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Weproposea lateral spin-blockadedevicethatuses theinterbandRashbaeffect inasymmetricdoublequantum
well (QW), where the Rashba effect in the conventional sense vanishes because of its inversion symmetry.
The interbandRashba effect manifests itself in the off-diagonal term (represented by the parameter η) in theQW
space using the bonding and antibonding basis [EsmerindoBernardes, JohnSchliemann,Minchul Lee, J. Carlos
Egues, and Daniel Loss, Phys. Rev. Lett. 99, 076603 (2007)]. In such a system, spin selection is possible by
tuning the device length, gate electric field and in-plane magnetic field. We particularly show illustrative
mechanisms using a one-dimensional model with k ¼ ðkF; 0Þ, where the selected spin can be blocked
completely in the presence of the in-plane magnetic field. While the inclusion of the finite ky and/or the gate
electric field deteriorates the spin polarization P, finite values remain for P (P > 11%). Our proposal can
also be regarded as an effective way of enhancing a variation of the Rashba-Edelstein effect, the generation
of bulk spin polarization by electric current, based on semiconductor band engineering technology.
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I. INTRODUCTION

The generation of spins in nonmagnetic semiconductors
is attracting increasing interest not only for applications
like the Datta-Das spin-FET [1,2] but also from a basic
science viewpoint, such as the confirmation of the Rashba-
Edelstein effect [3–7], the intrinsic and extrinsic spin-Hall
effect [8–11], spin-filtering devices using resonant tunnel-
ing diodes [12–14], and spin-dependent phenomena in
quantum-point-contact devices [15–18].
In this paper, we utilize the interband Rashba effect in

symmetric double quantum wells (DQWs) [14,19–23] to
generate a bulk spin polarization nonmagnetically, adopting
In0.53Ga0.47As=In0.52Al0.48As DQWs [24] as a specific
example. The interband Rashba effect manifests itself in
the off-diagonal matrix element in the 2 × 2 quantum well
(QW) space using the bonding and antibonding basis
[19,20], which connects subbands with distinct parities
and hence operates without the usual Rashba coupling
[25–27]. Because of its novelty, the interband Rashba effect
has been providing intriguing playgrounds for physics in
various contexts [28,29].
Our DQW-based device has advantages over other non-

magnetic spin-related devices in its reliability (for design and
realization) and compatibility with conventional top-down
techniques, which are backed up by the well-established
semiconductor band engineering technology [30,31]. We
specifically aim at enhancing the Rashba-Edelstein effect

[3,4] to generate a bulk spin polarization in the proposed
device. This also circumvents the technological difficulty
(p doping in the middle barrier layer) that one would
encounter in the fabrication of the triple-barrier resonant
tunneling spin filter [14,32], which shares a common
physical basis with the present device.
This paper is organized as follows. We introduce the

concept of the proposed device in the next section. We
show our theoretical formulation in Sec. III. The results
of calculation and discussions are given in Sec. IV. Our
conclusions are in Sec. V.

II. DEVICE DESCRIPTION

Figures 1(a) and 1(b) illustrate the model structure of the
proposed spin device. The active part of the device consists
of a (001) InP lattice-matched In0.53Ga0.47As=In0.52Al0.48As
DQW [24] with length L in the x direction. Nonmagnetic
source and drain electrodes are attached toQW1after etching
away the above layers at both the left and right ends. The y
dimension of the device is assumed to be infinite. The QW
thickness dQW is 10 nm for both QW1 and QW2. The barrier
thickness dB between QW1 and QW2 is chosen to be either
2 or 3 nm. Almost equivalently n-doped (Si) carrier supply-
ing layers (nþ ∼ 3 × 1024 m−3) with the thickness ddoping ¼
6 nm are placed both above and below the QW layers,
separated with nondoped spacers with the thickness
dspacer ¼ 6 nm. Other material-dependent parameters such
as the band-gap energy and the conduction band offset are
found in Ref. [14].*koga@ist.hokudai.ac.jp
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The fundamental concept behind the proposed device is
the spin-dependent energy matching with a common finite
k (in-plane wave vector) in the presence of the opposing
relativistic Rashba magnetic fields as in our previous
proposal [14]. We would like to increase the internal
electric field hEzi1;2 within each QW to increase the
strength of the Rashba effect through the increase in the
sheet carrier density NS, while higher subband occupation
beyond the first and second ones [(QW1, QW2) or
(bonding, antibonding) wave functions along ẑ] should
be avoided. The Poisson-Schrödinger self-consistent sim-
ulation predicts that NS ¼ 3.6×1016 m−2 (EF ¼ 91.7 meV
for the Fermi energy) gives a reasonably large value for
the interband Rashba coefficient η ¼ 3.14 × 10−12 eVm
for the two subband system. If the two wells are completely
independent, the η value is virtually the same as that of
the regular Rashba coefficient α in each constituent QW
apart from its sign. We find that the bottom of the third
subband is located 40 meVabove EF, so that the two-band
approximation suffices for realistic predictions of the spin-
dependent transport properties. We also recently found that
the Dresselhaus effect is negligible relative to the Rashba
effect in this system, hence no inclusion of the Dresselhaus
effect in the present work [27].

