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Nanoscale materials display enhanced strength and toughness but also larger fluctuations and more
pronounced size effects with respect to their macroscopic counterparts. Here we study the system size
dependence of the failure strength distribution of a monolayer graphene sheet with a small concentration of
vacancies by molecular dynamics simulations. We simulate sheets of varying size encompassing more than
three decades and systematically study their deformation as a function of disorder, temperature, and loading
rate. We generalize the weakest-link theory of fracture size effects to rate- and temperature-dependent
failure and find quantitative agreement with the simulations. Our numerical and theoretical results explain
the crossover of the fracture strength distribution between a thermal and rate-dependent regime and a
disorder-dominated regime described by the extreme-value theory.
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I. INTRODUCTION

Nanomaterials have remarkable mechanical properties,
such as enhanced strength and toughness [1,2], but display
considerable size effects and sample-to-sample fluctua-
tions, which represent an issue for engineering applica-
tions. Our current understanding of fracture size effects in
macroscopic disordered media relies on the extreme-value
theory, which relates the strength to the statistics of the
weakest region in the sample [3,4]. While the theory does
not consider the effect of stress concentrations and crack
interactions, numerical models for the failure of elastic
networks with disorder show that an extreme-value dis-
tribution describes failure at large enough scales, although
the form usually deviates from the standard Weibull
distribution [5–8]. Understanding size effects in nano-
materials is still an intriguing open issue also because of
the presence of rate-dependent thermal effects that would
invalidate the weakest-link hypothesis [9]. Yet, the Weibull
distribution is commonly used to fit experimental data
in carbon-based nanomaterials [10], although the tensile
strength is observed to depend on the strain rate [11].
Testing fracture properties of graphene is quite chal-

lenging due to the difficulty in applying high-tensile
stresses in a controlled fashion on nanoscale objects

[12–14]. Therefore, numerical simulations represent a
viable alternative to understand the size dependence of
its mechanical behavior [15–19]. Numerical simulations of
defected carbon nanotubes suggest that failure is described
by the Weibull distribution in quasistatic, zero-temperature
conditions [20]. Finite-temperature molecular dynamics
simulations reveal, however, that the average tensile
strength of nanotubes [21] and graphene [19,22,23]
depends on the temperature and loading rate. Despite these
insightful results, a comprehensive theory describing the
size-dependent fracture strength distribution of carbon
nanomaterials, elucidating the role of thermal fluctuations
and strain rate, is still lacking.
Here we perform large-scale molecular dynamics sim-

ulations of the deformation and failure of defected mono-
layer graphene sheets for a wide range of sample sizes,
vacancy concentrations, temperatures, and strain rates. To
explain the observed temperature and rate dependence of
the tensile strength distribution, we generalize the extreme-
value theory to the case of a thermally activated rate-
dependent fracture. The resulting theory is shown to be
in excellent agreement with our simulations and provides
a general framework to explain rate-dependent thermal
effects in the failure of disordered nanomaterials. Based on
our theory, we derive a simple criterion that allows us to
assess the relative importance of structural disorder and
thermal fluctuations in determining failure. Using this rule,*stefano.zapperi@unimi.it
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one can readily show that the failure of nanoscale samples
is more prone to thermal-induced failure, while the fracture
macroscopic samples are more likely to be ruled by
quenched disorder. This confirms previous results showing
that, in the limit of very large samples, failure is ruled by
extreme-value statistics (although not necessarily by the
Weibull law) [8,24].
This paper is organized as follows. In Sec. II, we describe

the molecular dynamics simulation model and in Sec. III
discuss the numerical results. The theory is described in
detail in Sec. IV, where we also compare its prediction with
experiments. Section V discusses the general implications
of our work to understand size effects in materials at
different scales. Appendix A provides details on the choice
of interatomic potential, and Appendix B discusses the
fitting method.

