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Soft acoustic metamaterials utilizing mesoporous structures have been proposed recently as a means for
tuning the overall effective properties of the metamaterial and providing better coupling to the surrounding
air. In this paper, the use of silica aerogel is examined theoretically and experimentally as part of a compact
soft acoustic metamaterial structure, which enables a wide range of exotic effective macroscopic properties
to be demonstrated, including negative density, density near zero, and nonresonant broadband slow-sound
propagation. Experimental data are obtained on the effective density and sound speed using an air-filled
acoustic impedance tube for flexural metamaterial elements, which have been investigated previously only
indirectly due to the large contrast in acoustic impedance compared to that of air. Experimental results are
presented for silica aerogel arranged in parallel with either one or two acoustic ports and are in very good
agreement with the theoretical model.
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I. INTRODUCTION

Acoustic metamaterials have received interest in recent
years by enabling macroscopic physical characteristics
which cannot be obtained with traditional materials, such
as negative, near-zero, or anisotropic dynamic effective
fluid properties. Acoustic metamaterials are able to achieve
such previously unattainable exotic properties through the
careful design of the microstructure, which creates micro-
scale dynamics that results in the desired macroscopic
properties. The reader is addressed to the recent reviews on
this topic where one can find many of the exciting
applications of acoustic metamaterials [1,2].
Until recently, such acoustic metamaterials have relied

on materials which are much harder than the surrounding
fluid medium, often treated as acoustically rigid or nearly
rigid structures for airborne sound. Alternatively, soft
acoustic metamaterials utilizing mesoporous structures
have been proposed as a means for the molding and
tuning of the overall properties of the resulting metama-
terial, while simultaneously providing better coupling with
the acoustic environment around it [3]. Building upon this
concept, the use of silica aerogel as part of a compact soft
acoustic metamaterial structure is examined theoretically
and experimentally, yielding an interesting suite of useful
yet exotic properties.

In addition to extremely large and/or negative dynamic
properties, there is a wide range of interesting and
exciting phenomena associated with effective properties
that are near zero, particularly, those associated with
extraordinary transmission, which can be achieved
when either the effective density or wave speed
approaches zero [4,5]. In the case of a density-near-zero
material, the effective wave speed increases dramatically
and leads to a quasistatic field within a given structure,
which can exhibit a supercoupling effect through long
narrow channels [6–8]. At the opposite extreme, there are
also interesting effects which arise as the effective
acoustic wave speed approaches zero, which is referred
to as slow sound, the analogue of slow light in optics.
Previous demonstrations have utilized resonant effects
using either sonic crystals or detuned resonators [9–13],
resulting in slow sound that occurs over a relatively
narrow bandwidth. An application of slow-sound propa-
gation was recently proposed for the improved design of
acoustic absorbers by Groby et al. [14], in which slow
sound in large slits filled with absorptive foam was used
to significantly increase the low-frequency absorption
in air.
One of the fundamental aspects that gives a metama-

terial its exotic macroscopic properties is the dynamics of
the microstructure and the resulting “hidden” degrees of
freedom that it enables [15], which has been explored
recently for elastic and flexural metamaterial components
[16,17]. These hidden degrees of freedom are particularly
important because the effective macroscopic properties of
an acoustic metamaterial can be significantly different than
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those of the constituent microstructural elements. When
there is open flow through the structure, such as a sonic
crystal lattice [18,19] or transmission-line arrangement of
Helmholtz resonators [20], it is relatively straightforward
to extract effective properties experimentally due to the
relatively low acoustic impedance.
A formidable challenge, however, arises when obtaining

the effective properties of a metamaterial sample containing
elastic elements, which have acoustic impedances that are
orders of magnitude greater than the surrounding fluid and
at frequencies well below those typically used to obtain
acoustic properties through direct time-of-flight measure-
ments. As a result, previous works in air have either
been restricted to theoretical and numerical evaluation
[4,7,21–23] or limited to an indirect comparison of the
metamaterial properties using experimental results for the
reflected and transmitted pressure field [5,24]. In this work,
we make the significant step of experimentally extracting
the effective dynamic properties (density and sound speed)
of these flexural metamaterial elements.
It is expected that the elasticity of the materials defining

the metamaterial structure might play a fundamental role in
order to understand the phenomena observed in sound
transmission and reflectance through the channels defined
by the structure. In fact, the role of the elastic properties is
paramount for the case of structures embedded in water, as
it has been recently demonstrated [25]. Although some
recent work has begun to incorporate the elastic effects into
the metamaterial structure, many of these designs continue
to have the primary dynamic element consisting of mass-
spring resonators which are affixed to an elastic plate as
structural support [22,23]. Alternatively, soft acoustic
metamaterials represent a paradigm shift beyond this
framework by creating the dynamics from the structure
itself. It is important to emphasize that such a soft acoustic
metamaterial realized with the unique properties of aero-
gels can be tailored to obtain a wide spectrum of desirable
exotic properties in a single versatile subwavelength
acoustic metamaterial element.
In this paper, theoretical and experimental results for a

compact metamaterial configuration are presented. With
an extremely low effective sound speed and subwave-
length size, these soft acoustic metamaterial structures can
be used to create a large thin arrangement with the same
exotic effective properties, which can be preserved
through distortion or deformation onto an arbitrary
surface, thereby enabling conformal configurations. In
particular, these structures represent a soft acoustic
metamaterial, which is realized using the flexural reso-
nance of the zeroth-order antisymmetric Lamb-wave
mode in silica aerogel disks. In addition to its subwave-
length thickness, extreme effective properties are dem-
onstrated across a broad range of the operating
bandwidth, with distinct regions exhibiting negative
density, density near zero, and ultralow sound speeds.

