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A traveling-wave parametric amplifier (TWPA) composed of a transmission line made up of a chain of
coupled asymmetric superconducting quantum interference devices (SQUIDs) is proposed. The unique
nature of this transmission line is that its nonlinearity can be tuned with an external magnetic flux and can
even change sign. This feature of the transmission line can be used to perform phase matching in a
degenerate four-wave mixing process which can be utilized for the parametric amplification of a weak
signal in the presence of a strong pump. Numerical simulations of the TWPA design show that, with tuning,
phase matching can be achieved and an exponential gain as a function of the transmission-line length can be
realized. The flexibility of the proposed design can realize: compact TWPAs with fewer than 211 unit cells,
signal gains greater than 20 dB, 3-dB bandwidth greater than 5.4 GHz, and saturation powers up to
−98 dBm. This amplifier design is well suited for the multiplexed readout of quantum circuits or
astronomical detectors in a compact configuration which can foster on-chip implementations.
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I. INTRODUCTION

Over the past decade, Josephson parametric amplifiers
have proven essential in experiments studying quantum
jumps [1], tracking quantum trajectories [2–4], and real-
time monitoring and feedback control [2,5,6] of quantum
bits (qubits). In parametric amplifiers, high gain is achieved
when the signal to be amplified interacts with a nonlinear
medium for as long as possible. State-of-the-art Josephson
parametric amplifiers utilize resonant circuits to increase the
interaction time of the signal with the nonlinear medium
[7–10]. As a consequence, the instantaneous bandwidth and
maximum input power allowed are significantly reduced.
Such limitations have renewed interest in superconducting
traveling-wave parametric amplifiers (TWPAs) [11–19],
which achieve long interaction times with the nonlinear
medium by extending the electrical length over a long
transmission line instead of multiple bounces in a resonant
circuit; as a result, TWPAs do not suffer from the same
bandwidth and dynamic-range limitations that cavity-based
amplifiers do. The main challenges in TWPA designs is that
optimum gain is achieved when phase-matching conditions
are met. Superconducting TWPAs have been investigated
by many groups, thus far taking one of two approaches:
either utilizing a transmission line composed of a series array
of Josephson junctions [12–17,19] or a transmission line
utilizing the nonlinear kinetic inductance of a narrow
superconducting wire [11,18,20]. These investigations reveal
the need for engineered dispersion to be introduced into the

transmission line to facilitate phase matching [11,14,15,21].
Designs which utilize periodic loading [11,18,20] and the
addition of resonant elements [15,19] to facilitate phase
matching have shown promise, however, at the expense
of increased complexity, higher tolerances, and longer
propagation lengths (2 cm–1 m). We propose an alter-
native approach and utilize the nonlinear properties of a
one-dimensional chain of coupled asymmetric supercon-
ducting quantum interference devices (SQUIDs) as a
transmission line in a TWPA to achieve phase matching
and show that exponential gain can be realized over a wide
bandwidth. The proposed TWPA utilizes the tunable
nonlinearity of a one-dimensional chain of asymmetric
SQUIDs with nearest-neighbor coupling through mutu-
ally shared Josephson junctions as a transmission line to
overcome phase-matching limitations. A magnetic flux Φ
threads each SQUID to allow for tunability of the linear
and nonlinear properties of the transmission line. A weak
signal to be amplified and a strong pump tone will be
incident on the input port to the transmission line. Because
of the nonlinearity of the transmission line, the weak
signal will undergo parametric amplification through a
degenerate four-wave mixing (FWM) process [22,23].
The amplification process is the most efficient when the
total phase mismatch is close to zero. However, due to the
nonlinearity of the transmission line, a strong pump
modifies phase matching through self- and cross-phase-
modulation, resulting in a phase mismatch. The linear
dispersion of the transmission line along with the spectral
separation of the signal and pump angular frequencies can
be used to compensate for the nonlinear phase mismatch.
The unique feature of the proposed TWPA is that the

*Corresponding author.
Matthew.Bell@umb.edu

PHYSICAL REVIEW APPLIED 4, 024014 (2015)

2331-7019=15=4(2)=024014(9) 024014-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevApplied.4.024014
http://dx.doi.org/10.1103/PhysRevApplied.4.024014
http://dx.doi.org/10.1103/PhysRevApplied.4.024014
http://dx.doi.org/10.1103/PhysRevApplied.4.024014


linear and nonlinear dispersion can be tuned with Φ, and
the nonlinearity can even change sign. By adjusting Φ for
a given pump power, phase matching can be achieved.