II. MODEL

We perform numerical simulations of the deformation
and failure of defected monolayer graphene using the
LAMMPS molecular dynamics simulator package [25].
The carbon-carbon atom interaction is modeled with the
“adaptive intermolecular reactive bond order” (AIREBO)
potential [26]. In order to simulate a realistic bond-failure
behavior, the shortest-scale adaptive cutoff of the AIREBO
potential has to be fine-tuned [15,22], as detailed in
Appendix A. The simulated system consists of single-
layer, monocrystalline graphene sheets, composed of a
variable number N of atoms: N varies from approximately
103 to 50 × 103 atoms. The sheets are prepared by placing
the atoms on a hexagonal lattice; the characteristic lattice
length scale λ ¼ 1.42 Å is chosen so that the system is
initially in an equilibrium configuration. The sheets have an
almost square shape lying on the XY coordinate plane; their
lateral size depends on N and varies between 50 and 360 Å
(5 and 36 nm). When placing defects on the sheets, a fixed
fraction of atoms is randomly removed; this corresponds
to vacancy concentrations P ¼ 0.1%, 0.2%, and 0.5%.
While the graphene layer is essentially 2D, the atom
positions are integrated in all three spatial directions; also,
the layers have no periodic boundary conditions.
The simulations are performed by stretching the samples

along the X coordinate axis, corresponding to the “arm-
chair” direction of the graphene hexagonal structure. We
select two boundary strips of atoms at the opposite X ends
of the sheet. These strips are 3.5 Å wide, corresponding to
four atom layers. Hence, the atoms are free to move in the Y
and Z directions but follow an imposed motion along the
stretching direction (X). This constraint induces an initial
prestress on the sheet that is visible in the stress-strain curve
[see Fig. 1(b)]. The Y-end boundaries are left free. The
system is thermostated by means of a Berendsen [27]
thermostat with a temperature ranging from 1 to 800 K and
a characteristic relaxation time equal to 0.1 ps; the simu-
lation time step is set to 0.5 fs to ensure a correct time

integration of the atom dynamics. These parameters lead to a
slightly underdamped atom dynamics. Before the stretching
protocol is started, the system is allowed to relax to thermal
equilibrium from the initial constrained state. Afterwards,
one of the lateral strips is set in motion, so that the sample is
subject to a constant engineering strain rate _ε independent of
the system size. The strain rates lie between 1.28 × 107 and
1.28 × 109 s−1. As for other molecular dynamics simula-
tions, the simulated strain rates are much higher than
those applied experimentally, but the deformation speed
is still much lower than the sound speed in graphene.
The chosen strain rate is reached by adiabatically ramping
up _ε, in order to minimize the creation of shock waves in
the material. As a matter of fact, visual inspection of the
velocity fields shows that the shock waves are rapidly
damped and do not significantly influence the system
dynamics. Simulations are carried on until the graphene
sheet fractures. Failure statistics are sampled over 100
realizations for each condition in which we vary vacancy
the concentrationP, temperature T, strain rate _ε, and system
size N. The only exception is provided by systems charac-
terized by T ¼ 300 K, _ε ¼ 0.128 × 108 s−1,N ¼ 20 × 103,
and N ¼ 50 × 103 atoms, where 50 samples are simulated.

III. SIMULATIONS

An example of the fracture process is shown in Fig. 1(a),
where the graphene structure is seen from above at four

(a)

(b)

FIG. 1. Failure of graphene sheets. The graphene sheet is
composed of N ¼ 50 × 103 atoms, with a vacancy concentration
(porosity) P ¼ 0.1%. The color bar indicates the σxx component
of the stress tensor per atom. (a) A graphical view of the failure
process (from left to right). The crack nucleates from one of the
defects already present in the material (not necessarily the most
stressed) and rapidly grows until the graphene sheet complete
failure is achieved. (b) The stress-strain curve displays temper-
ature-dependent fracture strength. The prestressed initial con-
dition (ε ¼ 0) is due to the constraint applied to the atoms
belonging to the four outermost layers of the sheet, which are
subject to the stretching along X.
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different times during the nucleation and ensuing growth of
the crack (see also Video 1). The color code represents the
XX component of the symmetric per atom stress tensor σxx,
including both potential and kinetic terms. Typical stress-
strain curves are reported in Fig. 1(b), showing that the
tensile strength depends on temperature T. Our results
provide a clear indication that it also depends on system
size N, vacancy concentration P, and strain rate _ε, as we
discuss below.
Figure 2(a) reports the average failure stress hσi as a