II. BACKGROUND ON AEROGELS

While the exceptional thermal properties of aerogel have
led to a revolution in thermal insulation applications,
utilization of the unique acoustic characteristics has been
minimal, primarily relating to marginal improvements of
existing concepts such as quarter-wavelength impedance
matching or ultrasonic absorbers [26–28]. However, aero-
gels offer several unique features that enable them to
function as a subwavelength flexural element in a soft
acoustic metamaterial, which is made possible by their
unique microstructure. One of the most common types of
aerogels, silica aerogel, consists of a high-porosity frame
made of fused silica nanoparticles. The most notable
characteristic of silica aerogel is its extremely low static
density which is directly related to the very high porosity of
the structure, making it much closer to that of air compared
with any other type of elastic solid. Because of the
nanoscale pore size, however, the air is locked in place
by viscous effects producing a higher acoustic density than
that compared to typical porous media used in acoustic
applications [29]. Furthermore, the small cross section
connecting the fused nanoparticles results in a very low
elastic stiffness compared with a rigid silica structure of the
same porosity [30]. This combination gives a relatively low
acoustic impedance (for an elastic solid) and, in particular,
yields an exceptionally low flexural wave speed, making it
ideal for use as a subwavelength flexural element for
airborne sound.
When the wavelength is much larger than the micro-

structure, negative effective properties are achieved via
control of the microstructure arrangement and the resulting
dynamics. This feature in the microstructure design is
typically achieved with two main types of arrangements:
either as a mass-spring system or in a transmission line
consisting of mass and stiffness elements. The mass-spring
systems, which demonstrate extreme effective mass and
stiffness in the vicinity of the mass-spring resonance, are,
therefore, referred to as locally resonant acoustic meta-
materials (LRAMs) [5,31–35]. Although such mass and
spring elements can be arranged in a compact configuration
and are relatively simple and robust, the resulting extreme
effective properties are inherently narrow band and subject
to appreciable loss due to the close proximity of the mass-
spring resonance [8,36]. Alternatively, acoustic metamate-
rials have been proposed using thin elastic plates as a means
for operating as a positive stiffness element in acoustic
transmission-line arrangements [21], which has recently
been applied to acoustic metamaterial leaky-wave antennas
[37]. While the unit cell of such an arrangement is much
smaller than a wavelength, the entire configuration requires
many elements in series and can result in a very long
structure relative to the wavelength.
In this work, we employ hydrophobic silica aerogel

which has a static density of 107 kg=m3 and an (optical)
refractive index of 1.03. This silica aerogel has a high
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resistance for water and moisture due to its hydrophobicity,
a feature allowing the disks to be fabricated using water-jet
cutting techniques. Their properties are stable in any
climate, a feature contributing the high reliability for the
analysis provided below.

III. THEORETICAL FORMULATION

In many acoustic metamaterial configurations including
LRAMs and acoustic transmission-line arrangements, thin
elastic disks and membranes are used as subwavelength
stiffness elements. This ubiquitous implementation arises
from the fact that the time-harmonic displacement of an
elastic disk is proportional to the flexural stiffness in the
quasistatic (low-frequency) limit and, therefore, yields an
analogous inductive behavior equivalent to that of a
mechanical spring. In general, however, the specific
acoustic impedance of a lossless elastic plate can be
expressed in terms of the mass per area Mplate and
compliance Cplate as [38]

Zplate ¼ jωMplate þ
1

jωCplate

¼ jωMplate

�
1 −

�
ωres

ω

�
2
�
≡ jωMeffðωÞ; ð1Þ

where ωres ¼ ðMplateCplateÞ−1=2 is the angular resonance
frequency of the plate. Written in this form, it is apparent
that the stiffness-controlled response of the elastic plate
can equivalently be treated as a frequency-dependent
effective mass Meff , which is negative for ω < ωres.
For canonical shapes and idealized boundary conditions,

analytic expressions are developed to describe the flexural
wave motion of elastic solids. For the flexural motion of
thick plates, effects from shear deformation and rotational
inertia become important, which can be formulated using
Mindlin theory [39]. For flexural waves in a thick circular
elastic disk, the modal displacement wn of the plate is given
by [40,41]

wnðr; θÞ ¼
�
A1Jn

�
δ1

r
a

�
þ A2In

�
δ2

r
a

��
cosðnθÞ; ð2Þ

δ21 ¼
1

2
λ4
h
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − SÞ2 þ 4λ−4
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; ð3Þ
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1

2
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h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR − SÞ2 þ 4λ−4
q

− ðRþ SÞ
i
; ð4Þ

R ¼ 1

12

�
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a

�
2

; ð5Þ

S ¼ D
μhðκaÞ2 ¼

1

6ð1 − νÞκ2
�
h
a

�
2

; ð6Þ

λ4 ¼ ρha4ω2

D
; ð7Þ

D ¼ Eh3

12ð1 − ν2Þ ; ð8Þ

where Jn and In denote the Bessel function and modified
Bessel function of the first kind, a is the plate radius, h is
the plate thickness, ρ is the mass density, E is Young’s
modulus, μ is the shear modulus, ν is Poisson’s ratio, ω is
the angular frequency, and κ ¼ π=

ffiffiffiffiffi
12

p
is the shear cor-

rection factor. Note that for axisymmetric loading, such as
that encountered in an acoustic impedance tube, the only
nonzero mode is n ¼ 0.
Because of the clamped boundary conditions corre-

sponding to wðaÞ ¼ w0ðaÞ ¼ 0, the characteristic equation
for the flexural resonance frequencies is given by

J1ðδ1ÞI0ðδ2Þ þ J0ðδ1ÞI1ðδ2Þ ¼ 0: ð9Þ

As observed from Eq. (1), the resonance frequency denotes
a critical point in the effective acoustic properties, and even
though Eq. (9) provides the exact solution, it must be
solved numerically. To better understand the relationship
between the material properties and dimensions of the plate
and the resonance frequencies, an approximate analytic
expression is sought. To proceed, it is assumed that the
flexural wave numbers δ1 and δ2 are sufficiently high so
that the large argument approximations can be used for the
Bessel and modified Bessel functions, namely [42],

J1ðxÞ
J0ðxÞ

≈ tan

�
x −

π

4

�
;

