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Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations
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We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true
condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the
interface are discussed, and we demonstrate how these designer Scholte waves are controlled by the
geometry as opposed to the material alone. The linear surface wave dispersion is modulated by the crystal
filling fraction such that the degree of confinement can be engineered without relying on narrow-band
resonances but on effective stiffness moduli. In the same context, we provide a theoretical recipe for
designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations
can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design
recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated, and
we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz
to megahertz range. Analytical predictions agree entirely with full wave simulations showing how
elastodynamics can mimic quantum-mechanical condensed-matter phenomena.
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I. INTRODUCTION

The boost experienced by acoustic and elastic (pho-
nonic) metamaterial research during the past years has
been driven by the ability to sculpture the flow of sound
waves at will. Motivated by the desire to engineer
artificial structures in the form of metamaterials and
the quest to map quantum-mechanical phenomena onto
classical waves such as sound leads to many possibilities
in material designs for control of wave motion and the
potential for engineering applications. Once the specific
wave physics is understood, one may think of its trivial
extension to other types of waves. A wave, however, is
simply not just a wave. Mechanical waves, which are
elastic vibrations, can have one longitudinal polarization
(like for acoustic sound waves in a gas or fluid) and
two orthogonal transverse polarizations (like usually for
electromagnetic waves). The freedom of three polariza-
tion directions, however, makes elastodynamics a rich
discipline when trying to map wave physics from acous-
tics and electromagnetics (EM) to mechanical systems
and vice versa [1,2].

In the past, structured phononic devices have provided
rich insight to visualize with sound waves the classical
analogues of a wide variety of quantum phenomena in
atomic and condensed-matter physics. Many recent optical
key findings have also inspired researchers to seek for their
acoustic counterpart. As we mention above, vibrations,
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sound, and light propagate and interact by their own
principles, and for this reason, the mapping between various
systems might not always be possible.

Bloch oscillations (BOs) refer to wave packets that
oscillate rather than translating through a crystal. This
effect takes place when an electron is accelerated or slowed
down by an external dc electric field up to the point of
reaching the Brillouin edge [3]. The external field creates
a gradient of the lattice potential that is responsible for
the BO caused by multiple scattering, which is transferable
to other types of waves and equivalent systems such as
semiconductor superlattices [4], atomic systems [5,6], and
photonic crystals [7-9]. Introducing a linear gradient of the
effective refractive index in a plasmonic crystal is the
optical analogue of a weak linear gradient of a lattice
potential responsible for BOs [10,11]. Recent findings
demonstrate how ultrasonic superlattices with a gradient
of the cavity thicknesses can induce acoustic BOs [12—14].
Along a similar line, experimental observations of
Wannier-Stark ladders and BOs were reported for longi-
tudinal polarized elastic waves in porous silicon structures
[15,16]. In the same context, we need also to mention that
BOs have been experimentally detected in SAW cavities
and phononic semiconductor multilayers [17,18].

In the microwave and terahertz regime, EM waves do not
penetrate deep into the metal and are largely reflected. In
order to mimic an effective penetration in the form of a
decaying EM field into the metal equivalent of a surface
mode, the perfect electric conductor is structured or pierced
by apertures smaller than the vacuum wavelength [19,20].
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Recently, several works have shown that an equivalent
acoustic surface mode running along a structured surface
can be engineered and tuned by solely controlling the
aperture size and material [21-24]. Other exciting effects
such as the realization of acoustic parity-time symmetry
and topological properties show that a vast amount of
condensed-matter effects may be mapped to acoustics
pushing this classical entity as close as possible to the
complex realm of quantum mechanics [25-27].

In this article, we show how some of these ideas can be
mapped to elasticity. As outlined above, mechanical waves
are, in general, more complex as compared to EM and
acoustics radiation making the transfer a nontrivial task. In
combination with analytical insights and numerical compu-
tation, we derive geometrically induced dispersion relations
of surface states between a fluid and solid-crystal half-space.
The crystal under study is a 1D laminate material containing
two stacked solids. This basis will later serve for under-
standing weakly coupled plate modes of varying thickness,
akin to the oscillatory motions of electrons under the
influence of a static electric field—mechanical BO.

