (density-matrix element at cd) × (evolution
from cd to ab) × (position element at ab). We need a
scheme adapted to our periodic system, so we invoke a
requirement for convenience that the module be drawn in
such a way that the intermodule dipole-matrix elements and
transition rates are nonexistent, amounting to a mandate
that the module boundary is drawn at the thick tunneling
barrier. This location is not necessarily identifiable in all
QCL systems, but it is in our case and serves to simplify
the mathematics. A visualization of one possible way to
evaluate the sum under this assumption is in Fig. 2.
Mathematical details are given in Appendix B, where it is

shown how to retrieve the velocities at all frequencies
included in the model [Eqs. (4)–(6)]. In simulating a system
of twomid-IR pumps at frequenciesω2 andω3with terahertz
difference frequency ω1, the parameters of interest (current
density J, first-order susceptibility χð1Þ, and second-
order susceptibility χð2Þ) can be extracted as follows:

J ¼ Ndqhvð0Þi; ð8Þ

χð1ÞðωnÞ ¼
Ndq

iωnϵ0Eωn

hvðωnÞi; ð9Þ

χð2Þðω1 ¼ ω3 − ω2Þ ¼
Ndq

iω1ϵ0Eω3
Eω2

hvðω1Þi: ð10Þ

Nd is the average doping density, Eωn
is the input electric

field magnitude at frequency ωn, and vð…Þ are the respond-
ing velocities at the different frequencies.

III. RESULTS

We choose to model the active region from
Vijayraghavan et al. [14] of dual In0.53Ga0.47As=
In0.52Al0.48As heterostructures. Although the two regions
are designed for gain around 8.2 μm (37 THz) and 9.2 μm
(33 THz), the transition linewidths are sufficiently broad
that it was possible to achieve a large tuning range in the
generated terahertz output from 1.7 to 5.25 THz by tuning
the short-wavelength pump in an external-cavity setup. The
device produces 120 μW of peak power at 4 THz using a
dual-period distributed-feedback grating cavity, and
approximately 15, 45, 15, and 5 μW for 5, 4, 3, and
2 THz, respectively, in the external cavity setup.

A. Transport, band structure, and gain

The two active regions are biased in series, and so must
draw the same current, which in turn determines the
possible bias combinations. Therefore, to choose a pair
of biasing points, we must first simulate the transport
characteristics. Band structure, tunnel couplings between
all pairs of states, and scattering rates are computed at
each bias to produce the characteristic shown in Fig. 3(a),
where we can choose a pair of biases at current density
10 kA=cm2. It is noted here that the transport characteristic
levels off more than was experimentally observed; this is
likely due to the fact that leakage to the continuum is not
included in our model, which increases with the bias field.
Therefore, although it appears in the model that it will be
difficult to bias both active regions simultaneously at their
highest gain point, in reality, the leakage current helps to
alleviate this constraint.
Band structures calculated using a three-band k.p model

at the chosen bias combination are shown in Fig. 1. Wave
functions are calculated within a single module bounded by
adjacent injection barriers, and tunnel couplings are calcu-
lated between all possible pairs of states in neighboring
modules so as to include any possible injection channels
[entering into H1;−1 of Eq. (2)]. The tunnel couplings are
calculated by direct evaluation of the k.p Hamiltonian
matrix elements using all of the conduction, light-hole, and
split-off wave-function components, which makes for a
reliable scheme when nonparabolicity is significant.
The gain for the two active regions with increased

intensity (each region treated independently) is shown
in Fig. 3(b). These simulations include input at only a
single frequency, and so neglect cross-saturation due
to another pump. The longer-wavelength active region
exhibits less gain in the model than the shorter because
of the biasing condition explained above. The saturation
intensity is realistic: 10 kW=mm2 amounts to 2 W inside
the waveguide with mode area 200 μm2.

