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At strong pump powers, a semiconductor optical cavity passes through a Hopf bifurcation and undergoes
self-oscillation. We simulate this device using semiclassical Langevin equations and assess the effect of
quantum fluctuations on the dynamics. Below threshold, the cavity acts as a phase-insensitive linear
amplifier, with noise approximately 5 × larger than the Caves bound. Above threshold, the limit cycle acts
as an analog memory, and the phase diffusion is approximately 10 × larger than the bound set by the
standard quantum limit. We also simulate entrainment of this oscillator and propose an optical Ising
machine and classical controlled NOT (CNOT) gate based on the effect.
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Many problems in simulation, optimization, and
machine learning are analog in nature and mapping them
onto a digital processor incurs significant overhead. As a
result, there has been a recent revival of interest in analog or
“neuromorphic” computing systems [1,2]. Devices that can
spontaneously oscillate are a key component in this neuro-
morphic architecture. Such devices can function as an
analog memory [2], a phase-insensitive amplifier [3,4], or a
complex-valued neuron [5], among other things. In addi-
tion, large networks of such oscillators can be applied to
complex optimization and machine learning tasks, such as
Ising problems [1].
In most dynamical systems, spontaneous oscillations

arise from a Hopf bifurcation [6]. In optics, the simplest
such system is the nondegenerate χð2Þ optical parametric
oscillator (OPO), which behaves as a quantum-limited
amplifier below threshold [7] and has a symmetric limit
cycle above [8]. In addition, cavity quantum electrody-
namics (QED) systems can self-oscillate in the right
conditions [3,9]. However, nanofabrication with χð2Þ
materials such as KTiOPO4 and LiNbO3 is still in its
infancy [10], and most implementations of cavity QED—
trapped atoms, quantum dots, nitrogen-vacancy centers—
are not scalable with current technology. To realize
neuromorphic computing with photonics, there is an
unfulfilled need for self-oscillating photonic devices
based on a scalable technology.
Free-carrier dispersion can fulfill this unmet need. This

effect is present in silicon and all III-V semiconductors and
is scalable and low power [11]. Previous work by Malaguti
et al. [12,13] and Chen et al. [14] showed that when the
photon and carrier lifetime are comparable, an optical
cavity can pass through a Hopf bifurcation and undergo
self-oscillation. However, these studies focused on the
many-photon classical limit, where quantum fluctuations

can be ignored. If such a device is optimized for low power,
quantum fluctuations in the photon and carrier number may
substantially alter the dynamics and limit the performance
of real devices.
In our previous work [15], we derived a set of stochastic

equations for free-carrier optical cavities that model these
quantum fluctuations. Here, we apply those equations to
study the effects of quantum noise on the free-carrier Hopf
bifurcation.
Sections I and II discuss the general theory of the

oscillations, which arise from an instability in the linearized
model around the system’s fixed point. Because this
derivation is done in a general scale-invariant way, it
should be possible to observe these oscillations in a wide
range of systems spanning orders of magnitude in speed,
size, and energy. Next, we consider the equations of motion
close to the bifurcation point and show that the bifurcation
resembles the nondegenerate OPO at threshold with some
extra noise. Section III models the device below threshold:
it functions as a phase-insensitive linear amplifier with
noise approximately 5× above the Caves bound [16]. The
near-threshold behavior, which follows the critical expo-
nents of the Hopf bifurcation, is discussed in Sec. IV.
The above-threshold case is covered in Sec. V. Like the

nondegenerate OPO, the free-carrier cavity has a limit
cycle in this regime. The above-threshold OPO can be
considered a “quantum-optimal” limit cycle in the sense
that it can function as an optimal homodyne detector. By
comparison, the free-carrier limit cycle is approximately
10× noisier than the OPO. This difference is due to the
incoherent nature of carrier excitation and decay.
Limit-cycle devices can be very useful in optimization

and machine learning. In Sec. VI A, we propose and
simulate an Ising machine based on the free-carrier limit
cycle, which should be several orders of magnitude faster
and less power consuming than a supercomputer. In
addition, Sec. VI B discusses an all-optical XOR gate based
on the limit-cycle effect.*rhamerly@stanford.edu

PHYSICAL REVIEW APPLIED 4, 024016 (2015)

2331-7019=15=4(2)=024016(17) 024016-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevApplied.4.024016
http://dx.doi.org/10.1103/PhysRevApplied.4.024016
http://dx.doi.org/10.1103/PhysRevApplied.4.024016
http://dx.doi.org/10.1103/PhysRevApplied.4.024016


I. CONDITIONS FOR SELF-OSCILLATION

A. Equations of motion

A single-mode free-carrier optical cavity has 3 degrees of
freedom: two field quadratures ðα; α�Þ and the free-carrier
number N. Typically, the following effects are relevant:
(1) Cavity-waveguide coupling. This gives rise to a

linear loss κ in the cavity field.
(2) Linear and two-photon absorption. The former

dominates for near-band-gap operation of direct-
gap semiconductors and the latter for indirect-gap
systems. It gives rise to a linear loss term η and a
quadratic loss term β. Both act as source terms for
the carrier number.

(3) Free-carrier dispersion and absorption. The cavity
detuning shifts as a function of the carrier number:
Δ → Δþ δcN. If δc ¼ δ1 − iδ2 is complex, this
term accounts for free-carrier absorption as well.

(4) Carrier decay. This is typically due to recombination
at surface sites or diffusion out of the cavity and
gives rise to a linear loss term γ for N.

In this text, we ignore the following effects:
(1) Excitons, which tend to be the dominant effect only

at low temperatures or in exotic materials.

(2) Thermo-optic effect. The temperature changes much
more slowly than the photon or carrier number, so it
does not typically play a role in the fast dynamics of
the device. It may, however, lead to stability issues,
which are not the focus of this paper [17–19].

(3) Optomechanical effects, which are negligible
unless a cavity has been specifically engineered to
probe them.

Under these assumptions, the device can be modeled as
an open quantum system that couples to a Markovian
bath; see, generally, Refs. [20–22]. The full quantum
theory is quite involved and is discussed in our previous
paper [15]. In short, starting from a quantum model with a
bosonic photon mode and many fermionic carrier modes,
one can construct a generalized Wigner function in terms
of a set of bosonized operators and derive a Fokker-Planck
equation for this function using the truncated Wigner
method [23,24]. This equation be recast as a set of
stochastic differential equations (SDEs), which sample
from the Wigner function as a probability distribution.
Assuming that dephasing and thermalization are much
faster than the photon or carrier lifetimes, one obtains the
following stochastic equations of motion [Eqs. (C16) and
(C17) from Ref. [15]]:

dα ¼
�
− κ þ η

2
− ðβ þ iχÞα�α − iðΔþ NδcÞ

�
αdt − ffiffiffi

κ
p

dβin þ ð− ffiffiffi
η

p
dβη − 2

ffiffiffi
β

p
α�dββ −

ffiffiffiffiffiffiffiffiffiffiffi
2Nδ2

p
dβFCÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dξα

; ð1Þ

dN ¼ ½ηα�αþ βðα�αÞ2 − γN�dtþ f ffiffiffi
η

p ðα�dβη þ αdβ�ηÞ þ
ffiffiffi
β

p
½ðα�Þ2dββ þ α2ðdββÞ�� þ

ffiffiffiffiffiffi
γN

p
dwγg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dξN

; ð2Þ

TABLE I. Free-carrier cavity parameters for a state-of-the-art GaAs photonic crystal (PhC) and Si microring
cavity. Linear absorption (LA), two-photon absorption (TPA), free-carrier dispersion (FCD).

