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The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no
dissipation makes them irreplaceable for high-power applications. The development and further improve-
ment of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in
the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in
a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstruc-
tive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in
Dy-doped YBa2Cu3O7−δ. This methodology provides a unique look at the vortex dynamics in the presence
of a complex pinning landscape responsible for the high-current-carrying-capacity characteristic of
commercial HTS wires. Our method demonstrates very good functional and quantitative agreement of the
critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.
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I. INTRODUCTION

Commercial high-temperature superconducting (HTS)
wires are successfully applied in a variety of electric power
equipment for the power grid. Their high-current-carrying
capacity and low dissipation provide multiple advantages
over conventional conductors [1,2]. However, even com-
mercial second-generation HTS wires have much room for
improvement [3,4]. In particular, the critical current in these
YBa2Cu3O7−δ (YBCO) HTS wires decreases rapidly in
magnetic fields, prohibiting them from use in broader
applications such as in superconducting electrical-power
generators that could enable lightweight and efficient
compact systems, e.g., for wind turbines. In this paper,
we present a vortex pinning simulation in a reconstructed
mixed-pinning landscape obtained by three-dimensional
(3D) STEM tomography of an actual section of a Dy-doped
YBCO wire, enabling a new strategy for optimizing the
critical current in HTS wires.
Energy dissipation in superconductors in the presence of

an applied field arises from the motion of vortices driven by
the current-induced Lorentz force [5], thus, restricting their
mobility through pinning by admixed inclusions is the main
route to minimize dissipation and increase the critical
current [6–9]. At present, the quest for higher critical
current in HTS is carried out mostly via the laborious
process of empirical trial and error. (Only few systematic
studies of the critical current dependence on sizes and
densities of defects have been published [10–12].)
However, at the fundamental level, the basic principles
of vortex pinning have been established, at least for simple

idealized situations; see, e.g., Refs. [13–15]. A major
impediment to rapid progress in improving the performance
of superconducting wires for applications is an insufficient
understanding of vortex dynamics in the complex pinning
landscape of real materials.
Vortex pinning is a complicated collective phenomenon

controlled by the interaction of vortices with pinning
centers as well as the flexibility of vortex lines and
intervortex interactions. The analytical treatment of this
problem has been limited to qualitative estimates of the
critical current in simple defect environments such as weak
pinning by large densities of atomic impurities [16] or
strong pinning by low densities of strong inclusions
[17,18]. On the other hand, numerical simulations of vortex
dynamics have been used to provide better insight into the
pinning mechanisms and to improve the quantitative
characterization. Here, the choice among several models
is determined by a trade-off between complexity and
fidelity. For example, the minimal approach is to consider
only the vortex degrees of freedom and treat vortices as
particles (in thin films) or elastic strings (in the bulk). In this
case, the dynamics is described by an overdamped equation
of motion, which takes into account thermal Langevin
forces; see, e.g., Refs. [19–22]. This approach provides a
reasonable description of vortex dynamics at small mag-
netic fields and small densities of pinning sites. However,
vortex-vortex and vortex-defect interactions are treated
only approximately in the Langevin dynamics approach,
and vortex cuttings and reconnections cannot be described
within this model.
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In contrast, the time-dependent Ginzburg-Landau
(TDGL) approach [23,24] provides an ideal compromise
between approximate phenomenological and exact micro-
scopic descriptions of vortex matter. The TDGL equations
automatically account for the flexibility of the vortex lines,
the long-range mutual vortex repulsion, vortex cutting, and
reconnection. Pinning defects of arbitrary shape and size
can be incorporated via spatial modulation of the critical
temperature. Furthermore, the interruption of current paths
by replacement of a current-carrying superconductor with
nonsuperconducting pinning defects is automatically
accounted for by the model. TDGL-based numerical

simulations have been used several times in the past to
study various properties of vortex matter [25–32].
Recent advancements in computational capabilities in

