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High-fidelity coherent control of quantum systems is critical to building quantum devices and quantum
computers. We provide a general optimal control framework for designing control sequences that account
for hardware control distortions while maintaining robustness to environmental noise. We demonstrate the
utility of our algorithm by presenting examples of robust quantum gates optimized in the presence of
nonlinear distortions. We show that nonlinear classical controllers do not necessarily incur additional
computational cost to pulse-optimization, enabling more powerful quantum devices.
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I. INTRODUCTION

The ability to coherently control the dynamics of
quantum systems with high fidelity is a critical component
of the development of modern quantum devices, including
quantum computers [1], actuators [2,3], and sensors [4–6],
that push beyond the capabilities of classical computation
and metrology. In recent years, quantum computation has
presented a compelling application for quantum control, as
high-fidelity control is essential to implementing quantum-
information processors that may achieve fault tolerance
[7–9]. As quantum devices continue to grow in size and
complexity, the requirements of classical control hardware
also increase. This will more frequently produce situations
with a significant trade-off between hardware-response
simplicity and overall hardware capability.
The performance of numerically optimized quantum

gates in laboratory applications strongly depends on the
response of the classical electronics used to apply the
control sequence. In this article, we provide a formalism for
including arbitrary classical hardware models into pulse-
finding algorithms such that the produced control sequen-
ces are tailored to work robustly for the intended hardware
controllers. A novelty of our general framework is the
ability to natively incorporate nonlinear and noninvertible

hardware behavior. Importantly, it also naturally allows for
robustness against uncertainties and errors in parameters
describing the hardware, in contrast to previous methods
which dealt only with Hamiltonian parameters such as
overall power and offset frequency [10–12].
Recently, it was demonstrated how a model of linear

distortions of the control sequence, such as those arising
from finite bandwidth of the classical control hardware,
may be integrated into optimal-control-theory (OCT) algo-
rithms [13–16]. We generalize and extend these methods to
admit hardware models which are noninvertible or non-
linear, allowing the experimenter to maximize control
efficiency and measurement sensitivity by driving hardware
performance to its limits without sacrificing the ability to
perform robust, high-fidelity quantum control.
Our framework includes a complete integration of the

system-apparatus dynamics and models hardware compo-
nents explicitly, such that their effect on a quantum system
can be computed and compensated for using numerical
OCT [17] algorithms to optimize control sequences.
Control sequences designed using OCT algorithms, such
as the gradient-ascent-pulse-engineering (GRAPE) [18]
algorithm, can be made robust to a wide variety of field
inhomogeneities, pulse errors, and noise processes [19–21].
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These methods are also easily extended [22–25] to
other applications and may be integrated into other
protocols [26].
We begin developing our method generally, without

making assumptions about the device of interest, so that our
results may be broadly applicable to a wide range of
quantum devices. We briefly discuss how our theory is
easily applied to any linear distortion, and then in more
detail, demonstrate with numerics how nonlinearities in
control hardware may be included. As an example, we
derive high-fidelity control pulses for strongly driven
superconducting resonators exhibiting nonlinear kinetic
inductance [27–29], that are robust to uncertainty in the
amount of nonlinearity present. While our methods apply
generally to a wide range of quantum control modalities,
superconducting resonators serve well as an illustrative test
bed of our method’s utility, having found significant recent
application in pulsed electron spin resonance [30–32] and
circuit QED to increase induction measurement sensitivity
and provide an interface for microwave photon quantum
memories [33,34].

II. SETUP

With this goal in mind, we review the problem of
controlling a quantum system [35]. Given a system
Hamiltonian

HðtÞ ¼ H0 þ
XL
l¼1

qlðtÞHl ð1Þ

acting on a Hilbert space of dimension d, where H0 is
the internal Hamiltonian and fHlgLl¼1 are the control
Hamiltonians, how do we choose the envelopes
fqlðtÞgLl¼1 such that at time T we effect the total unitary
Utarget? Awell-known result in quantum control theory tells
us that such envelopes exist for any target unitary Utarget

whenever the span of the nested commutations of the
Hamiltonians fHlgLl¼0 is at least d2 − 1 [35]. Actually,
finding these envelopes is the goal of OCT. We focus our
attention on numerical optimization methods.
It will be clear that the framework we construct will be

compatible not only with the problem of generating a full
unitary operation as outlined above, but all similar prob-
lems such as state-to-state transfers, expectation values over
static distributions, open system maps, etc.
The functions fqlðtÞgLl¼1 seen by the quantum system

