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In this work, we determine the intrinsic mechanical energy dissipation limit for single-crystal resonators
due to anharmonic phonon-phonon scattering in the Akhiezer (Ωτ ≪ 1) regime. The energy loss is derived
using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the
direction- and polarization-dependent mode-Grüneisen parameters in order to capture the strain-induced
anharmonicity among phonon branches. This expression reveals the fundamental differences among the
internal friction limits for different types of bulk-mode elastic waves. For cubic crystals, 2D-extensional
modes have increased dissipation compared to width-extensional modes because the biaxial deformation
opposes the natural Poisson contraction of the solid. Additionally, we show that shear-mode vibrations, which
preserve volume, have significantly reduced energy loss because dissipative phonon-phonon scattering is
restricted to pure-shear phonon branches, indicating that Lamé- or wineglass-mode resonators will have the
highest upper limit on mechanical efficiency. Finally, we employ key simplifications to evaluate the quality
factor limits for common mode shapes in single-crystal silicon devices, explicitly including the correct
effective elastic storage moduli for different vibration modes and crystal orientations. Our expression satisfies
the pressing need for a reliable analytical model that can predict the phonon-phonon dissipation limits for
modern resonant microelectromechanical systems, where precise manufacturing techniques and accurate
finite-element methods can be used to select particular vibrational mode shapes and crystal orientations.
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I. INTRODUCTION

The performance of mechanical resonators is governed
by the dissipation of energy stored in the resonant vibra-
tional mode to other acoustic modes or the environment [1].
Despite the increasing prevalence of resonant microelec-
tromechanical systems as high-performance inertial sen-
sors, mass-based chemical sensors, timing references,
and frequency filters, the energy dissipation in these
structures is not well understood [2]. The dissipation can
be difficult to determine because there is no single,
predictive theory to evaluate the quality factor (Q), defined
as 2π½ðenergy storedÞ=ðenergy loss per cycleÞ�. A number of
damping mechanisms, each requiring its own unique physi-
cal model, may contribute to the dissipation; however, the
losses add linearly, so the quality factors add reciprocally
and a single loss mechanism will dominate for a particular
set of operating conditions [3]. The accurate prediction ofQ
has tremendous design implications because it is directly
related to device performance metrics including sensitivity
for resonant sensors, bandwidth for radio-frequency filters,
and phase noise for timing references.

Energy-lossmechanismsmaybe intrinsic, fundamental to
the material and device geometry, or extrinsic, a function of
the operating environment of the resonator. This work
focuses on determining intrinsic dissipation limits in dielec-
tric and semiconductor crystals, which are governed by the
interaction between the elastic wave and thermal phonons.
This interaction, also called internal friction, has two
components: spatial phonon transport and local phonon
scattering. Time-varying strain gradients drive irreversible
spatial phonon transport (heat flow), known as thermoelastic
dissipation (TED). TED is a well-understood loss mecha-
nism that can be accurately predicted using a finite-element
solver and can be minimized via the appropriate design of
device geometry [4,5]. Moreover, it is negligible for vibra-
tion modes with uniform strain, because there are no strain-
induced thermal gradients, and it becomes less significant as
resonators approach the GHz regime due to a mismatch
between the time constant for heat transfer and the mechani-
cal vibration period. Thus, for high-frequency and bulk-
mode resonators, the dissipation is ultimately limited by
local phonon-phonon scattering, commonly referred to as
Akhiezer damping. In this work, we derive an expression for
Akhiezer loss that captures the effect of anharmonic phonon-
phonon scattering as well as crystalline anisotropy.*ssiyer@ucla.edu
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In the Akhiezer damping model, the strain produced by
the mechanical wave modulates the phonon frequencies
and, consequently, the local equilibrium phonon distribu-
tion. The phonon populations cannot change instantane-
ously and will relax towards the modulated equilibrium
distribution via phonon-phonon scattering when the ther-
mal relaxation time (τ) is significantly less than the period
of the mechanical wave. Because of the application of
rapidly varying strain and a finite τ, the time-dependent
phonon populations lag behind their (perturbed) equilib-
rium value. This relaxation towards equilibrium is an
entropy-producing process that consumes energy from
the elastic wave. It is important to note that the
Akhiezer damping model applies only when the scattering
rate (1=τ) is significantly larger than the frequency (Ω) of
the mechanical vibrationΩτ ≪ 1, which is the case at room
temperature for commonly used acoustic materials such as
silicon, germanium, and quartz [6].
This limit on mechanical energy dissipation was first

described by Akhiezer [7] and later solved by Woodruff
using the linearized Boltzmann transport equation (BTE)
and the Debye approximation to arrive at a simplified
expression for internal friction (Q−1) involving only
classical, bulk parameters [8].