function of the system size for different values of the
porosity P, showing that the larger and more defective a
sample is, the weaker it is. A more complete description of
the failure statistics is obtained by the survival distribution
SðσÞ, defined as the probability that a sample has not yet
failed at a stress σ. The numerical results for SðσÞ are
reported in Fig. 2(b). If a system of volumeV fails according
to extreme-value statistics, the survival distribution should
depend on the volume as SðσÞ ¼ S0ðσÞV=V0 , where S0ðσÞ
is the survival distribution of a representative element of
volumeV0, the smallest independent unit in the sample [28].
If we express the volume in terms of the number of atomsN
and their atomic volume Va, the survival probability can
be written as SðσÞ ¼ exp½−NVa=V0fðσÞ�, where fðxÞ is a
suitable function which is a power law xκ in the case of
Weibull distribution [4] and exponential ex for Gumbel
distribution [3]. Figure 2 shows that the N dependence of
the survival distribution follows the prescriptions of the
extreme-value theory, but fðxÞ is not a power law, indicating
that the Weibull distribution does not represent the data.

This is confirmed by the size scaling of the average failure
stress that does not follow a power law, aswould be expected
from the Weibull distribution. The survival distribution
depends also on the temperature and strain rate, as shown
in Fig. 3, which is hard to reconcile with the weakest-link
hypothesis underlying the Weibull distribution. Indeed,
by monitoring the local stress field σxx before failure,
we estimate that only in less than 20% of the samples
(forN ¼ 50 × 103) does the final crack nucleate in the most
stressed region. In 50%–60% of the cases, the final crack is
nucleated in regions that ranked fourth or more in terms
of stress. This is a clear indication that failure is not dictated
by the weakest link.

VIDEO 1. The deformation and fracture of a graphene sheet as
the strain is ramped is shown in the top left panel (P ¼ 0.1%,
N ¼ 50 × 103, T ¼ 300 K, and _ε ¼ 0.128 × 108 s−1). The color
represents the tensile stress σXX magnitude. A magnification of
the region where the crack is nucleated is shown in the bottom left
panel. The top right panel reports the same sheet viewed under a
different angle with a color code representing the Z component
of the particle positions. The bottom right panel reports the
corresponding stress-strain curve.

(a)

(b)

FIG. 2. Graphene fracture size effects. (a) The average failure
stress for defected graphene depends on the system size N and on
the vacancy concentration P. Simulations are carried out with
T ¼ 300 K and _ε ¼ 0.128 × 108 s−1. The lines are the theoretical
prediction as discussed in Appendix B. They do not arise as a
direct fit of the numerical curves but result from the analytical
evaluation of the integral expression of hσin. (b) The failure stress
survival distribution at T ¼ 300 K and _ε ¼ 0.128 × 108 s−1 for
different system sizes with a vacancy concentration equal
to P ¼ 0.1% (blue), P ¼ 0.2% (green), and P ¼ 0.5% (red).
When the survival probability distributions are rescaled by N
according to the predictions of the extreme-value theory, the data
collapse into a single curve that depends only on the vacancy
concentration P.
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IV. THERMALLY ACTIVATED FRACTURE OF
DISORDERED MEDIA

A. Derivation of the survival distribution

To understand our simulation results, we generalize
the extreme-value theory, taking into account thermal
fluctuations. We describe the system as a set of n
representative elements of volume V0 (slabs) such that
the thermally activated failure of a single element induces
global failure. Each representative i element obeys linear
elasticity up to a critical strain εic, so that the elastic energy
of the sample under an external stress σ is given by
UðσÞ ¼Pi½U0ðεi; εicÞ − V0σεi�, where

U0ðε; εcÞ ¼
�
V0

Eε2
2

ε ≤ εc;

−∞ ε > εc;
ð1Þ

where E is the Young modulus. The sample is loaded at
constant strain rate _ε so that σðtÞ ¼ E_εt and critical strains

are distributed according to a probability density function
ρðεcÞ. Assuming the slabs to be noninteracting and iden-
tical, the survival probability for the entire sample is given
by the product of the survival probabilities of each
representative element SnðσjT; _εÞ ¼ ½S0ðσjT; _εÞ�n, accord-
ing to the theory of breaking kinetics [29]. The represen-
tative volume survival probability is defined as