II. DESIGNER SCHOLTE WAVES

The variety of different surface waves is broad depending
on the materials surrounding the interface. Whether a
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solid-solid, fluid-fluid, or solid-fluid case is considered,
waves have to attenuate or decay away from that interface
along which it is confined. The excitation can be realized
in many ways ranging from thermoelastic excitation to
momentum-matched coupling [28-33]. Mechanical surface
waves exist with different specific properties and are
labeled Rayleigh, Scholte, and Stonely waves, just to
mention the classical ones [34]. Their characteristics, that
is, decay length or propagation speed, depend on the
materials involved and are, therefore, not easily altered.
However, in structured or layered media, the story is
different. Here, one is able to tune surface waves dictated
by the geometrical features [23,24]. Scholte waves, as an
example, exist at a fluid-solid interface from which they
decay as evanescent waves. In fact, this structure behaves
very similarly to surface plasmons at a metal-dielectric
interface. In order to acquire theoretical insight, we build
an analytical model and conduct direct comparisons with
rigorous numerical data. Consider a laminate material as
depicted in Fig. 1(a). This uniaxial anisotropic structure
exhibits hexagonal symmetry and is commonly labeled as
horizontal transverse isotropy (HTI) media. On a macro-
scopic scale, one can construct such a structure by stacking
two elastic solids along the x axis. No need to mention that
the length scales need to be a fraction of the mechanical
wavelength of interest to elucidate a metamaterial treatment.

FIG. 1. Mechanical response of lami-
nate materials. (a) Sketch of the basic
structure composed of two stacked solids
(aluminum and epoxy) of width 4; and £,
within the unit cell a. (b) The isofre-
quency contours are plotted for a filling
fraction FF = 0.5. (¢) Same as before,
S now, however, the frequency is fixed
a/ly; = 0.01. (d) Effective stiffness as
a function of filling fraction: right axis is
normalized to the inclusion (medium 1)
stiffness c},, whereas the left axis is
normalized to the background (medium 2)
stiffness c?,.
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FIG.2. Tunable designer Scholte waves.
(a) A water-HTI medium interface is
formed by various values of the crystal
filling fraction, to which surface wave
dispersion relations are plotted. The dot-
ted line represents the sound line in water.
Inset: Here we plot the isofrequency con-
tours for both real and imaginary
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To represent the long-wavelength regime, we scale with the
transversal wavelength (1), = 27/ko,) of the background
solid, medium 2. Any material can be chosen, and we take
medium 1 (2) to be aluminum (epoxy) in the computed
examples [35]. If mechanical vibrations are considered to
take place only within the x-z plane (see Appendix A for
details), a homogeneous linear system with the eigenpola-
rizations (U,, U,) can be expressed,

Ilo:]-o

(1)

from which all propagating modes can be computed.
In passing, the solid mass density p and the four independent

kik.(c13 + css)
csski + 33k — po?

2 2 2
criky + ¢sskz — pw

kyk,(ci5 + cs5) U,

x/a

0.08

50

stiffness elements c;; are effective ones, whereas k, and k;
are the wave vectors along their respective axes. To answer
the question whether we are able to derive analytical
expressions for designer Scholte waves, we compute iso-
frequency contours as depicted in Fig. 1 for propagating
modes where numerical and analytical treatments are com-
pared. In Appendix A, the Christoffel equation is derived
with effective parameters for a stacked HTI material as seen
in Fig. 1(a). When writing out this equation, we arrive
at Eq. (1), which when solved gives two solutions. The
numerical method is based on plane-wave expansions along
the periodicity direction and a harmonic wave along the
perpendicular (z axis) direction leading to an eigenvalue
system in k_; see Appendix B. In what follows, we compare
these two techniques by varying the normalized frequency
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Ao, and the filling fraction (FF) while determining the
relation between k, and k,. We obtain two solutions, as
can be seen in Figs. 1(b) and 1(c) that converge perfectly
well with the numerical data for all selected cases. However,
up to the limit where 4y, = 0.1, that is, at the border of the
long-wavelength regime, the numerical results predict more
solutions that cannot be found with Eq. (1). Hence, for
smaller frequencies, but for all possible filling fractions,
our results confirm that the analytical treatment is exact.
This finding lets us safely plot [see Fig. 1(d)] the effective
stiffness moduli over the filling fraction where we normalize
with ¢, in each medium. Most important, this figure depicts
how the mechanical properties can be tuned, but also, as
expected, how ¢;; = ¢33 when both isotropic limits (FF = 0
and FF = 1) are approached. Knowing the limitations, we
can proceed with a fully analytical treatment into designer
(spoof) mechanical surface waves of the Scholte type.