Q−1 ¼ γ20CvT
ρc2

Ωτ: ð1Þ

In the above expression, T is the ambient temperature, ρ is
the material density, c is the Debye average sound velocity,
Cv is the specific heat per unit volume, and γ0 is the average
Grüneisen parameter associated with thermal expansion.
Woodruff derives this result by assuming that all phonon
modes are perturbed identically by the strain wave and
neglecting the perturbation of the internal temperature of
the solid. Typically, this expression is used to make an order
of magnitude prediction of the internal friction limit in a
given material [9].
Mason provides an alternate approach, arriving at an

expression for internal friction by taking the derivative of
the total phonon energy with respect to the applied strain
and interpreting this as a loss modulus in accordance with
Zener’s phenomenological theory of anelastic relaxation in
solids [10,11]. Critically, Mason shows that because the
dissipation originates from anharmonicity of phonon
modes, third-order elastic coefficients can be used to
estimate the mode-Grüneisen parameters γi, which re-
present the strength of the phonon frequency perturbation
to an applied strain for a particular pure phonon mode i,
characterized by a crystal direction and polarization. Thus,
Mason dispenses with the assumption that all phonon
branches have the same γi in an attempt to provide a more
accurate estimate of the Akhiezer damping limit.
Mason’s derivation was heavily criticized by Barrett and

Holland because of its lack of analytical rigor [12]; the most

notable objections were the seemingly arbitrary designation
of certain phonon frequency terms as strain independent
and the cursory assumption that the cutoff frequency in the
Debye integral is strain independent. Nevertheless,
Mason’s expression for acoustic attenuation appeared to
provide better agreement with experimental results in
silicon and germanium than Woodruff’s simpler but more
analytically sound expression. Consequently, Mason’s
(incorrect) expression is often cited when attempting to
fit experimental data while Woodruff’s is used to provide an
upper bound onQ for a given material system [9,13]. A few
refinements to Mason’s method have been introduced,
including a correction factor for the Debye integral to
account for the modulation of the upper integration limit
[14] and Brugger-Fritz integration schemes to include
phonon scattering to arbitrary directions [15]. Even with
these corrections, Mason’s expression is inherently flawed
[16], so it should not be used to predict experimental
results. Similarly, in an attempt to better match acoustic
attenuation measurements, Nava et al.. modified
Woodruff’s method by introducing a pure-mode ultrasonic
Grüneisen parameter. They rigorously define this parameter
as a weighted average of mode-specific phonon thermal
conductivities, but cannot evaluate their complex expres-
sion and instead simply fit its value to experimental results
[17]. Ultimately, all of these refinements require careful
integration over the spectrum of acoustic phonon modes,
which unnecessarily complicates the evaluation of the
energy dissipation.
More recently, Kiselev and Iafrate considered the internal

friction for the specific case of a doubly-clamped, flexural-
mode cantilever and, following the approach introduced by
Bömmel and Dransfeld, showed qualitatively that the anhar-
monicity induced by the presence of just two groups of
phonons with different mode-Grüneisen parameters results
in local phonon-phonon dissipation [18,19]. However, they
oversimplify their evaluation of the dissipation limit by
assuming only two phonon groups and arbitrarily designat-
ing values for the mode-Grüneisen parameters for each
group, prohibiting a valid comparison with experimental
data. Kunal and Aluru used molecular dynamics to calculate
the Akhiezer limit for nickel nanowireswith amaximum size
of 20 atoms per edge [20]. Ultimately, likely due to the
resonator size restriction imposed by the practical computa-
tional limitations, they do not compare the molecular
dynamics results to experimental data, and only attempt to
correlate their results to existing theory by evaluating
Mason’s nonlinearity parameter D, which we have already
indicated is not an analytically sound choice. Hence, there is
a compelling need for a more predictive, analytical model
that employs appropriate simplifications so that the energy
loss can be evaluated in a straightforward and consistent
manner using known material constants and reliably com-
pared with experimental results.
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In this work, we rigorously derive an expression for the
internal friction limit due to anharmonic phonon-phonon
scattering that incorporates important elements of both
Woodruff’s and Mason’s derivations. We solve for the
energy loss using the analytically sound Boltzmann trans-
port method, but rather than assuming all phonon modes are
perturbed equally by strain, we include the directional- and
polarization-dependent mode-Grüneisen parameters. The
resulting expression for Akhiezer damping still depends
only on bulk parameters, but distinguishes between different
vibration modes and crystal directions. As wewill show, for
common vibration modes this expression can be reduced to
match Eq. (1), but replacing the average Grüneisen param-
eter γ0 with an anharmonic Grüneisen parameter Γa that
depends on the strain profile of the vibration.

