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An alternate approach of analyzing immittance spectra with electrical equivalent circuits, which not only
eliminates circuit ambiguity but also directly extracts the system-specific parameters of the selected
physical models, is proposed. To understand the underlying mechanisms, a fundamental electrical
equivalent circuit, representing Maxwell’s equations, is derived. Allowing nonlinear characteristics for
the elements in the circuit results in a universal immittance that is neither limited to the fundamental
frequency nor to linear response functions. Process-specific physical models with their intrinsic, potentially
nonlinear, dependencies on external parameters are introduced as components of the circuit. This allows
the extraction of the system-specific parameters of the models instead of single values for idealized
components like resistors and capacitors. The resulting electrical equivalent circuits are unambiguous and
can be fitted to measured immittance data for a whole set of varied external parameters instead of the
frequency of the applied stimulus only. Furthermore, the different dependencies of the physical models on
external parameters automatically weight the regions of their dominance. Exemplarily, for a well-known
system, the impedance of a depletion layer in silicon is calculated by using models for the resistance and
capacitance that are both dependent on the external parameters voltage and temperature. In addition to a
detailed comparison with conventional electrical equivalent circuits, differences between the presented
approach and analytical Poisson-Nernst-Planck models are discussed.
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I. INTRODUCTION

Immittance [1] spectroscopy is awell-established versatile
method with a broad range of applications in very different
fields. Besides its obvious application in (electrical) engi-
neering, immittance spectroscopy is a very common method
in the analysis of electrochemical systems, where it is better
known as electrochemical impedance spectroscopy (EIS),
and was used in this field of research starting from the end
of the 19th century [4]. Examples of its applications in
electrochemistry are the analysis of corrosion, observation
of chemical reactions at the solid/liquid interface in general,
and identification of processes in batteries [5]. The latter
recently gained a lot of attention due to new requirements
of batteries for electric vehicles [6], energy buffering for
renewable energies [7], and the steady increase of the
worldwide usage of mobile devices [8,9]. From the begin-
ning, the investigation of biological samples has also been
a common application of immittance spectroscopy (see
Ref. [10], pp. 411–418).Measuring the impedance of human
skin, for example, can be used to detect diabetes-related
changes in the skinwhile being faster and less expensive than
skin biopsies by microscopy [11]. Compared to competing
measuring methods, immittance spectroscopy may often be
a more cost-efficient and less time-consuming alternative.

These properties led to the use of impedance measurement
in cardiac pacemakers [12]. Apart from that, immittance
spectroscopy is an established method in material science
[13] as well as geology [14].
In 1853, Helmholtz [15], utilizing Ohm’s law and

Kirchhoff’s laws, formulated the principles of superposi-
tion of currents and voltages in spatially extended bodies
and then, verbally, introduced the first electrical equivalent
circuit (for details, see Ref. [16]). Among other things, he
found that the distributed resistances can be lumped in
“linear conductors” (lumped resistors). The description of
linear systems by impedance dates back to the work of
Heaviside, a telegrapher and nephew of Wheatstone [17],
who coined the word impedance in 1886 (see Ref. [18],
p. 64). Heaviside not only suggested the word impedance
(derived from the verb “impede”) but also generalized
Ohm’s law for ac signals and introduced the term “capaci-
tance” as well as “inductance” [18].
A very common and comfortable method of interpreting

immittance spectra is creating suitable electrical equivalent
circuits (EECs) of idealized lumped components, especially
resistors and capacitors (or, more generally, capacitive
elements, like constant phase elements; see Sec. II F),
and optimizing their values to resemble the measured
immittance data as closely as possible [4].
Especially in explanatory models (see below), the
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EEC is based on an idea of the underlying physics. Still, the
use of idealized lumped elements only might entail certain
drawbacks. EECs consisting solely of such components are
well known to be ambiguous; i.e., different arrangements of
components with the same number of capacitive elements
and resistors can lead to the same immittance response over
all frequencies [19,20]. Hence, although the arrangement of
the idealized lumped components in the EEC might have
been based on a certain idea of the underlying physics, it
remains unclear whether the components really represent
specific processes or parts in the investigated system. It is
entirely possible that one idealized lumped component of
the EEC is associated with multiple parts of the system.
Hence, the selected network might not represent the
underlying physics correctly [4], and this may, if it remains
unrecognized, in the end, even lead to misinterpretations
(see Ref. [10], p. 4). According to J. Macdonald, it is,
however, possible to identify the most physically reason-
able EEC by fitting the immittance data with a set of
different plausible networks for a range of temperatures
and/or potentials [20].
With respect to different types of models, this work uses

the terminology of Grimnes and Martinsen (see Ref. [10],
pp. 284–286). The terms descriptive and explanatorymodel
in the context of electrical equivalent circuits for immittance
data, their respective necessity in different situations, and the
distinction between them are discussed in the mentioned
source. AsD.Macdonald notices, the step from a descriptive
model (he calls this an “analog”) to an explanatory model
(which he calls a “model”) is rarely done [4].
An existing approach of analyzing immittance spectra

with the possibility to extract meaningful physical param-
eters for a broad variety of systems, which up to now was
rarely used, is the analysis withmodels based on the Poisson-
Nernst-Planck equations [21,22]. Using fundamental equa-
tions for current transport through mobile charge carriers,
with opposite sign, varying concentrations, different mobil-
ities, and specific valences in a potential landscape calculated
by Poisson’s equation and certain boundary conditions, a
broad variety of different systems can bemodeled [23]. Such
models could be used to describe spatially extended systems
directly. For important situations usually observed in immit-
tance spectra, analytic solutions of the Poisson-Nernst-
Planck equations as lumped components exist [22–24].
The differences between process-independent Poisson-
Nernst-Planck models and the suggested approach with
process-specific physical models dependent on external
parameters as well as a suggestion about how both
approaches may be combined are discussed in Sec. III D.
In this work, an alternate approach of devising EECs for

the analysis of immittance data is proposed. Derived from
Maxwell’s equations, it is found that the fundamental EEC of
a homogeneous, nonmagnetic material can be described by a
parallel arrangement of the resistive and complex capacitive
elements, hereafter called a generalizedVoigt circuit element

[25]. Although the resulting arrangement of the components
is already used in other works, it is not used exclusively;
see Ref. [5], pp. 91–95, Fig. 2.2.3, and, most importantly,
Fig. 2.2.4. Other arrangements are equally frequently found
and, due to the ambiguity, not regarded as less reasonable,
although the derivation from Maxwell’s equations renders
many of the other used arrangements debatable.
Understanding the origin of the components of the

generalized Voigt circuit element enables the direct intro-
duction of process-specific physical models with their
dependence on external and system-specific parameters.
External parameters are those parameters the physical
model is dependent on which can be externally controlled
during the experiment, e.g., temperature, pressure, or bias
voltage. Furthermore, the model can be dependent on
natural constants and system-specific parameters; neither
can be controlled. The latter may include material constants,
volume fractions of inclusions, or energy barrier heights
at interfaces. A well-known practical example, which is
discussed in detail in Sec. II H, is the representation of the
resistance and capacitance of a depletion layer in an EEC.
The resistance is represented by a diode model, with the
resistance dependent on the external parameters voltage and
temperature as well as the system-specific parameters in
place of a resistor with a single-valued resistance. When
fitting the model against experimental data, instead of the
single-valued resistance, nontabulated or unknown system-
specific parameters of the diode model (e.g., the acceptor
concentration) would be optimized by the fitting routine.
The capacitive element of a depletion layer is represented by
using the model for the voltage- and temperature-dependent
depletion-layer capacitance from Ref. [26], p. 248.
The derivation of the universal immittance for a

single, homogeneous piece of material and the correspond-
ing representation as an EEC is shown in Sec. II. In
Sec. II G, it is explained how the parts of systems with
several pieces should be connected in an EEC and what
approximations are useful as well as how to model multiple
charge-transport and polarization processes in a single
homogeneous part of the material.
To obtain reasonable values for the fit parameters and to

evaluate if the correct physical processes are assumed, it is
necessary to utilize the dependencies of the inserted models
on their external parameters. In the example in Sec. II H,
voltage and temperature dependence are used. To utilize the
dependences of the depletion-layer model for fitting exper-
imental data, the immittance is measured for a range of
voltages and/or temperatures as suggested in Ref. [20].
The entire immittance data for all sets of parameters should
be used as a whole (global optimization) to optimize the
system-specific parameters of the usedmodels that cannot be
obtained from the literature. In separate plots of residuals of
the immittances over frequency and each external parameter
(in this example, one plot of residuals-frequency-bias voltage
and one plot of residuals-frequency-temperature in the
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investigated ranges), one can not only evaluate how well the
EEC approximates the system for different regions but also
identify missing components.
In contrast to first-order approximations like resistors

and capacitors, process-specific models dependent on
external parameters are inseparably linked to their corre-
sponding underlying physical process. As a result, the
dependence on certain different external conditions is
restricted by the model. This restriction by an external-
parameter dependence is the key to verifying whether the
correct process is assumed: Since, usually, a mutually
exclusive dependence on an external parameter can be
found and used to distinguish between different models
(examples of models are given in Table I). Additionally,
due to their specific form, it is unlikely that a component
based on process-specific models represents several parts of
the system, which can, on the other hand, easily occur when
using idealized lumped components. Furthermore, a plot of
the residuals of a fit over the external parameters can be
used to identify missing processes. As previously men-
tioned, instead of resistances and capacitances, the system-
specific parameters of the models are fitted. These usually
represent physical properties of the underlying system
directly, e.g., carrier concentrations or energy levels of
traps involved in the transport. Furthermore, since the
dependence on external parameters is included in the
model, there are significantly fewer fitted parameters for
systems investigated for a set of different external param-
eters (compare the example in Fig. 5). Finally, the depend-
ence on external parameters of the process-specific physical
model weight the regions of importance of certain fit
parameters, enabling global fitting and, consequently,
resulting in better guesses for the parameters. On the other
hand, to apply this approach it is necessary to measure
immittance spectra at several different external conditions.
While this approach has a lot of advantages for explanatory
models, for descriptive models, where the quality of
description might be most important, the approximation
of the system is in this approach also limited by the quality
of the utilized models to describe the real behavior of the
corresponding process.
We believe that this extension to devise EECs will

help immittance spectroscopists to extract more (and more
precise) information about the system under investigation
while, additionally, significantly reducing the risks for
misinterpretations as compared to the usual procedure
to create EECs consisting solely of idealized lumped
components.