II. TWPA DESIGN

The design of the proposed TWPA is shown in Fig. 1(a).
Each cell of the transmission line is an asymmetric SQUID
with a single “small” Josephson junction with critical
current IJs0 and capacitance CJs in one arm and two
“large” Josephson junctions with critical current IJl0 and
capacitance CJl in the other arm.
Adjacent cells to one another are coupled via the large

Josephson junctions. A feature of this arrangement is that,
for an even number of asymmetrical SQUIDs in the chain,
the Josephson energy EJðϕÞ remains an even function of
the phase difference ϕ across the chain for any value of Φ
[24]. The proposed TWPA requires a long transmission line
with many unit cells; this allows one to neglect boundary
effects and focus on translationally invariant solutions. At
arbitrary Φ, the transmission line remains symmetric under
the translation by two cells. The defined unit cell of the
transmission line is composed of two large and two small
junctions [Fig. 1(b)]. Each unit cell is of length a and has a
capacitance to ground of Cgnd. The “backbone” of the unit
cell is made up of large Josephson junctions highlighted in
red, which are designed to have Josephson energies EJl0
two orders of magnitude larger than the charging energy
Ecl ¼ e2=ð2CJlÞ of the junction. In this case, quantum
fluctuations of the phase across individual junctions are

small ∝ exp½−ð8EJl0=EclÞ1=2� [25], and thus a classical
description of the system can be used. The phases on the
two large junctions for each unit cell are α and α0, and
the total phase across the unit cell is φ ¼ αþ α0. The
Josephson energy EJðφÞ of the unit cell is minimized when
α ¼ α0, and a gauge is chosen such that an external
magnetic flux would induce phases 2πΦ=Φ0 on the small
junctions. An expansion of the current phase relation of the
current flowing through the backbone of the unit cell
around φ ¼ 0 is given by

IðφÞ ¼ IJs0

�
r
2
þ 2 cos

�
2π

Φ
Φ0

��
φ

− IJs0

�
r
48

þ 1

3
cos

�
2π

Φ
Φ0

��
φ3; ð1Þ

where Φ0 ¼ h=2e is the flux quantum, h is Planck’s
constant, e is the electron charge, and r ¼ IJl0=IJs0. For
Φ=Φ0 ¼ 0.5, there exists a critical r0 ¼ 4 where the linear
term in IðφÞ goes to zero and the cubic term dominates.
At this point, the inductance L ∝ ½dIðφÞ=dφ�−1 of the unit
cell is the largest. This is the unique feature of the
superinductor [24], which is similar by design to the
proposed TWPA. As for the proposed TWPA, a large
inductance of the unit cell is not desired; however,
tunability of the nonlinearity of IðφÞ is. Figures 1(c)
and 1(d) show the current phase relation of a unit cell of
the TWPA for various r and Φ. Figure 1(c) and Eq. (1)
show that the nonlinearity at Iðφ ≈ 0Þ is always positive at
full frustration Φ=Φ0 ¼ 0.5 for r < 16. Figure 1(d) and
Eq. (1) show that for certain r values (for example, r ¼ 6)
by adjusting Φ the nonlinearity can be tuned over a wide
range and can even change sign from negative to positive.
By tuning the nonlinearity, it is possible to optimize the
parametric amplification efficiency of the FWM process.
Using Eq. (1), a nonlinear wave equation is derived to

describe the node flux φn shown in Fig. 1(a) along the
length of the transmission line [13]. Assuming constant
CJs, CJl, Cgnd, IJl0, and IJs0 along the length of the
transmission line, no dissipation, and the continuum
approximation for a wave-type excitation ðλ ≫ aÞ, the
following wave equation is derived:

a2

L

�
r
2
þ 2 cos

�
2πΦ
Φ0

�� ∂2φ

∂z2 þ a2CJs

�
r
2
þ 2

� ∂4φ

∂t2∂z2

− Cgnd
∂2φ

∂t2 − γ
∂
∂z

��∂ϕ
∂z

�
3
�
¼ 0; ð2Þ

where L ¼ φ0=IJs0 and φ0 ¼ Φ0=ð2πÞ. The first three
terms of the wave equation represent the linear contribu-
tions to the dispersion on the transmission line due to the
distributed inductances and capacitances and how they
can be tuned with r and Φ. The fourth term describes the
nonlinearity and how the nonlinear coupling coefficient
γ¼ ½a4=ðφ2