Hamiltonian represent a distorted version of what was
actually input to the classical hardware. Effects such as
circuit transfer functions, mixer imbalance, noise, amplifier
nonlinearity, and cross talk will all contribute to this
distortion acting on the input pulse. Since we are ultimately
interested in doing numerics, we begin by discretizing the
time domain and therefore model all relevant hardware by
what we will call a discretized distortion operator. This is a

function g∶ RN ⊗ RK → RM ⊗ RL, which takes an input
pulse sequence ~p with some associated time step dt, and
outputs a distorted version of the pulse ~q ¼ gð~pÞ, with an
associated time step δt. ~p is the pulse as stored in the
experimenter’s computer, and ~q is the pulse generating the
Hamiltonian seen by the quantum system, as illustrated
in Fig. 1.
The integersN andM are the number of input and output

time steps, respectively, and K and L are the number of
input and output control fields, respectively. In the case of
on-resonant quadrature control of a qubit, K ¼ L ¼ 2. We
omit subscripts on the time steps dt and δt for notational
simplicity; uniform time discretization is not required.
Typically, we will have δt < dt to allow for an accurate
simulation of the quantum system. The condition M δt ¼
N dt need not hold, for example,M δt > N dtwill be useful
when the distortion has a finite ringdown time.
The discretized distortion operator g will often derive

from a continuous distortion operator f∶ L1ðR;RKÞ →
L1ðR;RLÞ, which takes a continuous input pulse αðtÞ ¼
fp1ðtÞ;…; pKðtÞg and outputs a distorted pulse βðtÞ ¼
fq1ðtÞ;…; qLðtÞg given by f½α�ðtÞ. The discretized version
is obtained by composing f on either side by a discretiza-
tion and dediscretization operator g ¼ f1 ∘ f ∘ f2 (exam-
ples of this are provided in the Supplemental Material [36]).
We can compute the effect that an input pulse ~p has on

the quantum system by first computing ~q ¼ gð~pÞ, and then
using the piecewise constant solution to Schrödinger’s
equation. That is, in each of the individual M-output time
steps, we may solve Schrödinger’s equation with a constant
Hamiltonian to give us the unitary propagator correspond-
ing to the mth time step

Umð~qÞ ¼ exp

�
−i δt

�
H0 þ

XL
l¼1

qm;lHl

��
ð2Þ

so that the total propagator from t ¼ 0 until t ¼ M δt is
given by

Uð~qÞ ¼
YM
m¼1

Umð~qÞ; ð3Þ

where multiplication is ordered so that the first time step
appears at the far right. If the internal Hamiltonians fHlgLl¼0

FIG. 1. An illustration depicting the action of the distortion
operator g on the input pulse ~p.
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are time dependent, more complex solutions may be
used [16].
We can now incorporate the distortion operator g into

standard methods from optimal control theory. In particu-
lar, we focus on the GRAPE algorithm [18], though we again
stress that using other algorithms would work as well,
especially noting that those algorithms which make use of
gradients of the objective function may continue to do so
[39–41]. To begin, consider the unitary objective function

Φ½~q� ¼ jTr½U†
targetUð~qÞ�j2=d2; ð4Þ

which outputs values in the range [0, 1] and achieves the
maximum value 1 if and only if the pulse ~q generates a
unitary Uð~qÞ that is equal to Utarget up to global phase.
Penalties can be added to this basic objective function in
order to demand that the solution admit certain properties.
For instance, penalty functions have been used to ensure
robustness to control noise and limited pulse fluence
[20,42–44] or to ensure that undesired subspaces are
avoided [45,46].
Now we include the effect of our hardware by modifying

the objective function to compose with the distortion
operator

Φg½~p� ¼ Φ ∘ gð~pÞ; ð5Þ

which gives us a measure of the quality of an input gate ~p.
As with standard GRAPE, we ascend this objective function
to the nearest local maxima starting with a random initial
guess and choosing an uphill direction based on the
gradient of Φg with respect to the components of ~p. In
the examples that follow in later sections, we use a standard
adaptive step-size conjugate-gradient routine implemented
in the QUANTUMUTILS for Mathematica library [47]. In
practice, with standard GRAPE, a surprising fraction of local
maxima are globally optimal when using experimentally
relevant Hamiltonians and parameters.
Using the multivariable chain rule, we compute the

gradient of Φg to be

∇~pðΦgÞ ¼ ∇gð~pÞðΦÞ · J~pðgÞ; ð6Þ

½J~pðgÞ�m;l;n;k ¼
∂gm;l

∂pn;k
; ð7Þ

thus separating the objective function derivatives into the
derivatives of the distortion operator alone, and the quan-
tum evolution alone. Here, the dot represents a contraction
over the indicesm and l, and J~pðgÞ is the Jacobian of g at ~p.
Though evaluating ∇gð~pÞðΦÞ ¼ ½∂Φ=∂qm;l�m;l naively

would require simulating the action of ML pulses, the
GRAPE algorithm provides an expression for this gradient in
terms of the time-step unitaries Umð~qÞ that are already
computed when evaluating Φð~qÞ,