II. THEORY: DERIVATION OF A FUNDAMENTAL
EEC FOR DIRECT EXTRACTION

OF PARAMETERS OF THE UNDERLYING
PHYSICAL PROCESSES

It is derived from Maxwell’s equation of total current
that a homogeneous, isotropic bulk of a nonferroelectric,

nonmagnetic (μr ¼ 1) material can be described by a
generalized Voigt circuit element [capacitive element(s)
in parallel to static resistor(s)]. Furthermore, sequential
arrangement of multiple materials can be modeled by the
serial combination of the corresponding generalized Voigt
circuit elements.
In a first step, the possibility of a lossy polarization

process is included by introducing a complex permittivity
εr. In order to get from dimensionless quantities to an
electrical equivalent circuit, geometry is, without loss of
generality, added to the system. After the introduction of
geometry, also for a material with susceptibility of unity, an
alternating current leads to inductance, which has to be
represented with an inductor in series with the circuit. Since
inductance is usually of minor interest for immittance
spectroscopy in science, it will be omitted in this derivation.
Charge-transport and polarization processes are usually

dependent on external parameters. A resistance can, for
example, be dependent on an applied magnetic field
[27,28] or on pressure applied to the material [29].
Polarization processes can be dependent on external
parameters as well, e.g., pressure [30]. A depletion-layer
capacitance, for example, is strongly dependent on the
externally applied electrical field [31]. Physical models
may include the dependencies on certain external param-
eters. These dependencies can be used to distinguish
between different processes and extract them as separate
parameter-dependent resistors or capacitors. For that rea-
son, these dependencies on external parameters are
assumed throughout the derivation.
The applied field (and, respectively, applied voltage) is

the stimulus in most impedance experiments. Additionally,
the deviation is not limited to linear systems. Therefore, to
understand at which point nonlinear behavior plays a role,
the applied field is explicitly given as a parameter. If not
stated otherwise, any other dependency on external param-
eters is included in the parameter set P; e.g., in the case of a
diode, P would include the temperature.
Generally, a tilde above a function indicates that its time-

domain representation is used; without a tilde, it is its
frequency-domain representation. All external parameters,
especially the applied field, can change over time and are,
hence, explicitly time (respectively, frequency) dependent.
To avoid unnecessarily long formulas, the explicit time
(frequency) dependence of external parameters and the
applied field is, if not stated otherwise, omitted.

A. Maxwell’s total current density and the
interpretation of its different terms

The total current density ~Jðt; ~E; ~PÞ through a nonferro-
electric, nonmagnetic, isotropic material in the time domain
can according to Maxwell be written as [32]

~Jðt; ~E; ~PÞ ¼ ~Jfreeð ~E; ~PÞ þ
∂ ~Dðt; ~E; ~PÞ

∂t ; ð1Þ
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with current density ~Jfree and electric displacement field
~D [33].
Following the interpretation of Jonscher (see Ref. [34],

pp. 40–41), the two different contributions to the total
current density in Eq. (1) are strictly separated in this work:
While ~Jfree is based only on the dc conduction mechanisms
in the material, the derivative of the electric displacement
field ∂ ~D=ð∂tÞ exclusively includes dielectric processes,
namely, the dielectric response of “free space” and the
complex polarization in the material. The polarization is
complex, because there is an unavoidable phase delay
between the exciting signal and the polarization response of
any material (see Sec. II C for details). This strict separation
is not generally allowed. In Sec. III A, however, it is
explained that this approximation is valid in the frequency
ranges of dielectric relaxation (as defined in Ref. [34], p. 6)
which is a superset of the frequencies used in immittance
spectroscopy. The separation is necessary only since most
conduction mechanisms that should later be introduced as
parallel resistors (are developed to describe the static
behavior of the material and) do not yet consider the effect
that a stimulus varying with time (or frequency, respec-
tively) has on their response. By using those conduction
models, the mean free current over a full period of the
stimulus is independent of the duration of the period. Any
part of the derivation in this section remains valid if the
conduction model includes a noninstantaneous response or
gradient dependence to the variation of stimulus or other
external parameters. Even when static conduction models
are used, the variation of the external parameters with time
still leads to an implicit time dependence of the free current
~Jfree. Their responses are, however, instantaneous and
independent of the abruptness of the variation of the
stimulus or any other external parameter with time. In
contrast, the dielectric models consider the slope of the
stimulus and include a delayed response.
Since for now only pure dc models are used to describe

the free current ~Jfree, for the above-mentioned reasons, it is
assumed purely real (no phase delay) and has no explicit
time dependence.
The steady current density ~Jfree arises from the continu-

ous movement of charges across the dielectric material and
does not change the “center of gravity” of the charge
distribution in the material (see Ref. [34], p. 41). Although
the index “free,” usually used in the literature, suggests
otherwise, the charge carriers do not actually have to be free
or even quasifree, like in a metal, where electrons propagate
through delocalized states [35]. Dielectrics are insulators
(see Ref. [34], p. 1) and their static charge transport is, as
opposed to delocalized states in metals, usually conducted
through (randomly arranged) localized states [36], by
trapping and detrapping [37] or by ionic conduction, which
can for the following arguments be treated equivalent to
the conduction of charges through localized states [38].
Electrons in a disordered insulator [39], for example,

can percolate through defect-rich parts, i.e., hop from
one localized defect to another, until they eventually
migrate from one electrode to the other [40]. Disordered
or not, in materials where current flow is the result of
charge movement in localized states, the charge is bound to
a specific defect between jumps and therefore not free [40].
Still, the resulting direct current density has to be ascribed
to ~Jfree, since it is the only remaining term for a response
caused by a time-independent stimulus.

B. dc processes

Generally, the static current in a material is not generated
by a single but by multiple different transport processes.
One might imagine the various parallel transport processes
as a sum of the corresponding current densities or, in the
picture of an EEC, as a parallel arrangement of resistors.
Each resistor represents how many carriers in a time
step would use the specific process of migration. If the
separate dc transport processes in the investigated material
are known, the corresponding models can directly be
included as parallel, parameter-dependent resistors in the
generalized Voigt circuit element. Otherwise, the sum of
the unknown processes leads to a single parallel resistor
which complicates the extraction of parameters, unless
there is a single dominant process which might, hence, be
identified.
Finally, static transport processes for the homogeneous

piece of material are assumed to create the current density
~Jfreeð ~E; ~PÞ, which leads, as explained in detail later, to the
parallel resistor(s) in the generalized Voigt circuit element
[see parallel static resistors in Fig. 2(a)]. For sufficiently
low frequencies, the impedance of any system is deter-
mined by the static transport processes only. Assuming a
finite static conductivity for the system, a certain range of
the low-frequency dielectric response is not measurable,
since in the corresponding low-frequency range the static
conductivity is the dominating part of the impedance
(see Ref. [34], pp. 46–47).

C. Frequency-domain representation,
complex permittivity, and dc conductivity

Since impedance spectra are usually analyzed in the
frequency domain (see Ref. [5], p. 4), the work is continued
in that domain. Because of the time derivative, the Fourier
transform of the total current density in Eq. (1) is [41]

Jðω;E;PÞ ¼ JfreeðE;PÞ þ iωDðω;E;PÞ: ð2Þ

The dielectric displacement field D can be divided in the
free space ε0E and material component P:

Dðω;E;PÞ ¼ ε0Eþ Pðω;E;PÞ: ð3Þ
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The polarization P in a material is caused by (partial)
alignment or induction of dipoles and can, using the
susceptibility χ in the frequency domain, be written as

Pðω;E;PÞ ¼ ε0χðω;E;PÞE: ð4Þ

As a result, in the time domain the polarization is the
convolution of the electric field and the electrical suscep-
tibility. As explained above, in the absence of alternatives,
dc charge-transport models are used to calculate the current
density Jfree which do not consider the frequency depend-
ence. The electrical susceptibility and all quantities derived
from it (e.g., permittivity, polarization, and displacement
field), on the other hand, take the frequency dependence
into account. From Eqs. (3) and (4), it follows that

Dðω;E;PÞ ¼ ε0½1þ χðω;E;PÞ�E:

Hence, one defines

εrðω;E;PÞ≡ ½1þ χðω;E;PÞ�:

As a result, Jðω;E;PÞ can be written as

Jðω;E;PÞ ¼ JfreeðE;PÞ þ iω½ε0Eþ Pðω;E;PÞ� ð5aÞ

¼ JfreeðE;PÞ þ iωε0εrðω;E;PÞE: ð5bÞ

Because of the fact that any dipole reaction is noninstanta-
neous [42], in general, P has an imaginary component, and
χ as well as εr are consequently complex quantities, too
[compare with Eq. (7)]. It can be seen that, in regions of low
loss and frequency-independent relative permittivity εr, the
amplitude of the current density linearly increases with
frequency ω. This behavior results in a reactance that is
inversely proportional to the frequency, while the reso-
nances of the system [that are frequency regions where the
relative permittivity is strongly dependent on frequency
(see Ref. [34], p. 50)] are far off. Close to resonances in
the polarization mechanism, the permittivity εr is strongly
dependent on frequency (see Ref. [34], p. 50), resulting
in a deviation from the reciprocal frequency dependence
of the reactance.
As explained above, the dependence on external param-

eters, for example, applied field E and temperature T, is
characteristic to the transport and the polarization process
in the material. In the case of the static charge transport,
the dependencies are included in the corresponding
conductivity:

JfreeðE;PÞ ¼ σstatðE;PÞEðωÞ: ð6Þ

As described in detail in Secs. II A and III A, an explicit
time dependence (more precisely, a dependence on the
gradient of the external parameters with time) of

conductivity σ arises outside of the frequency range of
dielectric relaxation, which this work assumes.
Therefore, the use of models for static conductivities,

denoted with σstat, is allowed. Furthermore, it should be
noted that there is no explicit time dependence for the static
conductivities and that σstat is purely real.
The derivation, however, remains valid for conductivities