combination with efficient parallel solvers for the TDGL
equation on modern graphics processing units [33] enabled
the simulation of rather large 3D samples with different
pinning landscapes making meaningful predictions for the
behavior of critical currents possible. Practically all theo-
retical and numerical studies of vortex pinning dealt with
idealized models where only one type of pinning center is
typically considered. However, commercial HTS wires
have been engineered with a complex variety of pinning
defects of different sizes and shapes, which have empiri-
cally been found beneficial for high critical current den-
sities. A direct simulation of the vortex behavior in such
mixed landscape is usually not possible because information
about internal structures remains qualitative and scarce. A
recent STEM tomography study [34] has determined the
location and size of inclusions within a superconducting
Dy-doped YBCO compound used for second-generation
HTS wires; see Fig. 1(a). This technique allows for unprec-
edented exactmapping of inclusion sizes and locationswithin
the sample.
Here, we combine the advances in large-scale TDGL

simulations and STEM tomography information to produce
a comparison of the computed critical currents for a
realistic sample with experimental measurements at differ-
ent magnitudes and orientations of the external magnetic
field. We simulate the complete volume and nanoparticles’
pinning structure of the experimental system down to the
resolution limit of the tomography.

II. MODEL

We use TDGL equations as the main tool for the
numerical analysis of vortex dynamics. In the infinite-λ
limit, these equations provide a quantitatively adequate
description of strong type-II superconductors at high mag-
netic fields. In this limit, the Maxwell-type equation for the
vector potential is eliminated, and we concentrate on the
remaining equation for the superconducting order parameter
ψ ¼ ψðr; tÞ,
ð∂t þ iμÞψ ¼ ϵðrÞψ − jψ j2ψ þ ð∇ − iAÞ2ψ þ ζðr; tÞ;

ð1Þ
where μ ¼ μðr; tÞ is the chemical potential, A is the vector
potential associated with the external magnetic field B as
B ¼ ∇ ×A, and ζðr; tÞ is the temperature-dependent
δ-correlated Langevin term [33]. In Eq. (1) written in the
dimensionless form, the unit of length is given by the
superconducting coherence length ξ, the unit of time is
t0 ≡ 4πσλ2=c2, where λ is the London penetration depth, σ
the normal-state conductance, and the unit of magnetic field
is given by the c-axis upper critical field HC2 ¼ ℏc=2eξ2.
Here, −e is the electron’s charge and c the speed of light.

(b) 

(a) 

FIG. 1. (a) 3D STEM tomogram of a Dy-doped YBCO sample
(doping level 0.5) processed by the nonuniform illumination
method superimposed with the reconstructed nanoparticles by the
IMOD software [34]. (b) Snapshot of the TDGL vortex configu-
ration at an applied magnetic field B ¼ 0.1HC2 ¼ 2 T and
external current J ¼ 0.0052JDP ¼ 0.2 MA=cm2. Isosurfaces of
the order parameter close to the normal state are shown in red
and follow both vortex and defect positions. The amplitude of the
order parameter on the backplane of the volume is represented
with a blue (normal) to yellow (superconducting) color.
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In our notations of the TDGL equations, the a-b plane of
the HTS is in the x-y plane of the simulation, and the c axis is
along the z direction.
To account for the anisotropy and layered structure of the

material, we replace the z component of the Laplacian term
in Eq. (1) ð∇z − iAzÞ2ψ with the discrete second derivative
½ψðzþ hzÞe−iAzhz þ ψðz − hzÞeiAzhz − 2ψðzÞ�=γ2h2z , where
γ is the anisotropy factor, and hz is the grid point spacing in
the z direction, hz ≡ Lz=Nz. While similar numerical
discretizations are used for the in-plane directions (x and
y), the discreteness in the z direction is an essential part of
the model. This description is known as the Lawrence-
Doniach model [35]. In this model, the effective interlayer
coupling is controlled by the parameter ξ=γhz. In particular,
the layered structure leads to intrinsic pinning of vortices
for magnetic fields applied in plane.
The dimensionless function ϵðrÞ ∝ TCðrÞ − T vanishes

at the local critical temperature T → TCðrÞ. The explicit
dependence of the critical temperature TCðrÞ on spatial
coordinate r is used to model large-scale inhomogeneities
in the superconductor and is a convenient way to introduce
pinning effects. We use ϵðrÞ ¼ 1 inside the superconductor.
This corresponds to setting the coherence length ξ at a
given temperature as the unit of length. Inside nonsuper-
conducting inclusions, we choose ϵðrÞ ¼ −1.
The total (normal and superconducting) in-plane reduced