∂Φ
∂qm;l

¼ −2Re½hPmji δtHlXmihXmjPmi�; ð8Þ

where Pm ≔ ðQM
i¼mþ1 U

†
i ÞUtarget, Xm ≔

Q
1
i¼m Ui, and

hAjBi ¼ TrðA†BÞ is the trace inner product.
Therefore the only remaining challenge is to compute the

Jacobian J~pðgÞ. This task depends entirely on the specific
nature of the discrete distortion operator g. For instance, if g
is linear, then computing the Jacobian tensor is in principle
trivial, and is independent of the input pulse ~p. In the
examples that follow, as well as many examples found in
the Supplemental Material [36], Secs. A–C, the compo-
nents of this Jacobian tensor will be worked out in detail.
Because the cost of evaluating g will typically not grow

more than polynomially with the number of qubits, the
computational cost of the optimization effectively remains
unchanged from standard GRAPE, as it is still dominated by
the cost of computing the M matrix exponentials.
Although we have singled out the GRAPE algorithm as

our routine to optimize the objective function, this choice is
based largely on the favorable convergence properties of
the algorithm [48], and does not prevent the use of a
different routine. In particular, GRAPE is a greedy algorithm
which attempts to find an optimum closest to the initial
value by choosing a direction related to the steepest uphill
slope. Global optimizers such as Nelder-Mead, genetic
algorithms, or hybrid gradient algorithms [26,48–50] could
be used without modification by substituting the usual
objective function Φ with the distortion-modified objective
function Φg. Such methods are useful in cases where the
control landscape is known to be saturated with suboptimal
maxima. Gradient-free methods may be advantageous in
cases where it is difficult or overly expensive to compute
the Jacobian tensor of Φg.

III. CONVOLUTION EXAMPLE

Making use of the abstract formalism described above,
our first example is the continuous distortion operator given
by the convolution with an LK kernel ϕðtÞ,

βðtÞ ¼ fðαÞðtÞ ¼ ðϕ ⋆ αÞðtÞ ¼
Z

∞

−∞
ϕðt − τÞ·αðtÞdτ: ð9Þ

The convolution kernel ϕ models any distortion that can be
described by a linear differential equation, such as a simple
exponential rise time, control-line crosstalk, or the transfer
function of the control hardware [13,14,51,52]. We com-
pute the discretized distortion operator to be

qm;l ¼
XN;K

n¼1;k¼1

�Z
n dt

ðn−1Þ dt
ϕl;k(ðm − 1=2Þ δt − τ) dτ

�
pn;k;

ð10Þ
where we see that it acts as a linear map
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~q ¼ gð~pÞ ¼ ~ϕ · ~p; ð11Þ
where we are contracting over the n and k indices with the
components of the tensor ~ϕ given by the integrals

½ ~ϕ�m;l;n;k ¼
Z

n dt

ðn−1Þ dt
ϕl;k(ðm − 1=2Þ δt − τ) dτ: ð12Þ

The Jacobian matrix is simply given by J~pðgÞ ¼ ~ϕ, which
is independent of the pulse ~p.
Importantly, if there are uncertainties in any parameters ~a

describing the convolution kernel, so that ϕðtÞ ¼ ϕ½~a�ðtÞ,
then the objective function used in the optimization routine
can be taken as a weighted sum

Φg;h~ai ¼
X
~a

Prð~aÞΦg½~a�; ð13Þ

where g½~a�ð~pÞ ¼ ~ϕ½~a� · ~p and the probability distribution
Prð~aÞ describes the parameter uncertainty. In this way, the
optimizer would attempt to find a solution which performs
well over all probable parameter values. As a concrete
example, if τrise were the characteristic rise time of a control
amplitude, we could have ~a ¼ ðτriseÞ, and generate a pulse
which is robust to variations in this time scale. By linearity,
the Jacobian tensor of Φg;h~ai, is the weighted sum of the
Jacobian tensors J~pðg½~a�Þ. Incorporating distributions of
parameters in the distortion operator, as we will see, applies
just as well to nonlinear device hardware.