0LÞ�½ðr=48Þþð1=3Þcosð2πΦ=Φ0Þ� can be tuned

(a)

(b)

(c) (d)

Js
0

Js
0

FIG. 1. The TWPA based on a chain of asymmetrically coupled
SQUIDs. (a) A circuit schematic of the proposed TWPA. Each
unit cell of the TWPA is threaded with a magnetic flux Φ and has
a parasitic capacitance to ground Cgnd. The coupled SQUID
transmission line can realistically be implemented in a coplanar
transmission-line geometry. The geometrical inductance of
the transmission line can be made negligible in comparison to
the Josephson inductance of the coupled asymmetric SQUIDs
making up the line. (b) A unit cell of the TWPA. (c),(d) The current
phase relation of a unit cell for various ratios r and Φ=Φ0.

M. T. BELL AND A. SAMOLOV PHYS. REV. APPLIED 4, 024014 (2015)

024014-2



with Φ. The solution to Eq. (2) is assumed to be four
traveling waves, where in the degenerate case the two
pump angular frequencies ωp are equal, a signal ωs, and a
generated idler tone ωi ¼ 2ωp − ωs. By taking the slowly
varying envelope and undepleted pump approximations, a
set of coupled mode equations is derived to describe the
propagation of the signal and idler traveling waves:

∂as
∂z −

i3γk2pkiksð2kp − kiÞa�i jAp0j2
8ω2

sCgnd
eiκz ¼ 0; ð3Þ

∂ai
∂z −

i3γk2pkskið2kp − ksÞa�s jAp0j2
8ω2

i Cgnd
eiκz ¼ 0; ð4Þ

where as and ai are the complex signal and idler amplitudes,
respectively, km is the wave vector of the pump, signal, and
idler ðm ¼ fp; s; igÞ (see Appendix A), Δk ¼ ks þ ki −
2kp is the phase mismatch due to the linear dispersion in the
transmission line, the total phase mismatch including self-
and cross-phase-modulation is κ ¼ −Δkþ 2αp − αs − αi,
and jAp0j is the undepleted pump amplitude. The terms
αm ∝ γjAp0j2 are the self- and cross-phase-modulation of
the wave vectors per unit length.
Equations (3) and (4) are similar to the well-established

fiber parametric amplifier theory [22,23] and have the
following solution to describe the power gain of the signal
in the presence of a strong pump with zero initial idler
amplitude Gs ¼ j coshðgzÞ − iðκ=2gÞ sinhðgzÞj2, where the
exponential gain factor is

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2sk2i ð2kp − ksÞð2kp − kiÞω4

p

k6pω2
iω

2
s

�
α2p −

�
κ

2

�
2

s
: ð5Þ

At nearly phase-matching conditions, κ ≈ 0, g is positive
and real, and the signal gain has an exponential dependence
on the length of the transmission line Gs ¼ jegz=2j2. For
small pump amplitudes jAp0j ≅ jAs0j and ωs ≅ ωp, phase
matching is not a concern. For larger pump amplitudes, the
parametric amplification process loses phase matching
through self-phase-modulation of the pump; when this
happens, g becomes small and κ is large, and the gain scales
quadratically as a function of the TWPA length.
The phase mismatch due to the large pump amplitude

can be compensated with the linear dispersion along the
transmission line if αp and Δk are of opposite sign:

κ ¼ −αp
2ω2

p

k3p

�
k3s
ω2
s
þ k3i
ω2
i
−
k3p
ω2
p

�
− Δk: ð6Þ

III. NUMERICAL SIMULATIONS

From this point on, numerical results are presented for
a realizable set of parameters for the proposed TWPA.
For each unit cell, r ¼ 6, Cgnd ¼ 50 fF, CJs ¼ 50 fF,
CJl ¼ rCJs, IJs0 ¼ 1 μA, and IJl0 ¼ rIJs0. In choosing