I1ðxÞ
I0ðxÞ

≈ 1: ð10Þ

Even in the case of large wavelengths relative to the
thickness of the plate (and, therefore, in the low-frequency
limit in terms of the acoustic waves in the surrounding
fluid), the flexural modes occur at frequencies where the
wavelengths are on the order of the diameter of the disk or
less, suggesting that the assumption above is reasonable
for the case of flexural acoustic metamaterial elements
investigated in this work. Note that because the ratio of the
modified Bessel functions given in Eq. (10) is approx-
imately equal to unity, the resonance frequency under these
conditions depends only on δ1. Application of the approxi-
mate expressions in Eq. (10) to Eq. (9) yields

tanðδ1Þ ≈ 0; ð11Þ

for which δ1 ¼ mπ with m being a nonzero integer.
Equation (3) can, therefore, be written as

1

2
λ4½ðRþ SÞ þ 2λ−2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ

p � ¼ ðmπÞ2; ð12Þ
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where

Δ ¼ 1

4
λ4ðR − SÞ2 ¼ 3

144
ðkphÞ2

�
2

ð1 − νÞκ2 − 1

�
2

; ð13Þ

with kp ¼ ω=cp denoting the compressional plate wave
number with plate wave speed,

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ρð1 − ν2Þ

s
: ð14Þ

Typical values of compressional plate wave speeds are
usually orders of magnitude higher than flexural wave
speeds, and, thus, the corresponding wave numbers are
much lower. As a result, one expects that kph ≪ 1 and
likewise Δ ≪ 1, in which case, Eq. (12) can be simplified
to give an expression for the flexural resonance frequency
of the mth mode,

fðmÞ
res ¼ 1

4π
ffiffiffi
3

p cph

a2
1

Rþ S

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðmπÞ2ðRþ SÞ

q
− 1

i
:

ð15Þ

In addition to the flexural resonance frequency, the
particular solution to the displacement is necessary to
calculate the effective acoustic properties of the flexural
disk. Assuming a time-harmonic pressure P applied across
the face of the disk and assuming clamped edges, the
displacement becomes

wðrÞ ¼ P
ρhω2

�
I1ðδ2ÞJ0ðδ1 r

aÞ þ J1ðδ1ÞI0ðδ2 r
aÞ

I1ðδ2ÞJ0ðδ1Þ þ J1ðδ1ÞI0ðδ2Þ
− 1

�
: ð16Þ

Although Eq. (16) gives an expression for the displacement
at any given radius r, it is actually the ensemble of the

displacement over all the points on the surface which will
be measured via the reflected or transmitted acoustic waves
at some distance from the disk. Therefore, a more useful
quantity is the spatial average of the displacement, which
can be obtained from Eq. (16) such that

wavg ¼
P

ρhω2

�
2ð 1δ1 þ 1

δ2
ÞJ1ðδ1ÞI1ðδ2Þ

I1ðδ2ÞJ0ðδ1Þ þ J1ðδ1ÞI0ðδ2Þ
− 1

�
; ð17Þ

from which one can obtain the average acoustic impedance
for a thick clamped circular plate

Zplate ¼ jωMplate

�
1 − 2

�
1

δ1
þ 1

δ2

�

×

�
J1ðδ1ÞI1ðδ2Þ

I1ðδ2ÞJ0ðδ1Þ þ J1ðδ1ÞI0ðδ2Þ
��

−1 ≡ jωMeff ;

ð18Þ

where Mplate ¼ ρh is the acoustic mass of the plate.
Although not as obvious as the form presented in
Eq. (1), the expression presented in Eq. (18) also yields
a negative effective mass below the first flexural resonance
of the elastic plate, which is illustrated by the red solid line
in Fig. 1(a) for the case of a circular silica aerogel disk. The
resulting negative effective density extends over the entire
range below resonance and approaches −∞ as the fre-
quency goes to zero.
Such a highly dispersive and divergent behavior is not

ideal, particularly for broadband applications or if any type
of acoustic impedance matching is desired. However, this
effective mass can be readily modified by placing a positive
acoustic mass (such as an acoustic port consisting of an air-
filled hole in the support ring) in parallel with the negative
dynamic mass of the plate. The resulting frequency
dependence on the effective mass density is presented in
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FIG. 1. Normalized plots of theoretical values of effective properties versus frequency for an aerogel disk (solid red line), an acoustic
port with a rigid baffle (dash-dotted black line), and an aerogel disk combined in parallel with an acoustic port (dashed line) for
(a) effective density relative to that of a baffled acoustic port and (b) effective sound speed relative to that of the surrounding fluid
medium. An illustration of the parallel arrangement of the aerogel disk, baffle, and acoustic port is shown in the inset of (b), for which
the effective density and sound speed are theoretically determined in (a) and (b), respectively. The shaded regions denote broadband
regions of extreme effective properties, namely, (a) negative density and (b) nonresonant slow-sound propagation.
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Fig. 1(a), in which a circular disk (red solid line) is
combined in parallel with an acoustic port (black dash-
dotted line) to obtain the effective density denoted by the
dashed line. This parallel configuration of the aerogel disk
and acoustic port is illustrated in the inset of Fig. 1(b).
Arranged in such a manner, the acoustic port will short
circuit the plate as it approaches extremely large values and
allow for the magnitude and bandwidth of the negative
dynamic mass (denoted by the shaded region) to be
controlled using the same plate and varying only the size
and number of ports.
A similar trend is observed for the effective sound speed,

which is illustrated in Fig. 1(b). As in Fig. 1(a), the results
for a circular elastic disk (red solid line) are arranged in
parallel with an acoustic port (black dash-dotted line) to
obtain the effective density denoted by the dashed line. The
effective sound speed of the combined parallel arrangement
follows that of the acoustic port at low frequencies, slowly
decreasing towards zero before increasing again, producing
a broad nonresonant region where slow-sound propagation
occurs (denoted by the shaded region), slower than even
that expected for the case of an acoustic port. As the
frequency increases, the effective sound speed becomes
dominated by the elastic disk in the vicinity of the flexural
resonance of the elastic plate, which occurs at f ¼ fres.
Near this resonance, a large increase in the effective sound
speed is observed as the effective density passes through
zero, with the peak value limited by the losses in the
system.