Name Description GaAs PhCa Si μ ringb

k κ þ η 0.42 ps−1 0.31 ns−1
κ Input-output coupling k=2c k
η LA k=2 0
β TPA 7.9 × 10−5k 3.7 × 10−6k
χ Kerr 0d 0
δ FCD 2.7 × 10−3k ð5.6–0.4iÞ × 10−4k
γ Carrier decay 1.2k 1.0k
δ̄ δ2=δ1 0 0.07
ζ̄ δ1=β 34 150
χ̄ χ=k 0 0
γ̄ γ=k 1.2 1.2
κ̄ κ=k 0.5 1.0
η̄ η=k 0.5 0
Δ̄ Δ=k Varies Varies

aGaAs, ℏω ¼ 0.9Eg, ~V ¼ 0.25, Q ¼ 5000, τFC ¼ 2 ps; see Ref. [15], compare Ref. [25].
bSi, λ ¼ 1.5 μm, ~V ¼ 40, Q ¼ 4 × 105, τFC ¼ 3 ns; see Ref. [18].
cAll dimensional quantities in this table are scaled to the linear loss k.
dNegligible, as the dispersive effect is dominated by free carriers.
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and the output optical field is

dβout ¼ − ffiffiffi
κ

p
αdtþ dβin: ð3Þ

In these equations, dβin is a complex Wiener process
representing the input field, which for vacuum input has the
Ito rule dβindβ�in ¼ dt=2. The processes dβη, dββ, and dβFC
correspond to linear, two-photon, and free-carrier absorp-
tion, respectively, and also have vacuum statistics. The dwγ

is a real Wiener process satisfying dw2
γ ¼ dt, giving the

Poisson statistics of carrier decay. The real and imaginary
parts of δc are δc ¼ δ1 − iδ2. Typical values for the
parameters in Eqs. (1) and (2) are given in Table I.

These equations resemble the coupled-mode equations
used to analyze semiconductor microcavities elsewhere in
the literature [12–14]. Unlike the equations used else-
where, Eqs. (1) and (2) include quantum-noise terms. As
a result, these equations allow us to model the quantum
behavior of devices previously discussed only classically
and study the fundamental quantum limits to device
performance.
We can analyze optical bistability and self-oscillation

by linearizing these equations of motion about their
equilibrium point. Defining the doubled-up vector
x̄ ¼ ðδα; δα�; δNÞ, the equations of motion take the follow-
ing form:

d

2
64

δα

δα�

δN

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
dx̄

¼

2
664
− ηþκ

2
− iðΔþ NδcÞ − 2ðβ þ iχÞα�α −ðβ þ iχÞα2 −iδcα

−½ðβ þ iχÞα2�� ½− ηþκ
2
− iðΔþ NδcÞ − 2ðβ þ iχÞα�α�� ð−iδcαÞ�

ðηþ 2βα�αÞα� ðηþ 2βα�αÞα −γ

3
775
2
64

δα

δα�

δN

3
75dt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ā x̄ dt

þ

2
64
− ffiffiffi

κ
p

0

0 − ffiffiffi
κ

p

0 0

3
75� dβin

dβ�in

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B̄dβ̄in

þ

2
64

− ffiffiffi
η

p
dβη − 2

ffiffiffi
β

p
α�dββ − ffiffiffiffiffiffiffiffiffiffiffi

2Nδ2
p

dβFC

− ffiffiffi
η

p
dβ�η − 2

ffiffiffi
β

p
αdβ�β −

ffiffiffiffiffiffiffiffiffiffiffi
2Nδ2

p
dβ�FCffiffiffi

η
p ðα�dβη þ αdβ�ηÞ þ

ffiffiffi
β

p ½ðα�Þ2dββ þ α2ðdββÞ�� þ
ffiffiffiffiffiffi
γN

p
dwN

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F̄dw

: ð4Þ

Likewise, the output can be related to the input and
internal state by

�
dβout
dβ�out

�
|fflfflfflffl{zfflfflfflffl}

dβ̄out

¼
� ffiffiffi

κ
p

0 0

0
ffiffiffi
κ

p
0

�" δα
δα�

δN

#
dt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C̄ x̄ dt

þ
�
1 0

0 1

��
dβin
dβ�in

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

D̄dβ̄in

:

ð5Þ

Together, Eqs. (4) and (5) may be written formally as

dx̄ ¼ Ā x̄ dtþ B̄dβ̄in þ F̄dw; ð6Þ

dβ̄out ¼ C̄ x̄ dtþ D̄dβ̄in; ð7Þ

which is the standard form for a linear stochastic input-
output system.
Equation (4) separates the dynamics into three parts: a

deterministic term Ā x̄ dt, noise due to quantum fluctuations
of the input B̄dβ̄in, and additional free-carrier noise F̄dw.
[Here, dw is a vector Wiener process constructed from
the real and imaginary parts of the noise terms
dβη; dββ; dβFC; dwγ and normalized to satisfy the Ito table

dwidwj ¼ δijdt; the matrix F̄ is constructed so that Eq. (4)
is satisfied.]
The matrix Ā has three eigenvalues. Because of its

doubled-up structure, complex eigenvalues must come in
conjugate pairs. Thus, Ā can either have three real eigen-
values or one real eigenvalue and one complex conjugate
pair. If the equilibrium is stable, then all three eigenvalues
must have a negative real part.
There are two ways for an equilibrium to go unstable.

First, a negative real eigenvalue can cross zero and turn
positive. Since only a single direction goes unstable, the
equilibrium point bifurcates into two stable equilibria. This
bifurcation is the standard cusp catastrophe of optical
bistability in Kerr and cavity QED systems [26]. In our
previous paper [15], we discussed it in the context of
carrier-based switches and amplifiers. By calculating the
determinant of Ā, we can catch this instability—for stable
equilibrium, detðĀ < 0Þ, but if the equilibrium transitions
to unstable, detðĀÞ will become positive.
Self-oscillation takes place when a conjugate pair of

eigenvalues crosses the imaginary axis. In this case, two
directions go unstable, so the equilibrium point bifurcates
into a ring of steady states, or more often, a limit cycle. The
determinant will remain negative, but the product
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LðĀÞ≡ ½ðtrðĀÞ2 − trðĀ2Þ�trðĀÞ − 2 detðĀÞ ð8Þ

changes sign at this bifurcation. To see why, suppose that

the matrix Ā has eigenvalues λ; μ; μ�. Then, for some

transformation P,

P−1ĀP ¼
" λ

μ
μ�

#
: ð9Þ

By the cyclic property of traces and determinants

LðĀÞ ¼ LðP−1ĀPÞ, and the latter evaluates to

LðĀÞ ¼ LðP−1ĀPÞ ¼ 4jλþ μj2ReðμÞ: ð10Þ

This will change sign from negative to positive when

passing through a Hopf bifurcation.

B. Scaling laws

Equations (1) and (2) and the resulting matrix Ā have
eight free parameters. That is a lot. Naively, searching for
oscillating conditions will appear difficult because of all the
parameters one must consider. However, several scaling
laws let us reduce this to six “normalized” parameters, of
which three are material constants.
We start with equations of motion (1) and (2). Let k ¼

κ þ η be the total cavity linear loss. Scale time, the electric
field, the input field, and the carrier number are as follows:

t →
t̄
k
; α →

ᾱffiffiffiffiffiffiffiffi
β=k

p ; βin →
β̄inffiffiffiffiffiffiffiffiffiffi
β=k2

p ; N →
N̄

δ1=k
:

Intuitively, time t̄ is scaled so that the cavity photon
lifetime is 1. The carrier number is scaled so that N̄ ¼ 1
shifts the cavity by one linewidth. The intracavity field ᾱ
and input field β̄in are scaled to the two-photon absorption:
jᾱj ¼ 1 means that the single- and two-photon loss proc-
esses are equally strong.
The reduced equations take the following form:

dᾱ ¼ ½−ð1=2þ δ̄ N̄Þ − ᾱ�ᾱ − iðΔ̄þ N̄Þ�ᾱdt̄

−
ffiffiffī
κ

p
β̄indt̄þ

ffiffiffi
β

p
Fα

k
dw̄; ð11Þ

dN̄ ¼ ½η̄ ζ̄ðᾱ�ᾱÞ þ ζ̄ðᾱ�ᾱÞ2 − γ̄ N̄�dt̄þ δ1FN

k3=2
dw̄: ð12Þ

In the absence of noise, these equations have six indepen-
dent parameters with k ¼ κ þ η and δc ¼ δ1 − iδ2, where

