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We analyze a design for a microwave circulator which could replace many of the commercial ferrite
circulators that are ubiquitous in contemporary quantum superconducting microwave experiments. The
lossless, lumped-element design is capable of being integrated on chip with other superconducting
microwave devices, thus circumventing the many performance-limiting aspects of ferrite circulators. The
design is based on the dynamic modulation of dc superconducting microwave quantum interference
devices that function as nearly linear, tunable inductors. The connection to familiar ferrite-based circulators
is a simple frame boost in the internal dynamics’ equation of motion. In addition to the general, schematic
analysis, we also give an overview of many considerations necessary to achieve a practical design with a
tunable center frequency in the 4–8-GHz frequency band, a bandwidth of 240 MHz, reflections at the
−20-dB level, and a maximum signal power of approximately 100 microwave photons per inverse
bandwidth.
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I. INTRODUCTION

With the advent of quantum-information processing with
superconducting circuits [1], the ability to route microwave
signals without loss or added noise has become critically
important. In particular, the operation of a digital super-
conducting quantum computer will require numerous
analog functions, such as signal amplification, feedback,
and transduction. Moreover, it is likely that a future
quantum-information processor will employ the coherent
exchange of microwave fields among various modular
components. Preserving quantum information in these
propagating microwave fields demands nearly lossless
and noiseless components.
Although most passive microwave components can be

readily fabricated with low-loss superconducting metals
and integrated with other superconducting circuits, this is
not true for nonreciprocal components such as isolators,
circulators, and gyrators. Existing technology uses ferro-
magnetic materials in intense (approximately 0.1 T) mag-
netic fields to create the nonreciprocal behavior required to
ensure the one-way flow of information within the network
[2–4]. Such magnetic devices would be quite difficult to
integrate with superconducting circuits, which are dis-
rupted by magnetic fields of 0.1 mT or less. Currently,
the nonreciprocal elements in quantum-information
processing networks are commercially available devices

connected to the rest of the network using meter-length
coaxial cables. Even if this cumbersome arrangement were
tolerable, the loss associated with the transition from planar
circuits to coaxial cables and that associated with the
ferrimagnetic elements themselves is unacceptably large
[5–8].
Instead of achieving nonreciprocity through the use of

magnetic materials, one can instead use time-dependent
reactive elements. Long known as a general method for
creating nonreciprocal devices [9–11], time-varying reac-
tances have not had much technological impact, because
ferrite elements [2] or active-transistor [12] devices provide
a less complex source of nonreciprocity for conventional
electronics. But with the emergence of superconducting-
circuit-based quantum-information processing, the idea of
creating a nonreciprocal response through time-varying
reactances has returned to prominence [13–16] because of
the problems with ferrite devices and the practical absence
of transistor technologies with quantum-limited noise
performance [17].
Conveniently, a standard superconducting circuit

element, the Josephson junction, can be operated as a
time-variable reactance. Although the inductance of a
Josephson junction is intrinsically nonlinear, the inductance
experienced by a small electrical signal is effectively linear
and lossless and may be varied by also applying a larger
“pump” current through the junction [18]. Proposals for a
type of nonreciprocal device exploit this effect, in which
several oscillatory pump tones modulate the inductance
and, therefore, the frequency response of several resonant
circuits in a cyclic manner [13,15]. Recent works
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demonstrate this experimentally in the form of directional
amplifiers [16] and frequency-converting circulators [19].
Other approaches to nonreciprocal circuits for supercon-
ducting networks that do not rely on time-variable reac-
tances are also active areas of research [20–22].
In any scheme based on time-variable reactances, it is

important that the pump tones themselves do not interfere
with the operation of other devices in the network [16].
Furthermore, the nonreciprocal device should not modulate
the incoming signal or create sidebands that leave the
device. And ideally, large signals should be processed
linearly, despite the components’ fundamental nonlinear-
ities. To these ends, we introduce another concept for a
nonreciprocal element, a four-port circulator that operates
by only modulating the coupling rate of four itinerant
microwave modes to two resonant circuits in a cyclic
manner. In contrast to recent demonstrations [11,16,19],
nonreciprocity in our approach is gainless and does not
perturb the input signal’s frequency or create sidebands.
This four-port circulator can also be wired as a two-port
gyrator [23] or a three-port circulator [2,21,24]. The
symmetry of the circuit ensures that sidebands generated
by the dynamic coupling are completely “erased” as they
leave the device. In addition, the modulating pump tones do
not copropagate with the signal tones and oscillate at a
frequency at least a factor of 10 less than the signal
frequency and can, therefore, be easily filtered out of the
signal path between devices operating at the signal fre-
quency. Finally, the Josephson-junction elements are
arranged into series arrays of junctions [25], an arrange-
ment that retains the variable inductance but dilutes the
nonlinearity to approximate a linear time-variable inductor.
We emphasize that, while the device is designed for

high-power handling and broad bandwidth, relative to
many quantum devices, it is still an unsuitable solution
for isolating the broadband HEMT amplifiers commonly
employed for readout, as these amplifiers expel noise over a
spectrum much greater than their own bandwidth [26].
Such devices, though, are already off chip and mounted at
relatively high temperatures, making them more suitable
for isolation with commercial ferrite circulators. Our
circulator is better suited for networking between quantum
devices at dilution refrigerator temperatures for which the
ferrite circulators are a serious experimental bottleneck.
In this article, we first analyze the general equations of

motion of a four-port circulator created through time-
dependent coupling between the ports and the internal
resonant modes. We show that this concept is closely
analogous to four-port ferrite circulators (where our time-
varying reactances create a synthetic magnetic field [14]),
and we use a waveguide ferrite circulator [3] as a
pedagogical touchstone. We then introduce and analyze
a circuit that realizes the desired circulator equations of
motion. This nonreciprocal circuit uses a modular design
comprising four identical subcircuits. These subcircuits are

themselves composed of four tunable inductors arranged in
a Wheatstone bridge configuration [10,27], where the
tunable inductors are created from flux-tunable super-
conducting microwave quantum interference device
(SQUID) arrays. In the final section, we analyze SQUID
arrays and how they form flux-tunable inductors.

II. PHENOMENOLOGICAL DESCRIPTION

Our circulator approach is conceptually related to four-
port ferrite turnstile circulators [3,4]. Originally developed
in the 1950s, these microwave circulators consist of a
junction of four rectangular waveguides coupled to a
cylindrical resonator [28] [Fig. 1(a)]. As is typical of most
practical circulators, turnstile circulators are rotationally
symmetric and preserve the carrier frequencies of signals
[4]. Nonreciprocity comes from a ferrite Faraday rotator in
the resonator that rotates the polarization of signals in the
cylinder. For a properly chosen cylinder length and rotation
rate, the junction acts as a four-port circulator with a finite
bandwidth. That is, when matched loads are placed on the
four waveguide ports, microwave signals within the circu-
lator bandwidth are scattered by the junction according to
the scattering matrix
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where bi;inðtÞ and bi;outðtÞ are, respectively, the complex
envelopes of a traveling wave incident on and scattered by
the junction at port i.