σ explicitly dependent on the slope of the applied field
and, hence, current densities Jfree dependent on the time
derivative of the stimulus.
To stress the fact of the remaining implicit frequency

dependence, the frequency dependence of the applied field
is written explicitly in Eq. (6).
As explained below, there is no lossless polarization

process. Hence, for any material (i.e., everything but
vacuum), the permittivity εðω;E;PÞ is a complex quantity
(see Ref. [43], pp. 89–95). It can be written as

εðω;E;PÞ ¼ ε0εrðω;E;PÞ
¼ ε0ε

0
rðω;E;PÞ − iε0ε00r ðω;E;PÞ

¼ ε0ðω;E;PÞ − iε00ðω;E;PÞ; ð7Þ

where ε0r is the real and ε00r is the imaginary part of the
relative permittivity (see Ref. [43], p. 94) [44].
If an external field is applied, the polarization response

cannot be instantaneous [42], because a dipole has to be
created or (at least partially) aligned to the external field.
These processes require some time, which may for fast
polarization processes be very, even negligibly, short but
always different from zero. This time delay creates a
nonzero phase shift of the polarization response. As a
result, only a part, i.e., the real part, of the polarization is in
phase with the applied field, and the remaining part in
quadrature, the pure imaginary part. In summary, in any
material the polarization has a time delay, and consequently
there must be an imaginary part of the permittivity
(describing the loss). Furthermore, it follows from the
Kramers-Kronig relations (also valid for nonlinear materi-
als; see Ref. [42]) that it is impossible to have a finite
susceptibility in a loss-free or dispersion-free dielectric
material (see Ref. [34], p. 49). In an experiment, however,
the imaginary component of the relative permittivity might,
far from resonances, be too small to be detectable within the
given measurement accuracy.
Both parts of the complex permittivity can, depending on

the corresponding polarization process, have dependencies
on various external parameters. They are obviously depen-
dent on frequency, and their interdependence is described
by the Kramers-Kronig relations [42]. Other dependencies
vary with the polarization mechanism. For local dipoles
caused by field-assisted hopping of carriers in an area of
high defect concentration, for example, a dependence of
temperature and electric field might be assumed (analog to
the static transport in Ref. [37]).
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Inserting both Eqs. (6) and (7) into Eq. (5b) yields

Jðω;E;PÞ ¼ ½σstatðE;PÞ þ ωε00ðω;E;PÞ�E
þ iωε0ðω;E;PÞE: ð8Þ

It can be seen that the imaginary part ε00ðω;E;PÞ belongs
to the component of the current in phase with the driving
field and therefore contributes to the power loss (see
Ref. [34], p. 45). Thus, ε00ðω;E;PÞ=ε0 ¼ ε00r ðω;E;PÞ ¼
χ00ðω;E;PÞ is often referred to as the dielectric loss (see
Ref. [34], p. 45). In contrast, the real part of the permittivity
ε0ðω;E;PÞ is in quadrature with the driving field and,
hence, in phase with the real part of the polarization and
dielectric displacement field [compare Eq. (8) with Eqs. (2)
and (5a)]. As a result, it does not contribute to the loss (see
Ref. [34], p. 45).

D. Introducing geometry and universal immittance

Since the EECs consist of resistors and capacitors rather
than conductivities and permittivities, spatial dimensions
have to be introduced. For simplicity, but without loss of
generality, the problem is described in a parallel plate
geometry. More complex geometries will only lead to more
complicated geometric factors. As explained above, an
isotropic, homogeneous piece with conductivity σstatðE;PÞ
and complex permittivity εðω;E;PÞ is assumed.
Furthermore, all electric field lines are supposed to be
parallel and the area of the conducting plates A large
enough so that the field lines outside of the volume between
the parallel plates can be neglected. Additionally, the
distance between the plates d, which is gaplessly filled
with the material, shall be sufficiently smaller than half
of the wavelength of the applied signal. Consequently,
the field becomes E ¼ V=d and the current density
Jtot ¼ Itot=A, where V and Itot are the externally applied
voltage and current between the plates, respectively. As a
result, Eq. (8) is multiplied by the area A and the field
replaced by the applied voltage V [45]. Hence, the total
current in the piece is

Iðω; V;PÞ ¼ ½σstatðV;PÞ þ ωε00ðω; V;PÞ

þ iωε0ðω; V;PÞ�A
d
V: ð9Þ

It is now possible to identify the components of the
fundamental EEC in Eq. (9) by partially expanding with
the geometric factor A=d. The static conductivity multiplied
with the geometric factor becomes σstatðV;PÞA=d≡
R−1
statðV;PÞ. For the term with the imaginary part of the

permittivity, ωε00ðω; V;PÞA=d≡ R−1
dynðω; V;PÞ is obtained

[46]. And the last term is iωε0ðω;V;PÞA=d≡iωC0ðω;V;PÞ.
Equation (9) becomes

Iðω; V;PÞ ¼ ½R−1
statðV;PÞ þ R−1

dynðω; V;PÞ
þ iωC0ðω; V;PÞ�V: ð10Þ

The quantity in brackets in Eq. (10) is almost the
admittance, i.e., the reciprocal impedance Z−1ðω; V;PÞ.
Almost, because impedance and admittance are defined
only for linear systems. Nonlinear systems, like shown in
Fig. 1, on the other hand, will, for a sinusoidal stimulus
with a nonzero amplitude, generate harmonics [compare
Fig. 1(b)] which cannot be represented by admittance
or impedance. Depending on the curvature of the response

FIG. 1. The insets show the current-voltage curve of an ideal
diode. In the inset in (a), the resulting current for a voltage signal
oscillating around the bias voltage is calculated by using the
small-signal approximation, that is, assuming the resistance at
the bias voltage for all voltages of the signal as indicated by the
tangent at the bias voltage. (a) shows the Fourier transform of the
resulting current for the first six harmonics which due to the linear
approximation consists only of the fundamental frequency of the
applied voltage signal. In the inset in (b), on the other hand, the
resulting current is calculated without the small-signal approxi-
mation, that means large-signal analysis. The applied voltage
[identical to the applied voltage in (a)] leads to an oscillation on
the current voltage curve instead of on the tangent in the operation
point. As a result of the form of that curve, the resulting current is
neither symmetric around zero current nor a pure sinusoidal. In (b),
the Fourier transform of the resulting current is shown for the first
six harmonics. The finite value at zero represents the mean value of
the resulting current and the harmonics its asymmetric form.
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of the nonlinear system and the signal amplitude, the
small-signal approximation shown in Fig. 1(a) might not
be a sufficiently accurate approximation. For an infinitesi-
mally small amplitude, the large-signal response of the
system and the small-signal response become identical. The
derived general impedance can exactly describe the poly-
harmonic large-signal response of nonlinear systems. This
new type of “admittance,” which is capable of describing
any [47] response, may be designated universal admittance.
Hence, the universal impedance of the system is

Zðω; V;PÞ ¼ fR−1
statðV;PÞ þ R−1

dynðω; V;PÞ
þ ½iX0

Cðω; V;PÞ�−1g−1; ð11Þ

where a universal reactance is introduced asX0
C¼−ðωC0Þ−1.

The additional information of other harmonics in the
response can be used to further confirm the choice of the
selected models. This is especially important when charac-
teristics of high-power devices, like rf amplifiers, are
investigated [48]. Instead of using descriptivemodels, where
additional circuit components are added to approximate a
large-signal response [49], including process-dependent
physical models as components in the EECs enables
explanatory large-signal models based on the known non-
linear behavior of certain parts of the devices. The case of
analyzing high-power devices has very specific require-
ments not present in most other areas of impedance spec-
troscopy. Hence, although the universal immittance seems
promising for large-signal analysis, it is, in the focus of this
work, only a by-product of the presented derivation. Its
potential in that area will be investigated further elsewhere.
In many impedance spectroscopy experiments, the

response to high amplitudes is of minor importance, and
a selection of amplitudes below kBT, at which a small-
signal analysis is a good approximation (see Ref. [5], p. 6),
is then a viable and less expensive alternative. Furthermore,
in most cases, current frequency-domain measurement
techniques give the “classical” immittance, that is, only
the response with respect to the applied fundamental
frequency, and amplitudes of the harmonics cannot be
accessed. But, even in that latter case, the presented
approach can help to identify a unique EEC where each
component represents the underlying physics (see the
example in Sec. II H). As previously mentioned, using
an as-small-as-possible stimulating signal amplitude redu-
ces the amount of power in the harmonics. Furthermore, if
the harmonics are still not expected to be negligible, the
classical immittance, measured in the linear measurement
setup, can still be calculated from the universal immittance.
In that way, the universal immittance is reduced to the
corresponding fundamental frequency component and
becomes comparable with the measured, classical immit-
tance. In all cases, one may utilize the presented findings in
the analysis: Process-specific physical models include a
specific dependence on external parameters. If these are

included, instead of idealized lumped components, they
force a certain form of dependence on the external
parameters. Globally optimizing the unknown system-
specific parameters of the models to immittance spectra
measured for a set of external parameters (different con-
ditions) then leads to better guesses for the fit parameters
than subsequent analysis of fitted resistances and capaci-
tances. The introduced restrictions validate whether correct
models have been used. From residual plots, missing
processes can be identified. Each process-specific model
carries a physical concept and, hence, directly includes the
underlying physics.
Since the differences are explained above and to make

the remaining part of the manuscript easier to read, the
(universal) response given in Eq. (11) is simply called the
impedance.