We have two solutions to Eq. (1) as we have seen before,
and the same is true if all waves along z are evanescent;
hence, as expressed with Eq. (C1), we seek surface
wave solutions. With some material-specific definitions
@ =c33+css, and a3 = cyjez3 — -
2c13¢55, the zero determinant of Eq. (C1) lets us solve
for the wave numbers along the axis of wave decay:

=4
k2 _ _ii rll a3 ) (2)

a 2(11 20{1

Q] = C33Cs5,

Z

In Eq. (2), we define n; = appw?® — K2a3, 11, = pw® — kcyy,
and 73 = pw’ — k2css. Furthermore, we label the two
solutions of k. by k, = (ky, k). Purely bound modes, as
illustrated in the inset of Fig. 2(a), can be generated if
the HTT structure is driven by an evanescent wave coming
in from the fluid region that we choose to be water. As we
elaborate in Appendix C, an effective response mimicking
this behavior is achieved through the structured solid
permitting acoustic and mechanical waves to decay in
their respective regions. Consistent with the latter results,
we take the HTI medium to be an aluminum-epoxy
composite, although any solid can do the job. Imposing
the right boundary conditions implies a dispersion relation
for designer Scholte waves that entirely is controlled by the
macroscopic composition

*po _ _F2M1 —I'M,

_ , (3
p oM, — 1M, )

where T, =k.C;;—k,7,C3z and M, =k, + k,z,.
Equation (3) gives rise to a linear dispersion of mechanical
surface waves, which we demonstrate numerically in the
following. Equation (3) is real and does not, therefore, add
further numerical difficulties in the computation. Again, we
modify the filling fraction, and as we see in Fig. 2(a), we
obtain dispersion relations outside the sound cone that are
evanescent but entirely linear. The slope of the bands and,

hence, the degree of confinement, is tuned by the mixing of
the two involved materials. Also, as plotted in Fig. 2(a), we
see that k,, always gives rise to either fully real or imaginary
solutions, meaning that we deal with purely bound modes
and not attenuating ones. These designer surface waves
with linear dispersion are broadband and can work for
pulse signals. The degree of confinement that is controlled
by the filling fraction is best illustrated by a field map.
We lock the frequency at 4 = 40a and take two momenta
k, = 270.025/a and k, = 270.035/a corresponding to
FF=0.8 and FF =0.2, respectively. As shown in
Figs. 2(b) and 2(c), we immediately observe that the decay
length, as expected, is less pronounced the farther we lay
outside of the sound cone. In this context we show how
Scholte waves can be designed and entirely controlled by
geometrical means. We note, however, as opposed to spoof
surface plasmons, designer Scholte waves do not have a cutoff
and are, therefore, weaker confined along the interface.

III. ELASTIC BLOCH OSCILLATIONS

The mechanical properties of laminate materials extend
farther than classical surface waves, but such structures
serve as a playground to demonstrate that elastic vibrations
can map quantum-mechanical effects. Periodic oscillations
of electrons in a solid subject to a constant driving field
refers to a BO that has been recently observed for sound
waves as well [12—-14]. Hence, what is in fact possible to
achieve with scalar fields (electrons and sound) is demon-
strated in the following to be valid for vector problems
such as elasticity problems. Again, we consider stacked
laminates but containing plates of variable thickness #;.
The design of each plate is done assuming decoupled
resonances. If the wave numbers k; of the different plates
(assigned index i) have a common denominator k;,, then
BOs for a coupled structure should result with wavelength

/1BO = 2ﬂ'/kmin- (4)

Again, we consider mechanical vibrations to take place
only within the x-z plane. To simulate uncoupled mechani-
cal guides, we impose 7, =0 and T,, =0 at z = %A,
corresponding to traction-free boundaries. These condi-
tions allow symmetric (4) and antisymmetric (—) solutions

tan (q,h;) [ 4kiqiq, 1!
tan (qih;) (g7 —k3)?]

(5)

where ¢7 = % —k? and ¢? = ’”ﬂl —k? correspond to
longitudinal andt transversal wave numbers, respectively.
The determination of %; requires solving Eq. (5) for fixed
frequencies and predefined values in k;, as we show below.
We begin by assuming symmetric excitation only and
determine the BO wavelength Agg by solving Eq. (9).
This oscillation is composed of higher-ordered harmonics

that are embedded into subsequent plates by gradually
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FIG. 3. Symmetric guided elastic plate modes for the case of
copper with stress-free boundary conditions. The plate thickness
h; is normalized to the wavelength A in water.

reducing the wavelength of individually guided elastic plate
modes. Each subsequent symmetric wave number, therefore,
increases along the stacking direction and can, thus, be
evaluated by

ki = Nikminv (6)

where N; is an integer. In Fig. 3, we plot the evolution of
hi(k;). Note, a linear relationship is not essential; the most
important ingredient is that k; is a multiple integer of the
fundamental BO mode. Such realization of a coupled plate
system is an evenly spaced wave-number spectrum mimick-
ing the Wannier-Stark ladder in wave-vector space. As an
example, we take the plate material to be copper [35].
We stack the copper plates with an acoustic medium of
large impedance contrast (water) so that only weak coupling
between separate guides exists (tight-binding analogy). In
principle, the distance between plates does not need to be
constant but for efficient coupling, not too big. In the other
extreme, all plates touching, BOs will be destroyed, but a
wave will still propagate characterized by the thickness of all
individual plates.