IV. EXPERIMENTAL SETUP

Previous approaches for the acoustic characterization of
silica aerogels have been based on ultrasonic time-of-flight
measurements, which have produced experimental data for
the compressional and shear properties of silica aerogels
[43–46]. Unfortunately, such time-of-flight measurements
do not allow for one to examine the silica aerogel as part of
the metamaterial structure, requiring the use of acoustic

waves with wavelengths which are much smaller than the
thickness of the sample for accurate time-of-flight charac-
terization. Although most of these previous investigations
involved compressional and shear waves, Rayleigh surface
waves have also been examined, which were observed to be
less than 50 m=s, significantly lower than the compressional
wave speed [47]. Likewise, as can be seen from Fig. 1, the
effective properties due to the flexural behavior of the
aerogel disks at largewavelengths (low frequencies) relative
to the size of the disk are dramatically different than those of
the static density and compressional wave speed obtained
via time-of-flight measurements for silica aerogel [43].
Alternatively, an experimental setup is needed that can

examine the effective acoustic behavior of the ensemble
arrangement including the silica aerogel disk, at frequen-
cies which are sufficiently low to be within the homog-
enization limit for use in the microstructure of an acoustic
metamaterial. The experimental investigation of the silica
aerogel samples in this work is performed using an air-
filled acoustic impedance tube. The experimental setup is
illustrated in Fig. 2(a), which shows a standard four-
microphone configuration [48] for the measurement of
acoustic properties of a given sample. The acoustic proper-
ties, namely, the complex-valued acoustic impedance and
wave number, are obtained as a function of input frequency
from spectral measurements of the magnitude and phase of
both the reflected and transmitted acoustic pressure
obtained from the four microphones.
While this particular type of acoustic apparatus has been

utilized for many decades, such work has traditionally
focused on simply measuring transmission loss through an
absorptive sample [49]. In the last several years, this
technique has been expanded to acoustic metamaterials,
with a particular emphasis on extraction of the effective
complex acoustic properties of the acoustic metamaterial
sample [19,50,51]. The method for the extraction of these
properties can be found in previous works [51] based on the
complex reflection and transmission pressure coefficients,
which are given by

FIG. 2. (a) Diagram of the experimental setup using an air-filled acoustic impedance tube and (b) a photo of a silica aerogel sample
examined in this work.
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Rtot ¼
1

2

Ztot

Z0

�
1þ 1

2

Ztot

Z0

�
−1
; ð19Þ

T tot ¼
�
1þ jω

2Z0

ðMeff þMportÞ
�
−1
; ð20Þ

where Ztot is the total acoustical impedance seen at the face
of the sample, Z0 is the acoustical impedance of air, and
Meff andMport are the effective acoustic mass of the aerogel
disk and port, respectively.
This inverse process of using spectral acoustic measure-

ments to obtain the complex-valued acoustic properties
presents significant challenges, including ambiguity in
identifying unique solutions [50] and a high sensitivity
in the extracted properties to even low levels of noise in the
spectral data obtained from the microphones [51].
Although these challenges have been overcome recently
for samples such as sonic crystals [19,51] with a relatively
low acoustic impedance relative to the surrounding air,
acoustic metamaterials consisting of solid elastic structures,
even relatively soft ones such as silica aerogels, with
acoustic impedances hundreds of times larger than that
of air present unique challenges using this technique.
As a result of this high acoustical input impedance from

the sample, the small but finite leakage from the impedance
tube becomes a significant source of error in the measure-
ment and must be accounted for. Typically, this leakage is
observed as a result of improper sealing and mounting of
the sample, with leakage of acoustic energy from the
reflected side of the sample to the transmitted side.
However, in the case of rigidly mounted high-impedance
samples, this leakage is primarily due to the microphones,
which consist of thin diaphragms and small acoustic ports
for pressure equalization, with the main source of this
leakage occurring on the reflected side of the sample. As a
result, two distinct differences arise for this case of micro-
phone pressure leakage compared with that due to improper
mounting: (1) the leakage occurs in the reflected pressure
measurements only, with negligible effects on the trans-
mitted side, and (2) for large impedances, the leakage
should be independent of the specific sample or its
particular mounting in the impedance tube.
Under these conditions, the total acoustical impedance

seen at the front of the sample can be written as

Ztot ¼
�
ϕplate

Zplate
þ ϕport

Zport
þ ϕleak

Zleak

�
−1
; ð21Þ

where ϕ denotes the filling fraction of each component,
Zport is the impedance of the acoustic port including
thermosviscous effects [52], and Zleak is the pressure
leakage impedance.
To determine the leakage impedance, one can consider

the measurement of a rigid or nearly rigid sample without
any acoustic ports, in which case the total impedance is

simply Ztot ¼ Zleak=ϕleak. In the absence of the pressure
leakage, all the sound should be reflected and the reflec-
tance should be unity; however, in the presence of the
leakage, the measured reflection coefficient for a rigid or
nearly rigid sample Rmeas will exhibit a reduction in the
magnitude (and a phase difference as well). An expression
for the leakage effects can be obtained using Eq. (19)
in terms of the measured complex reflection coefficient
Rmeas as

Zleak

ϕleak
¼ 2Z0Rmeas

1 − Rmeas
: ð22Þ

Samples consisting of silica aerogel disks measuring
2.43 cm in diameter and 1.1 cm thick are tested in a 3.5-cm-
diameter air-filled acoustic impedance tube, as pictured in
Fig. 2(b). The acoustic impedance tube used in this work
consists of a circular tube having an inner diameter of
3.5 cm. To mount the silica aerogel disks in the impedance
tube, wooden rings are machined to support the aerogel
disks and provide an acoustic baffle. Because of the
brittleness of the aerogel disks, the holes are drilled into
the wooden ring to create the acoustic ports, each with a
diameter of 1 mm. To obtain the acoustic characterization
of the aerogel samples, broadband noise is generated using
an electromechanical driver at one end of the tube and
measured using 0.50-in- (1.27-cm-) diameter G.R.A.S.
condenser pressure microphones. The microphones are
arranged in a standard four-microphone configuration
[48], allowing for the reflection and transmission pressure
coefficients to be directly determined using a transfer-
matrix technique [49]. An approximately 1-m-long section
of the terminating end of the impedance tube is filled
with fiberglass insulation to provide an anechoic termi-
nation. This setup was previously demonstrated to provide
sufficient reduction in the reflected waves from the termi-
nating end and facilitate accurate extraction of effective
acoustic properties [19]. From this set of measurements,
the complex impedance and wave number are obtained
for the range 300–2000 Hz, in a similar manner to pre-
vious experimental work on acoustic metamaterial samples
[19,51].