current density in units of J0 ≡ ℏc2=8πeλ2ξ is given by the
expression

J ¼ Im½ψ�ð∇ − iAÞψ � − ∇μ: ð2Þ

The maximum theoretical depairing current density is then
JDP ¼ 2=ð3 ffiffiffi

3
p ÞJ0. In addition to Eq. (1), we solve the

Poisson equation ∇J ¼ 0 for the scalar potential μ.
To determine the critical current value JC, we apply an

external current J in the a-b plane (in the x direction) and
ramp it down from the resistive to the superconducting state
of the sample. For each time step, we calculate the electric
field in the direction of the applied current averaged across
the sample, i.e., E ¼ h∇xμi. The I-V curve is then obtained
by averaging the electric field E over the steady states
reached after the transient regime following each current
ramping event. We use a finite-electric-field criterion
EC ¼ 10−4E0 to determine the critical current, where E0 ≡
J0=σ is the electric field unit. In other words, we compare
electrical field E induced by the external current J with a
certain electric field level EC. The defined level is suffi-
ciently low for a reasonable definition of the critical
current. However, it is much higher than the level of
dissipation corresponding to the value of 1 μV=cm, rou-
tinely used as a practical criterion for JC. Therefore, the
simulated critical currents are expected to be somewhat
higher than the experimental ones.
To simulate the anisotropy of the critical current, we

apply and rotate the magnetic field B from the a-b plane to

the c axis of the HTS keeping it perpendicular to the
external current. In the coordinate system of the simulation,
the applied field B ¼ B½0; sin θ; cos θ� can be described by
the gaugeA ¼ xB½0; cos θ;− sin θ�, where B is the absolute
value of the field and θ the angle with respect to the c axis.
In the simulated volume, pinning centers are positioned in

strict accordance with their positions and sizes as measured
by 3D STEM tomography [34] in the experimental sample.
The original reconstruction of the superconductor volume
together with the particles obtained by the segmentation of
the STEM tomogram using the IMOD software are shown in
Fig. 1(a). The defect inclusions are confined within a
rectangular box of size 534 × 524 × 129 nm3. This box
contains 71 almost spherical particles with sizes ranging
from 12.2 to 100 nm. For the numerical analysis, we use a
coherence length ξ ¼ 4.2 nm in the a-b plane, which is
close to the experimental value at 77 K and an anisotropy
factor of γ ¼ 5 suitable for YBCO. We simulate a volume
of size Lx × Ly × Lz ¼ 128ξ × 128ξ × 32ξ, which corre-
sponds to 538 × 538 × 134 nm3 with our choice of ξ.
The nonsuperconducting particles with diameters ranging
from 2.90 to 23.8ξ occupy about 8.1% of the simulated
volume. A typical vortex configuration for magnetic field
B ¼ 0.1HC2 ¼ 2 T is shown in Fig. 1(b), where HC2 ¼
20 T is the c-axis upper critical field at 77 K. Isosurfaces
jψ j2 ¼ 0.1 of the order parameter shown in red in Fig. 1(b)
reveal the vortex positions and the contours of the pinning
landscape. On the back and sides of the simulated volume, a
color code indicates the amplitude of jψ j2.

III. RESULTS

In Fig. 2, we present the dependence of the critical current
JCðBÞ on the magnetic field applied parallel to the c axis of
the HTS (θ ¼ 0°). Experimentally [34], at 77 K and in a
magnetic field ranging from 0.02 to 1.5 T the critical current
follows a power-law dependence JC ∝ B−α with an expo-
nent decreasing with increasing Dy doping α ≈ 0.74 (green
curve) and 0.69 (yellow curve) for Dy doping 0.5 and 0.75,
respectively [37]. At lower magnetic field, B≲ 0.01 T, the
critical current is more or less independent of the external
field, since self-field effects dominate. In this work, we
concentrate on higher-field region B≳ 0.005HC2 ¼ 0.01 T,
where this effect is negligible. The red curve in Fig. 2
presents the simulated dependence JCðBÞ from the
0.5-Dy-doped sample shown in Fig. 1(a), using only the
STEM-resolved nanoparticles. For B ranging from
0.005HC2 (0.1 T) to 0.075HC2 (1.5 T) corresponding to
the range used in the experimental measurements, the
simulated JCðBÞ is also described by a power law but with
the slightly larger exponent, α ≈ 0.80. To show the effects of
defects smaller than the resolution of the tomography, we
also add 1500 spherical particles of size 2ξ (8.4 nm) to the
reconstructed defects. These background inclusions reduce
the exponent of the JCðBÞ dependence to α ≈ 0.68; see blue
curve in Fig. 2.
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In Fig. 3, we present the anisotropy of the critical current
in a tilted magnetic field, always perpendicular to the
applied current. The dependences JCðθÞ on the tilt angle of
the magnetic field θ with respect to the c axis for three
different magnetic fields B are shown. The red curves
correspond to the simulation with only the defects detected
by STEM tomography, while the blue lines correspond to
the simulation with the additional background inclusions.

