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From radio-electronics signal analysis to biological sample actuation, surface acoustic waves (SAWs)
are involved in a multitude of modern devices. However, only the most simple standing or progressive
waves such as plane and focused waves have been explored so far. In this paper, we expand the SAW
toolbox with a wave family named "swirling surface acoustic waves" which are the 2D anisotropic
analogue of bulk acoustic vortices. Similarly to their 3D counterpart, they appear as concentric structures
of bright rings with a phase singularity in their center resulting in a central dark spot. After the rigorous
mathematical definition of these waves, we synthesize them experimentally through the inverse filtering
technique revisited for surface waves. For this purpose, we design a setup combining arrays of
interdigitated transducers and a multichannel electronic that enables one to synthesize any prescribed
wave field compatible with the anisotropy of the substrate in a region called the “acoustic scene.” This work
opens prospects for the design of integrated acoustic vortex generators for on-chip selective acoustic
tweezing.
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I. INTRODUCTION

Surface acoustic waves (SAWs) have become the
cornerstone of microelectromechanical systems. SAWs
not only are useful in delay lines and convolution filters
[1] but can also monitor temperature variations, strain [2],
magnetic fields [3,4], and even chemical or biological
composition [5,6]. More recently, the growing field of
microfluidics has expressed tremendous interest towards
SAWs [7,8], due to their versatility for droplet actuation
[9–12], atomization [13,14], jetting [15,16] or mixing [17],
but also bubbles, particles, and cell manipulation and
sorting [18–21]. Nevertheless, it is remarkable that all
these functions rely on the most simple standing or
progressive waves such as plane or focused waves.
At the end of the twentieth century, Durnin, Miceli, and

Eberly [22] unveiled an exotic family of waves that do not
diffract and can self-reconstruct. These waves propagate
spinning around a phase singularity where destructive
interferences lead to the total cancellation of the beam
amplitude (Fig. 1). This concept was subsequently
extended beyond optics [22–24] to acoustics [25,26] and
even electronic wave functions [27–29]. In all cases, it is
shown that vortical waves convey some pseudoangular
momentum that exerts a measurable torque on lossy media.

The dark core of these waves also plays a key role in
trapping objects for optical or acoustic tweezers [30–32].
In the present study, we expand the SAW toolbox with a
two-dimensional version of acoustic vortices, called for
convenience swirling surface acoustic waves.
In two dimensions, swirling SAWs would appear as a

dark spot circled by concentric bright rings of intense
vibrations. It is tantamount to cloaking the focus of surface
acoustic waves, allowing vigorous actuation of the direct
neighborhood of fragile sensors. Furthermore, SAWs easily
radiate from a piezoelectric solid to an adjacent liquid,
simply by diving the transducer in the fluid. Swirling
SAWs could therefore serve as integrated acoustic tweezers
[19,20]. This would solve one of the major shortcomings of
advanced pointwise acoustic tweezers [32–34], which are
complex mechanical assemblies of numerous individual
transducers, whereas the present swirling SAW generators
are obtained by metal sputtering and photolithography on a
single piezoelectric substrate. The radiation of swirling
SAWs in adjacent liquid might also be used to monitor
cyclonelike flows [35] in cavities by using a nonlinear
effect called acoustic streaming. For these reasons, the
present paper constitutes a first step towards more
advanced acoustofluidic functionalities; the second step—
transmission and propagation of swirling SAWs in the
liquid phase—also holds several challenges and opportu-
nities. For instance, it was previously observed in 3D optics
that isotropic Bessel beams propagating in anisotropic
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media progressively lose coherence and disintegrate
[36–39]. The converse phenomenon (disintegration of an
anisotropic Bessel beam propagating in isotropic media)
would offer a practical way to confine the acoustic vortex
action to a bounded region of space. This subject will be
covered in a dedicated report [40], while this one focuses
on the definition and synthesis of swirling SAWs.
Since acoustic vortices have been known for a long time,

the transition from 3D to 2D waves may appear as an
insignificant step and one may wonder why it was not
undertaken earlier. It is certainly the case if the wave
propagates on a 2D isotropic medium such as perfectly
sputtered piezoelectric thin films (AlN or ZnO). However,
the best piezoelectric coupling coefficients are obtained
when using 2D anisotropic bulk piezoelectric crystals
such as LiNbO3, which also happens to be the simplest
and cheapest method to generate surface acoustic waves.
Twenty years of intense research effort on anisotropic SAW
focusing attest to the importance of these practical con-
siderations [41–44]. Hence, in the following, we treat the
more general case of an anisotropic medium. This involves
two difficulties: First, although SAW synthesis is well
mastered for single transducers radiating in specific direc-
tions of piezoelectric materials, the design of interdigitated
transducer arrays (IDTAs) surrounding a control area is still