2

34

1

yx

Faraday
rotator

(a)
cap
attached

(b) (c)

Spinning
resonator

FIG. 1. (a) Schematic of a four-port ferrite turnstile circulator
[3,4]. Arrows represent the electric field polarization of the four
waveguide and two resonator modes. The electric fields of ports 1
and 3 couple directly to resonator mode x (blue arrows), and the
electric fields of ports 2 and 4 couple directly to resonator mode y
(red arrows). (b) Depiction of the circulator’s steady-state oper-
ation: A traveling-wave signal incident through waveguide port 1
induces a steady-state response in the resonator modes that is
rotated by angleψ relative to the xmode.Whenψ ¼ π=4, all of the
incident power is emitted out port 2. (c) Concept of an alternate
realization, based on Eq. (5). The ferrite Faraday rotator is now
removed, and reciprocity is now broken by the resonant cylinder
mechanically rotating at rateΩ relative to the waveguide junction.
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The circulator’s operation is quite modular. If there were
no coupling between the resonator and the waveguides, the
scattering between the waveguide ports would be reciprocal
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with a relatively large bandwidth. This scattering matrix
simply corresponds to the signal transfer between an input
source driving three loads in parallel, each with the same
impedance as the source [28]. When the resonator is
coupled to the waveguides, the equation of motion for
the input, output, and the two resonant polarization mode
envelopes (assuming a signal frequency at the resonator
center frequency) is approximately [17,29–31]
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where ax;y are the complex envelopes of the resonant
polarization modes [with units of ðphoton numberÞ1=2], κ is
the total energy decay rate of a resonator mode into the
terminated waveguides, and Ω is the rate of polarization

mixing due to the Faraday rotator. Thus, the output signals
bi;outðtÞ [with units of ðphoton number=sÞ1=2] are a linear
combination of “prompt” scattering from the input signals
[as determined by the lower right matrix block in Eq. (3)]
and the resonant modes (lower left matrix block). The
resonant modes are governed by inhomogeneous, first-
order ordinary differential equations, determined by the
modes’ “internal dynamics” (upper left matrix block), and
driving from the input signals (upper right matrix block).
Note that, in the absence of the rotator, Ω ¼ 0, the x- (y-)
polarized resonator modes couple only to waveguides 1 and
3 (2 and 4). Thus, orthogonal waveguides (e.g., waveguides
1 and 2) couple only through the prompt scattering. With
the rotator present, excitations are “rotated” between the
polarization modes, coupling all four waveguides through
the resonator as well as through prompt scattering. A more
detailed derivation of Eq. (3) is contained in Sec. III.
Equation (3) can be solved for the steady-state response

of the resonator modes to input signals. Doing so, one
finds that the polarization of the steady-state excitation
in the resonator is rotated by an angle ψ ¼ atanð2Ω=κÞ
[Fig. 1(b)]. When ψ ¼ π=4, this steady-state excitation
couples back to each waveguide with equal magnitude.
However, the prompt scattering and resonator-mediated
paths carrying signals from f1 → 2; 2 → 3; 3 → 4; 4 → 1g
interfere constructively, while all other signal path inter-
ferences are completely destructive. Thus, one finds that
driving the junction on the cavity’s resonance, in the steady
state, and for ψ ¼ π=4, the scattering between inputs and
outputs becomes exactly Eq. (1).
However, some simple manipulations of Eq. (3) suggest

alternative ways of realizing the same input-output dynam-
ics. For example, we can rewrite these dynamics in terms of
a rotating basis of the resonator modes:
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in which case Eq. (3) becomes
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Inspection ofEq. (5) suggests an alternate (albeit impractical)
realization of a turnstile circulator. The Faraday rotator
dynamics are absent (i.e., no explicit polarization mixing
in the upper left-handmatrix block), but the couplingbetween
the waveguides and particular resonator polarization
modes rotates in time. Thus, one might imagine the same
turnstile junction, but with the ferrite rod removed and
the cylinder physically spinning at a rateΩ [Fig. 1(c)]. From
the perspective of observers at the four ports, the
systems described by Eqs. (3) and (5) are completely
indistinguishable.
Thus, just as the ferrite turnstile circulator does not

frequency shift signals or encumber them with additional
modulations or noise, neither will a circulator that emulates
Eq. (5). This is quite remarkable for a dynamical system
with time-dependent coefficients. Indeed, it has long been
recognized that parametrically modulating components in
an electrical network can make a reciprocal network
nonreciprocal [9–11,13–15]. These modulated components
create frequency sidebands on signal carriers that serve as
extra degrees of freedom to encode a physical location onto
the signal (e.g., a signal’s “port of entry”). Nonreciprocal
networks then also require either resonant modes or some
other means of creating delay between the modulated
components. But these sidebands also typically leak into
the signal outputs. Networks that do not also demodulate
(i.e., coherently “erase”) these sidebands suffer from more
complicated downstream signal processing, effective loss if
the information in the sidebands is ignored, and poor
isolation if they leak into the ports.
The network represented in Eq. (5) achieves perfect

demodulation by limiting the signal modulation to the
coupling between resonant modes (with no internal loss)
and the itinerant fields. Thus, when signals pass through the
resonant modes, they are modulated exactly twice, as they
enter and as they exit the resonant modes. In general, only
zeroth- and second-order harmonics of the modulation
frequency can appear in the output signal, and it is easy
to design these modulations such that the second-order

harmonics completely cancel and do not leak out of any
port. In contrast, many other, related proposals modulate
the coupling between resonant modes or between itinerant
fields or some combination of all three modulation types
[9–11,13–15]. Unfortunately, these types of modulation
create sidebands at all harmonic orders, which are more
difficult to cancel or to filter out.
Our approach emulates the dynamics in Eq. (5), but as a

lumped-element, superconducting microwave network
with simulated “spinning” of two resonant modes relative
to four transmission line ports. Our network can be built up
piecewise, starting with the network depicted in Fig. 2(a).
In the limit of small inductors (relative to the port
impedance), the two transmission lines 1 and 3 are
effectively shorted together through the bridge of inductors
over most frequencies. However, the bridge also presents a
total inductance of l to the capacitor, forming a resonator
with center frequency 1=

ffiffiffiffi
lc

p
. The parameters ϵ (an

amplitude) and θ (an angle) control the imbalance in the
bridge. For cosðθÞ ≠ 0, the bridge unbalances, coupling the
resonant mode to the transmission lines with a magnitude
and sign proportional to� cosðθÞ [16,27]. Adding a second
bridge resonator in parallel with the first, but now with the
inductors imbalanced as � sinðθÞ [Fig. 2(b)] adds a second
resonant mode that couples to ports 1 and 3 with a
magnitude and sign proportional to � sinðθÞ. Finally, the
full circulator is constructed in Fig. 2(c) by adding two
more transmission line ports 2 and 4 that couple to the same
two resonant modes but also couple “orthogonally” relative
to ports 1 and 3 via two more bridges.
To connect these circuits to the turnstiles of Fig. 1, first

consider the structure depicted in Fig. 2(d), where a two-
port rectangular waveguide couples to a rectangular box
resonator [28]. Assuming that only one polarization mode
of the box is near resonant with signals applied at the ports,
the magnitude and phase of the coupling depend on the
orientation angle θ of the box relative to the waveguide.
This makes the structure depicted in Fig. 2(d) analogous to

... ...