A. Effective Hamiltonian for the DQW

Using the bonding and antibonding basis in the 2 × 2
QW space [Fig. 2(a)], the effective Hamiltonian H for
the DQW in the presence of a magnetic field B∥ŷ can be
decomposed into H0 þHB∥

þHR þHZ, where

H0 ¼
ℏ2

2m�
∥
ðk̂2x þ k̂2yÞ

�
1 0

0 1

�
QW

þ tcoup

�−1 0

0 1

�
QW

;

HB∥
¼ − eBℏk̂xhzi

m�
∥

�
0 1

1 0

�
QW

þ e2B2hz2i
2m�

∥

�
1 0

0 1

�
QW

;

HR ¼ ηðk̂yσx − k̂xσyÞ
�
0 1

1 0

�
QW

; ð1Þ

and

HZ ¼ 1

2
g�μBBσy

�
1 0

0 1

�
QW

:

The in-plane field B, incorporated by setting p →
pþ eA with A ¼ ðBz; 0; 0Þ [B ¼ ∇ ×A ¼ ð0; B; 0Þ],
which results in HB∥

, provides the essential mechanism
for spin blocking. H0, HR, and HZ are the unperturbed,
interband Rashba, and Zeeman Hamiltonians, respectively.
μB ¼ eℏ=2me is the Bohr magneton (me being the
free electron mass), g� is the effective g-factor value,
and m�

∥ is the in-plane effective mass. k̂x and k̂y are
∂=i∂x and ∂=i∂y, respectively. e, ℏ, σx, and σy are the
elementary charge, Planck’s constant divided by 2π, and
the Pauli spin matrices, respectively. We set the origin
of z at the middle of the barrier layer to define
hzi≡ hΦQW2jzjΦQW2i ¼ −hΦQW1jzjΦQW1i > 0. For our
In0.53Ga0.47As=In0.52Al0.48As DQW, we safely ignore HZ

and e2B2hz2i=2m�
∥ in HB∥

(≪ HR;H0). We also neglected
eBhzi=ℏ in HR relative to kx. These are valid approxima-
tions in the range of B and kx of our interest [33].
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FIG. 2. Sketches of electron eigenfunctions for a symmetric
DQW along ẑ with B ¼ 0. (a) The case without the interband
Rashba effect or with k ¼ ð0; 0Þ for the in-plane wave vector,
where the eigenfunctions become spin-independent and bonding
and antibonding like [blue-red curves]. The interaction parameter
tcoup is defined as the half of the difference in the eigenenergies
(E2 − E1). (b) The case with a finite interband Rashba effect
and k ¼ ðkF; 0Þ. Assuming 2tcoup ≪ 2ηkF (interband Rashba
splitting energy), E2 − E1 ≈ 2ηkF. While the spin degeneracy
½Eðk;↑Þ ¼ Eðk;↓Þ� is preserved due to the inversion symmetry,
the eigenfunctions along ẑ for the same eigenenergy (E1 or E2)
are spin dependent (red broken and blue solid curves for spin up
and down, respectively).
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FIG. 1. (a) Model structure of the proposed spin-blocking
device made of a DQW. dQW ¼ 10 nm and dB ¼ 2 or 3 nm.
(b) Sketch of the potential profile of the symmetric DQWwith the
ideal doping and gating conditions. ddoping and dspacer are both
6 nm. The typical dopant density within ddoping is 3 × 1024 m−3.
(c) The tight-binding lattice model to simulate the transport
property of the electrons along x̂ (see Sec. III B for details). The
parameter values for a (lattice spacing along x̂), to, tso, tcoup
(various interaction parameters), and 2hzi (lattice spacing along
ẑ) are given at the end of Sec. III B.
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The interwell coupling tcoup in Eq. (1) is defined by
ðE2 − E1Þ=2, letting E1 and E2 be the eigenvalues of
−ðd=dzÞ½ℏ2=2m�

