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The efficient internal mixing of colliding droplets upon coalescence is critical to various technological
processes such as colormanipulation in ink-jet printing and the initiation of the liquid-phase reaction of gelled
hypergolic propellants in rocket engines. Recognizing that such processes can be optimized by varying the
impact inertia aswell as employing fluids of non-Newtonian rheology, the head-on collision, coalescence, and
internal mixing pattern between two impacting equal-sized droplets of non-Newtonian fluids is computa-
tionally investigated by using the lattice Boltzmann method. Results show that, with increasing non-
Newtonian effects, droplet deformation and separation following coalescence is promoted for shear-thinning
fluids, while permanent coalescence allowing an extended duration for mixing is promoted for shear-
thickening fluids. Furthermore, large-scale internal mixing is promoted for the colliding droplets with larger
shear-thinning disparity, while coalescence andmixing is synergistically facilitated for the collision between a
shear-thinning droplet and a shear-thickening droplet. The individual and coupled influences of viscosity on
the droplet deformation and impact inertia, internal motion, viscous loss, and merging of the colliding
interfaces leading to the observed outcomes are mechanistically identified and described.
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I. INTRODUCTION

Droplet collision in a gaseous environment is of relevance
tomany natural and industrial processes such as raindrop and
cloud formation, ink-jet printing, spray coating, and spray
combustion. As such, substantial experimental [1–7],
numerical [8–11], and theoretical investigations [12–15]
have been conducted to unravel the rich physics involving
either droplet-droplet collision or droplet impaction on a dry
or wetted surface, leading to the occurrence of such non-
monotonic global outcomes as bouncing, permanent coa-
lescence, and separation subsequent to temporary
coalescence, as the impact inertia increases. Recently,
internal mixing of colliding droplets upon coalescence has
gained considerable interest [16–22], especially for its
practical relevance in the control and design of such
technological processes as color manipulation in ink-jet
printing [23,24], facilitated liquid-phase reaction in propul-
sion systems utilizing gelled hypergolic propellants [25,26],
and property design in materials synthesis [27,28].
Mechanistically, since the extent of internal mixing is

minimal for the head-on collision of two identical droplets
due to the intrinsic symmetry across the plane of collision,
efficient mixing must require breaking the collision sym-
metry by instituting disparities in either the size [16–20]

and/or the rheological properties of the colliding droplets,
such as the surface tension [21] and viscosity [22]. It is
noted that the fuel and the oxidizer are actually non-
Newtonian fluids in gelled hypergolic propellants (GHP),
which are promising fuels for next-generation missile and
rocket engines, while most previous studies on droplet
collision have used Newtonian fluids. It thereby behooves
us to investigate and thereby exploit the collision response
of non-Newtonian fluids, which can be highly nonlinear
and even trend reversing [29] but are much less understood
than Newtonian fluids. In this regard, we note that
Motzigemba et al. [30] experimentally found that the
deformation of colliding droplets of shear-thinning fluids
is substantially larger than that of the Newtonian fluid,
while Focke and Bothe [31,32] numerically found that the
collision dynamics of non-Newtonian droplets can be
reproduced by that of Newtonian droplets with an effective
viscosity. We recognized that droplet collision and internal
mixing can become extremely complicated by considering
the influence of the Weber number (We), the Ohnesorge
number (Oh), the size ratio, and the non-Newtonian
rheology. In a previous work [33], we consider a simplified
yet physically meaningful problem of momentumless drop-
let coalescence of shear-thinning fluids in order to isolate
the effects of rheology from those of impact inertia. It was
observed that the coalescence between a Newtonian and a
non-Newtonian droplet of the same size results in unsym-
metrical, albeit small, mixing due to the momentum
imbalance induced by the shear-thinning effect.
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Specifically, droplet coalescence is accompanied by the
conversion of the surface energy of the merging interface
into the kinetic energy of the internal motion, which is
simultaneously and locally affected by viscous dissipation.
Because of the reduced local viscosity and thereby smaller
viscous dissipation for shear-thinning fluids, the flow in the
non-Newtonian droplet is faster than that in the Newtonian
droplet. As a result, the non-Newtonian liquid with a higher
kinetic energy wedges unto the Newtonian droplet from the
outer edge of the contact surface and eventually wraps
around the Newtonian droplet. The above findings are
encouraging since the droplet internal motion is driven
solely by the surface tension of the initially stationary
droplets, and the local shear rate remains small and mixing
through non-Newtonian effects is limited. Consequently, it
motivates us to expect that, for colliding droplets, non-
Newtonian effects on enhancing internal mixing can be
substantially augmented because of the correspondingly
substantial internal motion generated through the impact
inertia [31].
In view of the above considerations, we comprehensively