Cgnd and the inductance of the large junctions
LJl ¼ Φ0=ðrIJs0Þ, which ultimately sets the characteristic
impedance of the transmission line, special attention is
made to achieve an impedance near 50 Ω over the tunable
range of the TWPA in order to maintain compatibility with
commercial electronics. A realizable unit-cell size based on
our fabrication process is a ¼ 8 μm [24,26]. The traveling
waves used in the numerical results are a pump tone
with angular frequency ωp=ð2πÞ ¼ 6.5 GHz and power
−76 dBm, which is equivalent to Iprms ≈ 0.6 μA, the signal
angular frequency ωs is varied in most cases, and the idler
angular frequency is ωi ¼ 2ωp − ωs with initial signal and
idler power levels 80 and 160 dB lower than the pump
power, respectively.
Shown in Fig. 2 is the dependence of kp and αp onΦ=Φ0.

From the inset in Fig. 2, it can be seen that γ (and as a result
αp) changes sign from positive to negative for Φ > 0.31Φ0

and more importantly is of opposite sign to Δk ≥ 0 (see
Appendix A) for this transmission line. By adjusting Φ and
at a particular ωp and ωs, it is possible to utilize Δk, which
increases with Φ in the transmission line to compensate the
phase mismatch due to self-phase-modulation of the pump.
Figure 3(a) shows numerical simulations of the signal

gain as a function of the signal frequency for the proposed
TWPA with a transmission-line length of 600a. For a
magnetic flux tuning of Φ=Φ0 ¼ 0.45 and pump power
−76 dBm [Fig. 3(a), red line], there are two regions
ωs=ð2πÞ ¼ 3.6 and 9.4 GHz where perfect phase matching
κ ¼ 0 can be achieved, and for comparison the phase-
mismatch dependence on the signal frequency is shown in
Fig. 3(b) (red line). For κ ≈ 0 and g real and large, the gain
depends exponentially on the TWPA length [Fig. 3(c), solid
red line]. When the phase mismatch is the largest at
ωs=ð2πÞ ¼ 6.5 GHz, g is small, and κ is large, the gain
depends quadratically on the length of the TWPA as shown
in Fig. 3(c) (dashed red line). Under the phase-matching

FIG. 2. The pump tone wave vector and pump self-phase-
modulation per unit length a as a function of magnetic fluxΦ=Φ0.
The inset shows the change in sign of αp versus Φ=Φ0.
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conditions, there exist regions of exponential gain and
quadratic gain depending on the signal frequency; the 3-dB
bandwidth of the TWPA approximately 1.5 GHz is limited
to two regions where κ ≈ 0 centered at ωs=ð2πÞ ¼ 3.9 and
9.1 GHz. With a magnetic flux tuning value of Φ=Φ0 ¼ 0.5
and pump power −70 dBm, κ is large [Fig. 3(b), blue line],
and only a quadratic gain dependence is possible. Since the
signal gain increases quadratically for all frequencies, a
relatively flat gain characteristic of the amplifier can be
achieved with a signal gain of 23 dB over a 3-dB bandwidth
greater than 5.4 GHz.
The saturation power of the TWPA is limited by pump

depletion effects, which generally occurs when the signal
amplitude becomes comparable to the pump. At such

amplitudes, the pump is depleted and the gain of the
TWPA decreases. In order to evaluate these effects, the
coupled mode equations (see Appendix B) without
the undepleted pump approximation and taking into
account self- and cross-phase-modulation are solved to
determine the real amplitude and phase mismatch as a
function of z along the length of the transmission line.
Figure 4 (inset) shows how the signal gain decreases
with the signal power due to pump depletion effects, for
Φ=Φ0 ¼ 0.37 and a TWPA length of 341a. The signal gain
and the phase mismatch depend on magnetic flux through
αp ∝ γk5pjAp0j2 and km. For each Φ=Φ0, the pump power
is varied over the range −76 ðIprms≈0.1IJl0Þ to −68 dBm
(Iprms ≈ 0.25IJl0) to maintain phase matching at ωs=ð2πÞ ¼
6 GHz with aωp=ð2πÞ ¼ 9 GHz pump. For eachΦ=Φ0, the
minimum length of the TWPA to achieve a signal gain of
20 dB is shown in Fig. 4 (red line).When αp and km decrease
with decreasing Φ=Φ0, a stronger pump is required to
maintain phase-matching conditions, which results in a
larger P1 dB up to −98 dBm, smaller γ, and a longer trans-
mission line tomaintain a signal gain of 20 dB.When αp and
km increase with Φ=Φ0, a smaller pump power is required to
achieve phase matching, P1 dB decreases, and γ increases,
resulting in a shorter transmission line with a minimum
length of 211a to achieve a signal gain of 20 dB.