zðzÞ�ðd=dzÞ þ VðzÞ [see Fig. 2(a)], where
m�

zðzÞ incorporates different effective masses between the
well and barrier layers. VðzÞ describes the DQW confine-
ment potential including the Hartree term, which possesses
the inversion symmetry VðzÞ ¼ Vð−zÞ [Fig. 1(b)]. We use
the function asoEzðzÞ [27] for the estimation of the
interband Rashba parameter η, where aso and EzðzÞ are
the intrinsic constant for the Rashba effect and the electric
field perpendicular to the interface as a function of z,
respectively. We note that more rigorous treatments exist
for the interband Rashba effect in DQWs [19,20]. Our
treatment here incorporates the first-order correction about
the interfacial band offsets [34,35]; thus, the aso value is
about 40% larger than its bulk counterpart r6c6c41 (see
Refs. [26,34]). EzðzÞ is given by the Gauss law EzðzÞ ¼
ε−1ðzÞ R z

0 ρðz0Þdz0, where εðzÞ and ρðzÞ are the dielectric
constant and net charge density as a function of z,
respectively. EzðzÞ is antisymmetric about z ¼ 0; i.e.,
EzðzÞ ¼ −Ezð−zÞ. The η value for symmetric DQWs is
given as hbjasoEzðzÞjabi, where jbi and jabi are the
bonding and antibonding wave functions along ẑ,
respectively.

B. Eigenfunctions of H without a magnetic field

We first set B ¼ 0, where H can be diagonalized in spin
space using the spin basis

jσ�i ¼
1ffiffiffi
2

p
k

�
ky þ ikx
∓ k

�
:

Then, we obtain

�
H − ℏ2k2

2m�
∥

�
¼

�−tcoup ∓ ηk

∓ ηk tcoup

�
QW

in the QW space using the bonding or antibonding basis,
which can be solved for each spin jσ�i separately (double-
sign corresponds) [see Fig. 2(b)]. k̂x and k̂y are replaced
with the wave numbers kx and ky, because they commute
with H. The inversion symmetry in the DQW, i.e.,
VðzÞ ¼ Vð−zÞ, ensures the spin degeneracy Eðk; σþÞ ¼
Eðk; σ−Þ.
Taking advantage of the circular symmetry, we consider

only the case k ¼ ðkF; 0Þ without the loss of generality,
where the spin basis jσþi and jσ−i becomes j↑yi (“up”) and
j↓yi (“down”) in ŷ, respectively. We find two eigenenergies

E1¼ðℏ2k2F=2m
�
∥Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2coupþη2k2F

q
and E2¼ðℏ2k2F=2m

�
∥Þþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2coupþη2k2F
q

for either spin, hence the spin degeneracy.

The orbital eigenfunctions along ẑ for spin up jΦ1↑ðzÞi and
jΦ2↑ðzÞi, associated with E1 and E2, respectively, are

mirror images of the spin-down counterparts, i.e.,
jΦ1↑ðzÞi ¼ jΦ1↓ð−zÞi and jΦ2↑ðzÞi ¼ jΦ2↓ð−zÞi [see

Fig. 2(b)]. We define jΦQW1i≡ ð1= ffiffiffi
2

p Þðjbi þ jabiÞ and
jΦQW2i≡ ð1= ffiffiffi

2
p Þðjbi− jabiÞ so that jΦ1↑ðzÞi, jΦ2↓ðzÞi →

jΦQW1i and jΦ1↓ðzÞi, jΦ2↑ðzÞi → jΦQW2i for tcoup → 0.
Assuming tcoup=ηkF ≪ 1, we approximate jΦ1↑;↓i and
jΦ2↑;↓i by jΦQW1;2i hereafter unless otherwise mentioned.
We define the Rashba wave number kη ≡m�

∥η=ℏ
2. The

difference in radius between the inner and outer circles in
Fig. 3(b) is 2kη.

C. Mechanism of spin blocking by the in-plane
magnetic field

Equation (1) can be interpreted in such a way that an in-
plane magnetic field (B∥ŷ) shifts the Fermi circles of QW1
and QW2 in the canonical kx direction oppositely by the
magnitude eBhzi=ℏ as shown in Fig. 3(b) [36]. The spin-
selective resonant states between QW1 and QW2 are
formed at k ¼ ð�kF; 0Þ if the shift of the Fermi circle
by B becomes equal to kη, where kη ≡m�

∥η=ℏ
2 and hzi≡

−hbjzjabi > 0 using the bonding and antibonding basis
[see the filled and open blue circles (dots) in Fig. 3(b)].
We call Ba ≡ ℏkη=ehzi the anticrossing magnetic field, at
which the energy levels for the selected spin anticross.
Let us consider the propagation of an electron with

k ¼ ðkx; 0Þ at the Fermi energy in the presence of
B ¼ ð0; Ba; 0Þ, injected to QW1 at x ¼ 0 [see Fig. 4(a) for
the down-spin propagation]. The spin-dependent dispersion
relations of a DQW with this condition are sketched
in Fig. 4(b), where the wave number values of kx at the