The symmetric excitation, for example, a Gaussian beam
irradiation, will generate BOs according to the prescription
given. In the idealized scenario, we employ vacuum
conditions (traction-free boundary conditions) to treat the
plates separately and uncoupled. To come close to that, as
we mention above, we take water to be the background
medium. As computed in Fig. 4 (comsoL), if the plates are
stacked relatively closely along the z direction to guarantee
their interaction, a coupled wave spanning over the plates
along the x direction is formed. This wave is characterized
by the wavelength Agg as composed by the individual plates
and their specific guided resonance k;. To show this
collective oscillation, we superimpose the function
cos (kyinx) that matches the full wave simulations exactly.
Since sound waves are highly concentrated in the fluid
region [see Fig. 4(a)], we plot |u,| within the solid region
only so that the BO can be fully appreciated as illustrated in
Fig. 4(b). Since we normalize all length scales by the

40
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FIG. 4. Bloch oscillation in laminate materials. From the left
side, we launch a fluid-borne acoustic Gaussian beam into the
stacked copper plates that are surrounded by water. The dis-
placement magnitude |u,| is plotted, (a) within the entire domain
and (b) inside the elastic plates only. In both panels, we super-
impose the fundamental BO cos (kp,x). The length scale is
normalized to the wavelength A in water where Agq/4 = 207.

excitation wavelength, mechanical BOs could be experi-
mentally observed at any scale, ranging from possible
micrometer to centimeter measurements.

IV. CONCLUSIONS

In this work, we show a broad landscape of mechanical
phenomena in laminate materials. With rather simple
analytical techniques, we demonstrate how the concept
of spoof surface plasmons can be mapped to elasticity.
The same is true for BOs inspired by the well-known
phenomenon in solid-state physics. We foresee that the
tunability of designer Scholte waves can find interesting
applications in mechanical wave guiding with the advan-
tage of linear dispersion. Since the confinement of elastic
vibrations at an interface can be designed at will, we expect
many advantages in nondestructive techniques, sensing,
and actuation. Certainly, one should be able also to
sculpture surface vibrations in gap structures and particles
made of these laminates. We provide a design recipe to
describe how Bloch oscillations in classical structures of
arbitrary dimensions can be generated, and we demonstrate
this numerically for structures with millimeter and centi-
meter dimensions. Beyond the predicted generation of
BOs, we expect to witness further mechanical analogies
of electronic and plasmonic effects within a foreseeable
time that should come to the attention of experimentalists.
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APPENDIX A: ANALYTICAL TREATMENT
OF LAMINATE MATERIALS

The linear relationship between stress and strain is
referred to as Hooke’s law. In nonpiezoelectric materials
when assuming small deformations, this relationship reads

E?uk
T = cijuSu = Cijkla_xl- (A1)
¢ijir 1s the rank-four stiffness tensor relating the second-
rank tensors of the stress 7';; and strain §;; between each
other. The structure of interest is a HTI media; thus,
Hooke’s law can be written out as follows:

Txx 11 13 0 Exx
T,|=|c53 ¢ 0 €2z (A2)
sz 0 0 Css zexz

cijir 1s symmetric with respect to the suffixes / and k and
lets us, in a simple way, express Hooke’s law via the
displacement u; as shown in Eq. (A2). Upon neglecting
gravity, the lossless and nonpiezoelectric equations of
motion are

82u,~
>

62uk
=c;; .
ikl Ox;0x;

(A3)

Alongside, in the elastostatics limit, the left-hand side of
Eq. (A3) vanishes, and we are left with equations of
equilibrium for a deformed body. Upon considering a
monochromatic wave solution of polarization Uy,

U, = Ukei(konjxj—wt) (A4)
with n; = k;/ky denoting the unit slowness vector or
wave-front normal where k, = 27/ with the wavelength
A, we proceed by substituting Eq. (A4) into Eq. (A3). Using
U; = 6,;U;, we arrive at the Christoffel equation