Material properties∶

δ̄ ¼ δ2
δ1

; ζ̄ ¼ δ1
β
; χ̄ ¼ χ

β
;

Cavity design∶

γ̄ ¼ γ

k
; κ̄ ¼ 1 − η̄ ¼ κ

k
;

Tunable∶

Δ̄ ¼ Δ
k
: ð13Þ

Once a material and laser wavelength are picked, only
three parameters can be varied. The relative linear absorp-
tion η̄ ¼ 1 − κ̄ typically cannot vary much; in a linear-
absorption cavity, it should be Oð1Þ to maximize the
nonlinearity, and in TPA materials like silicon, it is zero.
The ratio of optical to free-carrier lifetimes γ̄ can vary by
several orders of magnitude, depending on the cavity
geometry and Q. For instance, it is easy to make low-Q
cavities with a very small γ̄. State-of-the-art microrings
have Q ∼ 106 and τc ∼ ns and, consequently, γ=k ∼ 1.
Coincidentally, photonic crystals tend to have a similar
ratio, though the carrier-decay mechanism (diffusion) is
different. It is also possible to make large cavities with very
high Q and large γ̄.
Obviously, both the input power and detuning can also

be varied. For a given material, these quantities exhaust the
parameter space. By plotting the self-oscillating regions as
a function of Δ̄ and N̄ (a function of the input), for
reasonable values of γ̄, we are essentially plotting the entire
parameter space. As shown in Fig. 1, in a large fraction of
the parameter space, the cavity should self-oscillate.
Figure 2 shows the self-pulsing region as a function of

input field and detuning. The contours are generally similar
to Fig. 1, although the low-γ regions appear more

FIG. 1. Oscillation region as a function of cavity parameters.
Two materials are shown: Si at 1.5 μm (left) and GaAs near the
band edge (right). Oscillations occur to the right of the solid
curves. Curves represent different values of γ̄, from 0.33 to 3.0.
Optical bistability (BS) occurs in the dashed region. Color
represents the steady-state input power.
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accessible because although the internal carrier number is
high, the carriers are long-lived, and the cavity requires less
optical power. However, these cavities are complicated by
optical bistability (which occurs in the same region), and
the slow response time is generally not desirable. The most
desirable conditions seem to occur when the photon and
carrier lifetimes are comparable and the cavity is driven
with a slightly detuned pump.

II. SEMICLASSICAL SIMULATIONS

Quantum simulations (in the semiclassical Wigner pic-
ture) add noise to this model. For concreteness, in this
section and the sections that follow, we consider a GaAs
photonic-crystal cavity with parameters given in Table I;
however, our results are applicable to a range of devices.
Quantities with units of time or inverse time (t, Δ, etc.) will
be normalized to the cavity lifetime 1=k.
Figure 3 shows simulations for a detuning Δ ¼ −0.8.

The input field is stepped from βin ¼ 25 (blue) to 175
(black) in increments of 25. The top plot shows a typical
time trace. Oscillations clearly set in at around βin ¼ 75. In
addition to the amplitude, the oscillation frequency also
increases with pump power.
The right panel of Fig. 3 plots the internal photon

number (horizontal) against the carrier number (vertical).
This provides a qualitative picture of the oscillations: when
the photon number is high, more photons are absorbed and
the free-carrier number increases. Eventually, the carrier
number becomes so high that the cavity shifts off reso-
nance, reducing the cavity’s effective driving strength and,
consequently, the photon number. Once the photon number
falls, the carrier number falls because fewer photons are
being absorbed, but eventually this brings the cavity back
on resonance, increasing the photon number and repeating
the cycle.

To get a more general picture, consider all possible pump
powers and detunings for this system. If a limit cycle forms,
we are interested in its amplitude and frequency. The
amplitude should be large so that a significant fraction
of the pump is converted to photons at the limit-cycle
frequency. The frequency should be large enough that the
pump and limit-cycle fields can be easily demultiplexed
with a cavity. Figure 4 plots both of these figures of merit.
As expected, the amplitude at ω becomes only nonzero in
the unstable region where ReðλmaxÞ > 0. The frequency
also grows with pump power, starting at ω ≈ 1.7 and
growing to ω ≈ 4; this is probably a nonlinear effect of
the strong pumping.
Two other figures of merit are the limit-cycle

“efficiency” and the gain. Efficiency is defined in terms
of the output and absorbed power:

FIG. 3. Top: Time trace of Re½αðtÞ� as the input field is stepped
from βin ¼ 25; 50; 75; 100; 125; 150; 175. Bottom: Output-field
quadratures at these input powers. Right: Oscillation between
photons and carriers.

FIG. 4. Left: Stability of equilibrium point measured by the real
part of the largest eigenvalue of A. Right: Amplitude of limit
cycle, with contours designating the limit-cycle frequency.

FIG. 2. Oscillation region as a function of cavity parameters.
Here, the x axis is a normalized input field rather than
normalized N.
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η≡ Pω;out

Pω;out þ Pabs
:

Efficiency is defined this way rather than output over
input because much of the input power is not consumed by
the device; it is just a constant bias that can be recycled. If
there is finite conversion to ω and no absorption, we say the
efficiency is 1; if no conversion, it is obviously zero. The
left panel of Fig. 5 plots efficiency as a function of detuning
and input field. While not close to 100%, the efficiency is
not too small, either—peaking at around 20%.
If we drive the device with a sinusoidal field whose

frequency is close to the limit-cycle frequency, that field
should be amplified. In this way, the free-carrier cavity acts
as a phase-insensitive amplifier. The amplitude gain
GðωÞ ¼ βω;out=βω;in is plotted at ω ¼ 1.7 in the right panel
of Fig. 5.

III. BELOW THRESHOLD: LINEAR
AMPLIFICATION

Below the Hopf bifurcation, a complex pair of eigen-
values approaches the imaginary axis. The corresponding
eigenvectors span a plane in phase space; since motion
tangent to this plane is only marginally stable, perturbations
will be strongly amplified. Since this plane is two dimen-
sional, we expect linear phase-insensitive amplification of
both quadratures of the input field [4,27].
For any mesoscopic linear amplifier, an important

question to ask is: how much noise does the amplifier
have? Quantum mechanics sets a strict bound on the noise
of a quantum linear amplifier [16], and this bound is
realized with the nondegenerate OPO [7]. Since free
carriers are excited incoherently, one expects an amplifier
driven by carriers to be noisier than a quantum-limited
amplifier; however, if the difference is not too large, the
free-carrier amplifier may still be preferred because of
material, power, or footprint considerations.