V. RESULTS

The experimental data for the reflectance are shown in
Figs. 3(a)–3(c), with the corresponding transmittance data
shown in Figs. 3(d)–3(f), for the nominal aerogel sample
plus with one and two acoustic ports, respectively. These
measured values are relatively constant with frequency
except in the vicinity of 1500 Hz, where there is a rapid
decrease in reflectance with a corresponding increase in the
transmittance due to the flexural resonance of the circular
aerogel disk. This anomalous increase in the transmission
of acoustic energy in the experimental data far exceeds that
expected based on quasistatic homogenization theory for
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such a large impedance contrast with the surrounding air
and corresponds to a region of extraordinary transmission.
At the flexural resonance, the magnitude of the reflec-

tance theoretically approaches zero in the absence of losses,
although this minimum in reflectance is limited to small but
nonzero values when losses in the aerogel are included, as
observed in Figs. 3(a)–3(c). This trend is also observed in
the experimental results and, overall, is in very good
agreement with the theory, although a few spurious data
points near the flexural resonance in Figs. 3(a) and 3(b) can
be seen in the reflectance data that deviate significantly
from those of the model. These particular data points are
concentrated in the immediate vicinity of the flexural
resonance and are likely due to the complicated interaction
between the pressure leakage term and flexural motion of
the disk near resonance. This interaction is in agreement
with the fact that the significant deviation of these points
from the expected value is seen only in the reflectance data

(where the pressure leakage effects are observed), while
showing very good agreement in the transmittance data.
Based on the measured data, the flexural resonance

frequency is obtained, and the Young’s modulus of the
aerogel sample can be obtained based on the theoretical
expression for the resonance frequency given by Eq. (15).
The measured properties of the aerogel sample examined in
this work are tabulated in Table I. While these measured
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FIG. 3. Comparison of experimental data with the theoretical model presented in Sec. III for the acoustic reflectance (a)–(c) and
transmittance (d)–(f). As described by the legend, experimental data are denoted by circles, and the theoretical results are presented with
and without corrections due to the pressure leakage through the microphones denoted by the solid and dashed lines, respectively. The
properties of the aerogel used in the calculations are given in Table I using a loss factor of 0.005.

TABLE I. Measured values for the flexural resonance fre-
quency, Young’s modulus E, and density ρ for the silica aerogel
examined in this work. The loss factor of the aerogel is observed
to be 0.005 based on the reflectance and transmittance data
presented in Fig. 3. The Poisson’s ratio is estimated to be 0.21
based on Gross et al. [43].

fres (Hz) E (MPa) ρ (kg=m3)

1420 0.569 107
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values are somewhat lower than some other similar aerogel
samples [43], the results reported here fall within the
accepted range of measured aerogel properties [30].
The loss factor of the aerogel is assumed to be a constant

over the frequency range examined in this work and is
determined from the power absorption coefficient α ¼ 1 −
R2 − T2 at the flexural resonance frequency. Using the
absorption coefficient, the experimentally observed losses
can be related to the reflection and transmission coeffi-
cients, and with the use of Eqs. (19) and (20), they can,
therefore, be related to the properties of the aerogel disk
through the impedance given by Eq. (18). From the
experimental results presented in Fig. 3, the loss factor
of each aerogel sample is determined to be 0.005.
From these measured values, an elastic model based

on the theoretical formulation presented in Sec. III is

calculated and compared to the data. The modeled results
obtained without accounting for the pressure leakage effects
are denoted by the dashed line in Figs. 3 and 4. While there
is excellent agreement with the transmittance shown in
Figs. 3(d)–3(f), the theoretical reflectance shown in
Figs. 3(a)–3(c) predicts unity away from the flexural
resonance, a value which is not observed in the measure-
ments. While this difference between the modeled and
measured values represents less than a 10% error over most
of the frequency band under investigation, this leads to a
significant variation in the resulting extracted effective
acoustic properties, as illustrated in Fig. 4. This variation
is particularly large below the flexural resonance frequency,
for which the variation between the theoretical model
without accounting for the leakage differs by up to an order
of magnitude from that observed in the experimental data.
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Accounting for the leakage through the use of Eqs. (21)
and (22), this observed difference in the reflectance
can be correctly modeled, as shown by the solid lines in
Figs. 3 and 4. In addition to the improved agreement in
the reflectance presented in Figs. 3(a)–3(c), excellent
agreement is also maintained with the transmittance in
Figs. 3(d)–3(f). The theoretical model including pressure
leakage and the measured data of the extracted effective
mass density and sound speed are in excellent agreement,
with the model capturing the correct magnitudes and
frequency dependence of these dynamic properties. Even
with the limitations of the experimental apparatus due to the
finite acoustical impedance of the microphones and the
resulting acoustic pressure leakage, one is still able to
observe an extremely large dynamic range of extracted
acoustic properties, on the order of thousands of times that
of the ambient air.
In addition to the agreement between the experimental

data and theoretical model, the results presented in Fig. 4
provide valuable information regarding the wide range of
effective properties which can be attained using the soft
acoustic metamaterial arrangement illustrated in Fig. 1. In
particular, it can be observed that the overall trends as a
function of frequency follow those predicted in Figs. 1(a)
and 1(b) for silica aerogel disks with and without parallel
arrangements with acoustic ports for the effective mass
density and sound speed, respectively. In Fig. 4(a), the
effective density for the data obtained for the silica aerogel
disk is observed to be positive above the flexural resonance
frequency (around 1500 Hz), passing through zero, and
then negative below the flexural resonance frequency and
tending towards −∞ as frequency decreases. Conversely,
the effective sound speed shown in Fig. 4(d) increases
significantly as the effective density passes through zero
near the flexural resonance frequency and decreases
towards zero as the frequency decreases. These effective
properties, which arise from the use of the flexural motion
of the silica aerogel as a “hidden degree of freedom” [15] in
the otherwise 1D planar arrangement of the acoustic
impedance tube, lead to these extreme effective properties
which differ greatly from the static properties of silica
aerogel.
Likewise, the combination of the negative effective

density of the silica aerogel disk with the positive effective
density of one (or more) acoustic ports yields much more
uniform and less dispersive regions of negative density,
which are illustrated in Figs. 4(b) and 4(c) for the case of
one and two acoustic ports, respectively. As described
above, the parallel arrangement of the silica aerogel disk
and the acoustic ports leads to the effective properties being
dominated by the acoustic port at lower frequencies,
leading to this change in the effective density as a function
of frequency over this range below the flexural resonance
frequency. In the vicinity of the flexural resonance, how-
ever, the effective properties are dominated by the silica

aerogel disk, and, therefore, the same density-near-zero
region is observed.
Similarly, the effective sound speed is presented in