IV. NONLINEAR CIRCUIT EXAMPLE

As a more involved example than the general linear case
described above, we consider a quantum system being
controlled by a tuned and matched resonator circuit [53]
with nonlinear circuit elements (Fig. 2). We emphasize that
while we have picked a relatively simple circuit for this
demonstration, it has a general-enough form to accurately
describe the majority of resonators used in spin resonance
experiments, including the nonlinear resonator described in
Ref. [28]. Moreover, arbitrarily complex circuits with
additional poles could just as easily be incorporated by
finding their circuit equations with a standard application of
Kirchhoff’s laws, resulting in a higher-order equation in
place of Eq. (15).
Nonlinear superconducting resonators are used in

a variety of applications, including circuit QED for
quantum-information processing and quantum memories
[54–56], microwave-kinetic-inductance detectors for
astronomy [57], and pulsed electron spin resonance
[30–32,58]. Often, however, these devices are operated
in their linear regime to avoid complications resulting from
nonlinearity. Avoiding nonlinearities requires reducing
input power, leading to longer control sequences that
reduce the number of quantum operations that can be

performed before the system decoheres. Additionally,
limiting input power removes the natural robustness
of high-power sequences to uncertainties in the environ-
ment achieved by strongly modulating the quantum
system [59,60].
If the circuit were linear, the distortion could be modeled

as a convolution ϕ ⋆ as discussed above. However, with
nonlinear circuit elements present we must numerically
solve the circuit’s differential equation every time we wish
to compute the distorted pulse [27].
As a first demonstration, it is most natural to begin with a

qubit system. This is both because it lets us more clearly
isolate the change in control landscape induced by the
nonlinear distortion operator, and because it is known that
control landscapes generally scale well with Hilbert space
dimension [61]. Our qubit is a near-resonance spin system
whose Hamiltonian, in the rotating frame after invoking the
rotating wave approximation, is

H ¼ δω

2
σz þ ð1þ κÞ

�
ωxðtÞ
2

σx þ
ωyðtÞ
2

σy

�
; ð14Þ

where δω and κ represent off-resonance and control power
errors, respectively.
The time evolution of the circuit shown in Fig. 2 is

governed by the third-order differential equation

d
dt

2
64

IL
VCm

VCt

3
75 ¼

2
664
− R

L 0 1
L

0 −1
RLCm

1
RLCm

−1
Ct

−1
RLCt

1
RLCt

3
775
2
64

IL
VCm

VCt

3
75þ

2
664

0
VsðtÞ
RLCm

VsðtÞ
RLCt

3
775;

ð15Þ

FIG. 2. A quantum system being controlled by the magnetic
field produced by the inductor of a nonlinear resonator circuit.
The ideal voltage source VsðtÞ is specified by the input undis-
torted pulse ~p, and the resulting current through the inductor
ILðtÞ is computed. The inductance and the resistance are both
functions of the current passing through them. The form of the
nonlinearity is chosen to be consistent with kinetic inductance.
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where the nonlinearities arise when the inductance L and
resistance R are functions of the current passing through
them [27,62]. In the case of kinetic inductance, these
nonlinearities take on the form

L ¼ LðILÞ ¼ L0ð1þ αLjILj2Þ;
R ¼ RðIRÞ ¼ R0ð1þ αRjIRjηÞ; ð16Þ

where αL, αR, and η are constants [28,29]. Kinetic
inductance leads to a reduction in the circuit resonance
frequency, coupling, and quality factor with increasing
power, as shown in Figs. 3(a) and 3(b).
Since our Hamiltonian in Eq. (14) is written in a frame

rotating at the circuit resonance frequency in the linear
regime, it is convenient to write our differential equation in
this frame. To this end, with the differential equation (15)
shorthanded as _~yðtÞ ¼ B(~yðtÞ)~yðtÞ þ VsðtÞ~b, we introduce
the complex change of variables ~xðtÞ ¼ e−iω0t~yðtÞ. In this

new frame, since B(~yðtÞ) ¼ B(~xðtÞ), our dynamics
become

_~xðtÞ ¼ ½B(~xðtÞ) − iω0I�~xðtÞ þ ~VsðtÞ~b;
≡ A(~xðtÞ)~xðtÞ þ ~VsðtÞ~b; ð17Þ

where we have invoked the rotating wave approximation,
and ~VsðtÞ is the rotating version of VsðtÞ. Further details are
provided in the Supplemental Material [36], Sec. B. Now
the real and imaginary parts of the complex current in the
rotating frame, ~ILðtÞ ¼ e−iω0tILðtÞ, are proportional via a
geometric factor to the control amplitudes appearing in the
Hamiltonian,