(a) (b)

z

V(z)

0

y y 

QW2

QW1

y y 

kF-kF

ky

ky

kx

kx

2k

y y 

2 kF

FIG. 3. (a) Spin-dependent eigenenergies of the DQW at k ¼
ðkF; 0Þ and B ¼ ð0; Ba; 0Þ, assuming tcoup ≈ 0 (see Fig. 2 for
tcoup). The point k ¼ ðkF; 0Þ in the canonical k space is indicated
by the blue filled circles (dots) in (b). (b) Spin-split Fermi circles
of the DQW with tcoup ≈ 0 and B ¼ ð0; Ba; 0Þ, where indicated
by the arrows on the circles are the spin orientations at each k
point. The open and filled blue circles (dots) indicate
k ¼ ð�kF; 0Þ points, where only the down-spin electrons form
bonding and antibonding eigenstates between QW1 and QW2.
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Fermi energy ½EF ¼ ðℏ2k2F=2m
�Þ� for spin-up electrons are

−kF − 2kη, −kF þ 2kη, kF − 2kη, and kF þ 2kη (nonde-
generate), while those for spin down are −kF ∓ kcoup and
þkF � kcoup (nearly doubly degenerate at each kx ¼ �kF)
for tcoup→ 0, where kcoup ≡ tcoup½dEðkxÞ=dkx�−1. The states
with kx ¼ �kF − 2kη (up spin in ŷ) have a wave function

along ẑ as jΦQW2i≡ ð1= ffiffiffi
2

p Þðjbi − jabiÞ, while those with
�kF þ 2kη (also up spin in ŷ) as jΦQW1i≡ ð1= ffiffiffi

2
p Þðjbiþ

jabiÞ. The down-spin electrons with kx ¼ −kF ∓ kcoup or
kx ¼ kF � kcoup (down spin in ŷ), on the other hand, form

bonding and antibonding eigenstates between QW1 and
QW2 when tcoup ≈ 0 (small, but finite). The equally
weighted superposition of these bonding and antibonding
wave functions including the plane wave parts in x̂
(kx > 0), which are eiðkFþkcoupÞx and eiðkF−kcoupÞx, respec-
tively, reads

Ψsup ¼
1ffiffiffi
2

p feiðkFþkcoupÞxjbi þ eiðkF−kcoupÞxjabig: ð2Þ

Ψsup can be simplified to eikFxfcosðkcoupxÞjΦQW1i þ
i sinðkcoupxÞjΦQW2ig after some algebra. We note Ψsup ¼
jΦQW1i at x ¼ 0. Thus, Ψsup describes the propagation
of down-spin electrons injected to QW1 at x ¼ 0 as in
Fig. 4(a) [37].
We find that such a precessional electron [solid blue circle

in Fig. 4(b) in canonical k space] is backscattered at x ¼ L,
where we have the reflection wall in QW2 as in Fig. 4(c),
if the condition L ¼ Ln ≡ ðn − 1

2
Þπ=kcoup is satisfied [see

Fig. 4(a)]. The backscattered electron, where spin is assumed
to be preserved by reflection, now propagates backward in
the DQW [blue open circle in Fig. 4(b)], precessing between
QW1 and QW2 again, keeping its spin state unaltered. The
correspondingmotion of the electron in real space is sketched
by the blue curves with an arrow in Fig. 4(c). Electrons with
up spin, on the other hand, injected from the left lead inQW1,
are transmitted straight to the right lead [red circled times in
Figs. 4(b) and 4(c)]. Thus, the population imbalance between
the positive and negative kx’s is formed only for the QW1
branch of the up-spin electrons as in Fig. 4(b). This provides
explicitly the mechanism of spin blocking and results in
current-induced bulk spin polarization.
We note that the spin-blocking effect described here

cannot be realized electrically (i.e., by a gate) in this simple
one-dimensional limit [38]. Here, we consider the addi-
tional site potential energy ΔVðzÞ, by the modified gate
electric field ΔEz [ΔVðzÞ ¼ ΔEzz] in the DQW, that
exactly compensates the interband Rashba spin splitting
energy 2ηkF, i.e., ΔVðhziÞ ¼ −ΔVð−hziÞ ¼ ηkF [see
Fig. 4(d)]. We note that jΔEzj ≪ hEzi ¼ hbjEzðzÞjabi in
our particular model, so that the η value is assumed to be
unchanged byΔEz. In this case, the precessional down-spin
electrons likeΨsup [Eq. (2)] can be formed at k ¼ ðkF; 0Þ as
in the case of the application of B ¼ ð0; Ba; 0Þ. However,
these electrons cannot be backscattered to the empty
precessional states at k ¼ ð−kF; 0Þ because the spin state
there (red circled times) is orthogonal to the spin state of the
reflected electrons (blue empty circle) as in Fig. 4(d). The
detailed motions of the corresponding spin-up and -down
electrons in real space are also shown in Fig. 4(e).