The anisotropy of JCðθÞ increases with magnetic field, and
at the highest fields, B≳ 0.01HC2, JC is nearly flat at all
angles except for a narrow peak around θ ¼ 90° caused by
the simulated intrinsic pinning due to the layered structure
of the material. The ratio JCð90°Þ=JCð0°Þ varies depending
on the field: JCð90°Þ=JCð0°Þ ≈ 2.9 for B ¼ 0.005HC2
[Fig. 3(a)], approximately 3.9 for B¼ 0.05HC2 [Fig. 3(b)],
and approximately 5.3 for B ¼ 0.1HC2 [Fig. 3(c)]. This ratio
is mainly determined by the Lawrence-Doniach param-
eter ξ=γhz ¼ 0.4.

IV. DISCUSSION

The almost quantitative agreement between the JCðBÞ
exponents in the simulation (0.80) and the measurements
(0.74) is quite striking for this kind numerical simulation of
a real 3D sample. The small discrepancy in the exponents is
most likely related to the presence of background inclu-
sions that are smaller than the resolution of the STEM
tomogram. In fact, we show that those additional small
defects reduce the field exponent in the simulations. Such
small inclusions, that several groups are trying to control
through chemical processes [10,38,39], become especially
relevant at high fields when all strong pinning sites are
already occupied. In this regime, it has been also found in
experiments that their effect is to reduce the exponent of the
field dependence of the critical current [9,40]. Specifically,
the addition of 1500 spherical nanoparticles with diameter
2ξ, occupying only 1.2% of the sample volume, reduces the
exponent from α ≈ 0.80 (red curve in Fig. 2) to α ≈ 0.68
(blue curve). The latter exponent essentially coincides with
the experimental value α ≈ 0.69 for 0.75 Dy doping. The
increased Dy content is expected to create more nano-
particles and, thus, reduce the exponent α. Our simulation,
therefore, appears to correctly reproduce this trend.
Next, we compare the absolute values of the critical

current. In the experiment [34], the critical current density
varies from JC ¼ 2.5 MA=cm2 at magnetic field B≲ 0.1 T
to JC ¼ 0.4 MA=cm2 at B ¼ 1 T, for B applied along
the c axis. From our numerical simulations for these
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two fields, we obtain JC ¼ 0.10JDP ¼ 3.8 MA=cm2 and
JC ¼ 0.021JDP ¼ 0.77 MA=cm2, respectively. Here we
estimate JDP ¼ 37 MA=cm2 using ξ ¼ 4.2 nm and λ ¼
270 nm at 77 K. The absolute values are also in reasonable
agreement (within a factor of 2) with the experiment. This
semiquantitative agreement is quite remarkable considering
that we include only the Dy nanoparticles as pinning
centers but neglect other types of defects present in
YBCO films such as twin boundaries, atomic point defects,
stacking faults, and dislocations. In addition, at least some
of the larger simulated values of JC may be attributed to the
higher critical electric field criterion used for their deter-
mination, as explained in the model section. This suggests
that the nanoparticle defects play the dominant role in the
field dependence of the critical current in the measured
commercial tape.
As shown in Fig. 3(b), the overall shape of the angular