0 1

1 0 1

1 0

( ) ( ) ( )

FIG. 2. The scheme used to evaluate Eq. (7) to find the total
system velocities. Starting and ending points of the arrows
correspond to the cd and ab elements in Eq. (7), respectively.
Blue arrows depict terms which move entirely within the intra-
module submatrix and red those which move into the intramodule
submatrix from the outside. Under the assumption that there is no
intermodule dipole operator or transitions, the illustrated combi-
nations constitute the fully representative and nonredundant set.
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B. Nonlinear susceptibility

Rather than examine the difference frequency susceptibil-
ity χð2Þ itself, we instead define a current susceptibility Yð2Þ,
which is linked to the current, rather than polarization
response:

Yð2Þðω1 ¼ ω3 − ω2Þ

≡ Jω1

ϵ0Eω2
Eω3

¼ iω1χ
ð2Þðω1 ¼ ω3 − ω2Þ; ð11Þ

where Jω1
is the current-density response atω1, andEω2;3

are
the input electric fields at ω2;3. The actual terahertz power is
then proportional to jYð2Þj2:

P1 ¼
l2cohjYð2Þj2P2P3

8ϵ0c3n1n2n3Seff
; ð12Þ

where lcoh is thecoherence length,Pn are the powers inside the
waveguide for each frequencyωn,nn are the refractive indices
for the same, and Seff is the effective area of interaction [15].
Yð2Þ is a function of two independent variables, which we

can choose to analyze over different lines, as long as the

condition ω1 ¼ ω3 − ω3 is retained. Figures 4(a) and 4(b)
show jYð2Þj as a function of generated frequency ω1 with
one pump ω2 fixed at energy 130 meV (9.5 μm). Pump
frequency ω3 is thus swept in conjunction with ω1 for this
scenario. Equal intensities are input in both pumps ω2, ω3,
while the intensity in the generated frequency is assumed to
be negligible. For both active regions, the resonant non-
linearities in the vicinity of 3–5 THz are visible, but they are
added to a background which peaks at the optical rectifi-
cation limit (ω1 ¼ 0, ω3 ¼ ω2). The nonzero value of Yð2Þ
at dc generation implies that a steady current is generated
rather than only a polarization; this is the root of the need to
analyze Yð2Þ since χð2Þ exhibits a pole.
Insight into the mechanism behind this peak comes from

a single-frequency simulation shown in Figs. 4(c) and 4(d).
This simulation includes only one optical frequency, which
is swept, tracking the increase in dc current ΔJdc. These
functions are, not surprisingly, similar in shape to the gain
profile, since the increase in current comes primarily from
stimulated emission across the radiative transition. The
value of Yð2Þ at optical rectification can be explained
entirely by this mechanism, as shown by the dots connect-
ing equivalent points in the two simulations. At least for
vanishing intensity, we see that

lim
ω3→ω2

Yð2Þðω1 ¼ ω3 − ω2Þ ¼ 2nc
ΔJdcðIωÞ

Iω
; ð13Þ

with n being the refractive index and ΔJdcðIωÞ the change
in dc current due to intensity Iω in single pump frequency
ω. For fair comparison, we choose Iω ¼ 4Iω2

¼ 4Iω3
,

which is the peak intensity when beating the two pumps.
At higher intensity, the right side is found to underpredict
the value of Yð2Þ at optical rectification, meaning that
effects at fourth and even higher order begin to have
importance. Specifically, this discrepancy can be inter-
preted in terms of the harmonics of the beat note itself; the
left-hand side calculates only the first harmonic at ω1, while
the right-hand side will give the complete peak-to-trough
distance in the responding current. The fact that the latter
underestimates the first means that the higher harmonics
work to reduce this distance. Regardless, the quantity of
interest is not the peak-to-trough distance but rather the first
harmonic itself. The ability to account for this saturation
effect highlights the advantage of the nonperturbative
treatment used here.
The relationship between the dc current and input

intensity at pump energy 130 meV is shown in Fig. 5, where
the saturation effect, a nonlinearity in Yð2Þ itself, is clearly
evident. The model predicts active region A to have less
increase in current with intensity than active region B,
which is an effect of the pump being further from the peak in
current stimulation (approximately the same as the peak in
gain). This difference is seen also in Fig. 4(d) as compared to
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Fig. 4(c) and is reflected in the reduced height of the optical
rectification peak in Fig. 4(b) as compared to Fig. 4(a).