ωxðtÞ ∝ Re½~ILðtÞ� and ωyðtÞ ∝ Im½~ILðtÞ�: ð18Þ

To compute the distortion ~q ¼ gð~pÞ caused by the
resonator, we set the circuit’s input voltage ~VsðtÞ to be
the piecewise constant function with amplitudes coming
from ~p. To improve stiffness conditions, a small finite rise
time may be added to the forcing term ~VsðtÞ, which is
equivalent to adding a low-pass filter to the ideal voltage
source in the circuit. We can now solve Eqs. (17) for ~ILðtÞ
using the NDSOLVE function in Mathematica 10, interpo-
late the results, and resample at a rate δt to determine the
distorted pulse ~q.
Because our distortion is nonlinear, the Jacobian of gwill

not be constant with respect to the input pulse ~p. However,
we may compromise the accuracy of the Jacobian in favor
of taking a larger number of ascent steps that are still
generally uphill by using the approximation

∂gm;l

∂pn;k

����
~p
≈ ½gðϵ~en;kÞ=ϵ�m;l: ð19Þ

These quantities may be precomputed prior to gradient
ascent and therefore only add a constant to the computation
time. Exact partial derivatives may be computed for a cost
that scales as KN and whose implementation can be highly
parallelized, as derived in the Supplemental Material
[36], Sec. C2.
In Fig. 4, we show an example of a GRAPE-optimized

pulse for U ¼ π=2Þx, with the circuit of Fig. 2 used as a
distortion operator. There are 16 time steps of length 0.5 ns
shown as a solid-red step function. The pulse has been
made to be robust to static uncertainty in the Hamiltonian
parameters δω and γ and the nonlinearity parameter αL.
Since the circuit has a high quality factor, it would take
many times the length of the pulse for the ringdown tail to
decay to zero. We therefore utilize an active ringdown
suppression scheme with three compensation steps of
lengths 4, 2, and 1 ns. This is a generalization of ringdown

FIG. 3. (a) Response from the same resonator to a top-hat input
pulse of length 300 ns with an amplitude in both a linear (0.1 V)
and nonlinear (10 V) regime. The amplitude of the 0.1-V pulse is
multiplied by 10 to make it visible. (b) The steady-state driving
frequency as seen by the spins as a function of the voltage input to
the resonator. (c) Out of 160 pulses searched for at each of 10
voltage bounds, Vbound, with corresponding total pulse length
Tpulse ¼ 0.25=fSS, the fraction that failed to reach F ¼ 0.99
before the step size was effectively zero. (d) The median number
of calls made to the distortion function g along with the 16% and
84% quantiles during the gradient ascent for those pulses which
did reach F ¼ 0.99.
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suppression in linear circuits [13,63,64] with details
presented in the Supplemental Material [36], Sec. D.
Having demonstrated the ability to find a robust gate in

the presence of our nonlinear distortion operator, we now
study the effect it has on the control landscape. It would
perhaps be anticipated that, in the presence of a nontrivial
distortion operator, finding optimal solutions would
become more expensive, measured in the number of steps
taken by the optimizer. Therefore, a trade-off between
computational cost and gate-time length could reasonably
be expected. We perform a numerical study to examine this
relationship.
We bound the allowed input power to the resonator used by

the GRAPE algorithm by ten different voltages, 1 to 10 V,
where 1 V is on the edge of the linear regime and 10 V is
highly nonlinear. In analogy to the numerical control-
landscape experiments performed in Ref. [48], for each of
these bounds, we attempt to compute a fidelity F ¼ 0.99
π=2Þx pulse 160×, with a different random initial guess each
time. The total length of the pulse is set to Tpulse ¼ 0.25=fSS
where fSS is the steady-state driving frequency of the
resonator at the corresponding voltage bound. The number
of time steps is held constant at N ¼ 16 for each trial. The
gradient approximation from Eq. (19) is used. On each trial,
we count the number of times the distortion function g is
called. The results are shown in Fig. 3, where it is seen that the
number of calls actually tends to decrease as the allowed
nonlinearity is increased, indicating that the control landscape
does not become more difficult to navigate.

V. CONCLUSION

In conclusion, we have presented an optimization frame-
work that permits the design of robust quantum control

sequences that account for general simulatable distortions
by classical control hardware. We have demonstrated that
even when distortions are nonlinear with respect to the
input—using the particular example of a nonlinear reso-
nator circuit—robust quantum control may still be
achieved, and searching through the control landscape
does not necessarily become more difficult. Thus, classical
control devices may be operated in their high-power regime
to permit fast high-fidelity quantum operations, increasing
the number of gates that can be performed within the
decoherence time of the quantum system.
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