2

P

(Fik — Sk = > U, =0,
0

(A5)
where T’y = c;jun in,. Equation (A5) expresses a linear
problem where pw?*/k3 is the eigenvalue with correspond-
ing eigenpolarizations U}, of the tensor I';;. The solutions
to the Christoffels equation, in general, give rise to three

phase velocities with corresponding elastic polarization.
In our 2D example, however, we have only two solutions.
The laminate material is constructed out of two isotropic
material layers of widths #; and &, (the unit cell size
is, therefore, @ = h; + h, with filling fraction FF = h,/a.
In layer 1 (2), we, therefore, denote the mass density p; (p,)
and the Lame coefficients 4, (4,) and p; (u), respectively.
An effective medium theory can be expressed analytically
by following the prescription by Postma [36]. The effective
mass density is a classical length average,
p =FFp; + (1 —FF)p,, (A6)
whereas the stiffness moduli follow some tight algebraic
expressions,

(hy + h)* (A + 2p1) (A + 22)

C11 — D 5
cps = (hy + ha)[Ahy (A + 2p0) + Aaho(Ar + 2p1)]
D b
Ahyhy (i — ) [(Ay + 1) — (Ao +
33 = 1y + 2 (1 — wo)[( 1D #) = (& /42)]’
(hy + hy)pypa
Cog = ——————, A7
» hypy + hopy (A7)
where
D = (hy + ho)[hy (A + 2p2) + hy (4 +211)]. (AS8)

Note, if the stacking direction is vertical rather than
horizontal, ¢;; and ¢33 have to be interchanged.

APPENDIX B: NUMERICAL TREATMENT
OF LAMINATE MATERIALS

The numerical procedure to verify the solutions to the
Christoffel equation comprising the effective stiffness
moduli is based on a plane-wave expansion technique.
We need to solve the general inhomogeneous form of the
isotropic nonpiezoelectric wave equation:

By expanding out the material parameters and the eigen-

solutions on a basis of plane waves, which we will not
detail any further here, one arrives at an eigenvalue system

in k. [37]:
—k.Cie [ uS }
— k2 (Ag—g + 2u6-c') | Lug

(B2)

XX 2
CG,G’ - kzﬂGfG’

_ 7,X 2,2
L O Cso

:O’

where
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Cgfc/ = po-@° — (ki + G)x (ky + G') (A +246-c):
Cio = (ke + G)ig_g + (ke + Gug-q
Cig = (ki + G- + (ky + Gpg_c',

Céfc/ = po-g @ — (ke + G) x (ky + G g - (B3)

After linearizing Eq. (B2), isofrequency contours can be
computed.

APPENDIX C: DESIGNER SCHOLTE WAVES

We intend to model surface waves of the Scholte type
between a fluid and a HTT structure. Similar to Eq. (1), we
again write out the Christoffel equation, now, however, for
modes decaying along the z axis:

cik? —cssk? —po?  —kk (i3 + cs5) } |:Ux:|
kyk,(ci3 + css) U
= 0. (C1)

2 2 2
Cssky — cx3ks — pw z

Defining the ratio of the polarizations in the system
Eq. (Cl), we reach

U, . Cllkyzc - Cssk% —sz
kxkn(CB + CSS)
___ kky(Ci3+ Css)
Csski - C33k% - sz ’

=7, =
U, "

(€2)

where n stands for the number of solutions in k, =
k, = (k;,k,). We seek bound modes that are free to
propagate along the entire interface [z = 0; see Fig. 1(a)]
and decay away from it along z towards the fluid and the HTI
region. In the elastic region, we write

U, = (Aleklz + Azekzz)ei(a)t—kxx)’

u, = i(11A,eM% + 1,A,ek27) (@1 =kx)| (C3)
and in the fluid region we have
p = BePreil@ika),
u, = —ZiBe_ﬂzei(“”_k*‘x), (C4)
=Py

where 8 = \/ki — (#?/c}) is the wave number along z.
At the fluid-solid interface (z = 0), we apply the usual
boundary conditions, namely, continuity of the normal
displacements u, in each region, continuity of the normal
stress p = —o,, = —C30,u, — C330,u,, and zero shear
stress o, = Css(0,u, + O,u.) = 0. These three conditions
lead to equations of unknown wave amplitudes, which are
written as follows:

keCi3 —ki11Cs3 kCi3 — kp7pCs3 i A
71 (%) _wlz/;o A2 = 0
kl +kx’[1 k2 +kx’[2 O B

(C5)

We find the solutions for this system by calculating the
vanishing determinant, and after some straightforward alge-
bra, we arrive at the dispersion Eq. (3) from the main text.
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