IV. SUMMARY

In conclusion, a TWPA design based on a chain of
coupled asymmetric SQUIDs is presented. The proposed
design allows for great flexibility where a magnetic flux
can be used to tune the nonlinearity of the transmission line

FIG. 3. The calculated gain of the proposed TWPA. In all three
panels, red and blue represent flux tunings (pump powers) of
Φ=Φ0 ¼ 0.45 (−76 dBm) and Φ=Φ0 ¼ 0.5 (−73 dBm), respec-
tively. (a) The signal gain in decibels as a function of the signal
frequency. (b) The phase mismatch as a function of the signal
frequency. (c) The dependence of the signal gain as a function of
the transmission-line length in units a. Solid red and blue lines
correspond to ωs=ð2πÞ ¼ 9.1 and 8.4 GHz, respectively. Dashed
red and blue lines correspond to ωs=ð2πÞ ¼ 6.5 GHz. As can be
seen, the region of exponential gain is κ ≈ 0. According to
Eq. (5), the most optimal gain does not necessarily occur at
perfect phase matching κ ¼ 0 due to the prefactor to α2p. At
significant κ, the gain depends quadratically on the length shown
in (c) as dashed lines and a solid blue line. For the flux tuning of
Φ=Φ0 ¼ 0.5, exponential gain is impossible at all frequencies.

FIG. 4. The calculated 1-dB compression point and minimum
TWPA length as a function of magnetic flux Φ=Φ0 to maintain a
signal gain of 20 dB. As Φ=Φ0 varies from 0.35 to 0.5, the pump
power is varied from −68 to −76 dBm to maintain phase-
matching conditions between a signal and pump tone at angular
frequencies ωs=ð2πÞ ¼ 6 GHz and ωp=ð2πÞ ¼ 9 GHz, respec-
tively. The inset shows the signal gain as a function of the signal
power for Φ=Φ0 ¼ 0.37 and device length 341a; the 1-dB
compression point occurs at −98 dBm.
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to achieve phase-matching conditions in a four-wave mixing
process. Numerical simulations show that the proposed
amplifier can achieve gains of 23 dB with a 3-dB bandwidth
of greater than 5.4 GHz at a center frequency of 6.5 GHz.
Under different tuning conditions, gains of greater than
20 dB can be achieved with a minimum transmission-line
length of 211 unit cells and a saturation power of up to
−98 dBm with 341 unit cells. The proposed amplifier is
ideally suited for the multiplexed readout of quantum bits or
kinetic-inductance-based astronomical detectors.
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APPENDIX A: ANALYTICAL APPROXIMATION

In this Appendix, we derive an analytical solution to the
coupled nonlinear wave equations used to describe the
interaction between the signal and pump traveling waves
propagating along the transmission line composed of a
chain of coupled asymmetric SQUIDs. The energy phase
relation of a unit cell [Fig. 1(a)] is

EJðφÞ ¼ −2EJl0 cos

�
φ

2

�
− EJs0 cos

�
φ −

2πΦ
Φ0

�

− EJs0 cos

�
φþ 2π

Φ
Φ0

�
: ðA1Þ

Expanding ∂EJðφÞ=∂φjφ¼0 gives the approximate current
phase relation describing the current InðφÞ flowing through
the backbone of unit cell n [Eq. (1)]. Utilizing Kirchhoff’s
current law In−1ðφÞ − Cgndd2φ=dt2 ¼ InðφÞ, neglecting the
effects of dissipation, and assuming a sufficiently long
wavelength λ ≫ a of the signal and pump, the following
wave equation is derived for a position z along the
transmission line:

a2

L

�
r
2
þ 2 cos

�
2πΦ
Φ0

�� ∂2φ

∂z2 þ a2CJs

�
r
2
þ 2

� ∂4φ

∂t2∂z2

− Cgnd
∂2φ

∂t2 − γ
∂
∂z

��∂φ
∂z

�
3
�
¼ 0; ðA2Þ

where L ¼ φ0=IJs, φ0 ¼ Φ0=2π, r ¼ IJl0=IJs0, and γ ¼
½a4=ðφ2

0LÞ�½ðr=48Þ þ ð1=3Þ cosð2πΦ=Φ0Þ�. The solution to
Eq. (A2) is assumed to be a superposition of a pump, signal,
and idler traveling waves propagating along the trans-
mission line of the form