A. Nondegenerate OPO

Although this paper is about free-carrier effects, we
introduce the nondegenerate OPO here as a “benchmark”
system because it is a well-studied system that saturates the
Caves bound. It can be modeled as a quantum input-output
system [20,28] with three fields: signal a, idler b, and pump
c. The internal Hamiltonian is

H ¼ Δaa†aþ Δbb†bþ Δcc†cþ
ϵ�abc† − ϵa†b†c

2i
;

ð14Þ

and input-output couplings

L1 ¼ ffiffiffiffiffi
κa

p
a;

L2 ¼ ffiffiffiffiffi
κb

p
b;

L3 ¼ ffiffiffiffiffi
κc

p
c: ð15Þ

Following the Wigner method of Ref. [23], one can
convert the master equation into a partial differential
equation (PDE) for the Wigner function, and truncating
higher-order terms, this PDE becomes a Fokker-Planck
equation. This equation can then be converted into an SDE,
and solving the SDE produces trajectories that sample from
the Wigner function [21]. Adiabatically eliminating the
pump field and setting Δa ¼ −Δb ≡ Δ, κa ¼ κb ≡ κ (sym-
metric doubly resonant cavity), one obtains the following
equations of motion:

dα1 ¼
��

−iΔ − κ þ βα�2α2
2

�
α1 þ ϵα�2

�
dt

−
ffiffiffi
κ

p
dβin;1 −

ffiffiffi
β

p
α�2dβin;3; ð16Þ

dα2 ¼
��

iΔ − κ þ βα�1α1
2

�
α2 þ ϵα�1

�
dt

−
ffiffiffi
κ

p
dβin;2 −

ffiffiffi
β

p
α�1dβin;3; ð17Þ

dβout;1 ¼
ffiffiffi
κ

p
α1dtþ dβin;1; ð18Þ

dβout;2 ¼
ffiffiffi
κ

p
α2dtþ dβin;2; ð19Þ

where β ¼ ϵ�ϵ=κ is the intrinsic coupling strength of
the OPO.
Here, α1 and α2 are the signal and idler, which have the

same lifetime but opposite detunings. The pump does not
resonate. These equations are symmetric with respect to
α1↔α�2. Because of the symmetry, the dynamics can be
decomposed into a “symmetric” mode αþ ¼ ðα1 þ α�2Þ=2
and an “antisymmetric” mode α− ¼ ðα1 − α�2Þ=2 (and
likewise for the dβ�). In addition, we define dw1; dw2

as quadratures of the pump noise, dβin;3 ¼ ðdw1 þ
idw2Þ=2. The equations of motion become

FIG. 5. Left: Photon conversion efficiency, the ratio of limit-
cycle photons emitted to photons absorbed. Right: Amplitude
gain βout;ω=βin;ω at ω ¼ 1.7 for different values of seed amplitude
βin;ω ¼ 2; 5; 10.
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dα� ¼
�
ð−iΔ − κ=2� ϵÞα� − β

2
ðα2� − α2∓Þα��

�
dt

−
ffiffiffi
κ

p
dβin;�∓ 1

2

ffiffiffi
β

p
ðα�dw1 − iα∓dw2Þ: ð20Þ

The symmetric mode αþ has gain (a þϵ term) while the
antisymmetric mode has additional loss. As a result, at near-
or above-threshold pumping, αþ can become very large, but
α− always stays near zero. In the weakly coupled case
(β ≪ 1), we can throw away the terms that couple αþ and α−
in the equation above and combine the noise terms giving

dαþ ¼
�
ð−iΔ − κ=2þ ϵÞαþ − β

2
jαþj2αþ

�
dt

−
ffiffiffiffiffiffiffiffi
κ=2

p
dβþ − 1

2

ffiffiffi
β

p
αþdw1: ð21Þ

Linearizing about the fixed point α1 ¼ α2 ¼ 0 and
transforming into the frequency domain, we arrive at the
input-output relation:

βout;1ðωÞ ¼
jðω − ΔÞ þ iκ=2j2 þ ðϵ=2Þ2
½−ðω − ΔÞ þ iκ=2�2 þ ðϵ=2Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

eiϕ cosh η

βin;1ðωÞ

þ 2ðκ=2Þðϵ=2Þ
½−ðω − ΔÞ þ iκ=2�2 þ ðϵ=2Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

eiψ sinh η

β�in;2ð−ωÞ:

ð22Þ

For phase-insensitive amplification, the gainG and noise
S at frequency ω may be defined as

GðωÞ ≡
���� βout;1ðωÞβin;1ðωÞ

����; ð23Þ

SðωÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2PðωÞ

p
; PðωÞ ¼ hβout;1ðωÞ�βout;1ðω0Þi

δðω − ω0Þ :

ð24Þ

In terms of η, they are

GðωÞ ¼ cosh η; SðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cosh2η − 1

q
: ð25Þ

Note that this SðωÞ is different from the squeezing
spectrum of Refs. [21,29]; rather, it is a measure of the
electromagnetic energy at frequency ω. The squeezing
spectrum, by contrast, is a power spectrum of a homodyne
measurement.
From Eq. (25), one sees that the nondegenerate OPO

saturates the Caves bound for phase-insensitive amplifiers
[16]:

SðωÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GðωÞ2 − 1:

q
ð26Þ

B. Free-carrier amplifier

Turning to the free-carrier amplifier, we first transform
Eqs. (6) and (7) to the frequency domain

−iωx̄ðωÞ ¼ Ā x̄ðωÞ þ B̄β̄inðωÞ þ F̄wðωÞ; ð27Þ

β̄outðωÞ ¼ C̄ x̄ðωÞ þ D̄β̄inðωÞ; ð28Þ

with state x̄ðωÞ ¼ ½αðωÞ; α�ð−ωÞ; NðωÞ� and input-output
field β̄ðωÞ ¼ ½βðωÞ; β�ð−ωÞ�. This form is standard for
doubled-up variables in the frequency domain [30].
Solving for x̄, this becomes a linear input-output relation

with a transfer function and a noise matrix:

β̄outðωÞ ¼
�
D̄þ C̄

1

−iω − Ā
B̄

�
β̄inðωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TðωÞβ̄inðωÞ

þ
�
C̄

1

−iω − Ā
F̄

�
wðωÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NðωÞwðωÞ

:

Applying the definitions of G and S in Eqs. (23) and
(24), we find

GðωÞ ¼ jTðωÞ11j;
SðωÞ2
2

¼
�
TðωÞTðωÞ†

2
þ NðωÞNðωÞ†

�
11

: ð29Þ

FIG. 6. Plots of the amplitude gain (top) and noise (bottom) for
free-carrier cavity with Δ ¼ −1.0 approaching the Hopf bifur-
cation. In the lower graph, the blue line comes from numerical
simulation, the red curve is the analytic linearized model, and the
black dashed curve is the Caves bound.
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Unlike the OPO, the free-carrier amplifier does not have
a simple expression for GðωÞ or SðωÞ. However, they are
straightforward to evaluate numerically and can be com-
pared to a full nonlinear simulation.
Figure 6 shows the gain and noise for the cavity studied

in Sec. II, with Δ ¼ −1.0. Far from the limit-cycle
frequency, there is no gain, and the output noise matches
that of the vacuum. As the power is increased and the
system approaches the Hopf bifurcation, the gain and noise
at the resonance obviously diverge. But the noise always
remains a factor of approximately 2–3 above the Caves
bound (in terms of noise power, a factor of approximately 5
above the bound). This is due to the incoherent nature of the
free-carrier nonlinearity.

IV. NEAR THRESHOLD: CRITICAL EXPONENTS

Near the bifurcation point, the system transitions from a
stable fixed point to a stable limit cycle. Dynamical systems
exhibit universal behavior near this bifurcation in the sense
that every system with a Hopf bifurcation can be trans-
formed into the same normal form [6,31]. The same is not
true when one adds noise and quantum effects. Two
systems with the same semiclassical equations of motion
can behave very differently once quantum noise is added.
Nevertheless, all systems will show the same qualitative
behavior near a bifurcation point.
Before discussing the free-carrier oscillations, consider

the nondegenerate OPO near threshold. Below threshold,
there is a stable fixed point at αþ ¼ α− ¼ 0. Above
threshold, there is a limit cycle at

jαþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ − κ

β

s
: ð30Þ

Thus, if we smoothly vary the parameter ϵ near the
bifurcation point ϵ ¼ κ=2þ δϵ, the limit-cycle amplitude
goes as

ffiffiffi
ϵ

p
. This scaling is a universal feature. However,

not all OPOs are equal up to a transformation—the
behavior of the quantum states depends strongly on the
value of β. For β ≪ 1, dissipation is dominant, and
the system stays in a classical state with a positive
Wigner function. For β ≫ 1, the Wigner formalism breaks
down. (This is true for OPOs in general. It is known that in
this regime, the degenerate OPO can access “highly
quantum” states with a nonpositive Wigner function such
as number states and cat states [32–34].)
The fixed-point eigenvalues near the bifurcation are