E. Interpretation of the resulting impedance as EEC

The impedance given in Eq. (11) can be interpreted by a
parallel arrangement of a resistor Rstat for the dc conduction
mechanisms, another resistor Rdyn (frequency dependent
and infinite at ω ¼ 0) for the dielectric loss, and finally a
parallel (frequency-dependent) capacitor. The dependence
of the dynamic components on the frequencies of the
stimulus is described in the corresponding models [e.g.,
compare Eq. (12) or Eq. (14a)].
Other representations, e.g., a serial arrangement, of the

dynamic components are possible. In any case, in the
(equivalent) parallel circuit representation, the dynamic
resistance Rdyn becomes infinite at ω ¼ 0. If, for example,
the Debye model, where its serial representation allows
easier extraction of parameters [50], is converted from its
serial circuit representation into the equivalent parallel
circuit representation, the resulting parallel dynamic resis-
tor has infinite resistance at ω ¼ 0 as well. Also generally
true is that the dynamic resistance Rdynðω; V;PÞ is always
connected to the corresponding reactance X0

Cðω; V;PÞ. The
dynamic resistance is the loss of the respective polarization
process and cannot be separated from its associated real
part. It is consistent that the resistance in its parallel
representation is infinite for zero frequency, since in the
static case (ω → 0) dynamic resistors as well as capacitors
have to vanish [see Eq. (2)].
The permittivity of a material is a result of all its

electromagnetic resonances, which are well described by
a quantum-mechanical treatment which, in general, leads to
(compare Ref. [51], p. 19)

εðω;PtotÞ ¼ ε0 þ
e2

m

X
j>k

fjkðPtotÞ½NkðPtotÞ − NjðPtotÞ�
ω2
jkðPtotÞ − ω2 þ iωγjkðPtotÞ

;

ð12Þ

where ωjkðPtotÞ ¼ ℏ−1½EjðPtotÞ − EkðPtotÞ� are transition
frequencies, between lower energy levels Ek with
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populations Nk and upper energy levels Ej with popula-
tions Nj, fjk are the corresponding transition probabil-
ities, γjk are the damping coefficients, m and e are the
mass and charge of an electron, respectively, and Ptot
indicates the dependence on all external parameters
including the electrical field.
A single pair of dynamic resistor and frequency-

dependent capacitor combining all transitions of Eq. (12)
leads to unnecessarily complicated relations. This makes it
difficult to introduce suited models. As described in
Sec. II D, the complex permittivity can, by introducing
dimensions, be interpreted as a complex capacitance (or
pair of frequency-dependent capacitance and dynamic
resistance). A sum of multiple complex permittivities, as
in Eq. (12), therefore leads to a sum of the same number of
complex capacitances and, as a result, a parallel arrange-
ment of capacitors with a complex value. Each capacitor
describes a specific polarization mechanism and may be
separated into the corresponding in-phase (capacitance)
and loss (dynamic resistance) components. Irrespective of
whether parallel or serial arrangement of each component
pair for the specific polarization process is chosen, all pairs
are parallel to the dc resistance and, hence, to each other
[see the dynamic resistor and capacitor pairs in Fig. 2(a),
where parallel and serial representations are used].
Other simplifications are possible and are explained in

the next section. This includes that, in regions of numerous
adjacent resonant frequencies, e.g., caused by a defect band
around the Fermi level, the corresponding large number of
circuit elements may be combined in a single circuit
element and that, for frequencies well above the highest
frequency of the experiment, higher-frequency transitions
may be combined in a high-frequency permittivity or high-
frequency capacitor.

F. The constant phase element

For a large variety of even very different materials,
the dynamic elements (dynamic resistance and frequency-
dependent capacitance) obey a universal power law [52].
In those cases, the pair of dynamic elements is usually
combined in a single circuit element: the constant phase
element (CPE), which is also known as universal capaci-
tance [denoted with “K” in Fig. 2(a)].
The constant phase behavior was first described

by K. Cole [53], using a mathematical representation
different from the one used today. In the same year
Fricke, independently from K. Cole, proposed the CPE
and used a mathematical formulation very close to the
one used today [54]. The impedance of a CPE is given
by a special relation between the frequency-dependent
real and imaginary parts that ultimately leads to a more
general complex capacitive element. Its reactance has a
frequency dependence of ω−n, with 0 ≤ n ≤ 1, instead of
allowing only the special case of an ideal, real-valued
capacitor of ω−1. Another, name-giving, consequence is

a constant phase θ ¼ −nπ=2 instead of θ ¼ −π=2, which
would be the phase of ideal, real-valued capacitors [54].
Written in the form of a complex capacitance, the
relation between the real and imaginary parts is

FIG. 2. (a) General EEC for a single homogeneous, nonmagnetic
piece of material: n static current transport processes with their
corresponding parameter dependence are each represented by
parallel, parameter-dependent resistors RðstatÞ

1 …RðstatÞ
n . The param-

eter-dependent total resistance at ω ¼ 0 is defined only by these
resistors. Each ofm separate polarization processes in thematerial is
described by a pair of one dynamic resistor RðdynÞ

1 …RðdynÞ
m and one

capacitor C0
1…C0

m, both parameter-dependent and parallel to the
static resistors. Either their parallel or equivalent serial representa-
tion can be used. In the parallel equivalent representation, the
dynamic resistor has infinite resistance at ω ¼ 0. A broad distri-
bution of adjacent resonancesmay be described by a constant phase
element, denoted K, instead of many separate pairs of dynamic
resistors and capacitors. The geometric capacitance which deter-
mines the highest resonance frequency in the system is represented
by a frequency- and parameter-independent parallel capacitor C∞.
(b) Experimentally relevant circuit (of the commonly investigated
case) for one piece of material where the experimental conditions
result in one dominating static transport process, represented by
RðstatÞ
dom ðV;PÞ, and the observed frequency range includes only the

first dielectric resonance caused by a distribution of resonances
represented by the constant phase element. The dielectric response
of polarization processes with resonant frequencies well above
the highest frequency in the experiment, including the free-space
component, are included in the high-frequency capacitor CðexpÞ

∞ .
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CnðωÞ ¼ KðiωÞn−1 ð13aÞ

¼ K

�
sin

�
nπ
2

�
− i cos

�
nπ
2

��
ωn−1 ð13bÞ

with the pseudocapacitance K, a constant that might
depend on external parameters, and the phase θ ¼ −nπ=2
[34,55]. Hence, the parameter n, which might generally
be dependent on frequency and other external parameters
(e.g., temperature as explained in Ref. [38]) as well,
determines the constant phase and the power of the
capacitive decay in the progression of absolute imped-
ance with frequency. Having an approximately constant
phase for a larger region of frequencies does mean that
the ratio of the loss is approximately frequency inde-
pendent in the corresponding region [56]. Regardless of
which of many properties in the system actually shows a
certain random distribution (see, for example, Refs. [56–
59]), the deviation from an ideal capacitance is in the end
explained by a distribution of resonance frequencies in
the investigated frequency range [50]. Up to now, many
different models have been proposed to explain the
universal approximate power-law behavior of various
different classes of materials [56–59]. Independent of the
actual physical model, the result is always a distribution
of time constants and, respectively, resonance frequen-
cies. In summary, the CPE is observed in cases of broad
ranges of adjacent resonance frequencies, whatever their
cause might be. The distribution of resonance frequen-
cies leads to a certain connection of the dielectric loss
and real part of the permittivity which expresses itself in
an approximate power-law dependence on frequency and
a phase θ ¼ −ðnπ=2Þ, that is (compare Ref. [34]),

εðωÞ ¼ Kd
A

ðiωÞn−1 ð14aÞ

¼ Kd
A

�
sin

�
nπ
2

�
− i cos

�
nπ
2

��
ωn−1: ð14bÞ

Since the system is described as an EEC, the constant
phase element is expressed as a reactance:

XCPEðωÞ ¼ −
1

ωCðωÞ ð15aÞ

¼ −
1

in−1ωnK
ð15bÞ

¼ −
1

ωnK½sinðnπ
2
Þ − i cosðnπ

2
Þ�

¼ −
1

ωnK

�
sin

�
nπ
2

�
þ i cos

�
nπ
2

��
; ð15cÞ

it follows that

ZCPEðωÞ ¼ iXCPEðωÞ ð16aÞ

¼ 1

ðiωÞnK ð16bÞ

¼ 1

ωnK

�
cos

�
nπ
2

�
− i sin

�
nπ
2

��
; ð16cÞ

with 0 ≤ n ≤ 1. In many cases, n is around 0.8 [38]. In its
formulation as the impedance, it can be seen that the
absolute impedance decreases with a power of −n with
frequency and the phase is fixed at θ ¼ −ðnπ=2Þ.
While the parallel arrangement of the static resistor,

dynamic resistor, and frequency-dependent capacitor can
be used in a broad range of frequencies (especially as long
as the inductance can be neglected), combining a dynamic
resistor and a frequency-dependent capacitor into a single
constant phase element is justified only for the frequency
range of the corresponding distribution of resonance
frequencies. All polarization processes with much higher
frequency (e.g., phonon resonances in the infrared range)
have either to be given explicitly, as further parallel pairs of
components, or, which is sufficient for most impedance
spectra, all higher-frequency processes can be included into
a high-frequency capacitor for the specific experiment

CðexpÞ
∞ (which is in good approximation independent of

frequency if other polarization processes are sufficiently
far away from the highest frequency in the investigated
range; compare Sec. II E). This simplified circuit is
illustrated in Fig. 2(b). The geometric capacitance C∞,
shown in Fig. 2(a), will be introduced in Sec. II G.