1 3

(a)

1

3

(d)

1 3

(b)

......

(c)

...... ... ...1 3 2 4

FIG. 2. (a) Electrical schematic of a Wheatstone bridge-based LC resonator that serves as the basic module of our four-port circulator
design. Analogous to the turnstile-type structure depicted in (d), the resonant mode couples to the two transmission lines 1 and 3
(characteristic impedance r) with a magnitude and sign that depend on θ. The resonant mode center frequency is θ independent, which is
also true of (d). (b) Two such modules placed in parallel, with “orthogonal” bridge unbalancing. (c) Four such modules, configured to
emulate the mechanically spinning turnstile depicted in Fig. 1(c). As mentioned in the text, the inductances in (c) are modulated linearly
in Sec. II, but the inverse inductances are modulated linearly in Sec. III. (d) Turnstile analogue of the circuit in (a).
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the circuit in Fig. 2(a). Replacing the rectangular box
resonator in Fig. 2(d) with a rotationally symmetric,
cylindrical resonator [like that in Fig. 1(c)] would produce
a structure analogous to the circuit in Fig. 2(b). Finally, the
turnstile equivalent of Fig. 2(c) is Fig. 1(c), which both
feature two resonant, orthogonal modes, coupled to two
orthogonal port pairs. If the unbalancing of the bridges in
Fig. 2(c) can be varied sinusoidally in time, i.e., make
θ ¼ Ωt, then the two resonant modes couple and uncouple
from the four transmission lines in a coordinated fashion
that simulates the mechanical spinning of the cylinder in
the four-port circulator depicted in Fig. 1(c) and in Eq. (5).
The trick, of course, is to find an experimentally convenient
way to both realize dynamically tunable inductors in a
superconducting microwave circuit and tune them naturally
in such a highly coordinated fashion.
Our tunable inductors are dc SQUIDs, which are two

Josephson junctions connected in parallel [32]. For currents
much smaller than the SQUID critical current, the SQUID
acts as an inductor with inductance

ls ¼
φ0

Is
; Is ¼ 2I0

���� cos
�

Φ
2φ0

����� ð6Þ

(assuming identical junctions and negligible geometric
inductance), where Is is the SQUID critical current, I0
the junction critical current, φ0 the reduced flux quantum,
and Φ the magnetic flux threading the SQUID loop.
Replacing the four inductors in Fig. 2(a) with four
SQUIDs realizes a bridge of dynamically tunable inductors.
Furthermore, twisting the bridge into a figure-eight layout
gives us a convenient way to achieve the required unbal-
ancing of the bridge inductances. We can set the inductance
of each SQUID appropriately by applying a constant and
uniform magnetic field and a smaller, time-dependent, and
gradiometric magnetic field, as in Fig. 3. Note, too, that this
configuration induces only the desired screening currents

within each SQUID loop. Undesired screening currents
between SQUIDs are not induced [canceling unwanted
screening currents in a network like Fig. 2(c) is also
important, but outside the scope of this article]. Thus, in
principle, all of the inductive, dynamically unbalanced
bridges in Fig. 2(c) could be realized with 16 SQUIDs, a
uniform background magnetic field, and two control wires
carrying current oscillating as cosðΩtÞ and sinðΩtÞ. In
Sec. IV, we also address considerations such as increasing
the network’s saturation power by replacing single SQUIDs
with arrays and the secant rather than linear dependence of
inductance on the magnetic flux.

III. CIRCUIT ANALYSIS

We now analyze the circuit depicted in Fig. 2(c). The
analysis will use both the frequency-domain, lumped-
element approach common in microwave engineering
[28] and a time-domain approach, which shows how
Eqs. (5) approximate the circuit’s dynamics.
The essential subnetwork in this circulator is the two-

port [28] Wheatstone bridge-type [27] network depicted in
Fig. 4(a). In contrast to the networks depicted in Fig. 2,
which considers inductances that vary as l½1� dðt; θÞ�, in
this section we exclusively consider inductances that vary
as l½1� dðt; θÞ�−1, as in Fig. 4(a). Here l is some induct-
ance, d is a real function of time t, and θ is an angle. This is
a more natural, simplified model for the dependence of
SQUID inductances on magnetic flux [Eq. (6)]. A straight-
forward circuit analysis [28] gives us the constitutive
equations for this network:

1

l

�
1 dðt; θÞ

dðt; θÞ 1

��
ϕ1ðtÞ
ϕqðtÞ

�
¼

�
I1ðtÞ
IqðtÞ

�
; ð7Þ

where ϕiðtÞ ¼
R
t
−∞ ViðτÞdτ is the time integral of the

voltage across port i and is called the “branch flux” across
this port [33] and Ii is the current entering at port i.
Throughout this article, we use the convention that induct-
ance is defined as the ratio of the branch flux across and
current through a network branch [18,32] (which for time-
varying or nonlinear inductances is different from the more
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1

FIG. 4. (a) The inductance bridge as a network with two ports, 1
and q. (b) Four inductance bridges configured as a six-port
network. Attaching a capacitor across ports q and p and trans-
mission lines across ports 1–4 realizes the circulator network
depicted in Fig. 2(c).

FIG. 3. Schematic of a dc SQUID-based realization of the
tunable bridge network. In the right-hand figure, the wire con-
figuration (black lines) is critical, as it determines the magnetic
flux through the five depicted loops (four SQUID loops, one loop
of the bridge itself; the four small circles represent unimportant
network terminals). The total magnetic flux Φ through each
SQUID loop is the sum of the flux from a uniform background
field (ΦΣ) and from a magnetic-flux control current that flows
vertically through the “twisted” bridge (ΦΔ). Ideally, the net
magnetic flux through the bridge loop is always zero.
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familiar definition of inductance as the ratio of voltage and
the timederivative of current). FromEq. (7),we learn that the
unbalancing of the bridge in Fig. 4(a) gives an output
reluctance (the current response at one port per flux applied
at the other, i.e., inverse inductance) proportional to dðt; θÞ,
but the input reluctance (the current response at one port per
flux applied at the same port) is independent of dðt; θÞ. Such
a clean separation between the input and output reluctances
is highly attractive when dðt; θÞ is proportional to an
experimentally convenient tunable parameter, such as the
control current in Fig. 3. Our network is designed to exploit

this separation to realize time-variable coupling between
resonant modes and itinerant fields without modulating the
intraresonator dynamics or prompt field scattering. This
bridge is the repeated module that helps us realize Eq. (5).
Next, Fig. 4(b) takes four copies of this bridge, places

them in a ring, and defines six ports f1; 2; 3; 4; q; pg. Note
that ports 1–4 are each defined between a network node and
ground, while ports q and p are each defined by two
network nodes. If we let dðt; θÞ ¼ ϵ cosðΩtþ θÞ
(0 ≤ ϵ ≤ 1), a straightforward circuit analysis then relates
port branch fluxes and currents:
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While the structure of Eq. (8) is evocative of Eq. (5), they are
not equivalent. For example, Eq. (8) contains no resonant
dynamics yet and its dynamics are reciprocal [9,28]. None-
theless, we already have the critical structure that only the
couplings between ports 1–4 and ports q and p are variable
in time. An analysis of Eq. (8) simplifies by going into a
“left-right–even-odd” basis for the port 1–4 variables and a
rotating, circular basis for the q and p port variables:

2
6664
ϕl;eðtÞ
ϕr;eðtÞ
ϕl;oðtÞ
ϕr;oðtÞ

3
7775 ¼ 1ffiffiffi

2
p

2
6664
1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

3
7775
2
6664
ϕ1ðtÞ
ϕ2ðtÞ
ϕ3ðtÞ
ϕ4ðtÞ

3
7775; ð9Þ

�
ϕþðtÞ
ϕ−ðtÞ

�
¼ 1ffiffiffi

2
p

�
ejΩt −jejΩt

e−jΩt je−jΩt

��
ϕqðtÞ
ϕpðtÞ

�
ð10Þ

and similarly for the current variables (j being the imaginary
unit, adopting the electrical engineering convention [34]). In
these bases, the dynamics of Eq. (8) separate into

2

l

�
1 −1
−1 1

��
ϕl;eðtÞ
ϕr;eðtÞ

�
¼

�
Il;eðtÞ
Ir;eðtÞ

�
; ð11Þ

1

l

2
6664

2 0 ϵ jϵ
0 2 ϵ −jϵ
ϵ ϵ 4 0

−jϵ jϵ 0 4

3
7775
2
6664
ϕþðtÞ
ϕ−ðtÞ
ϕl;oðtÞ
ϕr;oðtÞ

3
7775 ¼

2
6664
IþðtÞ
I−ðtÞ
Il;oðtÞ
Ir;oðtÞ

3
7775: ð12Þ

The time-dependent, reciprocal network of Fig. 4(b)
becomes nonreciprocal when we make modes q and p

resonant by placing a capacitor (capacitance c) across each
of these ports. Doing so, these ports gain a fixed relation
between current and branch flux

−c
d2

dt2
ϕq;pðtÞ ¼ Iq;pðtÞ ð13Þ

or, equivalently, in the circular basis

−c
�
d
dt

∓jΩ
�

2

ϕ�ðtÞ ¼ I�ðtÞ: ð14Þ

The capacitors have no effect on the “even” dynamics in
Eq. (11), but in the following subsection we will show that
they turn the reciprocal, four-port “odd” network Eq. (12)
into a nonreciprocal, two-port network.

A. Frequency-domain analysis

Taking into account the capacitors and writing the odd
network dynamics now in the frequency domain, we find

1

l

2
666664
2− lcðω−ΩÞ2 0 ϵ jϵ

0 2− lcðωþΩÞ2 ϵ −jϵ

ϵ ϵ 4 0

−jϵ jϵ 0 4

3
777775

2
6664
ϕþ½ω�
ϕ−½ω�
ϕl;o½ω�
ϕr;o½ω�

3
7775

¼

2
664

0

0

Il;o½ω�
Ir;o½ω�

3
775; ð15Þ

where square brackets ½·� indicate a frequency-domain
variable. From Eq. (15), one finds that a current applied
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at either the “left” or “right” odd ports (i.e., taking Il;o ≠ 0

or Ir;o ≠ 0) induces a resonant response in the ϕ� variables

when ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 − ϵ2Þ=2lc

p
� Ω≡ ω0 � Ω, respectively.

ForΩ ¼ 0, the orthogonal coupling between the odd modes
and the resonant modes means that the left and right odd
modes are uncoupled over all drive frequencies. But, for
Ω ≠ 0 and odd driving at the frequency ω0, the ϕþ and ϕ−
modes respond as equal and opposite capacitive and
inductive reactances in parallel, which open a transmission
window between the left and right odd ports [2]. For
instance, eliminating ϕ� in Eq. (15), setting ω ¼ ω0, and
expanding to first order in Ω, we find that

jω0

16cΩ
ϵ2

�
0 1

−1 0

��
ϕl;o½ω0�
ϕr;o½ω0�

�
¼

�
Il;o½ω0�
Ir;o½ω0�

�
: ð16Þ

In this configuration, signal transfer through the network is
nonreciprocal: Voltage applied at the right odd port will
induce a positive current at the left odd port, but voltage
applied at the left odd port will induce a negative current at
the left odd port (note that jω0 times a branch flux is a
voltage). A network with the constituent relations given in
Eq. (16) is known as a “gyrator,” the most basic building
block of nonreciprocity in electrical network theory, with
“gyration resistance” ϵ2=16cΩ [23].
Further analysis is aided by attaching transmission lines

to ports 1–4. With the capacitors across ports p and q and
transmission lines across ports 1–4, Fig. 4(b) becomes
equivalent to Fig. 2(c). The voltages and currents at ports
1–4 are now decomposed into traveling-wave voltages and
currents incident upon (“in”) and scattered by (“out”) the
network through the transmission lines [28,29,31]. Our
goal is now to relate these input and output waves. While
such an input-output analysis is convenient theoretically
when studying four-port circulator networks [35], measur-
ing scattering parameters is also more experimentally
convenient in microwave networks than direct measure-
ments of port voltages and currents.
If the only constraints on the input and output fields are

those imposed by our network (e.g., the transmission lines
are of an effectively infinite length), then [17,28,29]

IiðtÞ ¼ Ii;inðtÞ þ Ii;outðtÞ;
d
dt

ϕiðtÞ ¼ Vi;inðtÞ þ Vi;outðtÞ;
rIi;inðtÞ ¼ Vi;inðtÞ;

−rIi;outðtÞ ¼ Vi;outðtÞ; ð17Þ
where the traveling-wave variables above are evaluated at
the port positions and r is the characteristic (real) imped-
ance of each transmission line. A standard network analysis
[28] then tells us that if the port branch fluxes and currents
are related by

jωY ij½ω�ϕj½ω� ¼ Ii½ω�; ð18Þ

where Y is known as the admittance matrix, it then follows
that

Vi;out½ω� ¼ ½ð1þ rY ½ω�Þ−1ð1 − rY ½ω�Þ�ijVj;in½ω�
≡ Sij½ω�Vj;in½ω�; ð19Þ

where 1 is the identity and provided that the matrix inverse
exists. S is often referred to as a scattering matrix.
For example, using Eq. (16), one finds that, when