challenging. Indeed, anisotropy considerably complicates
the SAW propagation, leading to a direction-dependent
wave velocity, coupling coefficient, and beam-stirring
angle (noncollinear wave and energy vectors). Thanks to
recent mathematical developments [45–48], SAW far-field
propagation is better handled nowadays. Nevertheless,
these methods require an accurate depiction of the target
field in order to design the generator. The second difficulty
is then to define exactly what a swirling SAW is, especially
in an anisotropic medium. Since these waves are the fragile
result of destructive interference, extreme care must be
taken in computing their propagation.
In the present study, we use an adaptive field synthesis

method in order to tackle the first issue. For this purpose, a
sample of piezoelectric material is covered with a circular
array of 32 independent transducers actuated by a pro-
grammable electronic. Then, its vibrations are monitored
by a Michelson interferometer. The exact input is computed
by an advanced calibration procedure called inverse filter-
ing [26,32,49].
Getting rid of the issue of emitter design, we efficiently

focus on the definition of swirling surface acoustic waves.
Our theoretical work is essentially guided by Laude, Jerez-
Hanckes, and Ballandras [48], who unveil and synthesize a
zero-order anisotropic Bessel function. In a different
context (multipole expansion of electromagnetic waves
for numerical computation), Piller and Martin propose a
comprehensive extension of Bessel functions to anisotropic
media [50]. Our theoretical investigation, described in the
first part of the paper, uses the concepts of slowness surface
and angular spectrum to fill the gap between Piller and
Martin’s mathematical expression and surface acoustic
waves. The next part of the paper describes our exper-
imental setup, from the transducer design to the SAW
measurements. The third part explains how we compute
the IDTA signals in order to synthesize swirling SAWs.
It provides the key steps of the inverse filtering method
adapted to the propagation of surface acoustic waves.
Finally, a fourth section exhibits some experimental swirl-
ing surface acoustic waves.

II. DEFINITION OF AN ANISOTROPIC
BESSEL FUNCTION

A classical solution to the wave equation in isotropic
medium is known as the Bessel beam:

Wle−iωt ¼ JlðkrrÞeilθþikzz−iωt ¼ W0
l e

ikzz−iωt: ð1Þ

In this equation, r, θ, z, t, l, Wl, Jl, kr, kz, ω, and W0
l

stand, respectively, for the axisymmetric coordinates, the
time, the topological order, the complex wave-field value,
the lth-order Bessel function, the radial and axial parts
of wave vector, the angular frequency, and the isotropic
swirling surface acoustic wave complex value.

(a)

(b) (c)

FIG. 1. A particular example of isotropic dark beams: the
Bessel beams [Eq. (1) in Sec. II] with l ¼ 1, kz ¼ 1, and kr ¼ 1.
(a) Beam cross section with a complex phase and amplitude.
(b) Isophase surfaces at lθ − kzz ¼ 0 and lθ − kzz ¼ π in red and
blue, respectively. (c) Isosurface of ReðWlÞ ¼ −0.3 and þ0.3 in
blue and white, respectively.
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The slowness surface and angular spectrum [51] con-
stitute the basic blocks for building anisotropic wave fields.
The main idea of these tools is to reduce the problem to a
superposition of plane waves. For each single direction and
frequency, we solve the 1D propagation equation, which
reduces the partial differential equation to a set of ordinary
differential equations, whose integration is straightforward.
Hence, we first briefly review these concepts and then
use them to derive a general 3D anisotropic Bessel beam.
We eventually introduce the anisotropic swirling wave as a
special case of an anisotropic vortex.
In the following, we work at a given frequency and omit