investigate the internal mixing dynamics of head-on collid-
ing droplets of non-Newtonian fluids for a wide range of
We numbers, up to O(100). Furthermore, we allow the non-
Newtonian effect to be either shear thinning or shear
thickening, and thereby demonstrate the richness in the
efficiency of internal mixing through manipulation of the
rheological properties. Among the four possible outcome
regimes of head-on droplet collision [3], namely, (i) coa-
lescence with minor deformation, (ii) bouncing, (iii) coa-
lescence with large deformation, and (iv) reflexive
separation, we shall focus on only regimes (iii) and (iv).
This is because regime (i) is similar to that of the merging
of initially stationary droplets [33], while regime (ii) occurs
only within a relatively narrow range of We and does not
result in any substantial droplet mixing.
In the following, the numerical methodology, results and

discussion, and concluding remarks are sequentially pre-
sented in Secs. II through IV.

II. NUMERICAL METHODOLOGY

Since head-on droplet collision is intrinsically symmetric
with respect to the axis connecting the centers of mass of
the two droplets, the computation domain is axisymmetric,
with droplets of diameter D initially spaced 2D apart and
with an equal velocity of U=2 in opposite directions, as
shown in Fig. 1. The Neumann boundary condition of zero
gradients for all the variables is applied on the domain
boundaries except the axis.
The lattice Boltzmann method (LBM) [34,35] is used to

solve the droplet dynamics, with the mixing process
visualized by tracking massless particles in the droplets
by using the fourth-order Runge-Kutta method. Among
the sophisticated LBM multiphase models developed in
recent years [36–40], the phase-fieldmodel proposed byLee

et al. [39,40] is employed in the present study. By imple-
menting the potential form of surface tension and isotropic
finite difference, this model is able to suppress the well-
known spurious current at a relatively low level even for high
density ratios [39,40]. To account for non-Newtonian fluid
effects, all the viscosity-related terms, including the relax-
ation parameters in the collision matrix and other terms in
the evolution equations, are replaced by the shear-rate
dependent viscosity once the local fluid is identified to be
non-Newtonian by the tracking particles in every time step.
Details of the numerical method are given in Refs. [19,33].
Both shear-thinning and shear-thickening fluids are

considered. The Carreau-Yasuda (CY) model is used to
model the shear-thinning fluids:

μð_γÞ ¼ μ∞ þ ðμ0 − μ∞Þ½1þ ðλCY _γÞa�ðn−1Þ=a; ð1Þ

where μ0 and μ∞ are the dynamic viscosity at zero and
infinite shear rates, respectively; λCY is a time constant;n is a
power-law index; and a is a parameter affecting the
transition between the zero-shear rate and power-law
regimes [41]. To model shear-thickening fluids, which are
well known to exhibit shear-thickening rheology at inter-
mediate shear rates and shear-thinning rheology at high and
low shear rates [42], a piecewise function is defined:

μð_γÞ ¼

8>><
>>:

μ0; _γ ≤ _γc;1

μ0 _γ
n1−1; _γc;1 < _γ ≤ _γc;2

μ0 _γc;2
n1−1=½1þ ð_γ − _γc;2Þ1−n2 �; _γ > _γc;2;

ð2Þ

in which _γc;1 and _γc;2 are the critical shear rates, and n1 and
n2 are the power-law indexes. Since the characteristic shear
rates (U=D) in the present study are generally of Oð104Þ s−1
and our simulation results show little relevance with low
shear rates of Oð1Þ s−1, the fluid viscosity is assumed to be
constant rather than shear thinning in the region of _γ ≤ _γc;1
for simplicity.
Noting that the present numerical methodology is not

restricted to any specific non-Newtonian fluid, Eqs. (1) and
(2) are adopted only as representative models to describe
shear-thinning and shear-thickening effects. For the