C. Shortcomings of the perturbative expressions

The nonlinear susceptibility in quantum-well active
regions has usually been estimated using a perturbative
SOS expression given as [18]

χð2Þðω1 ¼ ω3 − ω2Þ

¼ Ndq3

ℏ2ϵ0

X
lmn

zlnznmzmlðρð0Þll − ρð0ÞmmÞ

×

�
1

ωnl − ω1 − iΓnl
þ 1

ωnm þ ω1 þ iΓnm

�

×

�
1

ωml þ ω2 − iΓml
þ 1

ωml − ω3 − iΓml

�
: ð14Þ
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The triple sum over state indices l,m, n is within a single
module, with ωxy being the resonant frequency between

states x and y, zxy the dipole-matrix elements, ρð0Þxx the
populations at zeroth order (vanishing intensity), and Γxy

the decay rate of density-matrix elements at xy. The SOS
expression is not meant to handle permanent dipoles (diag-
onals of the z operator), as it is intended for centrosymmetric
atomlike systems, and it can be shown that the introduction
of these terms does not, in general, yield a translationally
invariant result. However, the permanent dipoles might in
some cases provide a mechanism of intersubband second-
order nonlinearity; one classic example is optical rectifica-
tion in a two-state antisymmetric quantum-well system
where a case-specific expression had to be derived more
carefully [33]. In systems with a permanent dipole, it is also
conceivable that one pump can modulate the energy differ-
ence between spatially separated states (a first-order Stark
effect). This in turn modulates the first-order susceptibility
seen by another pump close to the resonance so that χð1Þðω2Þ
can be modulated at ω3 or vice versa. The end result is a
second-order nonlinearity requiring only a resonance with
respect to one of the pump frequencies. To test the hope that
the translational variance is small, however, we additionally
consider the result of the SOS expression with permanent
dipoles included to attempt to account for permanent dipole
effects in the perturbative approach.
Figure 6 displays a comparison between the full calcu-

lation of Yð2Þ and the SOS result both with and without
permanent dipoles included in active region B this time
analyzing (a) as a function of generated frequency with one
pump held at 130 meV, (b) as a function of pump frequency
for generation of 4 THz, and (c) as a function of pump
frequency for the generation of 1 THz. The population
inputs to the SOS expression are given from the steady-
state solution itself for fair comparison. The phases of Yð2Þ
are given in the insets, where for reference a phase of zero
(positive real Yð2Þ) implies velocity in phase with the
beating of intensity. We find that while the SOS expression
with permanent dipoles included provides a rough estima-
tion of Yð2Þ in the higher-terahertz range (magnitude
comparable and phase within π=8 at 4 THz), for frequen-
cies in the lower-terahertz range, the full calculation
becomes absolutely necessary. Approaching optical recti-
fication, both SOS expressions yield a vanishing Yð2Þ since
χð2Þ is finite, meaning that any process describable using the
sum over states has zero efficiency in that limit. It can also
be seen from the stark difference in phases that even the
SOS expression with permanent dipoles does not include
all of the necessary processes; for the generation of 1 THz,
the phase is off by approximately π=2, and at optical
rectification, the SOS expressions predict the phase at
�π=2. The π=2 phase implies a dc polarization, whereas
Yð2Þ has a phase of zero in that limit, corresponding to dc
current.

D. Analysis

The effect that we predict can be described as the high-
frequency tail of self-detection: the addition of two mid-IR
waves amounts to a beating of intensity which stimulates
current response at the difference frequency. This effect is
associated with the radiative transition, evident in the
similar shape to the gain profile with respect to pump
frequency [exhibited in all of Figs. 4(c), 4(d), 6(b), and
6(c)]. Indeed, the increase of current with intensity is
experimentally visible in QCLs, most notably as a dis-
continuity in the differential conductance at threshold as the
onset of stimulated emission decreases the upper state
lifetime. The response time associated with this mechanism
is linked to the subpicosecond intersubband scattering
times, which allows the bandwidth to reach into the
terahertz range.
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QCLs have an inherent design advantage in using this
effect, since it is tied to the radiative transitions which the
pumps are automatically close to resonance with. One
might choose to approximate this detection effect by fitting
to a simple response model:

Yð2Þ
detection ≈

2nc
1þ iωτ

β; ð15Þ

where τ is a phenomenological response time, and β is a
coefficient for the current increase with intensity
(β ¼ ∂J=∂I for vanishing I). At lasing intensity, however,
the coefficient β is reduced because of the saturation of the
detection effect, which is tied to gain saturation exhibited in
Fig. 4. Nevertheless, we can fit β to the full model for
different intensity levels. Figure 7 shows an approximate fit
to this model, where the full calculation is compared to a

simpler one where the detection (Yð2Þ
detection) and SOS (Yð2Þ

SOS)
contributions are directly superimposed:

Yð2Þ ≈ Yð2Þ
detection þ Yð2Þ

SOS: ð16Þ

We find moderate quantitative agreement with the simple
model, with Yð2Þ being overpredicted by inclusion of
permanent dipoles in the SOS expression but underpredicted
by their exclusion. This suggests that permanent dipole
effects even not linked to the current beating play an
important role reaching over the whole terahertz range
and that the translational variance of the SOS expression
in accounting for them presents a significant error. Some
error might also be introduced into the simpler model by the
fact that β has frequency dependence which will become
important as the higher-frequency pumpmoves farther away
or by additional sources including the tunnel couplings
which cannot be accounted for in the SOS expression.

Given that the current beating effect contributes signifi-
cantly to difference frequency generation, it is useful to
establish a way to estimate its strength in real devices using
commonly measured experimental parameters. One such
parameter is the differential conductance discontinuity at
threshold ΔG, and another is the “slope efficiency” of the
output power Pout vs injection current Id. Since the key
parameter of interest is β, we solve for it at threshold:

β ¼ ΔG
G0 þ ΔG

1

S
Amode

Aactive

T
2
; ð17Þ

where G0 is the differential conductance just below thresh-
old, S is the slope efficiency defined as dPout=dId,Amode and
Aactive are the lasing-mode and top-down active region areas,
respectively, andT is the output facet transmission (approxi-
mating that T=2 is the ratio of output power to total power
inside the waveguide). Since Amode, Aactive, and T are
primarily cavity-related parameters, Eq. (17) provides a
useful metric for comparison between different active
regions by placement in the same cavity configuration. In
a QCL, this expression will be approximately proportional
to the population inversion [34], which is intuitively linked
to the strength of the current beating. It is important to note
that the value of β as found by Eq. (17) is for vanishing
intensity and at threshold, but it will likely still be indicative
of the strength at more normal operating conditions.
The injection barrier thickness is well known to have a

large impact on the coherence of the injection process and,
hence, on ΔG. Figure 8 displays the effect of an altered
barrier width on Yð2Þ for both active regions. The results
suggest that there is some danger in suppression of the
current beating by choosing too thick a barrier and that
there may be some room for improvement by its
reduction—at least in the case of active region A.
The collective results of this paper suggest a simple

strategy for optimizing performance for low-terahertz
generation (< 2 THz). We suggest using only a single
active region, which should have sufficient mid-IR gain
bandwidth when the pumps are closer in frequency. Using a
single active region removes the current continuity con-
straint of using two active regions, and allows operation at
the optimum point. Active region A appears to be preferred;−4 −2 0 2 4 6
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that is to say, it is predicted to have a larger Yð2Þ value when
biased at its optimum point, and has more room for
improvement by thinning the injection barrier.