dependence appears consistent with the experiment [34]; in
particular, the flat plateau around θ ¼ 0° (B∥c) is clearly
reproduced. The overall shape of angular dependences is
expected. As the nanoparticles have an isotropic shape and
no c-axis correlated-pinning centers (e.g., dislocations or
twin boundaries) are introduced, there is no sharp peak in
JC for B∥c. The only correlated pinning is the intrinsic
pinning in the a-b plane, which does yield a peak in JC.
In addition, in an anisotropic material, JC is expected to
have smooth angular dependence with the typical angle
θ ∼ arctan γ, as we observe at small field [Fig. 3(a)]. With
increasing magnetic field, the simulated JC anisotropy is
found to increase, a trend also in agreement with experi-
ments [7]. In absolute terms, the simulated anisotropy is
JCð90°Þ=JCð0°Þ ≈ 3.9 for B ¼ 1 T, whereas the experi-
mental anisotropy is somewhat smaller, about 2.2 for 0.5
Dy doping and about 4.5 for the undoped sample. This
discrepancy is easily explained since our choice of
the Lawrence-Doniach parameter ξ=γhz ¼ 0.4 yields
qualitatively reasonable JC anisotropy but needs to be
fine-tuned against experimental measurements of the
intrinsic pinning alone in clean single crystal for really
quantitative agreement. More important, beyond intrinsic
pinning, we do not take into account other types of a-b
plane pinning centers, such as flat precipitates, as they do
not appear in the tomogram. Nonetheless, our model of a-b
plane pinning is reasonable on a qualitative level, and
the simulated angular dependence exhibits the proper
trends for the combined effects of nanoparticles and
intrinsic pinning.
Finally, from a practical point of view, the most relevant

question is probably how “optimal” the observed pinning
configuration is in terms of absolute critical current values.
The question can be answered in part by looking at a recent
study [41] by some of the present authors on monodisperse
spherical defects using the same approach. It was found that
the optimal critical current for such defects in magnetic
fields ranging from 0.05HC2 to 0.1HC2 was achieved for

defect diameters ranging from 3.5ξ to 4ξ and occupying a
volume fraction of about 20%. In the sample measured by
tomography, the nanoparticles occupy a total volume
fraction of 8.1%. The distribution of diameters of these
particles peaks in the range of 3ξ to 7ξ (72% of all particles
are in this range) (see histogram Fig. 5(d) in Ref. [34]).
However, the volume fraction occupied by the above-
mentioned optimal particles is only 0.8%. Even counting
all particles from 2ξ to 7ξ and taking into account the added
background inclusions barely increases the volume fraction
of these pinning centers to 2%, which is about 10 times less
than the optimal density found in Ref. [41]. Most of the
defect volume fraction is actually due to a few large
nanoparticles, which may capture several vortices at a time
[see Fig. 1(b)]. According to our simulations, these large
defects contribute little to pinning and also reduce the
effective cross section of the sample, thus, negatively
affecting the critical current.
In fact, the critical currents found in this study are about

3 times smaller than they are for the optimal pinning
configuration for the monodisperse spherical defects men-
tioned above. This, therefore, suggests that the present
configuration is far from optimal and can be improved by
skewing the distribution of nanoparticles toward smaller
sizes, for instance, 10–20 nm in diameter, and simulta-
neously by raising their density. This is in line with recent
experimental results that find extremely effective pinning
with nanoparticles of size 15–30 nm [38] or 20–80 nm [10]
in YBCO and 8 nm in pnictides [39]. Also, similar results
were observed with smaller irradiation-induced defects
5 nm in size [9,40].

V. CONCLUSIONS

In summary, we numerically simulate the superconduct-
ing vortex dynamics in a real pinning landscape of nano-
particles inside a commercial Dy-doped YBCO tape, using
the same sample size as in the experiment. The positions
and sizes of these nanoparticles are obtained directly
through STEM tomography reconstruction of the sample
nanostructure. We obtain good qualitative and almost
quantitative agreement in the functional dependences and
absolute values of the critical current between simulation
and experiment. One can expect that more detailed STEM
tomography studies, and, in particular, more quantitative
characterizations of pinning centers, should improve the
quantitative agreement. In addition, there is still room to
improve the simulation in terms of the exact treatment of
intrinsic pinning as well as lowering the voltage criterion
towards the one used in the industry. Our results, however,
show a promising pathway for the quantitative analysis and
optimization of vortex dynamics in various realistic defect
environments and physical conditions, using a combination
of 3D tomography analysis and large-scale time-dependent
Ginzburg-Landau simulations.
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