Ω ¼ Ω0 ≡ ϵ2=16cr,

�
Vl;o;out½ω0�
Vr;o;out½ω0�

�
¼

�
0 −1
1 0

��
Vl;o;in½ω0�
Vr;o;in½ω0�

�
: ð20Þ

In other words, when the gyrator resistance equals r, the odd
network is matched: Signals are fully transmitted by the
network, but the transmission is nonreciprocal. A voltage
signal picks up a π phase shift traveling from the right odd to
left odd port and no phase shift traveling from left odd to
right odd. Similarly, using the even network relations in
Eq. (11), one finds that, to zeroth order in ω0l=r,�

Vl;e;out½ω0�
Vr;e;out½ω0�

�
¼

�
0 1

1 0

��
Vl;e;in½ω0�
Vr;e;in½ω0�

�
: ð21Þ

Combining Eqs. (20) and (21) and putting the input and
output voltage signals back into the port 1–4 basis, we find
that this network acts as an ideal, four-port circulator [Eq. (1)]
for input voltage waves at frequency ω0. If a three-port
circulator is desired, this may be realized, for example, by
terminating one of the four ports in a short, as signals leaving
this port are then reflected back into the circulator.

B. Time-domain analysis

This standard scattering matrix approach, though,
obscures the dynamics that guided our intuition: a simu-
lated rotation of the resonant modes relative to the itinerant
fields [e.g., Fig. 2(c)]. To that end, we reanalyze the
dynamics of Eqs. (11) and (15) in the time domain and
without eliminating the ϕ� dynamics. In quantum optics,
analogous models are known as “input-output” (IO) models
[17,29–31]. Like the scattering matrix models of the
previous paragraph, IO models relate incident and scattered
electromagnetic waves and are thus natural models for
resonant microwave networks. But, unlike scattering matrix
models, they are time-domain, first-order ordinary differ-
ential equations. IO models approximate resonant circuit
dynamics but may also be directly compared with, for
example, optical systems that do not have lumped-element
representations. On the other hand, the circuit analysis in
the previous section does not require approximations
beyond the lump element assumptions and can be useful
in considering how IO approximations break down.
In this case, our IO model assumes that the network

variables have solutions of the form [17,29,30]
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ϕiðtÞ ¼ φiðtÞejωdt þ c:c:;

Vi;inðtÞ ¼ ω0

ffiffiffiffiffi
cr

p
vi;inðtÞejωdt þ c:c:;

Vi;outðtÞ ¼ ω0

ffiffiffiffiffi
cr

p
vi;outðtÞejωdt þ c:c:;

ωd ¼ ω0 þ Δ ð22Þ

for a drive frequency detuned by Δ from the center
frequency ω0. Then, combining Eqs. (11), (15), and
(17), making a slowly varying envelope approximation,
and solving to lowest order in ω0l=r, jΔj=ω0, and jΩj=ω0

(i.e., assuming that the rate of variation of φi, vi;in, and vi;out
is much less than ωd) gives

2
6664

d
dtφþðtÞ
d
dtφ−ðtÞ
vl;o;outðtÞ
vr;o;outðtÞ

3
7775 ¼

2
6666664

−
h
jðΔ − ΩÞ þ κ

2

i
0 j

ffiffi
κ
2

p
−

ffiffi
κ
2

p
0 −

h
jðΔþΩÞ þ κ

2

i
j

ffiffi
κ
2

p ffiffi
κ
2

p
−j

ffiffi
κ
2

p
−j

ffiffi
κ
2

p
−1 0

−
ffiffi
κ
2

p ffiffi
κ
2

p
0 −1

3
7777775

2
6664

φþðtÞ
φ−ðtÞ
vl;o;inðtÞ
vr;o;inðtÞ

3
7775;

�
vl;e;outðtÞ
vr;e;outðtÞ

�
¼

�
0 1

1 0

��
vl;e;inðtÞ
vr;e;inðtÞ

�
; ð23Þ

where we have defined κ ¼ ϵ2=8cr. We call Eq. (23) an IO
model of the network depicted in Fig. 2(c). Putting this
model back into the f1; 2; 3; 4; q; pg basis then gives us the
four-port circulator model Eq. (5) with the identifications
faq;ap;b1;ðin=outÞ; b2;ðin=outÞ; b3;ðin=outÞ; b4;ðin=outÞg ¼ fφq;φp;
v1;ðin=outÞ; v2;ðin=outÞ; v3;ðin=outÞ; v4;ðin=outÞg. A natural interpre-
tation of the IO model Eq. (5) is that, while the center
frequency and total damping of each resonator mode are
constant in time, the resonant modes couple to (and are
damped by) each transmission line in a sinusoidally
rotating pattern. While the rotating coupling between
resonant and port degrees of freedom is apparent in
Fig. 2(c), the time-independent intraresonator dynamics
are less obvious.
Finally, we calculate the performance of the circulator in

this IO representation in order to compare it to the
frequency-domain circuit analysis presented in Sec. III
A. For linear IO models of the form

"
d
dt ~xðtÞ
~youtðtÞ

#
¼

"
A B

C D

#"
~xðtÞ
~yinðtÞ

#
ð24Þ

with time-independent matrices fA;B;C;Dg, a scattering
matrixlike representation of the steady-state response of the
output amplitude vector ~yout to a constant input amplitude
vector ~yin is

~yssout ¼ ðD − CA−1BÞ~yssin ; ð25Þ

in general. However, as is typical for IO models of lossless,
gainless, linear systems, Eqs. (23) have a particular form
where B ¼ −C†D, A ¼ −jQ − 1

2
C†C, D is unitary, and Q

is Hermitian († signifying the matrix adjoint) [31]. In this
case, in analogy with Eq. (19), it can be shown that [36]

~yssout ¼ D1=2ð1þ Y ioÞ−1ð1 − Y ioÞD1=2~yssin ;

Y io ¼ −
j
2
D−1=2CQ−1C†D1=2 ð26Þ

(assuming the matrix inverses exist). Using Eq. (26) and the
first equation in (23), we find an admittancelike matrix for
the IO model of the odd modes

Y io;odd ¼
κ

2ðΔ2 −Ω2Þ
�−jΔ Ω
−Ω −jΔ

�
: ð27Þ

And thus, in analogy with Eq. (20), we find for Δ ¼ 0 and
Ω ¼ κ=2 (i.e., forωd ¼ ω0 andΩ ¼ Ω0) this IO acts like an
ideal gyrator�

vssl;o;out
vssr;o;out

�
¼

�
0 −1
1 0

��
vssl;o;in
vssr;o;in

�
: ð28Þ

If tuned optimally (Ω ¼ Ω0) and for Δ ≠ 0, the FWHM
bandwidth of the odd and full circulator network models isffiffiffi
2

p
κ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ffiffiffi

3
p

− 1Þ
q

κ, respectively. Thus, the circulator

bandwidth is strongly constrained by the modulation
amplitude of the inductors, κ ∝ ϵ2, as will be discussed
more in Sec. IV. We also note that

ffiffiffi
2

p
κ ¼ 2

ffiffiffi
2

p
Ω0, which isffiffiffi

2
p

times the frequency splitting of the internal modes for a
matched network. A simple proportionality between the
bandwidth and the frequency splitting of internal modes is
typical of many nonreciprocal networks [2].