II. ENERGY LOSS

The derivation of the anharmonic phonon-phonon dis-
sipation begins with the assumption that the strain wave is
time harmonic with wave vector K and angular frequency
Ω so that ϵðtÞ ∝ exp½iðK · r −ΩtÞ�, where r is the position
vector. The strain perturbs the frequencies (ω) of all thermal
phonons, satisfying the relation

ωi ¼ ωi0½1þ ~γi · ~ϵðtÞ� ¼ ωi0 þ Δωi; ð2Þ

where the index i denotes a pure-mode branch characterized
by a direction and polarization along a crystal axis so thatωi
is the instantaneous phonon frequency of the ith branch
and ωi0 is the unperturbed equilibrium phonon frequency.
Each high-symmetry direction in the Wigner-Seitz cell, the
primitive Brillouin zone, has a longitudinal mode that is
polarized along the direction of phonon propagation and
two transverse modes that are polarized perpendicularly to
the propagation direction. Figure 1 shows the 13 principal
crystallographic directions (high-symmetry directions) in
theWigner-Seitz cell for the diamond lattice with the h100i,
h110i, and h111i families of directions in distinct subplots.
Deformation of the solid due to strain, even in just a single
direction, deforms the entire Brillouin zone, resulting in the
perturbation of all phonon branches.

For cubic crystals, the strain tensor is assumed to be
symmetric, so we can express it compactly as a vector ~ϵðtÞ,
with six independent components, denoted ϵj, where the
index j indicates one of the six possible strain directions:
three normal and three shear [see Eq. (3)].

2
666666664

ϵxx

ϵyy

ϵzz

ϵyz

ϵzx

ϵxy

3
777777775
¼

2
666666664

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

3
777777775
: ð3Þ

Consequently, ~γi is also a vector with six components
that are the mode-Grüneisen parameters γi;j, corresponding
to the anharmonic perturbation of the ith branch frequency
due to strain in the jth direction. Here, we assume that the
γi;j’s are independent of the phonon frequency and wave
number. As a result, the instantaneous phonon population
in each branch Ni deviates from its thermal equilibrium
Bose-Einstein distribution Ni0 ¼ ðeℏωi0=kBT − 1Þ−1 so that

Ni ¼ Ni0 þ Δni: ð4Þ

Now, we use the linearized BTE to solve for Ni. We
derive the dissipation limit due to local phonon-phonon
scattering, so we assume uniform strain and can eliminate
all spatial terms in the BTE. Thus, the relaxation towards
equilibrium is solely determined by the scattering term

∂Ni

∂t
����
scatt

¼ ∂Ni

∂t : ð5Þ

Following the approach of Woodruff and others [12,17],
we employ the relaxation time approximation to describe
the scattering term as the decay of Ni towards a Bose-
Einstein distribution N0

i0 at a modulated local temperature
T 0 ¼ T þ ΔT.

∂Ni

∂t ¼ Ni − N0
i0

τ
; ð6Þ

where

N0
i0 ¼ ðeℏωi=kBT 0 − 1Þ−1 ð7Þ

and τ is the average time between phonon collisions. The
mode-specific time constants τi are not all available, so we
make the practical assumption that τ is the same for all
acoustic modes. Figure 2 outlines the perturbation theory
and the corresponding dissipative relaxation.
Solving BTE assuming plane wave solutions, Δωi, Δni,

ΔT ∝ exp½iðK · r −ΩtÞ�, yields

FIG. 1. Wigner-Seitz cell for the diamond lattice centered about
the Γ point. (a) Three h100i directions (blue). (b) Six h110i
directions (red). (c) Four h111i directions (green). There are 13
high-symmetry crystal directions and each contributes three pure
modes, one longitudinal and two transverse, resulting in 39
distinct phonon branches.
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Δni ¼ ωi0