FIG. 1. Specifications of computational domain and boundary
conditions.
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parameters in Eqs. (1) and (2), μ0 and μ∞ are implicitly
determined by the Ohnesorge number, which is specified as
a varying parameter in the study, and λCY, a, n, n1, n2, _γc;1,
and _γc;2 are related to the extent of the non-Newtonian

flow effect. In Ref. [33], λCY ¼ 61.9 Tosc where Tosc ¼
ðπ=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρlR3=σ

p
is the characteristic oscillation time of the

droplet, and a ¼ 0.557 and n ¼ 0.5 correspond to a typical
carboxymethyl cellulose solution (CMC) [41]. The para-
metric study shows that λCY and n have a similar and
quantitatively moderate influence on droplet coalescence
and internal mixing [33]. Consequently, for simplicity
λCY ¼ 1000 Tosc and a ¼ 0.557 are kept as constants in
all of the simulations, and only n is varied to mimic the
different extents of shear-thinning effects. λCY is increased
so that the shear-thinning effect can be more prominently
demonstrated through n. For shear-thickening fluids, the
critical shear rates _γc;1 and _γc;2 are chosen to be 1 s−1 and
1000 s−1, respectively, according to the typical values of
real shear-thickening fluids [42], n2 ¼ 0.8 is kept as a
constant, and n1 is varied to realize the different extent of
the shear-thickening effect. In addition, in order to quantify
the extent of the non-Newtonian flow effect, n0 is defined as
n0 ¼ 1 − n for shear-thinning fluids and n0 ¼ n1 − 1 for
shear-thickening fluids, with larger n0 corresponding to the
stronger non-Newtonian flow effect.
The colliding droplets, while possessing different non-

Newtonian flow effects, are assumed to have identical
density ρl and surface tension σ. In addition, dilution of the
non-Newtonian flow effect through mass diffusion is
neglected because the Peclet number is generally up to
Oð105Þ if the characteristic velocity and length are chosen
to be the relative velocity of the droplets and the droplet
diameter, respectively.
It is further noted that droplet collision at nonvanishing

We spans a wide range of scales, particularly those relevant
for the intervening gas flow between the impacting surfaces
and their subsequent merging triggered by the van der
Waals force [12]. The occurrence of coalescence then
depends on whether or not the clearance between the
impacting surfaces can reach a critical range of distance
before the droplets lose their impact inertia. Within the
critical range of typically tens of nanometers, the van der
Waals force gradually dominates over other forces and
eventually causes the interfaces to merge. The gas-film
thickness could vary by 3–4 orders of magnitude during
this final stage of transition, and is beyond the present
computational capacity for resolution.
With the above considerations, and following the

common numerical treatment for many interface-capturing
methods such as volume of fluid and level set methods, the
artificial resolution of the gas-liquid interface on a few
mesh grids is used. It is further noted that the main idea of
the present LBM multiphase model actually stems from the
phase-field method, which employs a phase-field variable
to represent the concentration of the entire field [19,39,40].

Based on minimizing the free energy, the phase-field
variable satisfies the Cahn-Hilliard equation, and the
interfacial dynamics can be automatically captured without
any artificial treatment. When two interfaces are suffi-
ciently close to each other, an attractive force will develop
automatically by the free energy to trigger the interface
coalescence. Therefore, the phase-field method can be
considered as a subgrid model to account for the physics
of short-range molecular force, which occurs at much
smaller scales [43,44].
In terms of the numerical resolution in the present study,

the diffuse interface in LBM simulation is kept to 5 lattice
spacing, and the droplet diameter is set at 200 lattice
spacing to produce grid-independent results. Furthermore,
sufficient tracking particles, i.e., 5 per lattice spacing in
both axial and radial directions, are added in the droplets to
visualize the mixing process. A typical simulation with the
computational domain of 1.5D ðradialÞ × 5D ðaxialÞ gen-
erally takes 100–150 hours on an Intel 2.67 GHz Westmere
CPU. It is emphasized that although the present resolution
is insufficient to resolve the intervening gas flow, the key
physics during the drainage and coalescence process is
included in the simulation. This physics involves two
competitive effects, namely the pressure rise in the gap
tending to repel the droplets, and the attraction forces
generated from free energy tending to attract the interfaces.
Moreover, as Chiappini et al. [45] demonstrated, the lack of
mass conservation of the present model is very minor and
produces negligible effects, and as such the mass of the
droplets is well conserved in all the tested cases of the
present study. The maximum magnitude of the spurious
current, which can only be evaluated through static droplet
test, is on the order of 10−5 in lattice unit and is
significantly smaller than the characteristic velocity of
the problem, where the relative velocity between the
droplets is generally on the order of 10−2 in lattice unit.
Therefore, the effect of the spurious current is believed to
be negligible in the present study.