S0ðσjT; _εÞ ¼
Z

∞

σ=E
dεcρðεcÞΣ0ðσjεc; T; _εÞ; ð2Þ

where Σ0ðσjεc; T; _εÞ represents the survival probability of a
single slab characterized by a failure strain εc. Equation (2)
reduces to the standard extreme-value theory when
Σ0ðσjεc; T; _εÞ ¼ 1 but otherwise depends on the temper-
ature and strain rate. In general, however, the theory
predicts that logðSnÞ=n should not depend on the system
size, as verified by our simulations [see Fig. 2(b)].
To estimate the survival distribution of the single slab

Σ0ðσjεc; T; _εÞ, we make the phenomenological hypothesis
that the material failure arises as a thermally activated
process. Historically, the idea that the solid failure can
be described by means of the Kramer theory, where the
intrinsic energy barrier is reduced proportionally to the
applied field, first appeared in material science to treat
the kinetic fracture of solids under applied stresses and
dates back to the works of Tobolsky and Eyring [30] and,
later, of Zhurkov [31]. More recently, it has been success-
fully applied to the study the failure of fibers [32], gels [33],
wood, and fiber glasses [34], where the potential energy
barrier is given by the Griffith crack nucleation energy [35].
Most previous work focused on the thermal dependence of
the average strength or the failure time in creep experiments
and did not address the survival distribution and its size
dependence. To this end, we start from recent theories
developed for single-molecule pulling, where the molecule
rate coefficient for rupture (or unbinding) is modified by
the presence of an external time-dependent force [36–43].
In our case, the stress-dependent failure rate of a single

element characterized by a failure strain εc is given by an
Arrhenius-like form [39,40,43]:

kðσjT; εcÞ ¼ k023=2
�
1− σ

Eεc

�
eðV0Eε2cÞ=ð2kBTÞf1−2½1−ðσ=EεcÞ�2g;

ð3Þ

where k0 is the Kramer escape rate from the potential well
described in Eq. (1) [37,44],

k0 ¼ ω0

�
EV0

kBT

�
3=2 εcffiffiffiffiffiffi

2π
p e−ðV0Eε2c=2kBTÞ; ð4Þ

with a characteristic frequency ω0. In our numerical
simulations, one end of the graphene sheet is held fixed,
while the other is pulled at constant strain rate _ε: This can

(a)

(b)

FIG. 3. Temperature and rate effects of the graphene
tensile strength distribution. The survival distribution of defected
graphene sheets depends on (a) the temperature (with P ¼ 0.2,
_ε ¼ 1.28 × 108 s−1, and N ¼ 104) and (b) strain rate (with
P ¼ 0.2, T ¼ 300 K, and N ¼ 104). The dashed lines represent
the best least-square fit according to the theory of breaking
kinetics discussed in the text.
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be interpreted as the action of a stiff device [40,43] for
which Eq. (3) is derived. Σ0ðσjεc; T; _εÞ obeys the following
first-order rate equation [41]:

dΣ0ðσjεc; T; _εÞ
dt

¼ −k½σðtÞjT; εc�Σ0ðσjεc; T; _εÞ; ð5Þ

where σðtÞ ¼ E_εt. The survival probability is then readily
obtained as

Σ0ðσjεc; T; _εÞ
¼ e−ðω0=_εÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0E=πkBT

p
½e−ðεc−σ=EÞ2ðV0E=kBTÞ−e−ε2cðV0E=kBTÞ�: ð6Þ

Notice that Eq. (6) holds only for σ < Eεc, since otherwise
the element fails with probability one [when σ ≃ Eεc,
the Kramer theory incorrectly predicts kðσjT; σ; εcÞ≃ 0,
since it holds only for energy barriers ≫ kBT [39]].
Finally, inserting Eq. (6) into Eq. (2) and, in turns, into
the constitutive equation for the theory of breaking kinetics,
we obtain