the term e−iωt for clarity. In isotropic materials such as
water, the wave speed of sound or light is independent of
the direction of propagation. Consequently, the magnitude
of the wave vector k ¼ 2π=λ is also a constant, and its locus
versus the direction of propagation is a sphere called the
slowness surface. Conversely, in the case of an anisotropic
material, the wave speed depends on the direction, and so
does the wave vector. In the reciprocal space of a 3D
medium, we call Φ the azimuth and κz the altitude in
cylindrical coordinates, so the wave vector reads kðϕ; κzÞ.
The locus of this wave vector, still called the slowness
surface, then results in nonspherical shapes depending on
the anisotropy of the material [52]. Bessel beams propagate
along a specific axis z. Consequently, discussions on the
surface slowness often refer to krðϕ; κzÞ, the projection of k
on the plane normal to the propagation axis. The axial and
radial components of the wave vector kz and kr, respec-
tively, are linked by the directionwise dispersion relation:

kzðϕ; κzÞ2 þ krðϕ; κzÞ2 ¼
ω2

cðϕ; κzÞ2
: ð2Þ

In Eq. (2), we write the coordinates in the reciprocal space
κi to distinguish them from ki, which refer to the dispersion
relation of the wave and are given physical quantities.
For instance, κz can take any value, whereas kz is defined
only in a closed interval (kz ∈ ½−ω=c;þω=c� for an
isotropic medium).
The angular spectrum is a multidimensional generaliza-

tion of the Fourier transform. Since Fourier’s pioneering
work, it is known that any field can be resolved into a sum
of sinusoidal functions. The angular spectrum is a recursive
application of the Fourier transform over all the dimensions
of the medium:

fðx; y; zÞ ¼
Z þ∞

−∞

Z þ∞

−∞

Z þ∞

−∞
Fðκx; κy; κzÞeiκxxdκxeiκyy

× dκyeiκzzdκz: ð3Þ

We can rearrange the terms in the exponential in order
to get exp½iðκxxþ κyyþ κzzÞ� such that Eq. (3) can be
interpreted as a sum of plane waves. This means that any
physical field in the medium at a given frequency can be

seen as a combination of plane waves and therefore must
satisfy the dispersion relation or, equivalently, lie on the
slowness surface. In this regard, the slowness surface
provides a frame for the wave landscape, and choosing
the angular spectrum Fðκx; κy; κzÞ amounts to applying the
color (complex phase and amplitude) on this frame.
If we express the previous angular spectrum not in

Cartesian coordinates but in cylindrical ones, we get

fðr; θ; zÞ ¼
Z þ∞

−∞

Z þπ

−π

Z þ∞

0

Fðκr;ϕ; κzÞeiκrr cosðϕ−θÞκrdκr
× dϕeiκzzdκz: ð4Þ

In this expression, the variables κr, ϕ, and κz refer to the
spectral domain, whereas r, θ, and z belong to the spatial
one. In order to satisfy the dispersion relation, we know that
F must vanish anywhere except on the slowness surface, so
Fðκr;ϕ; κzÞ ¼ hðϕ; κzÞδ½κr − krðϕ; κzÞ�, with kr the mag-
nitude of the wave vector in the ðx; yÞ plane and h an
arbitrary function of ϕ and κz. This reduces the set of waves
that can be created in the medium:

fðr; θ; zÞ ¼
Z þ∞

−∞

Z þπ

−π
hðϕ; κzÞeikrðϕ;κzÞr cosðϕ−θÞ

× krðϕ; κzÞdϕeiκzzdκz: ð5Þ

At a given κz, the integral in Eq. (5) is the product of two
terms: The first one eikrðϕ;κzÞr cosðϕ−θÞ can be reduced to a
sum of plane waves thanks to Jacobi-Anger expansion,
while the second one hkr provides the color of each of these
plane waves.
We construct anisotropic Bessel functions by splitting

the wave angular spectrum in a κz-independent part and
extracting its coefficients. Since ϕ is the azimuth, it is a
periodic function and we can expand hkr in Fourier series:
hkr ¼

Pþ∞−∞ alðκzÞeilϕ. We then get

fðr; θ; zÞ ¼
Z þ∞

−∞

Xþ∞

l¼−∞
alðκzÞeiκzz

×
Z þπ

−π
eilϕþikrðϕ;κzÞr cosðϕ−θÞdϕdκz: ð6Þ

As mentioned earlier, the integral can be interpreted as a
sum over all the κz of some elementary functions. In these
functions, κz appears as a parameter instead of a variable.
In order to highlight what in this expansion may be

reminiscent of a Bessel, we need to write the integral
expression of the Bessel function:

JlðxÞ ¼
1

2π

Z þπ

−π
eilη−ix sinðηÞdη: ð7Þ

A trivial change of variable η ¼ ϕ − θ − π=2 yields
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JlðxÞ ¼
1

2πil

Z þπ

−π
eilðϕ−θÞþix cosðϕ−θÞdϕ: ð8Þ

We combine Eqs. (1) and (8) to get the isotropic swirling
SAW:

W0
l ðr; θÞ ¼

1

2πil

Z þπ

−π
eilϕþikrr cosðϕ−θÞdϕ: ð9Þ

By analogy with the isotropic equation, we define an
anisotropic swirling wave with a given κz ¼ kz as

W0
l ðr; θÞ ¼

1

2πil

Z þπ

−π
eilϕþikrðϕ;kzÞr cosðϕ−θÞdϕ: ð10Þ

SAWs appear as a specialization of Eq. (10) to waves that
propagate only along the substrate surface, leading to
kz ¼ 0. Interestingly, the beam in Eq. (10) shares a
common mathematical expression with the electromagnetic
multipole used by Piller and Martin [50] for solving
anisotropic scattering problems, which augurs that such
an anisotropic Bessel beam might be extremely widespread
in nature.
Incidentally, any wave in an anisotropic medium can be

written as a combination of anisotropic Bessel beams
Wl ¼ W0

l e
iκzz:

fðr; θ; zÞ ¼
Z þ∞

−∞

Xþ∞

l¼−∞
alðκzÞ2πilW0

l ðr; θ; κzÞeiκzzdκz:

ð11Þ

In the rest of the paper, we use inverse filtering to
generate anisotropic swirling SAWW0

l on the surface of an
anisotropic piezoelectric crystal.

III. EXPERIMENTAL SETUP

The experimental setup is designed to be as versatile as
possible, in order to allow generating a wide variety of
waves on an area called the acoustic scene. Starting from an
X-cut lithium niobate crystal, 32 unidirectional interdigi-
tated transducers (SPUDT IDTs) are deposited on its
periphery (see Fig. 2). In order to widen the range of
possible acoustic fields, every spot on the scene should be
illuminated by all the transducers. This spatial coverage
should be as uniform as possible on the acoustic scene. It is
achieved by using IDTs with narrow apertures and dispos-
ing them remotely from the acoustic scene to promote
diffraction. Furthermore, since any wave can be described
as a combination of plane waves, it is essential to generate
waves from a wide span of directions. Hence, the quality of
the wave-field synthesis critically depends on the span of
plane waves provided by the source array in terms of the
incident angle, which is the angular spectrum coverage.
The best way to achieve such optimal coverage is therefore

to gather many sources from all directions and dispose
them radially around a target spot which will be the
acoustic scene. These notions of optimal coverage are
detailed further in the next section and in the Appendix.
In order to measure the wave field on the acoustic scene,

we place the sample under the motorized arm of a polarized
Michelson interferometer (Fig. 3). The poor reflection
coefficient of lithium niobate is significantly increased
by the deposition of a thin layer of gold on the acoustic
scene (approximately 200 nm).

FIG. 2. Interdigitated transducer array used for generating the
surface acoustic waves. The central black disk (25-mm diameter)
is a gold layer acting as a mirror for interferometric measurements
and materializes the maximum extent of the acoustic scene.
Vector format image (available online) is used to visualize the
fine structure of the electrodes.

Sample

Piezo linear
motor

Photodiode

Polarized
beam splitter

Photodiode Arm-length
stabilizer PID

λ/4 λ/4λ/2

λ/2

λ = 632.8 nm He-Ne laser

FIG. 3. Polarized Michelson interferometer used for scanning
the displacement field associated with surface acoustic waves.
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During the design of the IDTs, special care is given to
the anisotropy of the lithium niobate substrate. Indeed,
IDTs are high-quality spatiotemporal resonant elements
with a spatial period equal to the wavelength. Any
deviation from the narrow resonant bandwidth results
in a very significant loss of efficiency [1]. We plot in
Fig. 4(a) the slowness contour of lithium niobate mea-
sured on the gold layer at the working frequency of
12 MHz and compare it to theoretical predictions [53].
The two directions with the lowest SAW magnitude are
missing in the experimental data set. The vertical wave
motion at the center of substrate is recorded experimen-
tally for each transducer and plotted in Fig. 4(b). The
butterfly pattern unambiguously reflects the substrate
anisotropy. It is the combination of piezoelectric coupling
and beam-stirring effects and can be computed using the
Green functions introduced thereafter.
The knowledge of the dispersion relation provides the

wave field radiated by a single point source [42,48]:

Gðr; θÞ≃ Aaðϕ̄Þ expf−iωrhðϕ̄Þ − i π
4
sgn½h00ðϕ̄Þ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωrjh00ðϕ̄Þj
p ð12Þ

with aðϕÞ the coupling coefficient between the field to
measure and the electrical potential (obtained when solving
the SAW equations [53,54]), ϕ̄ðϕÞ the beam-stirring angle,
hðϕÞ ¼ cosðϕ − θÞkðϕÞ=ωðϕÞ, and h00 ¼ d2h½ϕ̄ðϕÞ�=dϕ2

related to the focusing factor. The beam-stirring angle is
the solution of h0ðϕ̄Þ ¼ 0.
Thanks to the superposition principle, we can use the

Green function in Eq. (12) to compute the acoustic field
radiated by our emitter arrays. The predictions are com-
pared to experiments in Fig. 5. Anisotropy strongly affects
the SAW propagation, as we can observe beam widening
[(a),(b)], focusing [(c),(d)], and stirring [(e),(f)] depending
on the beam direction. Despite a general good agreement
between numerical and experimental results, this 2D Green
function approach also exhibits some intrinsic limitations.

For instance, the lobes on the SAW beam in Fig. 5(b)—
confirmed by Fig. 4(b)—are not predicted theoretically.
Given the important assumptions of 2D half-space, we
believe the suspicious SAW is actually a leaky SAW, and it

(a) (b) FIG. 4. (a) Theoretical slowness
contour (rad/mm, blue solid line)
under a very thin gold layer [53]
versus the experimentally measured
one (red circles). (b) Normalized
SAW vertical displacement magni-
tude at the center of the substrate
(theoretical, blue solid line; experi-
mental, red dashed line). The max
displacement magnitude is 1.8 nm.
Inset: Crystallographic axes.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Influence of anisotropy on the propagation of SAWs
generated by single electrodes. (a), (c), (e) Theoretical predictions;
(b), (d), (f) experimental measurements. (a), (b) Beam widening;
(c), (d) beam focusing; (e), (f) beam stirring. Color represents the
beam relative intensity over the substrate and is not indicative of
the ratio of intensity between two different transducers.
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generates a bulk acoustic wave which bounces between the
two faces of the substrate. All these issues of the aniso-
tropic piezoelectric coupling coefficient, beam stirring,
and power lobes are significantly alleviated by inverse
filtering.
A wide-band high-power multichannel field-

programmable gate array (FPGA) (Lecoeur Electronics)
powers the 32 emitters with tailored numerical input. The
input is specific to each desired wave field and designed
through the inverse filtering method.

IV. INVERSE FILTERING THEORY

Inverse filtering [49] is a very general technique for
analyzing or synthesizing complex signals that propagate
through arbitrary linear medium. This method is especially
suited for prototyping, because, given a set of independent
programmable sources, it finds the optimal input signal to
get a target wave field. When used for this purpose, it is
similar to computer-generated holography in optics [55].
The method proceeds in four distinct stages (see Fig. 6):

(i) calibration of the transducers, (ii),(iii) computation of
the optimal input, and (iv) actuation of the sound sources
according to the optimal input.
In the current system, we use a set of 32 emitters and

an arbitrary number of control points evenly distributed
on the acoustic scene. Their density is governed by the
Shanon principle: The distance between two points should
not exceed λ=2. In our acquisition, we use a step of
λ=10 ¼ 30 μm. Moving the arm of the interferometer,
we are able to reach individually each of these measure-
ment points. If we call ei the temporal input of emitter i and
sj the temporal output of control point j located on fxj; yjg,
we have for any linear medium

sj ¼
X
i

hij � ei; ð13Þ

where � refers to the convolution product and hij is the time
response at control point j to an impulse input at emitter ei.
In the spectral domain, Hij ¼ F ðhijÞ is the Fourier trans-
form of the transfer function at control point j of emitter i
and includes the propagation of the wave in the medium.
Using the matrix formalism, things get even simpler:

jSi ¼ HjEi: ð14Þ

In case the transfer matrix is square and well conditioned, it
can be inverted to determine the optimal input jEi from a
desired output jSi. However, the number of independent
sources and control points is not necessarily the same, soH
is generally not square and often ill conditioned. In the
Appendix, we explain the reasons for this ill conditioning
from the perspective of the angular spectrum and provide
guidelines to minimize it. Although inverse filtering was
previously shown to be among the most accurate ones for
generating acoustic vortices in 3D isotropic media [26], it
was never used for 2D anisotropic media. In previous
configurations, the target field is a surface and has a smaller
dimensionality (2D) than the propagative medium (3D),
whereas the current setup enforces a target field of the
same dimensionality as the propagative medium (both
2D). Hence, in the current experiment, the knowledge of
the target field explicitly sets an angular spectrum for the
propagation medium. However, the wave field in the
same medium must fulfill the dispersion relation. Hence,
the impulse response matrix is zero everywhere outside the
slowness surface. In practice, however, small amplitude
noise will always fill these nonpropagative regions. If the
target field contains any point outside the slowness surface,
the inversion operator would be mistaken as it would rely
on the measurement noise to achieve an optimal signal
synthesis. Hence, it is essential to define the target field
along the slowness curve and resample the impulse

FIG. 6. Inverse filter-
ing flowchart. Inverse
filtering happens in four
steps. (i) Recording of
the spatial impulse re-
sponse(Hmatrix) forall
transducers. (ii) Trans-
formation of the H ma-
trix from a spatial to
spectral domain, where
the response is sharper.
(iii) Computation of the
optimal input jEi for a
desired output jSi by
pseudoinversion of the
matrix H. (iv) Genera-
tion of the signal from
optimal input jEi.
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response matrix in the same subset of the reciprocal space.
We call this method spectral inverse filtering.
As soon as the value of jEi has been computed, the time-

dependent input is obtained by inverse Fourier transform
and sent to the FPGA amplifier to generate the wave field.

V. EXPERIMENTAL RESULTS

Bessel beams draw large interest for three main reasons:
They do not diffract [22], they carry a pseudo-orbital
momentum [23,56,57], and they exhibit a dark core (for
nonzero order) [32,33]. In addition to these reasons, the
zero-order Bessel beam is the optimal beam focusing for a
given aperture [42]. In the following section, we start by
synthesizing a focused surface acoustic wave W0

0 and then
some simple first-order swirling SAW W0

1. We seize this
opportunity to show the phase singularity and the asso-
ciated dark spot. The size of the dark spot can easily be
tuned, simply by changing the topological charge l,
which is done in the third example with seventh-order
swirling SAWs.
The zero-order focused W0

0 Bessel wave phase and
amplitude are traced in Fig. 7. It appears that theoretical
fields and experimental ones are quite similar. In practice,
we have to limit the voltage amplitude of our instrument
to about 10% in order to get a linear response of the
interferometer (the upper bond is about 40 nm). For high
actuation power, we estimate the displacement amplitude
based on the second bright ring. When setting the voltage
to about 50%, we achieve a displacement amplitude of
nearly 180 nm.

Figure 8 represents the first-order dark beam W0
1 phase

and amplitude. A dark core of zero amplitude with a
diameter of 50 μm is clearly visible at the center of the
vortex and matches with a phase singularity. This area is
contrasted by very bright concentric rings. Despite some
blur in the experimental measurements, a good matching
between theoretical and experimental vortices is achieved
on both the shape and phase.

FIG. 8. Experimental and theoretically predicted first-orderW0
1

Bessel wave phase and amplitude. The maximum experimental
displacement is 36 nm.

FIG. 7. Experimental and theoretically predicted zero-order
focused W0

0 Bessel wave phase and amplitude. The maximum
experimental displacement is 40 nm.

FIG. 9. Experimental and theoretical predictions of the combi-
nation of two seventh-order vorticesW0

�7 of opposite charge. The
maximum experimental displacement is 25 nm.
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Swirling SAWs might be useful as integrated transducers
for acoustic tweezers or micropumps. Tuning the
topological order is essential to these applications for
two reasons: It enlarges the first bright ring of the vortex
[Olver formula [58] in Eq. (15)], and it increases the
pseudoangular momentum of the wave [56]. The second
effect itself generates acoustic streaming with an azimuthal
flow velocity proportional to the topological charge
[35,57]:

j0l;1 ¼ lð1þ 0.809 × l−2=3Þ þOðl−7=3Þ: ð15Þ

In this last example, we suggest a way to increase the
ring radius while maintaining zero azimuthal streaming and
keep working at the resonance frequency of the electrodes.
When two isotropic vortices of opposite charge are com-
bined, they result in a circular stationary wave pattern. In
the present case, we sum two seventh-order contrarotating
acoustic vortices W0

7 þW0−7. The resulting field, shown in
Fig. 9, exhibits a dark core with a diameter of about 500 μm
circled by a crown made of 14 extrema of amplitude.