λ ¼ ðϵ − κ=2Þ � iΔ, and, therefore,

jαþj ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
ReðλÞ
β=2

s
⇔ β ∼

ReðλÞ
jαþj2

: ð31Þ

In classical dynamical systems theory, we can freely
transform the system variable α, so the parameter β can be

rescaled to 1: a key step in transforming to the normal
coordinate frame. Classically, α is dimensional, and, there-
fore, β is not universal in any way. But in quantum
mechanics, there is a universal scale for α: the single-
photon scale. Because of this, β becomes a universal
parameter and is related to the “quantumness” of the
bifurcation.
Figure 7 shows that the free-carrier Hopf bifurcation

satisfies the same critical exponent as the nondegenerate
OPO: in terms of the input power βin, the average
oscillating field goes as jαj ∼ δβ1=2in . One can calculate
the effective β for this bifurcation using Eq. (31): fitting to
the figures, it works out to β ∼ 0.0002, well in the semi-
classical regime.
Even after accounting for β, the free-carrier and OPO

Hopf bifurcations are not equivalent up to a transformation,
as they would be in classical bifurcation theory. Again, the
culprit is quantum mechanics: the incoherent process of
carrier excitation and decay adds extra quantum noise,

FIG. 7. Left: Free-carrier limit cycles just above the bifurcation
point (noiseless simulation) for evenly spaced βin ¼
78; 79; 80;… Right: Size of the limit cycle in terms of α (blue)
and jβoutðωÞj2 (black) and the critical exponents α ∼ βoutðωÞ∼ffiffiffiffiffiffiffiffi
δβin

p
.

FIG. 8. Phase plots [axes are ReðαÞ, ImðαÞ] of the limit cycles
for free carriers (Δ ¼ −1.0; ain ¼ 72.5 through 84.5) and the
nondegenerate OPO (β ¼ 0.0002; ϵ ¼ 0.48 through 0.52).
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making the free-carrier limit cycle ‘fuzzier’ than its OPO
counterpart, as shown in Fig. 8.

V. ABOVE THRESHOLD: LIMIT CYCLE

Above threshold, we classically expect a limit cycle.
Quantum noise will blur this out to some degree, but
sufficiently far above threshold, the cycle should be clear.
Limit cycles are a classic topic in dynamical systems;

some key results are reviewed in the Appendix. To
summarize the important points: For an n-dimensional
phase space, there is a function ðξ; ~uÞ → Rn that maps the
limit-cycle phase ξ and local perturbations ~u onto a portion
of the phase space. When the perturbations are small
compared to the limit cycle, they can be ignored entirely,
reducing the dimensionality of the system from n to 1. This
reduced system has the following equation of motion:

dξ ¼ ωdtþ
X
i

Re½BiðξÞ�dβin;i�dtþ FðξÞdw: ð32Þ

Here, BiðξÞ is the response to an external perturbation
dβin;i, and FðξÞdw is the intrinsic limit-cycle noise.
Any limit-cycle system can be used as a homodyne

detector. To see why, consider a coherent input βin;i ¼
hβiie−iωct þ βðvacÞin;i , where ωc is the limit-cycle frequency.
Averaging over many cycles, this input changes the limit-
cycle phase as follows:

Δξ − ωt ¼
Z

T

0

X
i

Re½BiðξÞ�dβin;i� þ
Z

T

0

FðξÞdw

∼ N

�
T
X
i

Re½μξ;ihβii�; DξT

�
: ð33Þ

That is, the phase change has a normal distribution,
with mean and variance given by the drift and diffusion
constants:

μξ;i ¼ hBiðξÞ�e−iξiξ; ð34Þ

Dξ ¼
1

2
hjBiðξÞj2iξ þ hjFðξÞj2iξ�
where h…iξ ≡ 1

2π

Z
2π

0

ð…Þdξ
�
: ð35Þ

The drift term μξ;i governs the response rate of the limit
cycle to an external stimulus (in this case, the field). The
diffusion termDξ tells us how quickly the limit-cycle phase
diffuses in the absence of a stimulus (assuming coherent
inputs). Both terms show up in the homodyne measurement
(33). The standard quantum limit [7] bounds the accuracy
of this measurement: in terms of the μξ;i and Dξ, this limit
gives rise to a drift-diffusion inequality:

Dξ ≥
1

4

X
i

jμξ;ij2: ð36Þ

This relation holds for all limit cycles. One can also
derive it from Eqs. (34) and (35) by applying the Schwarz
inequality. Equality holds only for special “quantum-
limited” limit cycles where FðξÞ ¼ 0 and BiðξÞ ∼ e−iξ.
In the sections below, we compare the performance of the
nondegenerate OPO and the free-carrier limit cycle using
this metric and show that the OPO saturates the drift-
diffusion inequality, while the free-carrier device does not.

A. Nondegenerate OPO

Again, it will be important to contrast the results
obtained here with the nondegenerate OPO; as we will
show, this device can function as a quantum-limited
homodyne detector for signal and idler fields. Because it
is quantum limited, no other limit-cycle device will beat the
OPO at this task, just like no other linear amplifier can beat
the nondegenerate OPO below threshold.
As we show in the Appendix, the nondegenerate OPO

has a limit cycle with jαþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2ϵ − κÞ=βp

and a phase that
evolves as

dξ ¼ Δdtþ Re

�−i ffiffiffi
κ

p
αþ

dβin;þ

�

¼ Δdtþ Re
�−i ffiffiffi

κ
p

2αþ
dβin;1 þ

i
ffiffiffi
κ

p
2α�þ

dβin;2

�
; ð37Þ

so that for signal and idler fields varying as β1e−iΔt, β2eiΔt,
the drift-diffusion terms are

μξ;1 ¼ −i
ffiffiffi
κ

p
2jαþj

; ð38Þ

μξ;2 ¼ −i
ffiffiffi
κ

p
2jαþj

; ð39Þ

Dξ ¼
κ

8jαþj2
: ð40Þ

It is not difficult to see from Eqs. (38)–(40) that the drift-
diffusion inequality (36) is saturated. In this limit, the
nondegenerate OPO functions as an optimal quantum-
limited homodyne detector.
This behavior is sketched in Fig. 9. Here, a nondegen-

erate OPO with Δ ¼ 0 is used to measure the p quadrature
of a signal field. Depending on the sign of the field, the
state either drifts to the top or the bottom, and the diffusion
incurred is due to the quantum uncertainty of the homodyne
measurement.
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B. Free-carrier cavity

Since the equations of motion for the free-carrier cavity
are more complicated, a simple analytic expression for μξ
and Dξ does not exist. However, these can be computed
numerically. Following the results of Sec. III, it is reason-
able to expect diffusion rates 5–10 times faster than for the
nondegenerate OPO, the extra diffusion due to incoherent
processes involving free carriers.
Figure 10 plots the simulated phase diffusion constant

Dξ for both the OPO and the free-carrier limit cycle. As one
approaches the bifurcation, the diffusion rate increases and
diverges from the linearized result (35), the solid curves in
the figure. However, far from the bifurcation, the linearized
model agrees with the full simulation for both the OPO and
free carriers.

To compare the OPO and free-carrier cavity on equal
footing, the right panel of Fig. 10 plots the diffusion Dξ

against the right-hand side of Eq. (36): 1
4

P
ijμξ;ij2. The

OPO simulations, at least for large jαþj, lie on the line
Dξ ¼ 1

4

P
ijμξ;ij2 (green line), while the free-carrier simu-

lations lie a factor of approximately 10 above.