φðz; tÞ ¼ 1

2
½ApðzÞeiðkpz−ωptÞ þ AsðzÞeiðksz−ωstÞ

þ AiðzÞeiðkiz−ωitÞ þ c:c:�; ðA3Þ

where c.c. denotes the complex conjugate, Am is the
complex amplitudes, km is the wave vectors, and ωm is
the angular frequencies of the pump, signal, and idler
ðm ¼ fp; s; igÞ. A degenerate four-wave mixing process
is considered under the following frequency-matching
condition: ωs þ ωi ¼ 2ωp. Equation (A3) is substituted
into Eq. (A2), and, assuming a slowly varying envelope
of the propagating waves where j∂2Am=∂z2j ≪
jkm∂Am=∂zj and j∂Am=∂zj ≪ jkmAmj and a uniform trans-
mission line where Cgnd, CJs, and km are constant, a set of
coupled mode equations which describes the propagation of
the pump, signal, and idlerwaves along the transmission line
is determined:

∂Ap

∂z − iαpAp ¼ 0; ðA4Þ

∂As

∂z − iαsAs −
i3γk2pkiksð2kp − kiÞA�

i A
2
p

8ω2
sCgnd

e−iΔkz ¼ 0;

ðA5Þ
∂Ai

∂z − iαiAi −
i3γk2pkskið2kp − ksÞA�

sA2
p

8ω2
i Cgnd

e−iΔkz ¼ 0;

ðA6Þ
where a large pump amplitude relative to the signal and
idler amplitudes is assumed, decoupling the pump, and the
quadratic terms in As;i are neglected,Δk ¼ ks þ ki − 2kp is
the phase mismatch due to linear dispersion, and αm is the
self-phase-modulation per unit length a:

αs ¼
3γk3sk2pjAp0j2
4Cgndω

2
s

;

αi ¼
3γk3i k

2
pjAp0j2

4Cgndω
2
i

;

αp ¼ 3γk5pjAp0j2
8Cgndω

2
p

; ðA7Þ

where jAp0j is the initial pump amplitude. The linear
dispersion relation for this transmission line is

km ¼ ωm
ffiffiffiffiffiffiffiffiffiffiffiffi
LCgnd

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½r
2
þ 2 cosð2π Φ

Φ0
Þ� − ω2

mLCJsðr2 þ 2Þ
q : ðA8Þ

Assuming an undepleted pump amplitude and the following
substitutions: ApðzÞ ¼ Ap0eiαpz solution to Eq. (A4),
AsðzÞ ¼ asðzÞeiαsz, and AiðzÞ ¼ aiðzÞeiαiz into (A5) and
(A6), we obtain

∂as
∂z −

i3γk2pkiksð2kp − kiÞa�i jAp0j2
8ω2

sCgnd
eiκz ¼ 0; ðA9Þ
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∂ai
∂z −

i3γk2pkskið2kp − ksÞa�s jAp0j2
8ω2

i Cgnd
eiκz ¼ 0; ðA10Þ

where κ ¼ −Δkþ 2αp − αs − αi is the total phase mis-
match. Equations (A9) and (A10) are similar to the well-
established fiber parametric amplifier theory and have the
following solution to describe the amplitude of the signal
along the length of the transmission line assuming zero
initial idler amplitude:

asðzÞ ¼ as0

�
coshðgzÞ − iκ

2g
sinhðgzÞ

�
eiκz=2: ðA11Þ

A similar solution to (A11) exists for the idler amplitude.
The exponential gain factor is

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2sk2i ð2kp−ksÞð2kp−kiÞω4

p

k6pω2
iω

2
s

�
α2p−

�
κ

2

�
2

s
: ðA12Þ

The signal power gain can be determined from
Eq. (A11):