�∂N0
i0

∂ωi

�
0

�
Δωi

ωi0
− ΔT

T

�
ð1 − iΩτÞ−1: ð8Þ

After evaluating the partial derivative and combining terms,
we have

Δni ¼
�
−TCk;i

ℏωi0

��
Δωi

ωi0
− ΔT

T

�
ð1 − iΩτÞ−1; ð9Þ

where Ck;i is the specific heat contribution from a particular
phonon mode that depends on the branch i and the phonon
wave vector k. It can be written explicitly as

Ck;i ¼
ðℏωi0Þ2eℏωi=kBT

kbT2ðeℏωi0=kBT − 1Þ2 ð10Þ

and is related to the classical specific heat per unit volume
using

Cv ¼
X
k;i

Ck;i; ð11Þ

where the subscripts indicate a summation over all acoustic
phonon modes, specified by k and i.
For clarity, we proceed with the remainder of the

derivation assuming uniaxial strain [i.e., ~ϵðtÞ ¼ ϵj]. We
will show later how to make the appropriate modifications
to capture the effect in realistically achievable vibration
modes where Poisson contraction leads to the deformation
of more than one strain component. Under this uniaxial
assumption, Eq. (2) reduces to

Δωi

ωi0
¼ γi;jϵðtÞ ð12Þ

because ϵj is the only nonzero strain component so that
only the jth component of ~γi (indicated by the second
subscript) contributes to the anharmonicity. As shown by
Akhiezer, the temperature modulation can be determined
self-consistently using the condition that the collision
process conserve energy to first order [7,12], giving

ΔT
T

¼
X
k;i

Ck;i
Δωi

ωi0
ð1− iΩτÞ−1=

X
k;i

Ck;ið1− iΩτÞ−1: ð13Þ

We can express this succinctly as

ΔT
T

¼ hγi;jiϵðtÞ; ð14Þ

where hγi;ji is the average of the jth component of each ~γi,
weighted by its contribution to the total specific heat, over
all phonon branches. Substituting Eqs. (12) and (14) into
the solution to the BTE gives

Δni ¼
�
−TCk;i

ℏωi0

�
ðγi;j − hγi;jiÞϵðtÞð1 − iΩτÞ−1: ð15Þ

Now, we can proceed with the energy loss calculation.
The energy loss per cycle of oscillation is simply the time
average of the rate at which energy is lost via phonon-
phonon scattering,

Uloss per cycle ¼ −X
k;i

�
Hi

�∂Ni

∂t
�

scatt

�
cycle

; ð16Þ

where theHi ¼ ℏωi, is the phonon Hamiltonian and h·icycle
denotes the time average over one period of the mechanical
vibration 2π=Ω. We can rewrite this using the chain rule for
derivatives,

Uloss per cycle ¼ −X
k;i

�
Ni

∂Hi

∂t − ∂ðNiHiÞ
∂t

�
cycle

: ð17Þ

The second term is simply the time derivative of the total
energy, which we can eliminate because it must be constant

FIG. 2. Overview of the energy loss due to anharmonic phonon-
phonon scattering. Strain in one of the normal directions ϵ1−3
leads to a perturbation of phonon frequencies in each branch,
characterized by the mode-Grüneisen parameter γi;j, where j is
the strain direction and i represents the crystal direction and
polarization. For the diamond lattice, we can express i using the
notation ½hkl�P, where ½hkl� is a particular crystal direction
(expressed using Miller indices) and P is the polarization, which
can be either longitudinal (L) or transverse (T1 or T2). The
modulation of phonon frequencies (and energies) means the
respective branch populations are out of equilibrium. Each branch
distribution relaxes towards the perturbed equilibrium distribu-
tion via phonon-phonon scattering. The energy loss that occurs
during this irreversible relaxation process is assumed to come
from the acoustic wave, because that is the source of the
perturbation. The shear strains ϵ4−6, however, only perturb the
phonon frequencies in branches with transverse polarizations,
because a volume change is prohibited. Hence, shear-mode
vibrations tend to have reduced dissipation because only a
fraction of the phonon branches contribute to the loss.
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in time. Because of the time average over one cycle, only
the time-harmonic component of Ni contributes to the loss,
so we can ignore Ni0 and