C. Entrainment

If the system is driven with a periodic seed field whose
frequency ωin does not exactly match the limit-cycle
frequency ωc, the limit cycle may or may not lock to
the seed (entrainment), depending on its amplitude. To
study this effect conceptually, assume a symmetric noise-
less limit-cycle model with a periodic drive βin þ βin;ωe−iωt
and transform to comoving coordinates ζ ¼ ξ − ωint.
Equation (32) takes the form [6]

dζ
dt

¼ ðωc − ωinÞ − jβin;ωBj sinðζÞ: ð41Þ

For frequencies jωc − ωinj < jBβin;ωj, there is a fixed
point at ζ ¼ sin−1½ðωc − ωinÞ=jβin;ωBj�, so the oscillator
will lock to the seed. If we plot ωin on the x axis and βin;ω on
the y axis, this phase locking will happen in a vertical cone
centered at ðωc; 0Þ. Full free-carrier cavity simulations also
show this effect. Figure 11 shows results for a Δ ¼ −1.0
cavity with pump βin ¼ 100, which naturally oscillates at

FIG. 10. Left: Limit-cycle phase diffusion for free-carrier cavity
Δ ¼ −1.0, as a function of input field. Center: Phase diffusion for
nondegenerate OPO β ¼ 0.0002, as a function of pump. Right:
Combined, where the drift term 1

4

P
ijμξ;ij2 is the common x axis.

FIG. 9. Wigner function of the nondegenerate OPO (η ¼ 1.0;
β ¼ 0.01) subject to a bias β1 ¼ 0.15i (red) and −0.15i (blue).
The state ξðtÞ for t > 0, which can be accurately read out with
either homodyne or heterodyne detection, effectively encodes a
measurement of the p quadrature of the input, Imðβ̄1Þ.

FIG. 11. Entrainment of free-carrier limit cycle Δ ¼ −1.0,
βin ¼ 100. Top: Phase plots of the output field in a rotating-
wave frame e−iωinβout (mean subtracted). For large seed inputs,
the device clusters to one side of the diagram, indicating phase
locking. Bottom left: Output spectrum as a function of seed
power, at ωin ¼ 1.9. Bottom right: Entrainment cone. Plots of
αðωinÞ and αðωcÞ (intracavity amplitude at seed and natural
frequency, respectively) as a function of seed frequency and
amplitude.
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ωc ¼ 2.27. On top of this, an oscillating field βin;ωe−iωint

drives the cavity.
The top pane in Fig. 11 shows the real and imaginary

quadratures of the output field in a rotating-wave frame:
~βeiωint. This is for seed frequency ωin ¼ 1.9 and cavity
frequency ωc ¼ 2.3, so jωin − ωcj ≈ 0.4, or about 16%. For
weak seed fields, the rotated output makes loops about
the origin—the phase is not locked. However, around
βin;ω ¼ 10, it clusters in a given direction—indicating
locking.
The bottom left plot shows the output spectrum βoutðωÞ

as a function of ω and the seed amplitude. One sees two
peaks, one at the limit-cycle frequency ωc and one at the
seed frequency ωin. The peak at the natural frequency ωc is
strongest when the pump is weak and eventually goes away
for strong pumping. Conversely, the peak at the drive
frequency ωin is absent for weak pumping and grows with
the pump strength.
This effect is seen more clearly in the bottom right plots.

Instead of confining ourselves to ωin ¼ 1.9, in these plots
we vary both the amplitude βin;ω and frequency ωin of the
pump. The left plot shows the power at the input frequency,
while the right plot shows the power at the original
frequency. Inside the entrainment cone, the oscillator locks
and the former dominates; outside the cone, the oscillator is
unable to lock and the natural frequency is dominant.
From the shape of the entrainment cone, we estimate

B ≈ 0.04 for this set of parameters.

D. Impulse response

Suppose that the oscillator has been locked to an external
field and now the phase of that field is changed. The
oscillator should follow that phase, but there will be a time
lag. From Eq. (41), we can estimate this time lag to be of
order

τ ∼
1

jβin;ωBj
: ð42Þ

In Fig. 12, the same free-carrier system is simulated with
a seed field ωin ¼ ωc ¼ 2.27. However, at time t ¼ 0, the
phase of the input shifts by 1 rad. For seed amplitudes
βin;ω ≳ 3, the system quickly realigns to the new phase,
with a time constant given by Eq. (42). From (42), we can
estimate B ≈ 0.02. This agrees with the entrainment-cone
estimate to within a factor of 2; the lack of exact agreement
is due to the circular cycle assumption that underlies
Eqs. (41) and (42).

VI. APPLICATIONS

A. Ising machine

Many optimization problems can be recast as Ising
problems, which involve finding the minimum of the
Ising Hamiltonian: H ¼ P

ijJij~σi · ~σj. If σ is constrained
to lie on the x-y axis, the problem is called an XY model,
each spin maps onto an angle σi ¼ ½cosðζiÞ; sinðζiÞ�, and
the Hamiltonian becomes

UðζÞ ¼
X
ij

Jij cosðζi − ζjÞ: ð43Þ

The general Ising problem for arbitrary Jij is non-
deterministic-polynomial (NP) hard [35].
Ising problems map naturally onto oscillator networks.

Let each Ising spin be mapped onto an oscillating free-
carrier cavity. Let each oscillator have multiple independent
input and output ports. This can be accomplished using the
“railroad topology” of Fig. 13. Suppose that an output of
cavity j is fed into an input of cavity i. Assuming all
cavities have the same limit-cycle frequency, under the
assumptions of Sec. V C, the phase of cavity i evolves as

dζi ¼ −Jij sinðζi − ζjÞ; ð44Þ

where Jij depends on the waveguide coupling, the phase of
the connection, and the limit-cycle amplitude. It is not
difficult to see that with the appropriate connections, one

FIG. 12. Left: Time traces of the limit-cycle phase ξ for a driven
system where the seed phase jumps by 1 rad at t ¼ 0. Right:
Response rate 1=τ obtained by exponential fitting as a function of
seed amplitude aω. Parameters: Δ ¼ −1.0; ain ¼ 100.

FIG. 13. Optical free-carrier cavity used as a node in an Ising
machine.
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can realize a cavity network that minimizes Eq. (43) by the
steepest-descent method.
A full discussion of optical Ising machines is beyond the

scope of this paper. The concept was proposed by
Utsunomiya et al. [1], who suggested implementing it
using injection-locked lasers. Recent theoretical work [36]
and experiments with four-bit [37] and 16-bit [38] Ising
machines using a time-multiplexed pulsed OPO show that
the device matches or surpasses classical algorithms in
accuracy. However, free-carrier oscillations may be a
preferable platform for Ising machines because of their
low power requirements and compatibility with existing
fabrication processes.
Figure 14 shows the simulated Ising machine perfor-

mance for antiferromagnetic couplings on five graphs: pair,
triangle, square, pentagon, and tetrahedron. Of these, the

pair and square have zero-energy configurations, while the
rest are frustrated systems. The square and tetrahedron were
studied with an OPO Ising machine in Ref. [37].
Larger networks also show convergence in a reasonable

time. In Fig. 15, we plot the performance of a 16-spin
network, both with a nearest-neighbor interaction and with
a cross interaction (which shows frustration). These are
the graphs studied in the OPO network of Ref. [38]. As
long as it does not get trapped in local minima, the device
converges to the minimum of U½ζ� in 50–100 cavity
lifetimes.
Because the free-carrier Ising machine maps the opti-

mization directly onto the hardware dynamics, it can
achieve a per-watt performance orders of magnitude greater
than a microprocessor solving the same problem. For the
network used in Fig. 15 (see Sec. II for cavity parameters),
during oscillation each cavity consumes approximately
2000 photons, or about 0.5 fJ, per cavity lifetime and
takes approximately 100 lifetimes to converge, an energy
cost of 50 fJ per spin, and a computation time of 300 ps. A
microprocessor using steepest-descent or stimulated
annealing will also take approximately 100 steps to con-
verge but be required to compute Eq. (44) at each step.
Since Eq. (44) involves computing a trigonometric func-
tion, it will take approximately 50 flops and 100 clock
cycles per step [39] or 5000 flops per spin overall.
Presently, the most energy-efficient supercomputer is the
L-CSC at GSI, Darmstadt, which runs at 3 GHz and
requires 0.2 nJ per flop [40], giving a simulation time of
3 μs and energy cost of 1 μJ per spin. On the basis of this
rough calculation, the free-carrier Ising machine should
perform approximately 104 × faster and consume approx-
imately 107 × less energy.