Gs ¼
���� coshðgzÞ − iκ

2g
sinhðgzÞ

����2: ðA13Þ

For the proposed chain of asymmetric SQUIDs, the phase
mismatch due to linear dispersion is always real and non-
negative for r > r0. Using the frequency-matching con-
dition and Eq. (A8), we show that

Δk ¼ c1

�
ωsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2ω2
s

p þ ωiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2ω2

i

p −
2ωpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2ω2
p

q �
;

where

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LCgnd

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2
þ 2 cosð2π Φ

Φ0
Þ

q
and

c2 ¼
LCJsðr2 þ 2Þ

½r
2
þ 2 cosð2π Φ

Φ0
Þ� ;

and

Δk ≈ 3c1c2Δω2ωp ≥ 0;

where Δω≡ ωs − ωp ¼ ωp − ωi from the frequency-
matching condition. We also show that the sign of the
first term in Eq. (6) is dependent only on αp for r > r0:

k3m
ω2
m
¼ c1ωm

ð1 − c2ωmÞ3=2
≈ c1ωm

�
1þ 3c2ω2

m

2

�
;

k3s
ω2
s
þ k3i
ω2
i
−
k3p
ω2
p
≈ c1ωp

�
1þ 9c2Δω2 þ 3c2ω2

p

2

�
> 0:

ðA14Þ

APPENDIX B: NUMERICAL ANALYSIS

Below, the solutions to the coupled mode equations
which govern the degenerate four-wave mixing process
between the signal, idler, and pump tones and pump
depletion effects are presented. Plugging Eq. (A3) into
Eq. (A2) and making the slowly varying envelope approxi-
mation, the following coupled mode equations are derived:

∂Ap

∂z − i
3γk2p

8ω2
pCgnd

½kpðk2pjApj2 þ 2k2s jAsj2 þ 2k2i jAij2ÞAp þ 2kskiðks þ ki − kpÞA�
pAsAieiΔkz� ¼ 0;

∂As

∂z − i
3γk2s

8ω2
sCgnd

�
ksð2k2pjApj2 þ k2s jAsj2 þ 2k2i jAij2ÞAs þ k2pki

ð2kp − kiÞ
ks

A�
i A

2
pe−iΔkz

�
¼ 0;

∂Ai

∂z − i
3γk2i

8ω2
i Cgnd

�
kið2k2pjApj2 þ 2k2s jAsj2 þ k2i jAij2ÞAi þ k2pks

ð2kp − ksÞ
ki

A�
sA2

pe−iΔkz
�
¼ 0:

The coupled complex differential equations are solved by
converting the complex amplitudes to Am ¼ BmðzÞeiθmðzÞ
and finding the solutions for the real amplitudes BpðzÞ,
BsðzÞ, and BiðzÞ and the total phase mismatch θsðzÞ þ
θiðzÞ − 2θpðzÞ þ Δk using the Runge-Kutta method.

APPENDIX C: PARAMETER VARIATIONS

In this Appendix, we determine how variations in
Josephson-junction parameters and tuning magnetic

flux gradients affect the operation of the proposed
TWPA. Both types of variations manifest themselves as
a position-dependent alteration to both the linear and
nonlinear dispersion from unit cell to unit cell which
ultimately affects the phase matching and the signal gain
in the TWPA. Since the transmission line of the TWPA is
made up of coupled asymmetric SQUIDs, variations in
one unit cell through mutual coupling affect the super-
conducting phase distribution in neighboring unit cells.
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We model the variations in Josephson-junction param-
eters as a normal distribution with mean critical currents
IJs0 and IJl0 for small and large Josephson junctions,
respectively, and a relative standard deviation σJJ which
applies to both small and large junctions. The proposed
TWPA is modeled by minimizing the total Josephson
energy of a 200-unit-cell chain by adjusting the phases
on all the large junctions. A gauge is chosen such that the
external magnetic flux induces phases 2πΦ=Φ0 on the small
junctions. The constraint of the minimization procedure is
that the sum of the phase drops on all of the large junctions
are equal to the total phase across the chain. From the
minimization, a position-dependent Δkm and Δγ from unit
cell to unit cell is determined, vectorized, and introduced
into the numerical analysis of the coupled mode equations.
Numerical simulations of the TWPA which take into

account a normal distribution in Josephson-junction param-
eters are performed on the shortest 200a TWPA with