III. THEORETICAL FORMULATION

Here we describe the theoretical models to calculate
the spin-dependent transport of the proposed device. A
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FIG. 4. (a) Sketch of jΨsupj2 [see Eq. (2)] as a function of x.
(b) Energy dispersion relation of the proposed DQW when the
in-plane magnetic field B ¼ ð0; Ba; 0Þ is applied. The spin-down
branches (blue curves) are nearly degenerate for all kx’s.
The hatching on the dispersion curves expresses the imbalance
of the electron occupation by the steady current I∥x̂ for the
device shown in (c). (c) Spin-dependent trajectories of an
electron injected in QW1 from the left in the presence of
B ¼ ð0; Ba; 0Þ. (d) The energy dispersion relation realized
by gating, where the interband Rashba splitting energy 2ηkF
(exaggerated vertically for clarity) is compensated by different
site potential energies ΔVðzÞ at QW1 and QW2, i.e.,
ΔVðhziÞ ¼ −ΔVð−hziÞ ¼ ηkF. Thus, the branches associated
with QW2 and QW1 (labeled in the figure) are moved upward
and downward, respectively, by ηkF. (e) Spin-dependent trajec-
tories of an electron injected in QW1 from the left with the band
structures as described in (d). The motions of spin-up and -down
electrons are indicated by the number(s) “4” and “1, 2, 3,”
respectively, in (d) and (e).
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tight-binding (TB) model may be advantageous when
treating the multiplicity of the transport channel (with
finite ky’s), or even arbitrary-shaped nanostructures. A
multiple-reflection (MR) model is more favorable for
acquiring physical intuitions. TB and MR produce identical
results in the one-dimensional limit with ky ¼ 0. The
extension of these models to full two-dimensional versions
is straightforward but may require some approximations in
performing actual calculations.

A. Spin-dependent conductance

We define the spin-dependent conductance G↑;↓ asso-
ciated with the right lead by I↑;↓ ¼ G↑;↓Vsd, where I↑;↓ is
the spin-dependent current in the right lead and Vsd is
the source-drain voltage. Using the Landauer-Büttiker
formalism [39], G↑;↓ can be written as

Gσ ¼
e2

h

X
ky

X
σ0¼↑;↓

Z
dETσσ0;kyðEÞ

�
−dfðE−EFÞ

dE

�
; ð3Þ

where Tσσ0;kyðEÞ is the transmission probability of an
electron from the spin state σ0 (σ0 ¼ ↑, ↓) in the left lead
to the spin state σ (σ ¼ ↑, ↓) in the right lead, assuming the
conservation of ky during the transmission. The spin basis
here can be chosen to be one of any orthogonal sets at one’s
convenience. The thermal smearing of the Fermi surface is
included in Eq. (3) through the Fermi distribution func-
tion fðE − EFÞ.
The spin polarization of the electric current in the right

lead is given by

P ¼ I↑ − I↓
I↑ þ I↓

¼ G↑ −G↓

G↑ þG↓
: ð4Þ

The actual calculation of Tσσ0;ky is performed by the
recursive Green function technique using the TB
Hamiltonian [40] (Sec. III B) or by the MR model
(Sec. III C).

B. Tight-binding model

Keeping in mind that the proposed spin-filtering device
has translational symmetry along the y direction, the
TB Hamiltonian [40] including ky as a constant [also see
Fig. 1(c)] is given as

Ĥky ¼
X
n;σ;σ0

ϵσσ
0

nky
ĉ†nσ ĉnσ0 þ

X
n;n0;σ;σ0

ĉ†nσtσσ
0

nn0 ĉn0σ0 ; ð5Þ

where

ϵσσ
0

nky
¼

�
ℏ2k2y
2m�

∥
þ 2to

�
δσσ0 þ 2atsoðnzÞky½σx�σσ0 ð6Þ

and

tσσ
0

nn0 ¼

8>>>><
>>>>:

f−toδσσ0 ∓ itsoðnzÞ½σy�σσ0 g
×exp½∓ iϕðnzÞ� ðn¼ n0 � exÞ;
−tcoupδσσ0 ðn¼ n0 � ezÞ;
0 ðotherwiseÞ:

ð7Þ

Here, ĉnσ (ĉ†nσ) is the annihilation (creation) operator of an
electron at siten ¼ ðnx; nzÞwith spin σ (¼ ↑;↓), where nx is
an integer, nz ¼ �1=2, and the spin basis in the present work
is chosen in the y direction. a, to ≡ ℏ2=2m�

∥a
2, and tsoðnzÞ ¼

nzη=a are the lattice spacing along x̂, the orbital hopping
parameter, and the hopping parameter associated with the
Rashba effect, respectively. The tunneling betweenQW1and
QW2 is characterized by tcoup (Sec. II B). The magnetic field
is incorporated as a Peierls phase factor ϕðnzÞ ¼ nzπΦ=Φ0,
where Φ0 ¼ h=e and Φ ¼ 2Bahzi with B ¼ ð0; B; 0Þ. We
donot include theRashba effect andB in the leads (x < 0 and
x > L). The actual TB calculation is performed for the total
sheet carrier density NS ¼ 3.6 × 1016 m−2 and a ¼ 1 nm.
The parameter values in this case are to ¼ 0.81 eV,
tso ¼ 1.57 meV, tcoup ¼ 0.44 meV, and hzi ¼ 7.21 nm
for dB ¼ 3 nm [41].

C. Multiple-reflection model

Let tnn0 (n; n0 ¼ 1 or 2) be the nominal quantum-
mechanical transmission amplitude of an electron from
x ¼ 0 in QWn0 to x ¼ L in QWn. Similarly, let rnn0 be the
nominal transmission amplitude of an electron from x ¼ L
in QWn0 to x ¼ 0 in QWn. The MR model states that the
overall transmission amplitude from QW1 at x ¼ 0 to QW1
at x ¼ L is given by

ttot ¼ t11 þ t12r22t21 þ t12r22t22r22t21 þ � � �
¼ t11 þ t12r22f1þ ðt22r22Þ þ ðt22r22Þ2 þ � � �gt21
¼ t11 þ

t12r22t21
1 − t22r22

. ð8Þ

The overall transmission probability T tot is given by jttotj2.
The values of tnn0 and rnn0 are evaluated for each spin
separately as below.
Choosing the spin basis in ŷ and assuming k ¼ ðkx; 0Þ,

we can write the eigenfunctions of the DQW with E ¼ EF

and B ¼ ð0; Ba; 0Þ as e�iðkFþΔkÞxjΦbi and e�iðkF−ΔkÞxjΦai
for either spin, where Δk (¼ kcoup or 2k0η) and jΦb;ai are the
positive eigenvalue and the eigenfunctions of

� −kcoup 0

0 kcoup

�
QW

(for spin down) or those of
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� −kcoup −2kη
−2kη kcoup

�
QW

(for spin up), respectively, in the QW space (bonding and

antibonding basis). We find that k0η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2η þ 1

4
k2coup

q
and that

jΦbi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
jΦQW1i þ δjΦQW2i ð9Þ

and

jΦai ¼ δjΦQW1i −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
jΦQW2i ð10Þ

with 0 < δ < 1 using the QW1 and QW2 basis. We further
note that δ ¼ 1=

ffiffiffi
2

p
for spin down; therefore, jΦbi ¼ jbi

and jΦai ¼ jabi. We solve Eqs. (9) and (10) for jΦQW1i
and jΦQW2i, and let these wave functions propagate from
x ¼ 0 to x ¼ L:

jΦQW1i ðat x¼0Þ
→eikFLfeiΔkL

ffiffiffiffiffiffiffiffiffiffiffiffi
1−δ2

p
jΦbiþe−iΔkLδjΦaig

¼eikFL½feiΔkL−2iδ2 sinðΔkLÞgjΦQW1i
þ2iδ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−δ2

p
sinðΔkLÞjΦQW2i� ðat x¼LÞ;

jΦQW2i ðat x¼0Þ
→eikFLfeiΔkLδjΦbiþe−iΔkL

ffiffiffiffiffiffiffiffiffiffiffiffi
1−δ2

p
jΦaig

¼eikFL½2iδ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−δ2

p
sinðΔkLÞjΦQW1i

þfe−iΔkLþ2iδ2 sinðΔkLÞgjΦQW2i� ðat x¼LÞ: ð11Þ

From these we obtain

t11 ¼ e2ikFLt�22
¼ eikFLfeiΔkL − 2iδ2 sinðΔkLÞg; ð12Þ

t12 ¼ t21

¼ eikFLf2iδ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
sinðΔkLÞg: ð13Þ

Now we let jΦQW2i propagate from x ¼ L to x ¼ 0 to
obtain r22. After a simple symmetry consideration as in
Fig. 5, we notice that it is equal to t11. Substituting
Eqs. (12) and (13) into Eq. (8), we obtain