Uloss per cycle ¼ −X
k;i

�
Δni

∂Hi

∂t
�

cycle
: ð18Þ

Substituting the solution to the BTE in Eq. (15) and
evaluating the derivative yields

Uloss per cycle¼−X
k;i

TCk;i
γiðγi−hγi;jiÞ

1− iΩτ
iΩhϵ2ðtÞicycle ð19Þ

after removing the time-independent terms from the h·icycle
brackets. Noticing that hϵ2ðtÞicycle ¼ ðπ=ΩÞϵ20, where ϵ0 is
the amplitude of the strain wave, and taking the real part of
the energy loss reduces this to

Uloss per cycle¼
X
k;i

TCk;iðγ2i;j−γi;jhγi;jiÞπϵ20
Ωτ

1þΩ2τ2
: ð20Þ

Assuming each branch contributes equally to the total
phonon specific heat, we can eliminate the cumbersome
summation and express the energy loss as

Uloss per cycle ¼ πðhγ2i;ji − hγi;ji2ÞCvTϵ20
Ωτ

1þ Ω2τ2
; ð21Þ

where the angle brackets indicate an average over all
phonon branches. If the second- and third-order elastic
coefficients are known, theoretical values for γi;j can be
obtained [6] and the energy-loss expression can be calcu-
lated using only bulk parameters. Ultimately, as we will
show in Sec. V, the total energy loss can be expressed as the
superposition of the uniaxial losses. The remaining sections
show how to normalize the loss for the strain magnitude so
we can evaluate the loss and compare the performance of
different devices in a given material system.

III. ENERGY STORAGE

The quality factor is a ratio of energy stored to energy
lost per cycle, so it is important to account for the
anisotropy and mode dependence in both. For cubic
crystals, the energy storage is anisotropic and depends
on the deformation profile. The elasticity of the crystal can
be described by relating stress (~σ) and strain (~ϵ) using the
second-order elastic tensor.

~σ ¼

2
6666666664

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

3
7777777775
· ~ϵ: ð22Þ

Here, appropriate simplifications are made given cubic
symmetry and the equivalence of shear directions, so that
the elasticity matrix can be described using only three
components c11, c12, and c44.
For a given vibration mode and orientation, an effective

Young’s modulus or storage modulus Eeff can be defined so
that the energy storage per unit volume is Estored ¼ 1

2
Eeffϵ

2
0

[21]. For spatially uniform modes, we can eliminate the
integral over the volume of the structure, because the
energy storage (and loss) in any volume element of the
solid is the same. The modes of interest are width exten-
sional (WE), square extensional (SE), cubic extensional
(CE), and Lamé; their deformation profiles and expressions
for effective storage moduli are given in Table I. These are
commonly used vibration modes for a single-crystal
rectangular parallelepiped with edges oriented along the
[100] axes. The WE, SE, and CE modes are modes where
the deformation of the solid is primarily due to extension
(and contraction) along one, two, or three principal axes,
respectively. The Lamé mode (also called a “contour”
mode) is a pure-shear mode with only one nonzero strain
component.

IV. QUALITY FACTOR

Using the definition of the quality factor, the energy
storage expression in the previous section, and the energy
loss in Eq. (21), we can write the quality factor as

Q ¼ Eeff

ðhγ2i;ji − hγi;ji2ÞCvT
1þ Ω2τ2

Ωτ
ð23Þ

TABLE I. Displacement profiles and elastic storage moduli for
common vibration modes of a single-crystal rectangular paral-
lelepiped with edges oriented along the [100] directions.

Width
extensional

Square
extensional

Cubic
extensional

Lamé
(shear)