Figs. 4(e) and 4(f) for the case of silica aerogel with one
and two acoustic ports, respectively. In the vicinity of the
flexural resonance, a similar spike in the effective sound
speed is observed (corresponding to the effective density
passing through zero) as was observed for the silica aerogel
disk without any acoustic ports. In addition to this, a dip in
the effective sound speed is observed well below the
flexural resonance, leading to a region of zero and near-
zero effective wave speed in the acoustic metamaterial
structure. Previous experimental investigations of slow
sound have been observed over relatively narrow bands
due to the resonant physical mechanisms employed,
whereas the results presented in this paper appear to
experimentally demonstrate a broad region of nonresonant
slow-sound propagation.
Similar trends in the data described above are observed

for the silica aerogel disk combined with either one or two
acoustic ports. One interesting point of distinction that can
be noted is that the addition of more acoustic ports (and,
thus, a larger, positive effective acoustic mass) results in an
increase in the frequency at which the minimum of the
negative density and region of slow sound occur. This
stands in contrast with traditional resonant acoustic meta-
materials, such as those utilizing simple harmonic oscil-
lators, for which the addition of mass tends to decrease the
resonant frequency and the corresponding frequencies of
negative effective density. This difference for the soft
acoustic metamaterial arrangement investigated here arises
due to the parallel arrangement of the different components,
compared with the traditional series arrangement of mass-
spring and transmission-line acoustic metamaterials.
Although the soft acoustic metamaterials examined in this
paprt are limited to relatively simple lumped elements and
canonical geometries, this principle can be extended to a
wide range of more elegant acoustic elements allowing for
a vast range of tunable exotic properties in a compact
design and potential use in conformal arrangements.

VI. CONCLUSION

In conclusion, silica aerogel disks are examined theo-
retically and experimentally as building units of a soft
acoustic metamaterial. It is shown that the combination of
the flexural motion of the silica aerogel combined with the
acoustic mass of one or more ports leads to a configuration
with broadband negative dynamic density, density-near-
zero regions, and nonresonant broadband slow-sound
propagation. The use of silica aerogel as part of a soft
acoustic metamaterial structure with subwavelength thick-
ness is examined theoretically and experimentally.
Significant challenges are overcome to obtain direct mea-
surements of the effective density and sound speed for such
high-impedance metamaterial elements, which is achieved
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using an air-filled acoustic impedance tube and correcting
for the inherent pressure leakage from the microphones.
The experimental measurements are found to be in very
good agreement with the expected theoretical results.
Unlike acoustic metamaterials utilizing mass-spring reso-
nators, the soft acoustic metamaterials described in this
work move beyond this framework by creating the dynam-
ics from the flexural motion of a soft elastic structure, while
offering the tunability to achieve a wide range of desirable
exotic properties with a single subwavelength element.

ACKNOWLEDGMENTS

This work is supported by the U.S. Office of Naval
Research. M. D. G., V. M. G.-C. and J. S.-D. also acknowl-
edge the support by the Spanish Ministerio de Economía y
Competitividad, and the European Union Fondo Europeo
de Desarrollo Regional (FEDER) through Project
No. TEC2014-53088-C3-1-R. The authors wish to
acknowledge Encarna G. Villora and Kiyoshi
Shimamura for their help in aerogel fabrication and
handling.

[1] M. Maldovan, Sound and heat revolutions in phononics,
Nature (London) 503, 209 (2013).

[2] M. Kadic, T. Bückmann, R. Schittny, and M. Wegener,
Metamaterials beyond electromagnetism, Rep. Prog. Phys.
76, 126501 (2013).

[3] T. Brunet, J. Leng, and O. Mondain-Monval, Soft acoustic
metamaterials, Science 342, 323 (2013).

[4] J. Christensen, L. Martin-Moreno, and F. J. Garcia-Vidal,
Theory of Resonant Acoustic Transmission through Sub-
wavelength Apertures, Phys. Rev. Lett. 101, 014301 (2008).

[5] J. J. Park, K. J. B. Lee, O. B. Wright, M. K. Jung, and S. H.
Lee, Giant Acoustic Concentration by Extraordinary Trans-
mission in Zero-Mass Metamaterials, Phys. Rev. Lett. 110,
244302 (2013).

[6] R. Fleury, C. F. Sieck, M. R. Haberman, and A. Alù,
Acoustic supercoupling through a density-near-zero meta-
material channel, J. Acoust. Soc. Am. 132, 1956 (2012).

[7] R. Fleury and A. Alù, Extraordinary Sound Transmission
through Density-Near-Zero Ultranarrow Channels, Phys.
Rev. Lett. 111, 055501 (2013).

[8] R. Gracia-Salgado, V. M. García-Chocano, D. Torrent, and
J. Sanchez-Dehesa, Negative mass density and density-near-
zero quasi-two-dimensional metamaterials: Design and
applications, Phys. Rev. B 88, 224305 (2013).

[9] A. Santillán and S. I. Bozhevolnyi, Acoustic transparency
and slow sound using detuned acoustic resonators, Phys.
Rev. B 84, 064304 (2011).

[10] W.M. Robertson, C. Baker, and C. Brad Bennett, Slow
group velocity propagation of sound via defect coupling in
one-dimensional acoustic band gap array, Am. J. Phys. 72,
255 (2004).