C. Simulation

It is worth comparing the theoretical scattering
response of the approximate IO model to the full
lumped-element scattering matrix (which is exact up to
the lumped-element assumption). In the IO model, the
scattering response corresponds to an ideal four-port
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circulator when Δ ¼ 0 and Ω ¼ κ=2. Alternatively,
one can calculate S for the full lumped-element
network depicted in Fig. 2(c), but without the approxima-
tions made to produce Eqs. (20) and (21). Choosing
parameters compatible with superconducting microwave
circuits [5,25] l ¼ 1

2
nH, c ¼ 2 pF, r ¼ 50 Ω,

ω ¼ ω0 ¼ 2π × 6.16 GHz, Ω ¼ Ω0 ¼ 2π × 99 MHz, and
ϵ ¼ 1, we find

jS11j2 ¼ jS22j2 ¼ jS33j2 ¼ jS44j2 ¼ 0.002;

jS21j2 ¼ jS32j2 ¼ jS43j2 ¼ jS14j2 ¼ 0.995;

jS31j2 ¼ jS42j2 ¼ jS13j2 ¼ jS24j2 ¼ 0.002;

jS41j2 ¼ jS12j2 ¼ jS23j2 ¼ jS34j2 ¼ 0.000: ð29Þ

That is, 99.5% of the incident power at this frequency is
routed correctly for these parameters and 0.2% is reflected,
assuming ideal lumped-element components and ideal
inductor modulation (Sec. IV focuses on the many con-
siderations that go into identifying a practical set of
parameters). The network’s response to off-resonant drives,
Δ ¼ ωd − ω0 ≠ 0, is depicted in Fig. 5 for the various
models. For these parameters, the circulator bandwidth isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ffiffiffi

3
p

− 1Þ
q

κ=2π ¼ 241 MHz in the IO model response,

which is depicted in Fig. 5(a). We see a very similar
response using the lumped-element circuit model in
Fig. 5(b). The greatest difference in this response is that
it is no longer perfectly symmetric about Δ ¼ 0, especially
outside of the circulator bandwidth.
The discrepancy between the lumped-element and IO

models appears to be largely due to nonidealities in the
even network transmission Eq. (21): Perfect circulation
breaks down when the even network ceases to look like two
ports shorted together. Thus, the ideal even network
response occurs in the limit of small ω0l=r, and for
these parameters ω0l=r ¼ 0.39. If instead we choose
the parameters l ¼ 1 nH, c ¼ 1 pF, and ϵ ¼ 1=

ffiffiffi
2

p
(ω0 ¼ 2π × 6.7 GHz), the corresponding IO model still
has the same ω0, κ, and Ω0, but now ω0l=r ¼ 0.84.
Evaluating the lumped-element scattering parameters for

these values now results in a response that deviates further
from the ideal IO model, with a 97.8% maximum power
transmission, 1% power reflected, and a more asymmetric
response about Δ ¼ 0 [Fig. 5(c)].

IV. CONSIDERATIONS FOR A SQUID-BASED
REALIZATION

To better ground the above analysis in the reality of
superconducting microwave circuits, we now outline some
considerations that go into designing dc SQUID networks
that approximate linear inductors. Circulator performance
should be compared against commercial circulators and the
needs of contemporary and future experiments with super-
conducting quantum microwave circuits. Desirable char-
acteristics for our circulator include an input-output
response that is close to Eq. (1) on resonance, a wide
bandwidth, and high power handling. For example, there is
a trade-off in this particular circuit design [Fig. 2(c)] in that
the ideal input-output response occurs in the limit of small
ω0l=r (Sec. III C), but the bandwidth of the network also
decreases in this same limit (κ=ω0 ∼ lω0=r). This trade-off
is independent of any component nonidealities and arises at
the schematic level of this particular design. We also note
that competition between the bandwidth and the optimal
performance at a single frequency appears in any practical
circuit design. The physics of dc SQUIDs also require
trade-offs in a good design. Although modifications to this
circuit will change the particulars, the considerations out-
lined below appear in any superconducting microwave
network based on dynamically modulated SQUIDs
[6,25,32,37].
We first address the schematic-level trade-off. One must

assume that r, the transmission line impedance, is practi-
cally constrained to 50 Ω and that we will target designs in
which ω0=2π, the center frequency of operation, is in the
usual 4–8 GHz band for quantum superconducting micro-
wave networks. In optimizing the ratio ω0l=r, this leaves
only l as the flexible parameter. As described in Sec. III C,
if the network bandwidth is held constant, but this ratio
increases, ideal circulator operation will decrease. For

(a) (c)(b)

FIG. 5. Simulation of the frequency-domain response of various models of the circulator, as described in the text. The dependence on
detuning Δ for the other scattering parameters is identical to the traces shown above, with a cyclic permutation of the port indices,
confirming proper circulation. (a) IO network. (b) Lumped-element network with lω0=r ¼ 0.4. (c) Lumped-element network with
lω0=r ¼ 0.8.

ON-CHIP SUPERCONDUCTING MICROWAVE … PHYS. REV. APPLIED 4, 034002 (2015)

034002-9



example, finite ω0l=r produces backreflections (e.g.,
jS11j2 ≠ 0 in Fig. 5). While it is possible to include
additional, lossless matching networks at each port to
reduce backreflections over some frequency range, the
Bode-Fano criterion suggests that a nonvanishing ω0l=r
fundamentally limits excellent network matching over
broad bandwidths [28,38]. This further supports the intu-
ition gained from Fig. 5 that, without a radical redesign of
the network, a larger l decreases the performance achiev-
able over a given bandwidth of operation.
To roughly match the performance of commercial ferrite

circulators, we can allow ourselves nonidealities in the
signal routing at the −20-dB level. We see such perfor-
mance in Fig. 5(c), in which l ¼ 1 nH. Inductances of this
scale are achievable in SQUID networks fabricated using
optical lithography [39,40]. Although the performance
depicted in Fig. 5(b) is better than in Fig. 5(c), the assumed
parameters are not realistic. The baseline impedance is a
reasonable l ¼ 0.5 nH, but Fig. 5(b) assumes ϵ ¼ 1, which
implies that the SQUIDs periodically achieve infinite
inductance (the feasibility of ϵ ¼ 1=

ffiffiffi
2

p
will be discussed

below). Infinite inductance is obviously unphysical, but the
actual limitations require some discussion of SQUID
physics.
A single dc SQUID is formed by two Josephson

junctions connected in parallel by superconducting wires,
forming a loop [Fig. 6(a)]. For simplicity, we assume the
junctions are identical and junction capacitance is negli-
gible, and we ignore the geometric inductance of the wires
for the moment. Then, Faraday’s law and the Josephson
relations allow us to relate the voltage across (V1) and
current flowing between (I1) two leads connected on
opposite sides of a single SQUID loop in the presence
of an external magnetic field [32]. Assuming null initial
conditions, we identify a single SQUID’s effective

inductance L1 as the ratio between the current and branch
flux [ϕ1ðtÞ ¼

R
t
−∞ V1ðτÞdτ] in the SQUID leads. SQUID

inductance is nonlinear, as this ratio depends on I1, and we
find that to third order in I1=Is