ðc11−c12Þðc11þ2c12Þ
c11þc12

c11 þ c12 −
2c2

12

c11
c11þ2c12

3
c44
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for the uniaxial case. If we employ Woodruff’s simplifi-
cations that the material is isotropic so all γi;j ¼ γ0 and that
ΔT ¼ 0, and assume the storage modulus is simply the
bulk modulus B ¼ ρc2, this expression reduces identically
to Eq. (1) in the low-frequency limit. This result is expected
because both methods use the BTE to determine the energy
loss. Woodruff’s assumptions allow for simple estimation
ofQ using bulk material data, but it is important to note that
these assumptions are not self-consistent. If the material is
assumed to be isotropic and all γi;j ¼ γ0, then the average
hγi;ji ¼ γ0 which implies that ΔT ≠ 0. In fact, when this
assumption is employed rigorously, hγ2i;ji ¼ hγi;ji2 ¼ γ20
and the dissipation in Eq. (21) is zero. We also note that the
result derived here does in fact match Zener’s expression
for quality factor due to anelastic relaxations in a solid. This
suggests that Mason’s method can also be used to obtain the
same result, although we do not include it here [22].
Briefly, Mason’s simplification is approximately valid in
the low-temperature limit, where the upper integration limit
in the Debye integral approaches infinity and the
assumption that the integration limits are strain independent
is satisfied. In this low-temperature limit, the total acoustic
phonon energyU0 ≈ CvT=4. This is precisely the condition
that reveals the T3 dependence of the low-temperature
Debye specific heat in insulators [23]. This likely explains
the persistent deviation from experimental values at high
temperatures when employing modified versions of
Mason’s expression for acoustic attenuation [13]. Even if
these low-temperature conditions are satisfied, Mason’s
expression omits a factor of 4, which is produced when
proper care is taken to include the strain dependence of all
phonon frequency terms [12].

V. MODE-DEPENDENT ENERGY LOSS

The expression in Eq. (23) accounts for the anisotropic
and mode-dependent energy storage, but still only includes
loss due to strain in a single direction. In order to more
accurately determine the losses, we define an effective
mode-Grüneisen parameter γi;eff as the weighted average of
the components of ~γi by their corresponding strain com-
ponent ϵj. Thus, we can capture the perturbation of the
phonon branch frequency due to strain in more than one
direction.
For cubic crystals, symmetry dictates that hγi;1i ¼

hγi;2i ¼ hγi;3i and the equivalence of shear directions
implies hγi;4i ¼ hγi;5i ¼ hγi;6i. For pure extensional vibra-
tion modes the shear strain components are all zero. Thus,
the effective mode-Grüneisen parameter can be reduced to
γi;eff ¼ α γi;1, where α is a coefficient determined by the
relative axial strain in the x, y, and z directions. α is
determined from the strain profile, so it is the same for all
branches and the quality factor is simply reduced by a
factor of 1=α2. In order to retain the simplicity of Eq. (1),
we express the quality factor as

Q ¼ Eeff

Γ2
aCvT

1þ Ω2τ2

Ωτ
ð24Þ

and define the anharmonic Grüneisen parameter as

Γ2
a ¼ α2ðhγ2i;1i − hγi;1i2Þ: ð25Þ

Unlike Nava’s pure-mode ultrasonic Grüneisen parameter,
which can only be evaluated assuming a pure sound mode
oriented and polarized along crystal axes, our anharmonic
Grüneisen parameter accounts for the deformation in real
mechanical modes, which are superpositions of pure modes
and are determined from both material properties and the
geometry of the structure. For pure-shear modes, which
include Lamé modes, we can write γi;eff ¼ α γi;5 so that
Γ2
a ¼ α2ðhγ2i;5i − hγi;5i2Þ. Expressions for α2 for vibration

modes in cubic crystals are given in the first row of Table II.
For vibrations that are a mix of both longitudinal and shear
perturbations, γeff will be a weighted sum of γi;1 and γi;5
determined by the dot product in Eq. (2).
Equation (24) shows that the quality factor depends

distinctly on the resonant frequency, due to a mismatch
between the period of the elastic wave (2π=Ω) and the
phonon lifetime (τ), and the strain profile, due to funda-
mental differences in the strength of the phonon perturba-
tion, which we quantify using α2. The resonant frequency
and vibrational mode shape are, of course, fundamentally
linked and should be solved simultaneously using the
material properties and boundary conditions of the reso-
nator in the mechanical eigenvalue problem.
Mason and Bateman establish that the mode-Grüneisen

parameters can be determined from second- and third-order
elastic moduli and calculate γi;1 and γi;5 for silicon and
germanium [10]. Critically, they show that hγi;1i ≈ γ0 as
expected, because both averages relate to volume pertur-
bation of the solid. They also verify that hγi;5i ¼ 0, which
satisfies the restriction that shear deformations do not
perturb volume. The simplified expressions for Γ2

a are
included in the second row of Table II. Finally, equipped
with the knowledge of γi;1 and γi;5, we can calculate hγ2i;1i
and hγ2i;5i and evaluate Γ2

a.