III. RESULTS AND DISCUSSION

For equal-sized droplet collision in a gaseous environ-
ment, the controlling parameters are the We number,
We ¼ ρlU2D=σ, and the Oh number, Oh ¼ μl=

ffiffiffiffiffiffiffiffiffiffi
ρlσD

p
.

Since the viscosity of non-Newtonian fluid is not constant,
the Ohnesorge number is based on the viscosity at zero
shear rate, while the effective Oh number Oheff is defined
based on the viscosity at the characteristic shear rate _γc ¼
U=D for comparison of different shear-rate-dependent
cases. In addition, time is nondimensionalized through
T ¼ tU=D. Furthermore, the density and viscosity of the
gas are those of atmospheric air so that the liquid-gas
density and viscosity ratios are too large to have any
significant influence on the droplet deformation [5,12], and
as such their effects will not be studied.
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A. Experimental verification

The present numerical methods have been validated for
droplet coalescence including internal mixing at small We
[33]. To further validate the numerical method, simulation is
first conducted on Newtonian droplet collision at large We.
Figure 2 compares the simulation and experimental [3]
results of tetradecane droplet collision at Oh ¼ 0.0265
and We ¼ 37.2. This particular case is chosen because it
is close to the boundary between coalescence and reflexive
separation, with the prominent feature of the generation of a
satellite droplet after separation occurs. As shown in Fig. 2,
the simulation agrees quantitativelywell with the experiment
in both the droplet deformation and the satellite droplet
generation. An interesting observation is that a small bubble
is trapped in the coalescedmass atT ¼ 0.77, which indicates
that interface merging takes place at the circular rim rather
than at the center. The bubble gradually disappears and is no
longer observed at T ¼ 2.03 since it is too small to be
preserved from unavoidable numerical dissipation.
The above observation substantiates the adequacy of

the present method in resolving the intervening gas flow
and capturing the essential characteristics of droplet

coalescence at large We. It is also noted that successfully
capturing the bubble entrapment upon droplet coalescence
usually demands extremely fine mesh for VOF- or level-
set-based simulation methods.
To further validate the method in simulating the collision

of non-Newtonian droplets, the experimental results by
Motzigemba et al. [30] are compared. As shown in
Fig. 3(a), the measured viscosity of the CMC water solution
fits well with the modified power law as μð_γÞ ¼
μ0=ð1þ μ0 _γ

1−n=KÞ, in which μ0 ¼ 0.095 Pa s, n ¼ 0.77,
and K ¼ 1.17. As shown in Fig. 3(b), the present
simulation agrees reasonably well with the experiment in
the early, radial expansion stage (T < 8) of droplet defor-
mation as well as the state of the maximum deformation.
However, droplet deformation at the late, radial recession
stage (T > 8) is overshot numerically even if accounting
for the 10% uncertainty in the experimental measurement of
the initial droplet diameter. It is noted that the VOF
simulation by Focke and Bothe also shows significant
deviation from the experiment [31]. Their explanation of
the deviation is that the measurement of the droplet

FIG. 2. Experimental verification of Newtonian (tetradecane)
droplet collision at Oh ¼ 0.0265 and We ¼ 37.2: (a) simulation;
(b) experiment [3].

FIG. 3. Experimental verification of non-Newtonian (CMC
water solution) droplet collision at Oh ¼ 0.565, We ¼ 766:
(a) experimental values and fit-curve of the liquid viscosity;
(b) comparison of the simulation and experiment on the radial
deformation. The experimental data are extracted from
Refs. [30,31], and the VOF simulation result is extracted from
Ref. [31].
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deformation during the radial recession stage may be under-
estimated due to rotation of the droplet in the experiment, as
shown in Fig. 2(b) in Ref. [30].
Having largely validated the computational results

against the experiments on the deformation of colliding
non-Newtonian droplets [30] as well as on the collision
dynamics [19] and internal mixing [33] of Newtonian
droplets, we proceed with reasonable confidence with
the simulation of the collision and internal mixing dynam-
ics of non-Newtonian droplets.