ϕ1ðtÞ ¼ L1ðtÞI1ðtÞ; with ð30Þ

L1ðtÞ ≈ lsðtÞ
�
1þ 1

6
½IðtÞ=IsðtÞ�2

	
; ð31Þ

lsðtÞ ¼
φ0

IsðtÞ
¼ φ0

2I0

���� sec
�
ΦðtÞ
2φ0

����� ð32Þ

where φ0 ¼ ℏ=2e is the reduced flux quantum, Is is the
SQUID critical current (the maximum current flowing
between these two leads that the junction can support in
its superconducting state), I0 is the critical current of a
single junction, and ΦðtÞ is what the magnetic field flux
through the loop would be in the absence of screening
currents. Thus, for small currents, a SQUID acts like a
linear inductor with a magnetic-flux-dependent inductance.
The relative magnitude of the linear and nonlinear induc-
tances, 1=6, is fixed: A larger inductor requires a SQUID
that saturates at smaller currents.
Now consider an array of N identical SQUIDs with their

leads connected in series [Fig. 6(b)]. In this case, the current
flowing through each and the voltage across each are
identical. Thus, the relationship between the branch flux
across and the current through the entire array is
ϕN ¼ LNIN , where LN ¼ NL1. Qualitatively, adding
SQUIDs in series allows us to increase the linear induct-
ance without decreasing the saturation current.
Quantitatively, to third order in I1=Ia we have that [25,41]

LNðtÞ ≈ laðtÞ
�
1þ 1

6N2
½IðtÞ=IaðtÞ�2

	
; ð33Þ

laðtÞ ¼
φ0

IaðtÞ
; IaðtÞ ¼ IsðtÞ=N; ð34Þ

from which we see that, for a fixed linear array inductance
la, the nonlinear inductance scales as N−2. Less non-
linearity means higher saturation powers in analog signal
processing.
The SQUIDs’ nonlinearity limits the circulator’s power

handling. As the SQUID inductance increases with the
current, center frequencies of microwave resonators con-
taining SQUIDs typically decrease as the power of incident
signals increases. The approximation of a SQUID as a
linear inductor tends to break down when this center
frequency shift is comparable to the resonator bandwidth.
In the case of high-quality resonators, it is convenient to
reparameterize the nonlinear inductance in Eqs. (31) and
(33) as an effective “Kerr constant” that gives this center
frequency shift per microwave photon stored in the

+

-

(a) (b)

...

+

-
FIG. 6. (a) Schematic of a dc SQUID with I0 critical current
Josephson junctions, lg geometric inductance in each branch, and
a magnetic flux Φ. (b) A series array of N such SQUIDs.
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resonator (i.e., stored microwave energy in units of ℏω0)
[25,41]. Up to a factor of the order of unity (depending on
the resonator construction), this Kerr constant is

K ≈ −
ℏω2

0

I2sla
∝ N−2; ð35Þ

where the sign of K indicates the direction of the center
frequency shift. For example, using parameters compatible
with Fig. 5(c), ω0 ¼ 2π × 6.16 GHz, la ¼ 1 nH, and
assuming an array of N ¼ 20 SQUIDs compatible with
junctions produced by optical lithography in the NIST
NbAlOxNb trilayer process [39,40], Is ¼ 6.6 μA, one finds
K ≈ −2π × 580 kHz. With this Kerr constant, and assum-
ing the resonator bandwidth depicted in Fig. 5(c), one
would expect the nonlinear reactance of the SQUIDs to
become noticeable with of the order of 100 photons stored
in the resonator [because 241 MHz ¼ ð2πÞ−1jKj×
415 photons]. A comparable design based on single
SQUIDs would require Is ¼ 0.33 μA and would exhibit
nonlinearities well below ten stored photons. For quantum
superconducting microwave experiments, the saturation
power of commercial ferrite circulators is effectively
infinite. While experiments involving one or two super-
conducting qubits often operate at signal powers that do not
saturate routers and amplifier networks with single-
SQUID-scale saturation currents, higher saturations powers
are more critical in quantum networks that employ more
weakly coupled systems (e.g., mechanical oscillators and
magnetic spins), applications outside of quantum informa-
tion (e.g., astrophysical detectors), and in current and future
quantum networks with more signal multiplexing.
Optimizing our circuit design according to the prescrip-

tions thus far, one might conclude that the best strategy is to
employ SQUID arrays with la ≈ 1 nH (with no external
flux bias) as our tunable inductors and let N → ∞, I0 → ∞
to minimize nonlinear effects. This is imprudent for several
reasons. One is a larger circuit footprint, which adds stray
geometrical inductance throughout the circuit. Other rea-
sons are due to the geometric inductance of the SQUID
loop wires themselves, lg in Fig. 6(a), which we have
ignored thus far. This SQUID loop inductance limits both
the minimum ls;min and maximum ls;max achievable through
flux tuning of a SQUID array. Both constraints worsen as
φ0=I0lg decreases [32]. With minimum and maximum
array inductances, in general, one finds that

jϵj < η2 − 1

η2 þ 1
; η ¼ ls;max=ls;min: ð36Þ

In practice, η seems to be limited to about 4 in super-
conducting microwave circuits with of the order of 10–100
SQUIDs in an array [25], which limits jϵj < 0.88. Even
longer arrays would be even less tunable. Constraints on the
maximum ϵ ultimately limit circulator bandwidth, which is

proportional to ϵ2 (Sec. III B). The simulation depicted in
Fig. 5(c), with ϵ ¼ 1=

ffiffiffi
2

p
, is consistent with this tunability

constraint and achieves a bandwidth of 241 MHz.
Commercial circulators used in contemporary supercon-
ducting microwave experiments have a bandwidth of a few
gigahertz, but the vast majority of this bandwidth is unused.
Most circuits involved in routing quantum microwave
signals in contemporary experiments operate at bandwidths
of the order of 10 MHz or smaller [5–7,16,25,37].
Moreover, the center frequency of our network may be
tuned broadly by varying the uniform background field, as
depicted in Fig. 3. Thus, while not as broadband as
commercial options, this network should have an achiev-
able bandwidth more than sufficient for most applications
in superconducting microwave networks.