TABLE II. Expressions for the strain deformation coefficient α2

(row 1) and the anharmonic Grüneisen parameter Γ2
a (row 2) for

the common vibration modes identified in Table I.

Width
extensional

Square
extensional

Cubic
extensional

Lamé
(shear)

α2 ðc11−c12Þ2
c2
11
þ2c11c12þ3c2

12

2ðc11−c12Þ2
c2
11
þ2c2

12

3 1

Γ2
a α2ðhγ2i;1i − γ20Þ α2ðhγ2i;1i − γ20Þ α2ðhγ2i;1i − γ20Þ α2hγ2i;5i
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VI. RESULTS AND DISCUSSION

In this section, we evaluate the quality factor limits in
silicon and compare the performance for common vibration
modes. The final parameter needed to evaluate Q is the
phonon lifetime τ. Following Woodruff’s approach, we
determine τ using the definition of bulk thermal conduc-
tivity κ ≡ 1

3
Cvc2τ. This is, in effect, an average time

constant over all phonon branches. Others have replaced
the average phonon time constant τ with the direction-
specific lifetimes τ½hkl� corresponding to the particular
crystal orientation of the mechanical vibration [24,25],
but we assert that this is not the most accurate approach,
because the strain perturbs phonon branches in all crystal
directions, not just along the along the direction of sound
propagation, making a collective relaxation time a better
estimate. The most accurate approach would be to use the
branch-specific τi, which depend on both direction and
polarization; however, the lack of a complete set of
experimental values for these time constants prohibits
calculation in this way.
Figure 3 shows the room temperature f ×Q product as a

function of the mechanical resonant frequency for the WE,
SE, CE, and Lamé modes of a resonator with edges
oriented along the [100] directions in intrinsic silicon
evaluated using the expression in Eq. (24) along with
Woodruff’s result for reference and a number of exper-
imental results from silicon resonators in the literature
[26–39]. As expected, given the quadratic dependence ofQ
on resonant frequency in the Zener model, the curves
remain constant up to ∼20.5 GHz, corresponding to the
condition Ωτ ¼ 1. Again, we note that the Akhiezer

damping model applies only when Ω ≪ 1=τ, so the results
should only be interpreted below this value; at higher
frequencies, the strain varies faster than the phonon
scattering rate, so the number of average collisions per
cycle is severely reduced and an alternate model, often
called Landau-Rumer dissipation, should be used instead
[40]. We can equivalently express this condition as
lph ≪ λac, where lph is the mean-free path for thermal
phonons and λac is the wavelength of the elastic wave. As a
result, we can reframe the frequency cutoff as a minimum
size limitation. A simple calculation (ignoring phonon
dispersion) gives lph ≈ 47 nm for silicon at room temper-
ature. This means our damping model provides a valid
picture of the phonon-phonon dynamics for resonators
where all dimensions are greater than ∼47 nm, which
serves as a theoretical minimum cutoff size for bulk phonon
phenomena in single-crystal silicon at room temperature.
We note, however, that Ju and Goodson report average
phonon mean-free paths of ∼300 nm in thin silicon layers
via thermal conductivity measurements [41] and more
recent work provides evidence of a broad spectrum of
phonon mean-free paths in silicon, where phonons with
lph > 1 μm contribute significantly to the thermal conduc-
tivity [42,43].
The (solid) theory curves show that the upper limit on Q

for the WE mode is greater than that of the SE mode, which
is, in turn, larger than the CE mode. This result can be
inferred from the deformation constants α2 derived in
Sec. V. In the WE mode, the structure expands in the x
direction and contracts in both the y and z directions due to
the Poisson ratio; as a result, the dissipation is reduced
compared to the uniaxial strain case because α2WE < 1. In
the SE mode, the solid expands in x and y (and contracts in
z) so that the deformation of the mechanical mode resists
the natural contraction of the solid. The perturbations of x
and y add constructively, leading to increased dissipation
compared to the WE mode. This leads to reducedQ despite
the fact that the SE mode has a higher energy storage
density than the WE mode. In the CE mode, the solid
expands in the x, y, and z directions resulting in the largest
combined perturbation and energy dissipation and the
smallest Q. Our results indicate that the quality factor
limits for silicon at a specified resonant frequency can vary
by more than an order of magnitude when including
anisotropic energy storage and loss (QWE ≈ 2.5 QSE ≈
23.5 QCE).
The Lamé mode has the highest upper bound on Q for

the modes considered in this work, despite having the
smallest energy storage modulus. This is an important
consequence of the condition that shear vibration modes
preserve volume. In a pure-shear vibration, the mode-
Grüneisen parameters for longitudinal phonon branches
do not contribute, because these perturbations would
change the volume of the solid. Effectively, the phonon-
phonon scattering for shear vibrations is limited to the