Properties of the constant phase element

For aVoigt circuit elementwith an ideal capacitor, the cutoff
frequency can be defined as either the frequency at which
reactance and resistance both have the same absolute value,
the frequency where the phase is −π=4, or the frequency
where the power reduces to one-half. In the case of an ideal,
parallel capacitor, all definitions lead to an identical frequency.
When substituting the parallel ideal capacitor by a constant
phase element, this ceases to be the case.
Since for a constant phase element the lowest phase is

not −π=2, the phase of −π=4 loses its importance. In the
ideal capacitor case, −π=4 is the limit between the system
being resistive or capacitive. In the case of a constant phase
element, this situation does not even have to exist.
The frequency at which the phase becomes −nπ=4 is

the point where the sum of static resistance and dynamic
resistance (representing the dielectric loss) becomes equal
valued with the bypassing loss-free reactance. The frequency
where the resistance and absolute reactance become equal
valued is also not that special, since part of the absolute
reactance partially belongs to the real part of the impedance.
The frequency where the power reduces to half, however,

remains interesting for the manufacture of devices.
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As a result, the definition where the cutoff frequency ωco
is defined as the frequency at which the absolute impedance
has decreased from its static value jZðω → 0jPÞj ¼
RstatðPÞ to jZðωcojPÞj ¼ ½RstatðPÞ=

ffiffiffi
2

p � is regarded in more
detail. The above definition is valid only for linear,
i.e., field-independent, systems [60]. For a Voigt circuit
element with a constant phase element instead of a
capacitor, this frequency deviates from the value of an

ideal capacitor ωðidealÞ
co ¼ ðRCÞ−1. The cutoff frequency of a

constant phase element with pseudocapacitance KðPÞ and
0 ≤ nðPÞ ≤ 1 is

ωðCPEÞ
co ðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2½π

2
nðPÞ� þ 1

q
− cos ½π

2
nðPÞ�

KðPÞRstatðPÞ
n

vuut
: ð17Þ

If the capacitor is replaced by a constant phase element. the

phase at the cutoff frequency ωðCPEÞ
co is

θðCPEÞco ðPÞ ¼ arctan

0
B@ − sin ½π

2
nðPÞ�n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2½π
2
nðPÞ� þ 1

q
− cos ½π

2
nðPÞ�

o−1 þ cos ½π
2
nðPÞ�

1
CA: ð18Þ

G. Modeling a heterogeneous specimen

Above, it is derived directly from Maxwell’s equations
that a piece of nonmagnetic material can, in a frequency
range around one polarization mechanism, without loss of
generality be described by a parallel arrangement of one
resistor for dc current transport Rstat, one dynamic resistor
Rdyn, linked with the corresponding (real-valued) frequency-
dependent capacitorC0, and a (real-valued) parallel capacitor
CðexpÞ
∞ , for all resonances with frequencies much higher than

the highest investigated frequency ωðexpÞ
max .

Except for the case of broadband dielectric spectroscopy,
where several resonances are observed and have to be
individually described by further pairs of parallel dynamic
components, this is the appropriate circuit for describing a
single material in an immittance spectrum.
Impedance spectroscopy is commonly used to observe

the region around an isolated first dielectric loss peak,
usually broadened by a distribution of resonances which
can be described by a CPE. This specific region may be
described by the circuit shown in Fig. 2(b) with the
following three parallel components: First is the resistor
RstatðV;PÞ representing the dc transport in the material.
This resistor shows a stronger temperature dependence than
the dynamic components [38]. It is generally beneficial to
find its correct dc model, because it helps to understand the
underlying physics and forces a unique arrangement of
circuit elements. Furthermore, it can be used to identify
which circuit element represents which part of the system.
In general, all known dependencies on the external param-
eters of every element are useful to identify the corre-
sponding component correctly. Second is the parallel
constant phase element which describes the dielectric loss
peak in the observed frequency range. Third is the parallel

constant capacitor CðexpÞ
∞ which includes the responses of

all high-frequency polarization processes.
A sequential arrangement of different homogeneous

pieces (e.g., different materials) leads, therefore, to a serial

connection of the corresponding generalized Voigt circuit
elements. A piece does not necessarily mean a whole layer
of a certain material; e.g., in a system with stacked layers of
two different materials (A and B), there are often three
pieces: material A, material B, and the interface of both
materials. For example, the formation of barriers due to
different electrochemical properties and a high number of
interface states is quite common (e.g., Ref. [61]) and often
leads to very different electric as well as dielectric proper-
ties of the interface. This volume has, of course, to be
represented by a separate generalized Voigt circuit element
with the corresponding models for dc and ac conductivity.
Sometimes other arrangements of circuit components than

a serialization of the derived generalized Voigt circuit
elements are used to fit the corresponding measured imped-
ance spectra. If parameter-dependent models are introduced
in the circuit elements, the fit either does not resemble the
measured data at all or leads to unrealistic values for the
fitted system-specific parameters. Using only resistors and
capacitors, their fitted values might not look suspicious. In
that case, however, each element would possibly represent
multiple parts of the system. As a result, the other arrange-
ments of elements should be used only if either finding a
descriptive EEC purely mimicking the response, without
any physical meaning of the values of its components, is
sufficient or the geometry is not a serial arrangement of
pieces. A serial arrangement of static and dynamic compo-
nents for a single part of the system (homogeneous piece) is
not recommended, as well: Any capacitive element in series
leads to an infinite resistance for zero frequency, but the dc
mechanism has to be the remaining resistance. Furthermore,
the variation of the dielectric displacement field leads to an
additional current through that material. It contains the free-
space component of the volume between the electrodes and
the additional current because of the polarizability of the
material. Both are currents capacitively bypassing the dc
resistor; i.e., they are zero for frequency ω → 0 and increase
with frequency. In the same way the different dc transport
processes are complementary, hence, parallel paths through
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the same volume of material, the different polarization
processes are parallel processes with their corresponding
current contribution.
If one polarization process with a broad distribution of

resonance frequencies is extracted into the CPE, all other
polarization processes with higher frequency remain in the
high-frequency capacitor. All polarization processes can be
written as a sum of the corresponding parts of the
permittivity [see Eq. (12)], which leads to a parallel
arrangement of each dynamic pair representing a single
polarization process (see Sec. II E). Hence, a parallel
arrangement of the static resistor, CPE (or other pairs of
separate capacitive elements which could themselves also
be serially arranged), and high-frequency capacitor is
preferable. Furthermore, there should not be any capacitive
element in series to the dc resistance of a piece.
In a real experiment, only a finite range of frequencies

can be observed. As a consequence, two deviations from
the generalized Voigt circuit element can be useful.
If the highest frequency investigated is in a region which

is still dominated by the distribution of resonances (that is,
the CPE), it might be preferable to omit the high-frequency
capacitor, since its information in the data points is limited
and consequently leads to a high uncertainty for the fitted
capacitance.
Parts of the investigated system may have cutoff frequen-

cies far higher than the highest frequency ωðexpÞ
max in the

experiment and have only low, Ohmic resistances, e.g., leads,
the metal contacts themselves, substrates. Hence, their
capacitive bypasses cannot be observed, and there is no
possibility to distinguish between the different contributing
elements. As a result, all these parasitic resistances can be

combined in a single resistor RðparasiticÞ
∞ without capacitive

bypass in series to all generalized Voigt circuit elements. The
missing bypasses are, however, even beneficial if the inves-
tigation of these components is not of interest. Hence, the
experiment should be designed to minimize those parasitic
resistances and, respectively, increase their cutoff frequency

far enough to be sufficiently higher than ωðexpÞ
max .

In some experimental setups, especially in electrochemi-
cal impedance spectroscopy, the system under examination
is geometrically complicated and stretched out. In such
cases as well as when the frequencies are sufficiently high,
the introduction of a geometric capacitor CðgeoÞ

∞ spanning
all parts of the system might be useful (see Ref. [5], p. 99).
The smallest time constant in the EEC is then given by

τmin ¼ RðparasiticÞ
∞ CðgeoÞ

∞ (see Ref. [5], p. 15). As long as
ωmaxτmin ≪ 1, the geometric capacitor might be omitted.
However, the geometrical capacitance is still useful, since it
can be used to normalize different geometries and it is the
only purely real capacitance. This capacitance is not
parameter dependent, except implicitly, e.g., if the dimen-
sions of the system are changed through the variation of
other parameters.

H. Example: Impedance of a depletion layer

In this section, the application of the proposed models on
a well-known, well-understood example is presented. The
characteristics of a depletion layer in silicon fulfill these
criteria and are, furthermore, interdisciplinary familiar.
Both static conductivity and capacitive physical models

dependent on external parameters are available for the
description of a depletion layer (compare Fig. 3). In this

FIG. 3. (a) Resistance-voltage curve of the depletion layer
described in Sec. II H for the temperatures shown in (c).
(b) Capacitance-voltage curve and depletion-layer width versus
voltage curve for the same depletion layer at identical temper-
atures. As described in Sec. II H, only the depletion layer is
modeled; i.e., remaining silicon bulk is not included. The
calculated resistance and capacitance are used to calculate the
corresponding impedance for the depletion layer shown in Fig. 4.
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example, the dependence on temperature as well as applied
voltage is utilized. However, it is important to notice that it
is not necessary to vary several external parameters, e.g.,
temperature and voltage. Depending on the sensitivity of
the different components in the system on the correspond-
ing parameters, one varied external parameter might be
enough to find the one unambiguous circuit representing
the underlying physics.
As explained in Sec. II G, the resistance and capacitance

of the depletion layer are arranged in parallel.
The diode resistance is calculated with the thermionic

emission theory assuming an aluminum/p-type silicon
Schottky contact (see Ref. [26], pp. 255–258) with an
area of 1 mm2. The model is extended to allow for
Schottky-barrier lowering (see Ref. [26], pp. 281–282).
Furthermore, instead of assuming that all acceptors are
ionized, the concentration of ionized acceptors is calculated
and also concentration of intrinsic charge carriers consid-
ered using theMisiakos and Tsamakis empiric formula [62].
The effect of spin orientation and the number of hole bands
is taken into account for the calculation of carrier concen-
trations using Fermi-Dirac statistics. All calculations for
carrier concentration, Fermi level, etc., are also used for the
calculation of the capacitance in the system. Since p-type
silicon is assumed, the diode is reversely biased for positive
bias voltages.
For the purpose of this example, the impedance is

modeled for the depletion layer only, which means that
the depth of the simulated region, the depletion-layer
width, is limitlessly varying with temperature and voltage
and, furthermore, that neither the leads nor the bulk
silicon are simulated. As a result, the depletion-layer width
converges against zero at a certain bias value which
leads to a diverging capacitance. In addition, only bias
voltages where a depletion layer exists are calculated,
although the resistance model is valid for forward bias
voltages as well. Furthermore, the selected model, the
thermionic emission theory, is not suited to describe very
low or very high temperatures, since other effects, e.g.,
tunneling through the barrier or a high-current limiting
process, become important in those regions and are not
included in the model.
The capacitance of the system is modeled assuming a

spatially homogeneous carrier concentration in the
depletion region which ends abruptly after the depletion-
layer width. The same properties, e.g., carrier concentra-
tions, Fermi level, etc., as used for the resistance of the
depletion layer are used for the capacitance. Since the
capacitance does implicitly include the geometric capaci-
tance, the simulated circuit to calculate the impedance of
the depletion layer looks like the circuit shown in Fig. 2(b).
In a real depletion layer at a metal-semiconductor interface,
there is likely to be some random element (e.g., random
fluctuations of the doping concentration, interface rough-
ness, etc.) which might lead to a constant phase element