A. Input-output response with SQUID-like
inductance modulation

We saw in Sec. III that proper periodic modulation of the
inductances according to Fig. 2(c) causes the network to
scatter signals without creating any sideband excitations.
Using a numerical, time-domain, MATLAB Simscape sim-
ulation of the circuit depicted in Fig. 2(c), the network
performance in this ideal case is depicted in Fig. 7(a). Using
the same parameters as in Fig. 5(c), r ¼ 50 Ω, l ¼ 1 nH,
c ¼ 1 pF, ϵ ¼ 1=

ffiffiffi
2

p
, and Ω ¼ Ω0 ¼ 2π × 99 MHz, a

continuous-wave, input current drive at frequency ωd ¼
2π × 6.66 GHz is applied to port 1 suddenly at time t ¼ 0.
The top plot in Fig. 7(a) depicts the resulting current
measured in the output signals for the first 5 ns of the
simulation (after separating input from output signals in the
simulation). Initially, the output current is equally distrib-
uted among the four ports, but after a few nanoseconds
nearly all of the output current is measured at port 2. The
bottom plot gives the normalized output current power
spectrum for a 250-ns simulation (i.e., well into the steady
state). The spectra are sharply peaked at ωd, with the peak
of the I1;out, I3;out, and I4;out signals at least 20 dB below that
of I2;out. While the shoulders are slightly fat, there are no
visible sidebands. Driving the inputs of the other ports
produces responses identical to Fig. 7(a), up to a cyclical
permutation of the port indices.
Unfortunately, it is not simple to tune a SQUID’s

inductance exactly as

l0sðtÞ ¼ l½1� ϵ cosðΩtÞ�−1 or

l0sðtÞ ¼ l½1� ϵ sinðΩtÞ�−1; ð37Þ

as in Fig. 2(c). Because the linear inductance of a SQUID or
array of SQUIDs goes as Eq. (6), applying a simple
background magnetic flux that consists of a static and
sinusoidal component yields effective inductances that
vary as
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lsðtÞ ¼
φ0

2I0j cosðΦðtÞ2φ0
Þj
;

ΦðtÞ ¼ ΦΣ � ΦΔ cosðΩtÞ or ΦðtÞ ¼ ΦΣ � ΦΔ sinðΩtÞ:
ð38Þ

It is possible to make ls exactly equal to l0s in the limit
φ0=2I0 → 0, ΦΣ=2φ0 → π=2. However, this limit corre-
sponds to an infinitely flux-tunable Josephson inductance,
which is unphysical. Instead, it is more realistic to set
φ0=2I0 ¼ 2l, where l is the desired l in Eq. (37), and set
ΦΣ=2φ0 ¼ π=3 so that ls ¼ l0s when ΦΔ ¼ 0. One then
choosesΦΔ such that ls ≈ l0s, given the desired ϵ in Eq. (37).
We can now redo the simulation in Fig. 7(a), but with a

variable inductance model based on Eq. (38) rather than the
ideal Eq. (37). Choosing parameter values that closely
emulate the simulation in Fig. 7(a), r ¼ 50 Ω,
φ0=2I0 ¼ 2 nH, ΦΣ=2φ0 ¼ π=3, c ¼ 1 pF, ΦΔ=2φ0 ¼
0.38, Ω ¼ 2π × 90 MHz, and ωd ¼ 2π × 6.63 GHz
(parameters found through trial-and-error optimization),
produces the analogous plots in Fig. 7(b). The time-domain
response is nearly identical to the ideal case. The most
noticeable difference is that the I3;out response is about the
same as I1;out and I4;out. The differences between the steady-
state power spectra are more obvious. The output signals
now exhibit sidebands, which are caused by the slight
differences between Eqs. (38) and (37) for these parameters.
Happily, though, the largest of these sidebands are nearly
−50 dBc and are the third harmonics of Ω (i.e., are at
ωd � 4 Ω). The lower harmonics ofΩ are almost completely
suppressed by the symmetry of the circuit, which is
remarkable considering the significant, ΦΔ=2φ0 ¼ 0.38,
modulations of the SQUID-like inductances.
A quantitative analysis of the spectrum observed in

Fig. 7(b) is beyond the scope of this article but will be
considered in a companion publication (which will also
contain a quantized model of the circulator) [42]. This is

done by first deriving a Hamiltonian describing the
circulator including its input and output ports. In a second
step, Yurke’s approach to the input-output formalism is
used to compute the scattering properties of the circuit [29].
In contrast to the analysis in Sec. III B, following Yurke
allows us to obtain exact, time-domain equations of
motions for the circuit’s degrees of freedom. Using these
results, the spectrum observed in Fig. 7(b) can be under-
stood quantitatively.

V. CONCLUSION

We introduce and analyze a design for a four-port
circulator based on time-varying inductances [Fig. 2(c)]
that has the potential to replace the lossy and nonintegrable
commercial ferrite circulators ubiquitous in superconduct-
ing quantum microwave experiments. The basic module is
a dynamically unbalanced bridge network of four SQUIDs
(or SQUID arrays) [27], depicted in Fig. 3. These bridges
dynamically modulate the coupling between four trans-
mission lines and two resonant modes, and the construction
ensures that this coupling is the only aspect of the dynamics
that is modulated. The construction also ensures that, when
the inductances are tuned perfectly, the network’s output
signals are not complicated by frequency, phase, or
amplitude modulation. This critical feature is greatly aided
by limiting the dynamic modulation to the coupling
between the resonant modes and the transmission lines.
As a result, the resonant modes act as if they are “spinning”
relative to the transmission lines or, equivalently, as if they
are coupled by a synthetic magnetic field (Fig. 1).
The design has a number of attractive features such as

modulation pump tones detuned from the signal by more
than a decade, a broadly tunable center frequency, a tunable
bandwidth, high saturation power, and a lumped-element
and modular construction. We give an overview of many of
the considerations needed to realize a design capable of
achieving a 240-MHz bandwidth and a saturation power
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(a) (b) FIG. 7. Numerical network simulations.
(a) Network output response in time and fre-
quency, driving port 1, given parameters from
Fig. 5(c), and the ideal inductance modulation
given in Fig. 2(c) and Eq. (37). (b) The same
network simulation, but where the linear in-
ductances are modulated in a “SQUID-like”
manner, i.e., using Eq. (38), as described in
the text.
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of the order of 100 microwave photons per inverse
bandwidth with superconducting microwave technology.
The design of a practical electromagnetic circulator is a
difficult and important problem, and different technological
constraints have yielded a wide variety of solutions and
potential solutions over the decades, of which Refs. [2–4,9–
16,20,21,23] are but a small sample. Because of this long
tradition, we analyze this network from several different
perspectives, through analogy to familiar, ferrite-based
circulator designs, through lumped-element circuit analy-
sis, through approximate input-output models (appropriate
for distributed rf or optical systems), in the time and
frequency domains, analytically, and numerically. We
expect that the present design will find near-term use in
the context of quantum superconducting microwave net-
works, but we also hope that this diverse analysis will help
inspire an even greater diversity of future solutions and
perspectives in even broader contexts.
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