[11] A. Cicek, O. A. Kaya, M. Yilmaz, and B. Ulug, Slow sound
propagation in a sonic crystal linear waveguide, J. Appl.
Phys. 111, 013522 (2012).

[12] A. Santillán and S. I. Bozhevolnyi, Demonstration of slow
sound propagation and acoustic transparency with a series
of detuned resonators, Phys. Rev. B 89, 184301 (2014).

[13] G. Theocharis, O. Richoux, V. Romero García, A. Merkel,
and V. Tournat, Limits of slow sound propagation and
transparency in lossy, locally resonant periodic structures,
New J. Phys. 16, 093017 (2014).

[14] J.-P. Groby, W. Huang, A. Lardeau, and Y. Aurégan, The use
of slow waves to design simple sound absorbing materials,
J. Appl. Phys. 117, 124903 (2015).

[15] G.W. Milton and J. R. Willis, On modifications of Newton’s
second law and linear continuum elastodynamics, Proc. R.
Soc. A 463, 855 (2007).

[16] D. Torrent, Y. Pennec, and B. Djafari-Rouhani, Effective
medium theory for elastic metamaterials in thin elastic
plates, Phys. Rev. B 90, 104110 (2014).

[17] P. Li, S. Yao, and X. Zhou, Effective medium theory for
thin-plate acoustic metamaterials, J. Acoust. Soc. Am. 135,
1844 (2014).

[18] F. Cervera, L. Sanchis, J. V. Sánchez-Pérez, R. Martínez-
Sala, C. Rubio, F. Meseguer, C. López, D. Caballero, and J.
Sánchez-Dehesa, Refractive Acoustic Devices for Airborne
Sound, Phys. Rev. Lett. 88, 023902 (2001).

[19] M. D. Guild, V. M. Garcia-Chocano, W. Kan, and J.
Sánchez-Dehesa, Acoustic metamaterial absorbers based
on multilayered sonic crystals, J. Appl. Phys. 117, 114902
(2015).

[20] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun,
and X. Zhang, Ultrasonic metamaterials with negative
modulus, Nat. Mater. 5, 452 (2006).

[21] F. Bongard, H. Lissek, and J. R. Mosig, Acoustic trans-
mission line metamaterial with negative/zero/positive re-
fractive index, Phys. Rev. B 82, 094306 (2010).

[22] Y. Xiao, J. Wen, and X. Wen, Sound transmission loss of
metamaterial-based thin plates with multiple subwavelength
arrays of attached resonators, J. Sound Vib. 331, 5408
(2012).

[23] M. Oudich, X. Zhou, and M. B. Assouar, General analytical
approach for sound transmission loss analysis through a
thick metamaterial plate, J. Appl. Phys. 116, 193509 (2014).

[24] S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K.
Kim, Composite Acoustic Medium with Simultaneously
Negative Density and Modulus, Phys. Rev. Lett. 104,
054301 (2010).

[25] A. Bozhko, V. M. García-Chocano, J. Sanchez-Dehesa, and
A. Krokhin, Redirection of sound in straight fluid channel
with elastic boundaries, Phys. Rev. B 91, 094303 (2015).

[26] L.W. Hrubesh, Aerogel applications, J. Non-Cryst. Solids
225, 335 (1998).

[27] H. Nagahara and M. Hashimoto, in Aerogels Handbook,
edited by M. A. Aegerter, N. Leventis, and M.M. Koebel
(Springer, New York, 2011), Chap. 33.

[28] V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, and J.
Phalippou, Acoustic properties and potential applications
of silica aeogels, J. Non-Cryst. Solids 186, 244 (1995).

[29] L Forest, V Gibiat, and T. Woignier, Biot’s theory of
acoustic propagation in porous media applied to aerogels
and alcogels, J. Non-Cryst. Solids 225, 287 (1998).

[30] M. Gronauer and J. Fricke, Acoustic properties of micro-
porous SiO2-aerogel, Acta Acust united Ac. 59, 177 (1986).

MATTHEW D. GUILD et al. PHYS. REV. APPLIED 5, 034012 (2016)

034012-10

http://dx.doi.org/10.1038/nature12608
http://dx.doi.org/10.1088/0034-4885/76/12/126501
http://dx.doi.org/10.1088/0034-4885/76/12/126501
http://dx.doi.org/10.1126/science.1241727
http://dx.doi.org/10.1103/PhysRevLett.101.014301
http://dx.doi.org/10.1103/PhysRevLett.110.244302
http://dx.doi.org/10.1103/PhysRevLett.110.244302
http://dx.doi.org/10.1121/1.4755202
http://dx.doi.org/10.1103/PhysRevLett.111.055501
http://dx.doi.org/10.1103/PhysRevLett.111.055501
http://dx.doi.org/10.1103/PhysRevB.88.224305
http://dx.doi.org/10.1103/PhysRevB.84.064304
http://dx.doi.org/10.1103/PhysRevB.84.064304
http://dx.doi.org/10.1119/1.1596192
http://dx.doi.org/10.1119/1.1596192
http://dx.doi.org/10.1063/1.3676581
http://dx.doi.org/10.1063/1.3676581
http://dx.doi.org/10.1103/PhysRevB.89.184301
http://dx.doi.org/10.1088/1367-2630/16/9/093017
http://dx.doi.org/10.1063/1.4915115
http://dx.doi.org/10.1098/rspa.2006.1795
http://dx.doi.org/10.1098/rspa.2006.1795
http://dx.doi.org/10.1103/PhysRevB.90.104110
http://dx.doi.org/10.1121/1.4868400
http://dx.doi.org/10.1121/1.4868400
http://dx.doi.org/10.1103/PhysRevLett.88.023902
http://dx.doi.org/10.1063/1.4915346
http://dx.doi.org/10.1063/1.4915346
http://dx.doi.org/10.1038/nmat1644
http://dx.doi.org/10.1103/PhysRevB.82.094306
http://dx.doi.org/10.1016/j.jsv.2012.07.016
http://dx.doi.org/10.1016/j.jsv.2012.07.016
http://dx.doi.org/10.1063/1.4901997
http://dx.doi.org/10.1103/PhysRevLett.104.054301
http://dx.doi.org/10.1103/PhysRevLett.104.054301
http://dx.doi.org/10.1103/PhysRevB.91.094303
http://dx.doi.org/10.1016/S0022-3093(98)00135-5
http://dx.doi.org/10.1016/S0022-3093(98)00135-5
http://dx.doi.org/10.1016/0022-3093(95)00049-6
http://dx.doi.org/10.1016/S0022-3093(98)00325-1


[31] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan,
and P. Sheng, Locally resonant sonic materials, Science 289,
1734 (2000).