B. Collision of identical droplets of shear-thinning fluid

We first study the collision of droplets of shear-thinning
fluid. Figure 4 shows the time sequence of droplet collision
at We ¼ 40, in which case (a) is for Newtonian fluid as the
benchmark, and cases (b)–(e) are non-Newtonian fluids
with a different extent of shear thinning. For the benchmark
case (a), the Ohnesorge number is set as Oh ¼ 0.0265 in
accordance with the tetradecane experiment of Qian and
Law [3]. For the shear-thinning cases (b)–(e), it is set as
Oh ¼ 0.795, which is 30 times larger than that of case
(a) because shear-thinning non-Newtonian fluids are usu-
ally much more viscous than Newtonian fluids in quies-
cence; the local viscosity and the Carreau-number
(Cr ¼ _γλCY) distributions are plotted on the upper and
lower halves of the subfigures, respectively. It is seen
that, for the non-Newtonian fluid with the least shear-
thinning effect [case (b), n0 ¼ 0.3, Oheff ¼ 0.1075), droplet
deformation is greatly suppressed by viscous dissipation

due to the significantly higher initial viscosity compared
with the Newtonian fluid. With the increasing extent of
shear thinning, the shear rate of the droplet internal motion
becomes increasingly effective in reducing the local vis-
cosity, and the droplet tends to deform more substantially.
Besides, the Cr number is generally much larger than unity
during the entire process of droplet collision, indicating that
the non-Newtonian flow effect, rather than simply viscos-
ity, always plays a role in the present problem.
For the final outcome of droplet collision, permanent

coalescence is preferred to facilitate droplet mixing. When
reflexive separation occurs, mixing is possible only within
the satellite droplet because of symmetry, as the case shown
in Fig. 4(a). For cases (b)–(e), the promotion of permanent
coalescence is the result of increased viscosity instead of
shear thinning, which shows only a moderate influence on
droplet deformation at We ¼ 40.
To further quantify the shear-thinning effect on the

boundary separating coalescence and reflexive separation,
a parametric study is conducted for 0.3 ≤ n0 ≤ 0.6. In
Fig. 5(a), for which Oh∞ equals to the Oh of the benchmark
Newtonian fluid, the dashed line, representing the critical
transition We for the non-Newtonian droplets, lies above
the dotted horizontal line, which represents WeCr ¼ 36 of
the Newtonian droplets. This indicates that reflexive
separation of non-Newtonian droplets is harder to occur
than that of Newtonian droplets as long as shear thinning is
not sufficiently strong to substantially reduce Oh∞.
Furthermore, if shear thinning is strong enough, as shown

FIG. 4. Comparison of droplet col-
lision ofNewtonian and shear-thinning
fluid atWe ¼ 40: (a) Newtonian fluid,
Oh ¼ 0.0265; (b)–(e): shear-thinning
fluid, Oh ¼ 0.795, Oh∞ ¼ 0.0265,
(b) n0¼0.3, Oheff¼0.1075, (c) n0¼
0.4, Oheff ¼ 0.0648, (d) n0 ¼ 0.5,
Oheff ¼ 0.0446, (e) n0 ¼ 0.6, Oheff ¼
0.0350.
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in Fig. 5(b) where Oh∞ can be reduced to be smaller than
the Newtonian Oh ¼ 0.0265, the non-Newtonian droplet
can even separate at smaller We. This result suggests that
highly shear-thinning propellants should be avoided in
GHP rocket engines because coalesced fuel-oxidizer drop-
lets of a high shear-thinning effect tend to separate easily.