B. Free-carrier relay

In a previous section, we show that free-carrier cavities
can undergo spontaneous self-oscillation if driven hard
enough. Here we show that this oscillation can be used to
construct a free-carrier “relay.” Such a device has many
logic applications, including message-passing algorithms
for error correction [41]. A relay acts like a classical
controlled NOT (CNOT) gate: if the digital inputs
A;B ∈ f−1; 1g, then the relay maps these to

ðA; BÞ →RelayðA; ABÞ: ð45Þ
That is, output B is flipped if A ¼ −1.
The relay is a circuit with two free-carrier cavities

arranged as in Fig. 16. The inputs A and B arrive on the
same channel but are offset in frequency. Data are encoded
on the phase of the inputs (0 or π), not the amplitude; thus,
for a fixed field amplitude jAj, a 1 corresponds to þjAj,
while −1 corresponds to −jAj.
The input is mixed with a pump field on a beam splitter

so that the field entering cavity a� is

FIG. 14. Ising machine performance for small graphs. Top to
bottom: pair, triangle, square, pentagon, and tetrahedron.

FIG. 15. Ising machine performance for 16-gon and frustrated
16-gon with cross couplings.
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βin;� ¼ A� Epffiffiffi
2

p þ Be−iωtffiffiffi
2

p : ð46Þ

A free-carrier cavity will self-oscillate if the input field is
stronger than some threshold: jβinj > βth. Let

jAj − jEpj < βth < jAj þ jEpj: ð47Þ

If A ¼ þ1, then the top resonator is above threshold and
self-oscillates at ω, while the bottom resonator does not
self-oscillate. For the B field at this frequency, this means
that the top channel has more gain than the bottom channel.
When these channels are interfered on a beam splitter, the
output at this frequency is 1

2
ðGhigh−GlowÞBe−iωt. Since

Ghigh>Glow, the phase of B does not change.
On the other hand, if A ¼ −1, the lower channel has

higher gain. When recombined on the beam splitter, the
output is − 1

2
ðGhigh −GlowÞBe−iωt—the phase of B does

flip (Fig. 16). Thus, the relay realizes the CNOT

map ðA;BÞ → ðA; ABÞ.

Figure 17 demonstrates the relay operation. Two results
are plotted: a “base” case with the same cavity parameters
used elsewhere in the paper (blue in figure) and a
hypothetical “10 × NL” case where the nonlinearity
(parameters δ; β) has been increased by a factor of 10.
Both cavities have a detuningΔ ¼ −2.0. In order to control
the phase of the beam at ω, the input A must be fairly large
(A ¼ �65 is used here, scaled by

ffiffiffiffiffi
10

p
for the 10 × NL

case). However, the input B at ω can be quite small; in the
simulation, it takes a value of about 3. Since the output
amplitude is around 7, this provides an XOR gate with
enough gain for a fan-out of 4–5.
Both relays display the same overall behavior, but

because the cavity in the 10 × NL relay has a stronger
nonlinearity, it operates at a lower photon number, and,
thus, the photon shot noise is more significant. The shot
noise degrades the performance of the XOR gate.
Ultimately, there is a trade-off between gate fidelity and
energy consumption for free-carrier-based systems. Since
this trade-off arises from quantum mechanics, it cannot be
avoided by choosing different materials or cavity designs.
The benefit of our SDE approach [Eqs. (1) and (2)] is that it
reveals not only the classical behavior of the relay but also
this basic quantum limit to its performance.

VII. CONCLUSION

Systems with a Hopf bifurcation can perform a wide
range of useful tasks with applications in sensing and
photonic logic. In this paper, we study the supercritical
Hopf bifurcation in a semiconductor optical cavity where
the dominant optical nonlinearity is due to free-carrier
dispersion. Following our previous paper, we simulate the
dynamics of a free-carrier cavity using Wigner SDEs that
capture both the semiclassical motion and the quantum
fluctuations in photon and carrier number.
Below the bifurcation, the free-carrier optical cavity acts

as a phase-insensitive amplifier. This device is the basis for
heterodyne detection, where both quadratures of the field
are simultaneously measured with an added noise penalty.
The Caves bound places a lower limit on the noise, and this
limit is satisfied in the nondegenerate OPO. By contrast, the
free-carrier cavity has approximately 5× more noise in the
output, an effect we attribute to the incoherent nature of
carrier excitation and decay.
Above the bifurcation, the device has a limit cycle.

Quantum fluctuations cause the phase of this cycle to
diffuse, and the diffusion rate can be computed by
linearizing the SDEs in a normal coordinate frame centered
on the limit cycle. In this limit, one can use the device to
store a continuous number in the range ½0; 2πÞ, or alter-
nately, to perform a homodyne measurement on signals at
the limit-cycle frequency. Limits on the efficiency of
homodyne measurement lead to a quantum lower bound
on the limit-cycle diffusion rate. This bound is saturated
by the nondegenerate OPO, while the diffusion rate of the

FIG. 17. Left: Plots of the real and imaginary parts of the
rotating-frame output Bω, as a function of the input A and Bω.
Right: Time trace of the relay output (top), where the inputs A and
Bω are switched regularly (bottom). Both the base (blue) and
10 × NL (red) scenarios are shown. Outputs are scaled by

ffiffiffiffiffi
10

p
for the 10 × NL case.

FIG. 16. Left: Layout of the free-carrier relay. Right: Relay
behavior when control bit A is set to þ1 (left) or −1 (right).
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free-carrier cavity is approximately 10 × larger. Again, this
is due to the incoherent carrier excitation and decay
processes.
Limit-cycle systems are useful in logic and computing

because they can be locked to external signals, and their
outputs can, in turn, be used to lock other limit cycles.
While an analysis of such large-scale networks is beyond
the scope of this paper, we explore the basic phenomenon
that underlies this behavior: entrainment in an external
field. Utilizing entrainment, we show that the free-carrier
cavity can be used to construct a coherent Ising machine
that finds the minimum of a preprogrammed cost function.
With reasonable cavity parameters, such a coherent Ising
machine can run approximately 104 × faster with approx-
imately 107 × less energy than a comparable algorithm on a
supercomputer. In addition, we show that entrainment can
be used to construct a limit-cycle relay—an all-optical
classical CNOT gate, which has applications in message-
passing schemes.
Although the free-carrier cavity is noisier and performs

more poorly than quantum-limited systems like the non-
degenerate OPO, it is much more convenient to build. Free-
carrier optical cavities can be built from silicon or III-V
materials, which have mature and scalable fabrication
processes. In addition, the per-photon effect is much
stronger, enabling operation at lower powers. When it
comes to building an actual device, these practical concerns
may prevail over the theoretical elegance of quantum-
limited systems.
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APPENDIX: LIMIT CYCLES AND
k-DIMENSIONAL ATTRACTORS

Many dynamical systems do not have a fixed point.
Instead, they have a stable limit cycle, or more generally,
a stable k-dimensional attractor. The k ¼ 1 case corre-
sponds to a limit cycle (Fig. 18). The cycle may be
parametrized as follows:

xðtÞ ¼ x̄ðωtÞ; ðA1Þ
where ω is the oscillation frequency. The map x̄∶R → Rn

defines the attractor’s manifold and is sufficient if we are
interested only in how the system behaves without forcing.
However, the map tells us nothing about forcing or
deviations from the attractor. When noise and forcing
are present, these perturbations become relevant, and we
need more information about the system to handle them.