ttot ¼
eikFLð1 − e2ikFLÞ½eiΔkL − iδ2 sinðkFLÞ�

1 − e2ikFLT11

; ð14Þ

where

T11 ¼ jt11j2 ¼ 1 − 4δ2ð1 − δ2Þ sin2ðΔkLÞ: ð15Þ

The overall transmission probability per spin is

T tot ¼ jttotj2 ¼
2½1 − cosð2kFLÞ�T11

1 − 2T11 cosð2kFLÞ þ T2
11

: ð16Þ

We confirmed that this reproduces the TB results as shown
in the next section. We note that the spin dependence of T tot
appears only through those of δ and Δk in T11. The thermal
average of T tot is also straightforward.

IV. RESULTS OF THE CALCULATION

First, we restrict our discussion to the case ky ¼ 0 and skip
the summation over ky in Eq. (3). In this case, T↑↓;0ðEÞ ¼
T↓↑;0ðEÞ ¼ 0 if we choose the spin basis in ŷ, which largely
simplifies the problem. Plotted in Fig. 6 are the calculated
G↑;↓ as a function of L at B ¼ Ba for dB ¼ 2 and 3 nm
(T ¼ 5 K). The change of G↓ as a function of L is more
pronounced than that ofG↑, whereG↓ even becomes zero at
specific device lengths L�

n, n being a positive integer, while
G↑ varies only weakly with L. These qualitative behaviors
agree with the argument in Sec. II C. We find that L�

1 ¼
648 nm and L�

2 ¼ 1946 nm for dB ¼ 2 nm in Fig. 6(a),
whereas Ln ≡ πðn − 1

2
Þ=kcoup (Sec. II C) predicts L1 ¼

646 nm and L2 ¼ 1939 nm. Similarly, L�
1 ¼ 1914 nm in

Fig. 6(b) agrees with L1 ¼ 1906 nm for dB ¼ 3 nm.
Shown in Fig. 7 are the magnetic-field dependence of

G↑;↓ for dB ¼ 2 and 3 nm, where the values of L are fixed
at 646 and 1906 nm, respectively. For B > 0, we observe
that G↓ becomes zero at B ¼ 0.192 and 0.177 T for dB ¼ 2

and 3 nm, respectively, which agree with the values of the
anticrossing magnetic field Ba. For B < 0, G↑ reaches zero
at B ¼ −Ba, whileG↓ is kept close to unity, as is consistent
with the symmetry consideration. In Fig. 7, we also
recognize that the variation of G↓ (G↑) around B ¼ Ba

(B ¼ −Ba) is more moderate for dB ¼ 2 nm than for
dB ¼ 3 nm. This is because the bonding and antibonding
states (1=

ffiffiffi
2

p fjΨQW1i � jΨQW2ig) at B ¼ �Ba are more
robust against the change of B for dB ¼ 2 nm than for
dB ¼ 3 nm because of the stronger tcoup. The range of the
magnetic field ΔB around B ¼ Ba within which the
bonding and antibonding states persist can be roughly
estimated by equating eΔBhzi=ℏ to kcoup. We obtain

E

EQW2

QW1

22r

B E

EQW2

QW1
11t

B

FIG. 5. Illustration to show r22 ¼ t11 from symmetry consid-
eration, where E and B are the built-in electric field derived from
the confinement potential VðzÞ and the external magnetic field,
respectively. t11 and r22 are the quantum-mechanical transmission
or reflection amplitudes in QW1 and QW2, respectively.
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ΔB ¼ 0.24 and 0.075 T for dB ¼ 2 nm and dB ¼ 3 nm,
respectively, which agree well with the widths of conduct-
ance dips observed in Fig. 7.
In Figs. 6 and 7, there are features that cannot be

explained by the conceptual argument in Sec. II C. The
weak modulation of the spin-up conductance G↑ with

period π=2k0η ðk0η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2η þ 1

4
k2coup

q
Þ in Fig. 6 is explained by

the property of T11 in the MR model (Sec. III C) setting
Δk ¼ 2k0η. The rapid oscillations in the spin-dependent
conductance [inset in Fig. 6(b)] (i) are more pronounced for
shorter L, (ii) disappear asG↑;↓ approaches to zero or to the
maximum value e2=h, and (iii) damp away with increasing
L. The period of these (ΔL≃ 9.34 nm), virtually indepen-
dent of the value of L, is in good agreement with π=kF,
inferring some relation with the resonance phenomena
associated with the multiple reflections of the electron
between x ¼ 0 and x ¼ L. We find that such reflections are
actually caused by the finite probability amplitude of the
electron wave function in QW2 (denoted as AQW2) at x ¼ 0