with a slope of the capacitive decay very close to unity
rather than an ideal capacitor. As there is no theoretical
prediction for that value and its temperature dependence in
this specific case, unity is chosen for the simulation.
The resulting resistance and capacitance for the depletion

layer of the system can be seen in Figs. 3(a) and 3(b),
respectively.
Assuming impedance, the spectra of a depletion layer in

silicon with the above properties are measured for different
voltages and temperatures.
The classical analysis, which is often omitted [4], is to fit

the resistance and capacitance of the ideal, lumped resistor
and capacitor in the Voigt circuit for different external
conditions. Subsequently, the system-specific parameters
(e.g., the Schottky barrier height) of the resistance model
would then be optimized to fit the experimentally found
resistance of the different conditions. Then, the same would
be done with the capacitance [63].
In the presented approach, the models are combined to

calculate the impedance of the system for different con-
ditions (see Fig. 4). Subsequently, the whole data are fitted
with the combined impedance model in a global fit. It might
seem unnecessarily complicated for this very simple
example, since only one separate part of a system is
analyzed, which could never be separately measured like
this. Real systems, on the other hand, consist not only of a
single part but various parts and parallel transport processes
per part, etc., which make ascribing different processes
separately to the corresponding idealized lumped compo-
nents almost impossible. The differences and advantages of
this approach for this example are now discussed in detail.
A general comparison of this approach with analysis using
conventional EECs consisting solely of idealized lumped
components can be found in Sec. III C.
Figure 4 shows the impedance of the depletion layer in a

parameter-dependent Bode plot. For low temperatures, the
impedance is capacitive. At 100K, the phase is−90° and the
absolute impedance has a slope of −1 in the direction of
increasing frequency for almost all parameter values.Mainly
due to the high static resistance, the cutoff frequency is even
smaller than 10 Hz. For gradually increasing temperatures,
the absolute impedance is decreasing, while the phase is
increasing for eachparameter point. The absolute impedance
surfaces do not cross each other; the phase surfaces merge at
−90° and 0°. Since the capacitance of the depletion layer is
less strongly varying with temperature than the resistance
(compare Fig. 3), it seems as if all absolute impedancevalues
cling almost to the same layer of capacitive bypass. In other
words, with higher temperatures the cutoff frequencies are
increasing in frequency mainly due to changes in the
resistance. For high temperatures the resistance is so low
that thecutofffrequenciesarehigher than1GHz.For lowbias
voltages, the resistance is rapidly decreasing. In this region
the resistance is so low that it is resistive for all temperatures
up to the highest plotted frequency.
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The parameter-dependentmodel for the static resistance of
the depletion layer and its capacitance is dependent on
various different parameters which we can divide into four
different groups: natural constants, system-specific param-
eters, external parameters, and fit parameters (a subset of the
system-specific parameters). Natural constants are of course
fixed and tabulated. System-specific “constants” are the
temperature-dependent band gap of silicon EgðTÞ (its equa-
tion is given in Ref. [26], p. 15), the temperature-dependent
intrinsic carrier density niðTÞ given in Ref. [62], the effective
masses of silicon for holes mðeffÞ

h and electrons mðeffÞ
e ,

respectively, given in Ref. [64], the permittivity of silicon,
given, e.g., in Ref. [26], p. 849, the acceptor concentration
NA usually specified by the wafer supplier (here an acceptor
concentration of 1015 cm−3 is assumed), and its energetic
distance to the valence band EA, usually tabulated as well

(here Ref. [65], p. 416, is used). With the exception of the
acceptor concentration NA, all these values come from
literature sources and should not be used as fit parameters.
The external parameters are in the simulated case here

the temperature T and the applied bias voltage V. These
parameters are set by the conditions of the experiment. The
temperature can usually be set explicitly but the applied
bias usually only indirectly, since in an experiment other
components might be in series.
There is only one fit parameter for both the static

resistance of the depletion layer and its capacitance, the
Schottky barrier height ΦSK. It depends not only on the
involved materials at the interface but is also known to be
dependent, e.g., on the deposition method. In a conven-
tional EEC, the static conductivity is modeled by a resistor
and a parallel capacitor (and the geometric capacitance).
The corresponding resistance and capacitance are fitted.
These values can describe the depletion layer correctly
only at one point of the parameter set P0 ∈ P; here
P0 ¼ ðV0; T0Þ ∈ V × T . For each other point in parameter
space, two additional fit parameters are necessary (compare
Fig. 5 and Sec. III C), and due to circuit ambiguity they
might even not be only for one part of the system but for a
number of different parts. With the parameter-dependent
model, only one fit parameter describes the full parameter
space. Furthermore, this parameter is neither a resistance
nor a capacitance, potentially representing a combination of
different parts, but a physically meaningful parameter like
the Schottky barrier height. Since the models are fitted
against the measured data, the physical constant is, in the
margin of the accuracy of the fit and if the global minimum
of residuals is found, the statistically best guess for the
assumed models.
Since the model for the capacitance uses (a subset of) the

same parameters as the static resistance and represents the
same physical phenomenon as the resistance, both models
cannot accidentally include other parts of the system.
Hence, the resulting circuit is not only unambiguous but
is also forced to represent the underlying physical proc-
esses correctly.
Another example: Assuming the acceptor concentration

is unknown, it is a fit parameter as well. Fitting exper-
imental impedance data for a range of different bias
voltages and/or temperatures gives directly the best guess
for the acceptor concentration for the used model. Since
this parameter is present in the capacitance as well as in the
resistance, it shows how well the model is suited for the
experimental situation.
As already mentioned before, it is important to notice

that it is not necessary to vary several external parameters,
e.g., temperature and voltage. Depending on the sensitivity
of the different components in the system on the varied
parameter, one varied external parameter might be enough
to find the one unambiguous circuit representing the
underlying physics.

FIG. 4. (a) Absolute impedance of the depletion layer described
in Sec. II H versus frequency and bias voltage for the temperatures
listed in Fig. 3(c). (b) The corresponding phase versus the same
parameters for identical temperatures. The parallel pair of resis-
tance and capacitance shown in Fig. 3 are assumed. The capaci-
tance does implicitly include the geometric capacitance. As a
result, the simulated circuit looks like the one shown in Fig. 2(b).
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III. DISCUSSION AND OUTLOOK

D. Macdonald reminds us that the ultimate goal of
electrochemical impedance spectroscopy is to find the
underlying mechanisms [4]. Furthermore, the mere creation
of an analogue, that is, without further analysis any EEC
reproducing the measured impedance spectra, would re-
present an incomplete analysis of the data [4]. It is the
opinion of the authors that these points of criticism should
not be limited to the analysis of electrochemical impedance
spectra but extend to other scientific branches of impedance
spectroscopy as well.
Of course, immittance spectroscopy is applied not only

in science and research. For some applications in engineer-
ing, for example, the device under test might only be a
small part of a larger system and understanding of the
processes involved in that part is not of interest. Instead, the
goal is to know as precisely as possible how this part reacts
under certain operation conditions. In that case, a descrip-
tive model (D. Macdonald calls this an analog; see Ref. [4])
is sufficient, and the primary criterion is a good approxi-
mation of the impedance response. It should, however, be
noted that the extraction of statements over underlying
processes from a descriptive model involves certain risks
and should be avoided.
The goal in science is usually to understand the under-

lying mechanisms which lead to the specific immittance of
the system under investigation [4]. Therefore, an explana-
tory model has to be found. This work proposes an
approach to finding explanatory models.
Taking up the differentiated discussion from Grimnes

and Martinsen (see Ref. [10], pp. 284–286) over different
approaches to devise models, the suggested model is
similar to what they call “model 2,” which is a special
case of “model 1.” Different from their suggestion of
representing only the largest contributions, the proposed
model replaces, if possible, the parts of the EEC with the
largest contributions by physical models including their
dependence on external parameters. However, other parts
are not omitted but simply still represented by idealized
lumped components. If the significance of the latter is of
minor importance, this usually also means that they do not
have a pronounced part in the immittance spectra. A typical
reason for that is, for example, that the cutoff frequency is
far from the boundaries of the measurement range. In such
a case, all parts of minor interest which have much higher
cutoff frequencies than the maximal frequency in the
experiment can be lumped in a serial resistor, since they
are all resistive in the measured frequency range and with
respect to frequency indistinguishable. In contrast, all parts
not of interest which have much lower cutoff frequencies
than the minimal frequency in the experiment can be
lumped in a capacitor, since they are all capacitively
bypassed. Naturally, the measured frequency range should
include all cutoff frequencies of parts of the system which
are of interest.

A. Validity of describing Jfree with the corresponding
dc current model

Beginning in Sec. II A, the two terms on the right-hand
side of Eq. (1) are identified as exclusively representing
dc and ac properties of the material. This interpretation is
continuously used in all following equations up to the
final general EEC for a piece of nonmagnetic material.
Although this separation is used by Jonscher (see Ref. [34],
pp. 40–41) (and Jfree had even been already linked with
Ohm’s law by Maxwell in 1865 [32]), it can be only an
approximation. Maxwell explicitly ascribes the polarization
to the dielectric displacement [32]. However, he only
mentions the proportionality of the free current and
applied field (“electromotive force”) with the proportion-
ality constant of “specific resistance” ρ, that is, using the
syntax in this manuscript, for a homogeneous, isotropic
material [32]

Jfree ¼ ρ−1E: ð19Þ

In Maxwell’s publication [32], there is no restriction that
the specific resistance might not be dependent on the
frequencies of the stimulating signal and that it has to
be identical to the dc value. In this paragraph, it is shown
that the interpretation of Jonscher as the dc value
(Jfree ¼ σdcE) is in the frequency range of dielectric
relaxation, which is the only frequency regime considered
in his book, a valid assumption.
Inserting the dc conductivity means assuming that the dc

current transport mechanism, independently of the frequen-
cies of the applied signal, creates a current completely in
phase with the driving field. Furthermore, at any given
point in time, the current corresponds to the dc value for the
currently applied field.
Two classes of materials are considered. For systems

where conduction is through delocalized states, i.e., metals,
the dc conductivity can be applied up to frequencies that are
sufficiently smaller than the inverse of the damping con-
stant (which is in the terahertz range) (see Ref. [51], p. 21).
In a system with conduction through localized states, this
separation is valid as long as the inverse of the frequency
of the stimulus is large compared to the frequency for
which the absorption or emission of modulation quanta
(see below) is possible. The validity of the separation in
a material that is dominated by hopping or detrapping of
localized charges is now considered in more detail. An
important time constant in such a system is the lifetime of
an occupied trap, that is, the time in a trap before the charge
performs the jump to the next trap or the corresponding
conductive band. From the lifetime of the charge in the trap
(and the corresponding trap density, occupation, attempt to
jump frequency, energy differences, different final states,
etc.), one can calculate a jump rate ri for charges in traps.
Generally, the jump rate rið ~EðtÞ; ~PðtÞÞ might depend on
external parameters, e.g., the applied field and temperature.