1. Linearization about the attractor

Consider a nonlinear system of differential equations of
the most general form:

dxi ¼ ½fiðxÞ þ Fiðx; tÞ�dtþ gijðxÞdwjðtÞ: ðA2Þ

Here, x is the state of the system, fiðxÞ is its natural
(unforced) derivative, gij is the noise coupling (to Wiener
process dwj), and Fiðx; tÞ is the external forcing. In the
absence of forcing, let us suppose that Eq. (A2) gives rise
to a stable attractor x̄ðωtÞ. This attractor has natural
period T ¼ 2π=ω, so x̄ðξþ 2nπÞ ¼ x̄ðξÞ for integers n.
Deviations from this cycle are given by
xðtÞ ¼ x̄ðωtÞ þ δxðtÞ. In the absence of noise or external
forcing, the perturbations evolve as follows:

dðδxiÞ ¼
∂fi
∂xj δxi ≡ Aijðx̄ξÞδxj; ðA3Þ

where AijðxÞ ¼ ∂fi=∂xj is the Jacobian of the dynamical
system [see Eq. (4)], and ξ is the attractor phase,
with x̄ξ ≡ x̄ðξÞ.
The key trick is to perform a coordinate transformation

that separates the dx and n-dimensional vector into one
longitudinal perturbation and n − 1 transverse perturba-
tions. The longitudinal perturbation keeps the system on the
limit cycle and, therefore, does not decay. The transverse
perturbations deviate from the limit cycle and decay to zero

as t → ∞. We denote these by vξ and eðiÞξ as follows:

δxðtÞ ¼ δξðtÞvξ þ
Xn−1
i¼0

uiðtÞeðiÞξ : ðA4Þ

Here we have traded an n-dimensional state vector xðtÞ for
n − 1 transverse variables uiðtÞ and one longitudinal
variable δξi.
Applying Eq. (A4) to the equations of motion with noise

and forcing, we obtain

FIG. 18. Diagram of a limit cycle in a normal coordinate frame
(left) and in the actual phase space (right), along with the
transverse eðiÞ (blue) and longitudinal ∇ix̄ (red) vectors.
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dðδξÞvξ þ duie
ðiÞ
ξ ¼

	�
Aðx̄ξÞvξ − ω

dvξ
dξ

�
δξ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dtvξ¼0

þ
�
Aðx̄ξÞeðiÞξ − ω

deðiÞξ
dξ

�
ui|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dte
ðiÞ
ξ



dt

þ ½Fðx̄ξ; tÞdtþ gðx̄ξÞdw� ðA5Þ

(implicit summation over i)
The covariant derivative Dt of a ξ-dependent vector is

defined as

Dtqξ ≡ Aðx̄ξÞqξ − ω
dqξ
dξ

: ðA6Þ

This derivative accounts for both the equations of motion
and our parametrization near the limit cycle. It is similar to
the covariant derivative in Riemannian geometry [42].
Because the tangent vector vξ always transforms into itself
when propagated around the manifold, its covariant deriva-
tive is zero. Likewise, because the transverse vectors
always decay to zero, they cannot evolve into vξ; thus

Dte
ðiÞ
ξ has no vξ component.

In matrix form, Eq. (A5) is

½ vξ eξ �
�
d½δξðtÞ�
duðtÞ

�
¼

�
0 Dteξ

��
δξðtÞ
uðtÞ

�
dt

þ Fðx̄ξ; tÞdtþ gðx̄ξÞdw: ðA7Þ

This becomes a matrix SDE:

d

�
δξðtÞ
uðtÞ

�
¼ ð½ vξ eξ �−1½ 0 Dteξ �Þ

�
δξðtÞ
uðtÞ

�
dt

þ ½ vξ eξ �−1
�
BL

BT

�
½Fðx̄ξ; tÞdtþ gðx̄ξÞdw�

ðA8Þ

≡
�
0 0

0 AT

��
δξðtÞ
uðtÞ

�
þ
�
BL

BT

�
½Fðx̄ξ; tÞdtþ gðx̄ξÞdw�:

ðA9Þ

In the equations above, ξðtÞ ¼ ωt has a fixed time
dependence. The dynamical variable δξðtÞ adds a pertur-
bation to this ξ. We can roll δξ into ξ, turning ξ into a
dynamical variable, so the state vector becomes

xðtÞ ¼ x̄ðξðtÞÞ þ
Xn−1
j¼0

ujðtÞeðjÞξðtÞ: ðA10Þ

The matrix ODE becomes

dξðtÞ ¼ ωþ BLðξÞ½Fðx̄ξ; tÞdtþ gðx̄ξÞdw�; ðA11Þ

duðtÞ ¼ ATðξÞuðtÞdtþ BTðξÞ½Fðx̄ξ; tÞdtþ gðx̄ξÞdw�:
ðA12Þ

This equation captures our intuition regarding limit
cycles and attractors. External forces (F, g) can give rise
to two kinds of perturbations: longitudinal (encoded in
changes to ξ) and transverse (u). Because of our choice of
coordinates, the perturbations evolve independently. The
AT matrix causes transverse perturbations to decay as
t → ∞, while longitudinal perturbations do not. Often,
we are interested only in the longitudinal perturbations; in
this case, we can ignore the uðtÞ altogether.
Altogether, we can arrive at Eqs. (A11) and (A12) for an

arbitrary limit cycle by following these four steps:
(1) Get the equations of motion dx ¼ ½fðxÞ þ

Fðx; tÞ�dtþ gðxÞdw.
(2) Get the limit cycle x̄ðξÞ and the tangent vector vξ.

(3) Find a set of vectors eðiÞξ at each point ξ that satisfy
the following:
(a) feðiÞξ ; vξg spans the whole vector space Rn

(b) Perturbations along the δx ∼ eðiÞ eventually go to
zero as t → ∞

(4) Compute AT; BL; BT in Eqs. (A8) and (A9).

2. Nondegenerate OPO

Now we apply this derivation to the nondegenerate OPO
introduced in Sec. III A. The equations of motion are
reproduced as follows:

dα� ¼
�
ð−iΔ − κ=2� ϵÞα� − β

2
ðα��α�α� − α��α∓α∓Þ

�
dt

−
ffiffiffi
κ

p
dβin;�∓ 1

2

ffiffiffi
β

p
ðα�dw1 − iα∓dw2Þ: ðA13Þ

The limit cycle occurs at

jαþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − κ=2
β=2

s
: ðA14Þ

Following the procedure above, we first find a mapping
from ½0; 2π� to the limit cycle. This is easy: αþðξÞ ¼
jαþje−iξ; α−ðξÞ ¼ 0. Next, one needs the vξ and eðiÞ. In
terms of the basis ðαþ; α−Þ, a good choice is
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∇1x̄ξ ¼
�−iαþ

0

�
; eð1Þ ¼

�
αþ
0

�
; eð2Þ ¼

�
0

1

�
;

eð3Þ ¼
�
0

i

�
: ðA15Þ

One can check that these are linearly independent (in
doubled-up space) and span the whole space. Plus, due to
the symmetry of the problem, it should be pretty clear that
perturbations orthogonal to the limit cycle (eð1Þ) or pertur-
bations to the α− mode (eð2Þ; eð3Þ) always decay to zero.
In this case, we are not concerned about deviations from

the limit cycle, so there is no need to calculate the AT
(which depends on covariant derivatives Deeξ). All we
need to find is BL. At the end of the day, we get the
following equation of motion:

_ξ ¼ Δþ Re

�−i ffiffiffi
κ

p
αþ

βin;þ

�
: ðA16Þ

If the inputs βin;1; βin;2 are vacuum noise, the noise term
on the right becomes

dξ ¼ Δdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

8

κ=2
ϵ − κ=2

s
dw: ðA17Þ
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