C. Collision of droplets of different
shear-thinning fluids

Considering that large-scale internal mixing for the
identical droplet collision is inherently inhibited by sym-
metry, disparity in shear thinning may break the symmetry
to facilitate internal mixing. Figure 6 shows the collision of
droplets of the same size but different shear-thinning fluids,
in which the “blue” droplet has a stronger shear-thinning
effect (n0 ¼ 0.6) than the red one (n0 ¼ 0.4), with other
physical properties remaining identical, as Oh ¼ 0.795,
Oh∞ ¼ 0.002. It is seen that for case (a) with a relatively
small We ¼ 20, the droplets stay pernamently coalesced
with the blue droplet wrapping around the red one.
Compared with the cases of identical droplets, the region
bounded by the liquid-liquid contact surface is substantially

enlarged, especially during the axial deformation period of
T ¼ 4.80–8.40. With a further increase of the impact
inertia, reflexive separation starts even at We ¼ 40 due
to shear thinning. However, mixing is also significantly
improved due to symmetry breaking so that the colliding
droplets have penetrated into each other. Take case (b) for
instance: after separation at T ¼ 12.73, the mass fraction
from the original red droplet is 20.4%, 59.4%, and 80.2%
(from left to right) in the three child droplets, respectively.
To further quantify the extent of mixing, a local mixing

index at each grid point ðx0; y0Þ is defined by

ϕ ¼ NR

NR þ NB
¼

8>><
>>:

0; if mass from the blue droplet

0–1; if mass from both droplets

1; if mass from the red droplet;

ð3Þ

in which NR and NB are the number of tracking particles
within a grid cell, i.e., ðx0 − Δx=2Þ ≤ x < ðx0 þ Δx=2Þ,
ðy0 − Δy=2Þ ≤ y < ðy0 þ Δy=2Þ, from the red and blue
droplets, respectively. Since mixing occurs only for 0 <
ϕ < 1 and maximizes at ϕ ¼ 0.5, a global mixing intensity
can be defined as [46]

Φ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR ð2ϕ − 1Þ2dV

V

r
; ð4Þ

where the second term on the rhs of Eq. (4) represents the
covariance ofϕ over thedroplet volumeV. Consequently, the
mixing intensity of the colliding droplets shown in Fig. 6(b)
can be compared with that of a pair of colliding droplets with
Oheff ¼ 0.0262 and identical shear-thinning effect
n01 ¼ n02 ¼ 0.5344. As shown in Fig. 7, after the droplets
coalesce at tU=D ≈ 1.0, the mixing intensity increases with
the radial expansion of droplet contact area, showing little
difference for the two cases during this stage.However, as the
merged droplet recedes after maximum deformation, the
facilitation by symmetry breaking on internal mixing
becomes prominent as the result of the enhanced mass
interpenetration. Therefore, if the fuel and the oxidizer are
gelledwith a different extent of shear thinning, the ignition of
GHP rocket engines could be facilitated because even though
the coalesced fuel-oxidizer mass would finally separate, the
child droplets can still be well mixed.
To unravel the underlying physics of the above result, the

evolution of the flow field and the viscosity distribution of
case (b) in Fig. 6 is chosen for further study. As shown in
Fig. 8, the droplet collision process can be divided into
three stages, respectively, corresponding to radial expan-
sion (T < 2.83), radial recession (T ¼ 2.83–4.53), and
axial elongation (T > 4.53). Specifically, during the radial
expansion stage, the coalesced droplet is driven by the axial
counterflow, and the viscosity in the blue liquid is reduced
more by the stronger shear-thinning effect. Therefore, the

FIG. 5. The outcome of non-Newtonian droplet collision with a
different extent of the shear-thinning effect: (a) Oh ¼ 0.795,
Oh∞ ¼ 0.0265; (b) Oh ¼ 0.795, Oh∞ ¼ 0.002.
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blue liquid tends to wedge slightly into the red one from the
radial rim (T ¼ 1.70), as the result of smaller viscous
dissipation and larger flow momentum in the blue liquid.
As the droplet further expands and then recedes, wedging
penetration of the blue liquid around the rim keeps growing
and becomes sufficiently manifest in the radial recession
stage (T ¼ 3.68). It is also noted that, in the present

axisymmetric computational domain, even a visibly slight
mixing in the rim corresponds to considerable amount of
mass exchange. Therefore, during the axial elongation
stage, the mixing becomes increasingly prominent as the
droplet stretches, and finally results in the well-mixed child
droplet after separation occurs.