AMANI et al. PHYS. REV. APPLIED 4, 044007 (2015)

044007-14



The total number of successful jumps in a time interval
ðt1; t2Þ can be calculated by integration:

ni ¼
Z

t2

t1

ri

�
~EðtÞ; ~PðtÞ

�
dt; ð20Þ

even for frequencies higher than the jump rate. These
higher frequencies just lead to a reduced total number of
successful jumps. Each possible conducting path in the
material has a rate of charges it can conduct in a time
interval, i.e., a contribution to the total current density,
based on all individual jump rates. Analogue to the above
explanation for a single trap, this does not invalidate the
assumption of Jfree being calculable by dc conduction
models. For even higher frequencies, there are two mech-
anisms that could invalidate the separation.
According to Büttiker and Landauer, a traversal time is

needed for the trapped charge to actually traverse the barrier
[66]. As long as the frequency of the applied field is much
lower than the inverse of the traversal time and below
frequencies to emit or absorb modulation quanta, the total
number of successful jumps in a time interval can still be
calculated by Eq. (20), and the charge in the trap sees an
effectively static barrier [66]. When the inverse of the
frequency of the applied signal is in the same magnitude or
even higher than the traversal time, a charge in a trap
continues to see effectively the same barrier [66]. However,
it can absorb or emit modulation quanta which changes the
probabilities of jumps and, hence, also the jump rate [66].
Not because of reaching field periods in the order of the
traversal time [67], but because of reaching the frequency
range where the emission and absorption of modulation
quanta is possible (the corresponding time constant does
not necessarily have to be in the range of the traversal time),
the dc current models in the material can in the latter
frequency range not be used to calculate Jfree. According to
the definition in Ref. [34], p. 6, the dielectric relaxation is
the “‘low-frequency’ subquantum” limit and therefore
ends for frequencies below the above-described interaction
with modulation quanta. For frequencies around or larger
than this modulation quantum regime, the conductivity
σstatðE;PÞ in Eq. (6) has to be replaced by a dynamic
conductivity σdynðω;E;PÞ which depends on the frequen-
cies of the stimulating signal but should still describe only
the conduction processes contributing to the free current.
As a result, the assumed separation of the dynamic part
exclusively in ∂ ~D=ð∂tÞ and the static part in ~Jfree breaks.
Assuming dissipative tunneling introduces a friction

coefficient γ and might lead to longer traversal times
and decreased transmission rates [66]. It does, however,
not change the frequency limit as described above.
Dissipative tunneling is highly probable in any real
material, since energies or (directions of) momenta of
the final and initial states are likely not identical. In such
a case, the hopping process must, independently of the

frequency range, be assisted by phonons, etc., to ensure
conservation of momentum and energy. With this in view,
the definition of Jonscher (see Ref. [34], p. 6) for the
dielectric relaxation to be in the “subquantum limit” might
be misleading.

B. Underlying mechanisms for polarization
and static charge transport

Interestingly, the same jumps that lead, over a longer
path of (spatially or energetically) randomly arranged
states, to a direct current can also contribute to the
polarization. For higher frequencies, jumps over undesir-
able barriers (high or wide) are too slow, so that the carriers
preferably oscillate only in regions of easy jumps [68] or
even perform jumps only between pairs [69]. This results in
the formation of dipoles (induced polarization) in these
regions of easy jumps. The sum of these microscopic
dipoles leads to a macroscopic polarization (see Ref. [51],
p. 16). A previous example illustrates that the static current
at low frequencies and the polarization at higher frequen-
cies can be, and often is, due to the same mechanism
(see the Barton-Nakajima-Namikawa relation in Ref. [70]).
Since these jumps are phonon assisted [38] as well as
noninstantaneous, they result in the dissipation of energy
into heat in the static as well as in the dynamic case. As
explained, this forces the electric displacement field, or,
more precisely, the polarization, to be a complex quantity.

C. Comparison with conventional EECs

Conventional EECs use solely idealized lumped com-
ponents, like ideal resistors, ideal capacitors, or constant
phase elements. A resistance is a first-order approximation
of a current transport process and, hence, a physical model,
though not one dependent on external parameters. Thus,
conventional EECs can also be, and often are, explanatory
models.
If the system is studied at different conditions (sets of

external parameters), the resistance changes according to
the parameter dependence of the underlying process
(compare with the examples in Table I). For each different
condition, the value of each component, e.g., the resistors,
is determined by refitting the same arrangement of com-
ponents to the experimental data acquired under the
corresponding condition, resulting in a potentially large
number of fitted parameters equal to the number of values
of components in the circuit times the amount of different
conditions (see Fig. 5). It is well known that circuits
consisting only of idealized lumped components are
ambiguous [20]. Since another arrangement of the same
components can lead to an equally good agreement, one
cannot be sure whether in the selected arrangement the
resistance really is the first-order approximation of a charge
current process. Although J. Macdonald suggests to vary
the bias voltage and/or temperature to identify the correct
arrangement of components, in many experiments the
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frequency of the signal is still the only varied parameter. If
other dependencies are used, there are still challenges:
Often, there are multiple different transport processes, even
in a single homogeneous part of a system, and the resulting
parallel resistors are impossible to separate in a model
consisting only of idealized lumped components. As a
result, the obtained resistance is a combination of several
first-order approximations of charge-transport processes
and the single contributions cannot be extracted. Aside
from multiple processes in one homogeneous part, it can
also not be ruled out that several processes forming
different parts of the sample are simultaneously described
by one component.

Although there are certain challenges using conventional
EECs, it has been and still is a major pillar for the analysis
of experimental immittance data. The process of finding the
right arrangement of idealized lumped components and the
subsequent look at the resulting resistances and capaci-
tances (and their change with alteration of certain external
parameters) are usually the most enlightening phases
during the analysis of immittance spectra. The presented
approach should rather be seen as a valuable supplement,
that eliminates certain risks, than as a replacement of the
analysis with EECs consisting solely of idealized lumped
components.
Alternatively to the first-order approximation of a current

process by a resistance, one might use process-specific
physical models dependent on external parameters. In that
case, the values of the components, e.g., resistances, are not
fitted separately for each condition, since the progression
of values with the variation of an external parameter is
prescribed by the model. Instead, the measured data for all
conditions are globally fitted to extract the parameters
of the underlying physical model which are system specific
and cannot be found in the literature. In the case of the
impedance of a depletion layer (see Fig. 5), only the
Schottky barrier height has to be fitted. If the part of
the system really is a depletion layer, then with only one fit
parameter the resistive as well as the capacitive contribu-
tions to the impedance are described correctly within the
possibilities of the model. The fact that both resistive and
capacitive components are fitted by the same parameters
also verifies consistency, ensures that only one specific part
of the system is modeled by the components, and makes
sure that the right processes are assumed. In comparison,
the modeling with idealized lumped components can reach
a better resemblance, since there are no restrictions
imposed by the model or arrangement of components,
and parameters are optimized for each condition separately.
If the researcher is not interested in how the part of the
system works but just wants to model the response, a
conventional EEC with separate fits for every condition
might be superior due to a better approximation of the
measured results. On the other hand, a larger set of
conditions leads to a very high number of fitting param-
eters. In order to identify the transport process, some
authors analyze the progression of the value of certain
fitted components in the conventional EEC, e.g., by fitting a
resistance over temperature. Correlating the progression of
the value of a component with physical models after fitting
the parameters of the EEC then gives the parameters of the
underlying model. This intermediate step through local fits
leads to either the same parameter or, more likely, a less
accurate one, due to information loss in the intermediate
fits, e.g., by partially wrongly assigned contributions to
different components. In comparison, in a global fit with
the parameter-dependent physical model, wrongly assigned
contributions are not as likely since the model is more

FIG. 5. Typical practical example: Fitting a depletion layer
using the shown circuit for ten different temperatures and 50
different bias voltages (see the axes representing the parameter
space, temperatures equidistant in the reciprocal temperature
scale). A small square corresponds to a fitted parameter value. On
the left side, the system is described by using a conventional EEC
containing only idealized lumped components. The values for the
resistive (red) and capacitive (blue) components are independent
of each other. On the right side, the models dependent on external
parameters are used for resistive and capacitive elements. The one
remaining fit parameter characterizes resistive and capacitive
properties simultaneously (half red and half blue squares),
resulting in a consistency check of whether the correct processes
are assumed.
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restrictive. Furthermore, all data points are used directly to
extract the relevant parameters. The problem of separating
parallel processes is also resolved, since different transport
processes have different dependencies on external param-
eters. One only has to find the relevant external parameters
to vary. It is also not necessary to know every transport
process in the system. Only relevant models, or even one
relevant model, dependent on external parameters have to
be included. A subsequent look at the residuals can then
help to identify the missing processes, and they can then
be added accordingly. A requirement for the presented
approach is that it becomes obligatory to analyze the
system under different conditions that have to lead to
distinguishably different behavior of the corresponding
processes. Furthermore, the possibly involved processes
must be known.