SnðσjT; _εÞ ¼
 Z

∞

σ=E
dεcρðεcÞ × exp−ω0

_ε

ffiffiffiffiffiffiffiffiffiffiffi
V0E
πkBT

s

× ½e−ðεc−σ=EÞ2ðV0E=kBTÞ − e−ε2cðV0E=kBTÞ�
!

n

:

ð7Þ

B. Limiting behavior of the theoretical
survival distribution

The survival distribution reported in Eq. (7) is written
as a convolution of the disorder distribution ρðεcÞ with a
temperature- and rate-dependent kernel. It is instructive
to study its limiting behaviors, since this allows us to
assess the relevance of thermal and rate-dependent
effects for fracture statistics. Our starting point is the
expression for the conditional survival probability
Σ0ðσjεc; T; _εÞ reported in Eq. (6). It is convenient to
study its behavior in terms of the dimensionless param-
eter λ≡ ðV0EÞ=ðkBTÞ, the ratio between the elastic
energy of a representative volume element and the
thermal energy. In terms of λ, we can write Σ0ðλÞ≡
exp½−GðλÞ�, where

GðλÞ ¼ ω0

_ε

ffiffiffi
λ

p
½e−ðλεcÞ2½1−σ=ðεcEÞ�2 − e−ðλεcÞ2 �: ð8Þ

Thermal fluctuations can be neglected when GðλÞ → 0,
yielding the usual disorder-induced survival probability
distribution

SnðσjT; _εÞ≃
�Z

∞

σ=E
dεcρðεcÞ

�
n
: ð9Þ

It is interesting to consider first the limit of λ → ∞,
corresponding to a very low temperature and large repre-
sentative volume elements. In this limit, the exponential
factors in GðλÞ dominates, and the function goes to zero
even for small strain rates. In more generality, thermal
fluctuations become negligible when

_ε ≫ ω0

ffiffiffi
λ

p
½e−ðλεcÞ2½1−σ=ðεcEÞ�2 − e−ðλεcÞ2 �: ð10Þ

Therefore, there is a temperature- and stress-dependent
critical strain rate above which we can neglect thermal
fluctuations.
Another interesting limit is the low-stress regime

(i.e., σ
E → 0), where

Σ0ðσjεc; T; _εÞ → 1 − 2
ω0

_ε

ffiffiffiffiffiffi
E
V0

s �
V0

kBT

�
3=2

εcσ: ð11Þ

Hence, thanks to Eq. (2), the survival distribution for a
representative element is given by

S0ðσjT; _εÞ → 1 − 2
ω0

_ε

ffiffiffiffiffiffi
E
V0

s �
V0

kBT

�
3=2

hεciσ; ð12Þ

where hεci ¼
R∞
0 dεcεcρðεcÞ. Therefore, the survival prob-

ability distribution function for the entire system can be
recast as

− ln SnðσjT; _εÞ
n

→ 2
ω0

_ε

ffiffiffiffiffiffi
E
V0

s �
V0

kBT

�
3=2

hεciσ; ð13Þ

displaying a linear dependence on the applied stress,
irrespective of the failure strain distribution function ρðεcÞ.

C. Fit of the numerical data

Equation (7) provides an excellent fit to the results
obtained from numerical simulations of defected graphene
at different defect concentrations P, temperatures T, and
loading rates _ε. To fit the numerical simulations with
Eq. (9), we first need to establish the form of ρðεcÞ.
This is a phenomenological function describing the dis-
tribution of failure strains of representative volume ele-
ments at zero temperature. A reasonable estimate of its
functional form can be obtained from simulations at a low
temperature (i.e., T ¼ 1 K), where thermal fluctuations
are negligible, as discussed in detail in Appendix B. The
numerical outcomes indicate that ρðεcÞ follow the Gumbel
distribution [3] (see Fig. 4). We then insert the resulting
form of ρðεcÞ in Eq. (7), which we adopt as a fitting
function for the numerical survival probability SðσÞ, with
ω0 and V0 as fitting parameters.
The representative volume V0 ranges between 0.1 and

0.25 nm3, while the characteristic frequency is found in the
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range between approximately 6 × 106 and approximately
108 s−1 (see Fig. 5). Moreover, from the survival distri-
bution, we also calculate, without additional fitting, the
system size dependence of the average tensile strength

hσin, which displays an excellent agreement with simu-
lation results as shown in Fig. 2(a). Further details on the
fitting methodology and the analytical expressions used in
our model are reported in Appendix B.