IV. CONCLUSIONS

We present a density-matrix transport model for QCLs
which handles both gain and optical nonlinearity coherently
and nonperturbatively. Scattering and dephasing processes
are carefully accounted for by detailed calculation of the
most relevant mechanisms, and care is taken to account for
hot subband distributions and nonequilibrium electrons. The
model predicts reasonable current levels as compared with
experiment and predicts the expected amount of gain for
lasing and a reasonable saturation intensity.
The computed nonlinearity exhibits a peak in efficiency,

as opposed to merely susceptibility, at optical rectification,
which is ascribed to the increase of dc current proportional
to intensity. This increase is identified as a self-detection
effect occurring through stimulated emission across the
radiative transition, a familiar phenomenon in QCLs
which has even seen recent use in terahertz phase-sensitive
imaging systems [35,36]. We show that the high-frequency
tail of this effect extends into the terahertz range because of
the subpicosecond intersubband scattering times. The
detection itself is highly nonlinear, meaning that fourth
and higher orders are significant. A sum-over-states expres-
sion is found not to accurately reproduce the complete
susceptibility, especially for generated frequencies in the
lower-terahertz range where the detection is strong. The
complete susceptibility is reasonably well matched by
superposition of a fitted detection susceptibility and a
sum-over-states expression, although even this is still not
exact, since permanent dipoles and other mechanisms play
a role in the nonlinearity which is not correctly accounted
for by a sum over states. Finally, a metric is derived to
assess the strength of self-detection for active regions
through experimentally accessible parameters, and sugges-
tions are made for improvement of the performance in the
lower-terahertz range (< 2 THz).
The current-beating, or self-detection, effect is large,

and our results serve to explain the surprisingly low-
frequency-terahertz generation in a device demonstrated
in the literature. The prediction of significant current
susceptibility Yð2Þ extending to dc generation suggests that
the eventual low-frequency shutoff is owing more to other
factors such as free-carrier absorption, phase matching, and
output coupling, which are beyond the scope of this work.
Regardless, a route forward to increased conversion effi-
ciency in the lower-terahertz range might aim to exploit this
effect. There is no need to attempt to lower the frequency of a
resonant nonlinearitywhose conversion efficiencywill scale
downwards as the square of the generated frequency.
Specifically, we point out that a simple experimental metric
useful for the assessment of such active regions is the relative
differential conductance change at the onset of lasing.

Finally, it is possible that the formalism developed in this
work is applicable to the study of the recently developed
multimode QCLs and frequency combs [37–39]. Most
directly, it is conceivable that the same detection process
predicted here is responsible for the familiar radio-
frequency beat-note generation, as a result of current
beating from pairs of adjacent frequency lines. Further, a
similar model can be extended to study the effect of radio-
frequency modulation on such active regions [40,41],
particularly to assess the contribution coming from non-
resonant transition energy modulation enabled by perma-
nent dipoles. The formalism presented here can also be
readily extended to encompass third-order nonlinearities,
allowing the study of comb generation itself.
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APPENDIX A: STEADY-STATE
DENSITY-MATRIX SOLUTION

We begin by separating the evolution in Eq. (1) into
coherent, transition, and dephasing components and writ-
ing in the steady-state condition:

_ρ ¼ _ρjcoh þ _ρjtrans þ _ρjdeph ¼
X
n

iωnρ
ðωnÞeiωnt: ðA1Þ

Applying block-matrix multiplication to the coherent
evolution with Eqs. (2) and (3) as input, we arrive at the
general equation for coherent evolution of any submatrix
in ρ:

_ρpjcoh ¼
X
q

½Hp−q; ρq� − pΔρp: ðA2Þ

Next, Δ and the submatrices of H and ρ are expanded
into their steady-state harmonics [Eqs. (4)–(6)], and by
isolating in frequency, we arrive at the general equation for
coherent evolution of any harmonic of any submatrix in ρ:

_ρpjðωmÞ
coh ¼ eiωmt

X
qn

�
− i
ℏ

h
Hðωm−ωnÞ

p−q ; ρðωnÞ
q

i

− δpqqΔðωm−ωnÞρðωnÞ
q

�
: ðA3Þ

This equation provides some interesting insight, which
also aids in writing down the complete solution later:
submatrices in ρ connect to other submatrices through the
difference submatrix in H, and also frequencies in ρ
connect to other frequencies through the difference fre-
quency components in H. Since we are to solve for all
elements in each matrix, we apply the vectorization trans-
formation (columnwise conversion of a matrix into a
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column vector), which has the useful property that
vecfABg ¼ ð1N ⊗ AÞvecfBg ¼ ðBT ⊗ 1NÞvecfAg, for
the multiplication of two square matrices A and B each
having dimension N. Vectorization of Eq. (A3) gives

vecf _ρpjðωmÞ
coh g

¼ eiωmt
X
qn

�
− i
ℏ
ð1N ⊗ Hðωm−ωnÞ

p−q

−Hðωm−ωnÞ;T
p−q ⊗ 1NÞ − δpqqE

ðωm−ωnÞ
mod

�
vecfρðωnÞ

p−qg;

ðA4Þ

with Eðωm−ωnÞ
mod as the scalar module energy at the different

frequencies, including dc.
Next, we move to the transition contribution [

P
X terms

in Eq. (1)], where we work under the assumption that
transitions occur only within the module. Each transition
process has separate instances inside each module, each of
which has its own Lindblad superoperator [as in Eq. (A5) in
Ref. [19]] formed with a lone instance of the intramodule
submatrix C̄X at the module position. The result of each can
be found using a similar block-matrix multiplication tactic
as was used for the coherent contribution and added to yield

_ρpjtrans ¼
X
X

δp0C̄X
†ρpC̄X − 1

2
½C̄X

†C̄Xρp þ ρpC̄X
†C̄X�;

ðA5Þ

which is again a fairly intuitive equation, as we see that the
transitions can increase only the intramodule elements of ρ,
where the population transfer occurs, while the associated
dephasing affects all elements. Separation into frequencies
is trivial since the jump operators carry no time depend-
ence, and then we can vectorize Eq. (A5), leading to

vecf _ρpjðωmÞ
trans g

¼ eiωmt
X
x

�
δp0ðC̄X ⊗ C̄XÞ − 1

2
ð1N ⊗ ¯C†

X C̄X

þ C̄X
†C̄X ⊗ 1NÞ

�
vecfρðωmÞ

p g: ðA6Þ

Finally, the dephasing processes are the simplest to treat.
Given the matrices of the dephasing times in each sub-
module named T2;p, where T2;0 is the intramodule dephas-
ing and T2;�1 are the dephasings of ρ1;−1, (T2;−1 ¼ TT

2;1),
we have

vecf _ρpjðωmÞ
trans g ¼ −eiωmtvecfT∘ð−1Þ

2;p g∘vecfρðωmÞ
p g; ðA7Þ

with the symbol ∘ denoting the Hadamard (elementwise)

product and the superscript in T∘ð−1Þ
2;p the Hadamard inverse.

Now, based on substitution of Eqs. (A4), (A6), and (A7)
into the steady-state condition of Eq. (A1), we can organize
the entire solution by the following:

ðA8Þ
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Qp ¼ i

2
6666666666664

þω3

þω2

þω1

0

−ω1

−ω2

−ω3

3
7777777777775

⊗ 1N2 þRpþSpþDp; OðωmÞ
p ¼− i

ℏ
ð1N ⊗HðωmÞ

p −HðωmÞ;T
p ⊗ 1NÞ;

Sp ¼ 17 ⊗
�X

X

½δp0ðC̄X ⊗ C̄XÞ − 1

2
ð1N ⊗ C̄X

†C̄X þ C̄X
†C̄X ⊗ 1NÞ�

�
; Dp ¼ −17 ⊗ diagfvecfT∘ð−1Þ

2;p gg:

The complete steady state is then soluble after substitut-
ing a population sum condition to a single row in Eq. (A8).
The method is formulated here for a set of three
frequencies where ω1 þ ω2 ¼ ω3, but it is straightforward
to generalize to other situations including the single-
frequency simulation referred to in Figs. 4(c), 4(d) and 5.