a ωp=ð2πÞ ¼ 9 GHz and pump power of −76 dBm.
Shown in Figs. 5(a) and 5(b) is the signal gain at
ωs=ð2πÞ ¼ 6 GHz, where κ ≈ 0 as a function of the relative
standard deviation σJJ for different r and Φ. For each data
point, 50 numerical simulations are performed, and the
error bars represent the spread in the signal gain due to the
stochastic nature of the solution to the coupled mode
equations to a normal distribution in junction parameters.
Figure 5(a) shows for r ¼ 5 and Φ=Φ0 ¼ 0.5 that the
tolerance of the proposed TWPA to a variation in junction
parameters is limited to σJJ ¼ 1%, where the signal gain
drops by 1 dB. Figure 5(b) shows for r ¼ 6 and Φ=Φ0 ¼
0.5 that the tolerance increases to σJJ ¼ 3%, which can be
realized with present-day fabrication technology where the
on-chip variation in junction parameters follows a normal
distribution and σ ¼ 2.4%–3.5% [24,26–29]. When the
magnetic flux is tuned to Φ=Φ0 ¼ 0.45, the nonlinearity is
decreased; however, the tolerated σJJ increases to 4.5%. A
trade-off exists between the magnitude of the nonlinearity
(for small r or large Φ) and the tolerance of the TWPA to a
variation in junction parameters.
Numerical simulations of the signal gain as a function of

the magnetic flux gradient per unit cell across the TWPA
are shown in Fig. 6 for tuning magnetic fluxes of Φ=Φ0 ¼
0.45 (blue circles) and Φ=Φ0 ¼ 0.5 (red squares). The error
bars represent the stochastic nature of the numerical
simulations of the coupled mode equations due to a
normal distribution in Josephson-junction parameters with
σJJ ¼ 2.4%. At Φ=Φ0 ¼ 0.5, the TWPA has a 1-dB drop in
signal gain for a magnetic flux gradient of 1 mΦ0 per unit
cell. When the magnetic flux is tuned to Φ=Φ0 ¼ 0.45,
where the TWPA is more sensitive to magnetic flux

FIG. 5. The simulated signal gain as a function of the relative
standard deviation of the critical currents of both the small and
large Josephson junctions which make up the TWPA. Simula-
tions are performed at Φ=Φ0 ¼ 0.45 (blue circles) and Φ=Φ0 ¼
0.5 (red squares), ωp=ð2πÞ ¼ 9 GHz, ωs=ð2πÞ ¼ 6 GHz, TWPA
length 200a, and r ¼ 5 and r ¼ 6 for (a) and (b), respectively.
The error bars represent the variation in the signal gain due to the
stochastic solution of the coupled mode equations to a normal
distribution of junction parameters along the length of the TWPA.

FIG. 6. The simulated signal gain as a function of the magnetic
flux gradient per unit cell across a TWPA composed of 200 unit
cells, for magnetic flux tunings ofΦ=Φ0 ¼ 0.45 (blue circles) and
Φ=Φ0 ¼ 0.5 (red squares). Error bars represent the stochastic
solutions of the coupled mode equations due to a normal
distribution in Josephson-junction parameters with σJJ ¼ 2.4%.
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variations, the signal gain drops by 1 dB at 0.5 mΦ0 per
unit cell. In our measurement setup with moderate mag-
netic shielding, we observe magnetic flux gradients of
24 μG=μm [24,26–28], which is equivalent to 0.1 mΦ0 per
unit cell of the TWPA.

APPENDIX D: DIFFERENT PUMPING
CONDITIONS

Numerical simulations of the signal gain as a function of
the signal frequency are shown in Fig. 7 for alternative
pump frequencies ωp=ð2πÞ ¼ 3, 5, and 9 GHz to be
compared with the results shown in Fig. 3(a). Under
phase-matching conditions, κ ≈ 0, the maximum in the
signal gain depends exponentially on g [see Eq. (5)], which
has a strong dependence on ωp. Figure 7 shows that the
maximum gain and bandwidth increase with ωp, and thus
shorter transmission lines can be realized as demonstrated
in Fig. 4. For smaller ωp, the maximum gain and bandwidth
decrease, and thus longer transmission lines are required
even under optimal tuning conditions for such pump
frequencies.
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