and L. As L approaches to L�
n or to L�

n þ π=2kcoup, where

G↓ reaches zero or e2=h, respectively, AQW2 vanishes
at x ¼ 0 or L, hence the suppression of the reflections
(the disappearance of the rapid oscillations). Damping
of the rapid oscillations with increasing L is caused by
the finite width (denoted as δk) in the distribution of k due
to a nonzero temperature. This rapid oscillation persists
if δkL ≪ 1. Using δk ¼ kBTð∂E=∂kÞ−1 ≈ 8 × 10−5 m−1
(T ¼ 5 K), L ≪ 1.25 μm. This explains the decay of the
rapid oscillation with increasing L.
The effect of the summation over ky in Eq. (3) is

discussed next. In Fig. 8, we plot the spin polarization
Ptotal [as defined by Eq. (4)] as a function of L for dB ¼
2 nm (a) and 3 nm (b), with and without the summation
over ky, where B is fixed at 0.192 and 0.177 T for (a) and
(b), respectively. We find that the spin-polarization values
are reduced approximately to 0.4 even at L’s close to Ln’s.
Thus, the summation over ky is indeed detrimental to the
spin polarization. However, this effect is not strong enough
to kill the net spin polarization completely. According to
Ref. [5], the available experimental values for the bulk spin
polarization in nonmagnetic semiconductors are about
ρel=Ex ∼ 1 μm−3=kVm−1, where the spin density ρel is
divided by the exciting electric field Ex. The corresponding
value in our device (in its leads) is conservatively esti-
mated to be ≳103 μm−3=kVm−1 using Ptotal ¼ 0.01 (note
ρel ∝ P). This potentially offers a > 104 enhancement in

FIG. 7. The spin-dependent conductances as a function of the
in-plane magnetic field B for (a) dB ¼ 2 nm and (b) dB ¼ 3 nm.
The device lengths for dB ¼ 2 and 3 nm are L ¼ 646 and
1906 nm, respectively. The anticrossing magnetic fields Ba for
dB ¼ 2 and 3 nm are 0.192 and 0.177 T, respectively (indicated in
the figures). See Sec. IV for the physical meaning of ΔB.

FIG. 6. Plots of the spin-dependent conductances G↑;↓, calcu-
lated for two different barrier thicknesses (a) dB ¼ 2 nm and
(b) dB ¼ 3 nm as a function of the device length L. The magnetic
field is fixed at their anticrossing values Ba ¼ 0.192 T for (a) and
0.177 T for (b). The inset in (b) is the magnified view of the main
panel between 260 and 300 nm for the abscissa and between
0.9e2=h and 1.0e2=h for the ordinate, where the period of rapid
oscillation is found to be π=kF. kcoup and 2k0η are the Δk values
explained in Sec. III C, which are physically associated with the
interwell coupling tcoup and the interband Rashba spin splitting,
respectively. L�

n (n ¼ 1 or 2) are the values of L where the values
of G↓ are at local minima.

SPIN BLOCKER USING THE INTERBAND RASHBA … PHYS. REV. APPLIED 4, 034010 (2015)

034010-7



the bulk spin polarization relative to the existing exper-
imental values. We also finally note our prospect of
obtaining a net spin polarization purely electrically in
our multichannelized device [42], which defines the direc-
tion of our future research.

V. CONCLUSION

We propose a lateral spin-blockade device using a
In0.53Ga0.47As=In0.52Al0.48As DQW, where the interband
Rashba effect becomes important. The principle of the spin-
blocking effect in the proposed device is the spin-selective
matching of the Fermi circle edges in k space between the
two QWs, which is made possible by the in-plane magnetic
field B ¼ ð0; Ba; 0Þ. The superposition of the bonding and
antibonding wave functions for the selected spin (e.g., spin
down) results in precessional motions of electrons between
the QW1 and QW2. The electrons in such motions can be
blocked by the etched walls made in QW2.
We reiterate the features of the proposed spin device.

(i) It enhances the electromagnetically controlled Rashba-
Edelstein effect [3,4], generating a bulk spin polarization at
either lead of the device depending on the direction of the
current. (ii) Well-established semiconductor technologies
are readily applicable for both the design (property pre-
diction) and fabrication of the proposed device. (iii) Some
deterioration in the net spin polarization is found when

including the finite ky components. Despite this last point,
the bulk spin polarization generated in the proposed device
is fairly large, i.e., approximately 104 enhancement relative
to the available experimental values, which opens the way
to the future spintronics applications widely.
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