VI. CONCLUSION

In this report, we propose an anisotropic SAW version of
acoustic vortices, labeled swirling surface acoustic waves.
This implies solving two difficulties: First, the generator
has to be designed to accommodate anisotropic propaga-
tion, and second, we need to define accurately what are
swirling SAWs. The first problem is alleviated using a
programmable array of transducers controlled by a two-
dimensional spectral inverse filter, while the solution of
the second problem confirms earlier theoretical predictions.
We synthesize swirling SAWs of different topological
charges and large magnitude of displacement. This suc-
cessful generation provides a pathway for integrated
acoustic vortex generators on anisotropic substrates.
Furthermore, since these beams are expected to radiate
in any adjacent fluid, photolithography fabricated swirling
SAW transducers constitute a step towards a credible
alternative to the current complicated acoustic tweezer
devices made of mechanical assemblies of individual
transducers. Beyond the specificities of acoustics, Bessel
functions are very widespread in nature, and anisotropic
Bessels may offer analytical solutions for a broad class of
linear anisotropic problems.
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APPENDIX: OPTIMAL CONDITIONING
OF INVERSE FILTERING

Inverse filtering is a very versatile method to synthesize
an optimal target field from a given number of transducers.
As stated in Sec. IV, the method is not exempt from poor
conditioning, which would result in large errors in the
synthesized field, but some guidelines can significantly
improve the quality of the field synthesis. The poor
conditioning of inverse filtering has two roots: (i) spectral
outliers and (ii) redundant sources.

1. Spectral outliers

At a given frequency, the wave field must fulfill the
dispersion relation, which is to have its angular spectrum
lying on its slowness surface. When the acoustic scene is a
surface (in 2D) or a volume (in 3D), this condition exactly
happens. However, experimentally, there is always some
noise introduced in the impulse response matrix, making it
full rank (any spatial frequency can be created provided
there is enough input power). Consequently, a first regu-
larization is to remove the spectral outliers by sampling the
target field not on a spatial manifold but on a spectral one
and along the slowness surface.
Nevertheless, if the acoustic scene is a line (in 2D) or a

surface (in 3D) as in previous implementations [26,49], the
spectral condition is relaxed. Indeed, the angular spectrum
of the target field is only partially known due to the
projection of the field along the line or the surface. In 3D,
for instance, if the synthesis happens on an fx; yg plane, the
system knows the values of kx and ky but ignores the ones
of kz, which can then be freely chosen as long as the
dispersion relation is fulfilled. In an isotropic medium, this

results in kz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − kx2 − ky2

q
. Note that, in any

case, ω2=c2 > kx2 þ ky2, which is the diffraction limit.
Hence, spectral outliers in this synthesis appear beyond the
λ=2 boundary.
A third example of spectral outliers is provided by

piezoelectric generation on monocrystals. These substrates
often exhibit a direction where the piezoelectric coupling
coefficient sharply drops to zero. When this happens, no
acoustic waves can be generated from this orientation, and
the associated angular spectrum coverage is barely zero.
Once again, sampling the signal in the spectral space and
excluding the zero-coupling directions avoids these outliers
and allows an accurate synthesis.

2. Redundant sources

In practice, many transducers are used to ensure an
efficient spectral coverage. Above this threshold, adding
even more actuators may result in poorer synthesis quality
[49]. Indeed, from the inverse filtering perspective, sound
sources act like a family of vectors to combine in order to
build a target field. When two sources are redundant, the
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inversion operator can take any linear combination of them,
and this indetermination is solved by comparing the
measurement noise associated with each source. A smart
way is therefore to regularize the reduced impulse response
matrix obtained after removing the spectral outliers. The
regularization can be achieved by a singular value decom-
position. If two transducers are redundant, they split in a
singular value very close to zero and another one much
more regular. By knowing the signal-to-noise ratio, it is
then possible to discriminate which singular values origi-
nate from noise and which do not [49].
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