FIG. 3. Anharmonic and anisotropic f ×Q product limits
versus mechanical resonant frequency at room temperature for
WE, SE, CE, and Lamé modes in [100] silicon. The solid lines
represent the quality factor limits derived in this work [Eq. (24)].
The dashed line isWoodruff’s estimation of theAkhiezer damping
limit and the points are experimental results from high quality
factor resonators surveyed from the literature [26–39]. A number
of recently fabricated resonators have quality factors that exceed
Woodruff’s limit, indicating that the simplified, isotropic expres-
sion does not provide sufficient accuracy. The ungrouped points
are measurements of higher-order harmonics, so the assumption in
this work of uniform strain is not directly applicable.
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volume-preserving transverse phonon branches, which
leads to reduced energy dissipation because fewer
branches, and less phonon energy, are subject to the
relaxation process. This result indicates that Lamé mode
resonators may be the best candidates for ultrahigh Q
silicon resonators. We note that Woodruff’s isotropic
formula actually predicts infinite Q (zero dissipation) for
shear modes because the average Grüneisen parameter
[γ0 in Eq. (1)] for volume-preserving modes is zero.
The limitations of Woodruff’s expression have been
acknowledged in the past [12,16], but we provide a viable
alternative expression that shows that shear-mode vibra-
tions do in fact lead to anharmonic phonon-phonon
dissipation.
The evaluation of the anharmonic and anisotropic

expression derived in this work indicates that Woodruff’s
order-of-magnitude result (dashed line) fails to provide an
upper bound on the quality factor due to Akhiezer damping.
In fact, several silicon resonators with quality factors that
exceed Woodruff’s limit have already been fabricated and
measured in the literature [26–29], indicating the important
need for our more accurate damping model that provides a
robust upper bound on the performance of modern micro-
mechanical resonators.
The experimental points are broadly categorized by

geometry and mode type. The highest Q resonators of a
given type are grouped horizontally, reinforcing the asser-
tion that the f ×Q product is constant for a particular mode
shape, in accordance with Eq. (24). It is important to
convey the fact that the evaluation of Eq. (24) provides an
upper bound on the quality factor, so it only predicts the
performance of devices that are limited by anharmonic
phonon-phonon dissipation, meaning other loss mecha-
nisms including TED, air-damping, and anchor loss have
insignificant contributions. We also note that the the theory
lines in Fig. 3 use the idealized mode profiles in Table I,
and, consequently, do not necessarily predict the exact
behavior of the devices included as experimental refer-
ences, because the actual vibrational modes are compli-
cated functions of the geometry and boundary conditions of
the structure. Additionally, the results here are for intrinsic
silicon, and do not account for variations due to dopant
species and density. The most accurate results can be
obtained if the doping dependencies of second- and third-
order elastic coefficients and thermal conductivity, which
determines τ, are known [44].

VII. CONCLUSION

In this work, we provide an analytical expression for the
quality factor due to anharmonic phonon-phonon dissipa-
tion that explicitly includes the anisotropic energy storage
and loss in a cubic semiconductor or dielectric crystal. We
provide a rigorous derivation of the anharmonic loss using
the phonon BTE and introduce the important simplifica-
tions that must be made in order to facilitate quality factor

calculation using known material parameters. These sim-
plifications are presented and justified in Secs. III–V and
evaluated for the most common vibration modes for [100]
silicon in Sec. VI. Our advanced model combined with
relatively straightforward evaluation allows for meaningful
comparisons between theory and experimental results and
provides insight into the efficiency of different vibrational
modes in the Akhiezer dissipation limit. Despite having
lower energy storage moduli, the Lamé and width-
extensional vibration modes have the highest potential
quality factor, meaning they are the best candidates for
high-performance, Akhiezer-limited resonators. The for-
mulations introduced in this work can easily be extended to
account for doping dependence (when appropriate material
data are available) and integrated into a finite-element
solver to provide the most accurate predictions of phonon-
phonon dissipation for arbitrary vibration profiles, includ-
ing higher-order modes, in cubic crystals.
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