D. Collision of identical droplets of
shear-thickening fluid

We next consider the collision of identical droplets of
shear-thickening fluid. Figure 9 shows the collision
sequence for We ¼ 100 and Oh ¼ 0.1. For Newtonian
droplet collision at the same Ohnesorge number, the critical
Weber number separating the coalescence and separation
regimes is around 80 [3]. For shear-thickening fluid, the
droplet deformation is significantly suppressed due to the
increasing viscous dissipation with the extent of shear
thickening. Even at the low shear-thickening effect of
n0 ¼ 0.1, reflexive separation does not occur at
We ¼ 100. As this effect increases, separation is hardly
possible since the excessive kinetic energy of the droplet
internal motion is rapidly dissipated during the radial
deformation stage. Extensive simulation shows that reflexive
separation does not occur up to We ¼ 500 for the case of
n0 ¼ 0.3. Consequently, shear-thickening fluid holds

FIG. 7. Comparison of the mixing intensity between colliding
droplets with idential shear-thinning effect (n01 ¼ n02 ¼ 0.5344,
Oheff;1 ¼Oheff;2 ¼ 0.0262) and with different shear-thinning effect
(n01 ¼ 0.6, Oheff;1¼0.0108; n02¼0.4, Oheff;2¼0.0415) atWe¼40.

FIG. 6. Droplet collision of differ-
ent shear-thinning fluids (blue drop-
let: n0 ¼ 0.6, Oheff ¼ 0.0415; red
droplet: n0 ¼ 0.4, Oheff ¼ 0.0108)
at Oh ¼ 0.795, Oh∞ ¼ 0.002:
(a) We ¼ 20; (b) We ¼ 40;
(c) We ¼ 60; (d) We ¼ 80.
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potential in promoting the permanent coalescence of collid-
ing droplets, although the “wedging” motion of the droplets
is not likely to happen with significant viscous stress.

E. Droplet collision of shear-thinning
and shear-thickening fluids

In view of the above result that, upon collision, the
disparity in the shear thinning promotes strong mixing by
breaking the symmetry while that of shear thickening tends
to retain coalescence, it is then of interest to explore
whether the collision between a shear-thinning droplet and
a shear-thickening droplet could simultaneously suppress
separation and facilitate mixing. In order to demonstrate the
distinct difference in the non-Newtonian flow effect and
the high viscous dissipation in the shear-thickening fluid at
the same time, we have adopted a strong shear-thinning

droplet with Oh∞ ¼ 0.002 and n0 ¼ 0.6, and a strong shear-
thickening droplet with n0 ¼ 0.3, while keeping their Oh
number the same, at Oh ¼ 0.1.
As shown in Fig. 10, the collision between the shear-

thinning and shear-thickening droplets does result in the
simultaneous suppression of separation and enhanced mix-
ing. It is seen that even though the droplet sizes are the same,
symmetry is broken to a larger extent than the cases involving
different shear-thinning fluids, shown in Fig. 6. During the
radial expansion stage, the shear-thinning droplet tends to
spread extensively over the shear-thickening droplet, form-
ing a concavity on the shear-thickening droplet side [e.g.,
T ¼ 4.38 in Fig. 10(c)]. During the stages of radial recession
and axial elongation, droplet deformation is substantially
suppressed due to the presence of the shear-thickening fluid,
and reflexive separation occurs only on the side of the shear-
thinning fluid as We exceeds 200.

FIG. 9. Droplet collision of identical
shear-thickening fluids at Oh ¼ 0.1
and We¼100: (a) n0¼0.1, Oheff¼
0.078; (b) n0 ¼ 0.2, Oheff ¼ 0.155;
(c) n0 ¼ 0.3, Oheff ¼ 0.309.

FIG. 8. Evolution of the flow field
and the normalized viscosity distri-
bution of case (b) in Fig. 6.
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In terms of internal mixing in the coalesced mass, it is of
interest to observe the nonmonotonic regimes of partial
wrap up, full entrapment, and partial wrap up again with
increasingWe. Specifically, at relatively lowWe [Fig. 10(a)],
the axial concavity is shallow and is able to restore quickly;
consequently the shear-thinning droplet just partially wraps
up the shear-thickening one.At higherWe [Fig. 10(b)], radial
expansion is more significant and the concavity is deeper.
During the radial recession stage, the restoration of the axial
concavity on the shear-thickening side is slower due to
substantial viscous damping,while that on the shear-thinning
side is much faster so that the shear-thinning fluid wraps up
the entire shear-thickening fluid. Extensive simulation shows
that this phenomenon of confluent shear-thinning fluid
occurs at a wide range of We ¼ 75–125. By further
increasingWe [Figs. 10(c)–10(e)], the droplet expands more
widely in the radial direction, and the axial concavity is able
to be restored while the radial rim is still shrinking.
Consequently, the shear-thickening fluid can no longer be
fully wrapped up by the shear-thinning fluid.