APPENDIX B: EVALUATING THE VELOCITIES

The sum in Eq. (7) can be rearranged for interpretation
in two different ways: if we choose hvi ¼ P

abzab×
ðPcdXab;cdρcdÞ, we recover the original concept of
hvi ¼ Trðz_ρÞ, whereas if we choose instead hvi ¼P

cdρcdð
P

abzabXab;cdÞ, it appears we have a velocity

operator v and are now using hvi ¼ TrðvρÞ. In this spirit,
the sum scheme drawn in Fig. 2 can be separated into three
parts based on origination from ρ0, ρ1, and ρ−1, formally:

hvi ¼ Trðv0ρ0Þ þ Trðv−1ρ1Þ þ Trðv1ρ−1Þ: ðB1Þ

The first term can be computed directly from the pieces
of Eq. (A8) and the dipole operator, since all the pieces of
the time-evolution superoperator X are in place. Even the
necessary frequency mixing is already organized. Using
the intramodule dipole submatrix Z0, we can evaluate the
first term contributions to Eq. (B1) at all frequencies as
follows:

2
6666666666664

Aðω…Þ

−ω3

−ω2

−ω1

0

þω1

þω2

þω3

3
7777777777775

¼ ðPðH0Þ þ S0 þD0Þ

2
6666666666664

vecfρðω…Þ
0 g

−ω3

−ω2

−ω1

0

þω1

þω2

þω3

3
7777777777775

; Trðv0ρ0Þðω…Þ ¼ vecfZ0gTAðω…Þ: ðB2Þ
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The second and third terms in Eq. (B1), on the other hand,
cannot be evaluated in the same approach, because the
matrix equation (A8) does not distinguish between desti-
nation modules in the evolution pointing from intramodule
to intermodule elements. However, since it is seen clearly
that evolution of this nature is entirely coherent [always
PðH�1Þ], we can be sure that the intermodule velocity
operators can be constructed entirely fromH and the dipole
matrix Z using v ¼ ði=ℏÞ½H;Z�. Applying block-matrix
multiplication givenH in the form of Eq. (2) and a similar Z
having only intramodule submatrices, we obtain the off-
diagonal velocity operator submatrices:

v�1 ¼
i
ℏ
ð½H�1; Z0�∓LH�1Þ; ðB3Þ

with L as the spatial separation between modules employed
in the same fashion as the energy separation in Eq. (2). Since
v�1 carries no time dependence, evaluation of the second
and third traces in Eq. (B1) are now straightforward.

APPENDIX C: SUBBAND ELECTRON
DISTRIBUTIONS

To retain simplicity while still capturing the important
effects of the nonequilibrium subband distributions, we
mandate that the subbands are mostly thermalized to a
Boltzmann distribution at 500 K with a certain fraction of
hot nonequilibrium electrons. Hot electrons are produced
mainly by elastic or LO-phonon scattering across the
radiative transition to states high up in the lower lasing
subbands and may exist further down the injector, although
they will gradually disappear through electron-electron
and other intrasubband scattering. Assuming that the hot
electrons are produced across the radiative transition, the
end result is a bump in the electron distribution at roughly
the radiative transition energy above the subband minimum
for the lower lasing state; these electrons are approximated
in this work as a normal distribution centered at 140 meV.
The explicit equation for the subband distribution (fraction
of population per unit energy) is then

PnðE∥Þ ¼
ð1 − fnÞ
kBT

e−E∥=kBT þ fnffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ðE∥−μÞ2=2σ2 ; ðC1Þ

where E∥ is the in-plane electron kinetic energy, fn is
the hot electron fraction assigned to the subband, μ ¼
140 meV is the hot electron energy center, and σ is the
standard deviation (chosen as 25 meV). The hot electron
fractions are assigned as the following:

fn ¼
�
f11

En−E1

E11−E1
n ≤ 11;

0 n ≥ 12;
ðC2Þ

where f11 ¼ 0.3 is the hot electron fraction for the lower
lasing state 11 and En are the subband energies. A plot of

selected subband distributions for active region B is shown
in Fig. 9. Our choice of subband electron distribution is in
light of other works, most notably, the Monte Carlo
simulation by Matyas et al. [30] [Fig. 3(a)], the NEGF
results by Lindskog et al. [31], and the experimental
measurements by Spagnolo et al. [32].
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