D. Comparison with Poisson-Nernst-Planck models

Poisson-Nernst-Planck (PNP) models are a group of
process-independent models that can be used to analyze
immittance data and extract relevant physicochemical
parameters from any material exhibiting one dominating
transport process for each of the up to two charge carriers
with opposing signs.
The development of these models started in the 1930s

[21,72]. The first version by Jaffé [21,72] is not intended to

be used with electrolytes. Hence, discharges of the charge
species at the surfaces are prohibited. A first step to make
the theory applicable to electrolytic solutions was done
in 1952 by the same author together with Chang [73]
by including discharging at the surfaces. In 1953, J.
Macdonald extended the model of Chang and Jaffé to
describe the situations of electrolytes more realistically
[24]. Different mobilities for the charge carriers (since they
can be arbitrary, one species might be immobile), incom-
plete dissolution of a neutral species into charge carriers of
opposing sign, and generation and recombination of the
charge carriers are included. The next milestone in the
development of PNP models to describe immittance data
was done in 1978 [23]. The charge carriers of arbitrary
valence can be generated from and recombined into neutral
centers, as well as immobile charged donor or acceptor
centers. Although PNP models for analyzing immittance
data have incrementally been refined to account for more
and more details, like anomalous diffusion processes, they
have not yet found widespread application in the analysis
of experimental data [22].
PNP models are based on a fundamental microscopic

interpretation of a system and can, as a result, be used to
interpret a wide range of matter, including semiconductors,
electrolytes, or ionic conductors. For given boundary
conditions and surrounding effective medium (continuous,

TABLE I. To clarify what is meant by process-specific physical models dependent on external parameters, a few
examples of such models for current transport processes in solids and their interfaces, which are commonly found in
dielectric films in CMOS technology, are given [71]. All these models have a nonlinear dependence on the applied
field and, hence, show the importance for allowing nonlinear field dependence in the derivation. Symbols: μ, electron

drift mobility;NC, density of states in the condition band; eΦT , trap energy level; ε
ðdÞ
r , dynamic relative permittivity (at

frequencies of visible light); a, mean hopping distance; n, electron concentration in the conduction band; ν, frequency
of thermal vibration of electrons at trap sites; d, thickness of the dielectric thin film;A�, effective Richardson constant;
eΦB, Schottky barrier height; h, Planck constant; and m�

T , tunneling effective mass in the dielectric.

Bulk-limited conduction processes

Frenkel-Poole conduction:

JFPðE; TÞ ¼ eμðE; TÞNCE exp

�
ð−e=kBTÞ

�
ΦT −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE=πεðdÞr ε0

q ��

Hopping conduction:
JHðE; TÞ ¼ eanðTÞνðTÞ expfð−e=kBTÞ½ΦT − aE�g
Trap-filled limited/space-charge limited conduction:
JTFL=SPLðE; TÞ ∝ μðE; TÞðE2=d5Þ

Electrode-limited conduction processes

Schottky emission:

JSEðE; TÞ ¼ A�T2 exp

�
ð−e=kBTÞ

�
ΦB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE=4πεðdÞr ε0

q ��

Fowler-Nordheim tunneling:

JFNðEÞ ¼ ðe2E2=8πhΦBÞ exp
�
−
�
8π

ffiffiffiffiffiffiffiffiffiffiffi
2em�

T

p
=3hE

�
Φ3=2

B

�

Thermionic-field emission tunneling:

JTEðT; EÞ ¼
�
e2

ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
E=2h2

ffiffiffi
π

p �
expfð−e=kBTÞ½ΦB − ðeℏ2E2=24mðkBTÞ2Þ�g
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mean-field), the equations for the point-charge distribution,
and the resulting movement of the point charges by drift or
diffusion, are directly solved. Charges can be mobile or
immobile, and recombination and generation into or from
charged or neutral centers can be included in addition to
reactions at and interaction with the surfaces. Instead of
resistances and capacitances, fitting with PNP models gives
physical constants like the reaction rates and density of
charge carriers as well as their mobilities and valences and
the density underlying neutral undissolved species.
In general, PNP models are extremely versatile and

limited only by the effective medium approach and the
disregard of the spatial extent of the species. Any processes
that can be described in an effective medium theory should
be possible to include. By utilizing finite element methods,
also inhomogeneous systems can be modeled with PNP
equations. In principle, nonlinear models, like Frenkel-
Poole conduction or Schottky emission, could be included
by introducing carrier generation dependent on the local
field in the bulk or at boundaries. They then profit from the
application of the specific local fields.
It is the scope of this work to find unambiguous EECs.

Hence, theories should take the form of lumped compo-
nents, as some solutions of PNP equations for specific
problems do [23]. In the remaining part of this section, only
those PNP models are discussed. Furthermore, the appli-
cability of PNP models using point charges in situations
like electrochemical double layers is not evaluated.
To gain useful values for the mentioned parameters of the

PNP model, several requirements have to be fulfilled. The
boundary conditions must apply. The material should have
only one dominating process of transport for each of the
mobile charges. There should be only the species present
that are included in the model.
Assume a material where several processes lead to the

migration of mobile negative charges, e.g., electrons hop-
ping through localized energy levels (variable range hop-
ping [74]) and electrons that are thermally and field-assisted
excited into the conduction band or over the mobility edge
(Frenkel-Poole conduction [37]). Using the usual PNP
model still gives a value for the mobility and a concentration
of charge carriers, but they are only effective values [75].
Parallel arrangement of PNP models, on the other hand,
leads to coupling between the parameters.
There are two solutions to get the different transport

processes decoupled. The first one is directly the one
suggested in this work, instead of PNP models. Include the
corresponding parameter-dependent transport processes as
parallel parameter-dependent resistances in the part of the
equivalent circuit that should describe the material [76].
Subsequently, fit the parameters of the model that cannot be
taken from the literature or those that shall be determined
anyway. In the above example, the density of defects that
participate in the variable range hopping and the concen-
tration of defects from which electrons are thermally

excited can both be decoupled and, therefore, extracted
separately. Furthermore, the energetic distance to the
mobility edge of the defects that are involved in the
Frenkel-Poole conduction process are obtained. At least
a hint to the decision about whether the same traps
participate in both processes or that different traps are
involved in the processes is then given by the determined
energetic distances to the conduction band or mobility
edge, respectively.
In addition to the use of the pure concept presented in

this work, a combination of that concept with PNP models
is possible and presented in the following paragraphs.
Sometimes, specific physical processes that define the

internal properties, like the number of carriers, are known.
The Frenkel-Poole process increases the number of elec-
trons in the conduction band dependent on the applied field
and temperature [37]. Also, the rate of electrons injected
into the material from the electrons can depend on the
applied field and temperature (see Ref. [26], pp. 250–254).
The central idea of this work, i.e., including process-

specific physical models dependent on external parameters,
can be applied to PNP models as well. In semiconductors,
the mobility and number of mobile charge carriers is
dependent on the temperature and the total donor concen-
tration. Utilizing the main concept of this work, instead of
fitting mobilities directly (where, e.g., a set ten of different
temperatures would result in ten different fitted mobilities),
insert the physical model for the mobility in the PNP
model. As a result, the general dependence of the mobility
and number of carriers on temperature is given by the
underlying physical model. Furthermore, the donor con-
centration is a parameter in the mobility and quasifree
electron concentration as well. The donor concentration is,
hence, correlated with two distinct properties in the
system and forces self-consistency. Similarly as for the
mentioned, well-known example of mobilities and charge
carrier concentrations in semiconductors, many restrictions
through dependencies on external parameters can be found
for various materials and processes.
Instead of fitting parameters ignoring the external

dependencies and interpreting them afterwards, it is sug-
gested to include the physics as early as possible to include
self-consistency, understand the underlying physical proc-
esses, and fit globally, resulting in better estimates for the
physically relevant parameters. If the model does not fit,
either the model cannot be applied to the system and
extracted parameters would not have the expected inter-
pretation anyway, or the system consists of more parts or
has more processes than expected. The former suggests
using different models; the latter forces one to reevaluate
the expected structure or processes. In either case, more
information is gained, since the PNP fit would just map
anything on the available fit parameters. In short, process-
specific models impose more restrictions which, as a result,
make it easier to validate if the model can be applied. The
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price is the requirement to measure at a sufficient number of
different external conditions.
Whether the presented approach is used directly or in

combination with lumped PNP models, the dependence on
external parameters can decouple parallel processes, allows
global fitting of all data at once, and automatically weights
the importance of the specific parameters in certain regions
which in the end leads to better guesses for the important
physical parameters.
In contrast to the usual lumped PNP models, the advan-

tages are global fits with automatic weighting, understand-
ing the underlying physics by being process specific, easier
validation of whether the model is applicable, and, depen-
dent on the process, further information is gained, e.g., the
involved energetic levels for charge carrier generation.

E. Summary and conclusion

In this work, a method of devising EECs is introduced,
where the underlying physics is directly attached to its
components. It is known that analyzing more external
parameters than solely the frequency eliminates circuit
ambiguity [20], and at least the additional bias voltage
dependence used also in the example of this work could
easily be included in most of the existing experimental
setups. The introduction of process-specific physical mod-
els themselves as components of the EEC guarantees that
the underlying physics is recognized. Furthermore, it
allows one to extract the relevant physical constants
directly. That is, instead of using information of certain
regions, all data points are used, resulting in a statistically
better guess of the optimized parameters. The analysis of
EECs with idealized lumped components can, however,
create lower sums of squared residua and respectively
better approximations. In applications where a good
approximation is more desirable than the understanding
of the system, the approach with those components can be
superior. The close resemblance of such calculated data
with measured data is, however, deceptive, since a better
approximation does not necessarily mean a better under-
standing of the system. On the contrary, when using
parameter-dependent models, the deviations from the
measured values can be used to identify missing processes.
The presented idea is not only beneficial for EECs but

can also be applied to PNP models. In that case, external-
parameter-dependent physical models, e.g., for the mobility
of a conducting species, can be included in the PNP model.
In the end, the resulting PNP can be globally fitted to the
immittance spectra for various conditions.
The introduction of voltage-dependent models in the

EEC does even open new possibilities. As the variation of
an element with voltage is known, large-signal analysis
respecting the underlying physics lies within one’s reach.
Since the applied signal is time dependent, the voltage
currently applied at each component varies, and the
response of the component to it is included in the model.

The logical next step is to exploit this new possibility.
Combining time-domain simulations (especially including
the progress of the states of charge of the capacitors with
time) with the proposed layout of EECs containing models
for fitting the impedance is believed to have great potential.
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