However, different from the partial wrap-up regime at
relatively low We, the fluids interpenetrate remarkably in
the partial wrap-up regime at higher We. As shown in
Fig. 11, during the radial expansion stage, the distinct
disparity in the non-Newtonian flow effect causes the
highly nonuniform viscosity distribution of the fluids.
Because of the greatly reduced viscous dissipation
and thereby the associated higher momentum, the
shear-thinning fluid not only wedges into the shear-thick-
ening fluid from the outer edge, but it also drives the shear-
thickening fluid to form a shear layer in the rim region. As
the droplet recedes and then elongates, the two-prong
structure also develops as a result of the intensive axial
stretch from the shear-thinning fluid. As illustrated in
Fig. 12, the mixing intensity for We ¼ 200 is significantly
larger than that in the stage of droplet radial expansion as
well as subsequent stages. This result indicates that the two-
prong structure increases the liquid-liquid contact area and
thereby enhances mixing during the radial recession and
axial elongation stages.

FIG. 10. Collision between a shear-
thinning droplet (blue, Oh¼ 0.1,
Oh∞ ¼ 0.002, n0 ¼ 0.6) and another
shear-thickening droplet (red, Oh ¼
0.1,n0 ¼ 0.3): (a)We ¼ 50; (b)We ¼
100; (c) We ¼ 150; (d) We ¼ 200;
(e) We ¼ 250.

FIG. 11. Evolution of the flow
field and the normalized viscosity
distribution of case (d) in Fig. 10.
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IV. CONCLUDING REMARKS

The head-on collision between equal-sized droplets of
non-Newtonian fluids is computationally studied by using
the lattice Boltzmann method coupled with tracking mass-
less particles in the droplets by using the fourth-order
Runge-Kutta method, and employing the Carreau-Yasuda
model and a piecewise function to describe the shear-
thinning and shear-thickening effects, respectively.
The shear-thinning fluids, whose viscosity is usually

high at a zero shear rate, while it decreases with an
increasing local shear rate, show a complex influence on
the droplet dynamics in terms of coalescence and separa-
tion and internal mixing. If the extent of shear thinning is
small, identical shear-thinning droplets behave similar to
their Newtonian counterparts with a larger effective vis-
cosity, and are not likely to separate due to the increased
viscous loss and hence reduced kinetic energy of the
internal motion. However, unbalanced large-scale internal
motion can be generated when the droplets are of an
unequal extent of shear thinning, and will persist within the
child droplets produced upon separation of the merged
mass due to the difference in the reduced viscous loss. The
prevalence of such internal motion promotes mixing. For
shear-thickening fluids, results show that the increased
viscous loss suppresses droplet separation, as expected, and
as such affords extended duration for internal mixing.
With the understanding that the disparity in non-

Newtonian flow effect can break the symmetry of equal-
size droplets with identical physical properties, and that the
shear-thickening effect induces high viscous dissipation,
the collision between a strong shear-thinning droplet and a
strong shear-thickening droplet is found to simultaneously
enhance mixing and suppress separation. Rich phenomena
of droplet mixing are observed, including either partial or
complete wrapping of the shear-thickening fluid by the
shear-thinning fluid, depending on the Weber number.
The present results are expected to be of value in

designing GHP propulsion systems as well as various
ink-jet printing systems whose performance largely relies

on the mixing of discrete liquid phases. Specifically, a few
design suggestions can be made to promote the ignition
stability of GHP rocket engines: (i) Highly shear-thinning
propellants are not favored since the coalesced fuel-
oxidizer droplets of a strong shear-thinning effect tend to
separate easily. (ii) Shear-thickening propellants may be of
value for droplet collisions with a large-impact inertia since
they tend to suppress droplet separation while the impact
inertia promotes it. (iii) disparity in the non-Newtonian
rheology between the fuel and the oxidizer, through either
gelling them with a different extent of shear thinning, or
gelling one of them for shear thinning while the other for
shear thickening, may improve the internal mixing.
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