[32] C. J. Naify, C.-M. Chang, G. McKnight, and S. Nutt,
Transmission loss and dynamic response of membrane-type
locally resonant acoustic metamaterials, J. Appl. Phys. 108,
114905 (2010).

[33] C. J. Naify, C.-M. Chang, G. McKnight, F. Schuelen, and S.
Nutt, Membrane-type metamaterials: Transmission loss of
multi-celled arrays, J. Appl. Phys. 109, 104902 (2011).

[34] G. Ma, M. Yang, Z. Yang, and P. Sheng, Low-frequency
narrow-band acoustic filter with large orifice, Appl. Phys.
Lett. 103, 011903 (2013).

[35] Y. Chen, G. Huang, X. Zhou, G. Hu, and C. T. Sun,
Analytical coupled vibroacoustic modeling of membrane-
type acoustic metamaterials: Plate model, J. Acoust. Soc.
Am. 136, 2926 (2014).

[36] D. Torrent and J. Sánchez-Dehesa, Multiple scattering
formulation of two-dimensional acoustic and electromag-
netic metamaterials, New J. Phys. 13, 093018 (2011).

[37] C. J. Naify, C. N. Layman, T. P. Martin, M. Nicholas, D. C.
Calvo, and G. J. Orris, Experimental realization of a variable
index transmission line metamaterial as an acoustic leaky-
wave antenna, Appl. Phys. Lett. 102, 203508 (2013).

[38] D. T. Blackstock, Fundamentals of Physical Acoustics,
1st ed. (John Wiley & Sons, New York, 2000).

[39] K. F. Graff, Wave Motion in Elastic Solids (Dover Publi-
cations, New York, 1975).

[40] H. Lee and R. Singh, Acoustic radiation from out-of-plane
modes of an annular disk using thin and thick plate theory, J.
Sound Vib. 282, 313 (2005).

[41] C. D. Hettema, Ph.D. thesis, Naval Postgraduate School,
1988.

[42] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions: With Formulas, Graphs and Mathematical
Tables (Dover, New York, 1972).

[43] J. Gross, G. Reichenauer, and J. Fricke, Mechanical
properties of SiO2 aerogels, J. Phys. D 21, 1447 (1988).

[44] T. E. Gómez Álvarez Arenas, F. R. Montero de Espinosa, M.
Moner-Girona, E. Rodriguez, A. Roig, and E. Molins,
Viscoelasticity of silica aerogels at ultrasonic frequencies,
Appl. Phys. Lett. 81, 1198 (2002).

[45] H. Lu, H. Luo, and N. Leventis, in Aerogels Handbook,
edited by M. A. Aegerter, N. Leventis, and M.M. Koebel
(Springer, New York, 2011), Chap. 22.

[46] Y. Xie and J. R. Beamish, Ultrasonic properties of
silica aerogels at low temperatures, Phys. Rev. B 57,
3406 (1998).

[47] J. A. Rogers and C. Case, Acoustic waveguide properties of
a thin film of nanoporous silica on silicon, Appl. Phys. Lett.
75, 865 (1999).

[48] Y. Salissou and R. Panneton, Wideband characterization
of the complex wave number and characteristic impedance
of sound absorbers, J. Acoust. Soc. Am. 128, 2868
(2010).

[49] B. H. Song and J. S. Bolton, A transfer-matrix approach for
estimating the characteristic impedance and wave numbers
of limp and rigid porous materials, J. Acoust. Soc. Am. 107,
1131 (2000).

[50] V. Fokin, M. Ambati, C. Sun, and X. Zhang, Method for
retrieving effective properties of locally resonant acoustic
metamaterials, Phys. Rev. B 76, 144302 (2007).

[51] M. D. Guild, V. M. Garcia-Chocano, W. Kan, and J.
Sánchez-Dehesa, Enhanced inertia from lossy effective
fluids using multi-scale sonic crystals, AIP Adv. 4,
124302 (2014).

[52] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders,
Fundamentals of Acoustics, 4th ed. (John Wiley & Sons,
New York, 2000).

AEROGEL AS A SOFT ACOUSTIC METAMATERIAL … PHYS. REV. APPLIED 5, 034012 (2016)

034012-11

http://dx.doi.org/10.1126/science.289.5485.1734
http://dx.doi.org/10.1126/science.289.5485.1734
http://dx.doi.org/10.1063/1.3514082
http://dx.doi.org/10.1063/1.3514082
http://dx.doi.org/10.1063/1.3583656
http://dx.doi.org/10.1063/1.4812974
http://dx.doi.org/10.1063/1.4812974
http://dx.doi.org/10.1121/1.4901706
http://dx.doi.org/10.1121/1.4901706
http://dx.doi.org/10.1088/1367-2630/13/9/093018
http://dx.doi.org/10.1063/1.4807280
http://dx.doi.org/10.1016/j.jsv.2004.02.059
http://dx.doi.org/10.1016/j.jsv.2004.02.059
http://dx.doi.org/10.1088/0022-3727/21/9/020
http://dx.doi.org/10.1063/1.1499225
http://dx.doi.org/10.1103/PhysRevB.57.3406
http://dx.doi.org/10.1103/PhysRevB.57.3406
http://dx.doi.org/10.1063/1.124539
http://dx.doi.org/10.1063/1.124539
http://dx.doi.org/10.1121/1.3488307
http://dx.doi.org/10.1121/1.3488307
http://dx.doi.org/10.1121/1.428404
http://dx.doi.org/10.1121/1.428404
http://dx.doi.org/10.1103/PhysRevB.76.144302
http://dx.doi.org/10.1063/1.4901880
http://dx.doi.org/10.1063/1.4901880