V. DISCUSSION

In conclusion, we perform extensive numerical simu-
lations for the tensile failure of defected graphene, focusing
on the size effects of the strength distribution for different
temperatures and loading rates. The results of numerical
simulations show deviations from the weakest-link hypoth-
esis but can be explained by taking explicitly into account
the effect of thermally activated crack nucleation. The
resulting theory describes well our results and could prove
useful to understand the tensile strength distribution of
other nanomaterials such as carbon nanotubes or other
nanowires.
At present, it is not possible to compare our numerical

and theoretical predictions directly to experiments.
Experimental measurements of the strength of graphene
sheets are mostly based on indentation tests [12], while
tensile tests have only recently appeared in the literature
[14], but thermal, rate, and size effects have not been
studied. Furthermore, most experimental studies focus on
the strength of graphene in pristine conditions [12] without
defects or preexisting cracks. Our theory is, however, very
general, yielding predictions that should be applicable also
to other carbon nanomaterials, and allows one to formulate
general considerations on the relevance of thermal effects
for fracture.
Equation (7) suggests that thermal fluctuations can be

neglected for a large enough strain rate, since in this limit
Σ0 ≃ 1 and the sample fails according to the weakest-link
statistics. In our simulations, we have E≃ 1012 Pa and
V0 ≃ 0.1 nm3, so that at room temperature we estimate
λ≃ 105. If we use this value in Eq. (8), we find that for
εc ≃ 0.1 the exponential terms do not vanish close to failure
[i.e., for σ > 0.9ðEεcÞ], and thermal effects should there-
fore be relevant. Indeed, using ðω0=_εÞ≃ 10−2 in Eq. (10),
one can readily show that thermal effects start to become
relevant for T > 10 K, in agreement with our simulations.
The same argument suggests that in macroscopic sam-

ples, with larger representative volume elements, thermally
activated failure can often be ignored, even at room
temperature. Consider, for instance, a ceramic material,
like sintered α-alumina [45], with E ¼ 1011 Pa and a
typical tensile strength of σ ¼ 108 Pa. Assuming that the
representative volume element corresponds to a grain size
of V0 ≃ 1 ðμmÞ3, we can estimate λ≃ 1014. Now the
exponential factors impose that GðλÞ → 0 even at low
strain rates, implying that the strength distribution should
be described by the conventional extreme-value theory.
Indeed, experiments show that the strength distribution is
described by Weibull statistics with parameters that are

FIG. 4. Survival distribution of defected graphene at a low
temperature. We report the survival distribution obtained from
simulations at T ¼ 1 K, _ε ¼ 0.128 × 108 s−1, and N ¼ 104 for
different values of the vacancy concentration P. The numerical
data are fitted with the exponential function Aeσ=Eε0 (solid lines),
leading to a Gumbel distribution for the failure strains ρðεcÞ ¼
Aeðεc=ε0Þ−Aeεc=ε0 [see Eq. (B1)]. For P ¼ 0.1%, we obtain A ¼
7.92� 0.05 × 10−38 and ε0¼0.00125�0.00004. For P ¼ 0.2%,
A ¼ 1.767� 0.005 × 10−35 and ε0 ¼ 0.001338� 0.000007.
For P ¼ 0.5%, A ¼ 1.804� 0.007 × 10−28 and ε0 ¼ 0.00167�
0.00004.

(a)

(b)

(c)

(d)

V
0 

[n
m

3 ]

V
0 

[n
m

3 ]

FIG. 5. Fitting parameters for graphene survival distributions.
The best fitted values of (a) the representative volume V0 and
(b) the activation frequency as a function of temperature
(N ¼ 104 and _ε¼1.28×108 s−1). These values are obtained by
the least-square fit of the numerical survival probability distri-
bution with the expression (B2) [dashed lines in Fig. 3(a)]. The
same values [(c),(d)] as a function of the strain rate (N ¼ 104 and
T ¼ 300 K), obtained from the best fits shown in Fig. 3(b)
(P ¼ 0.2%) and Fig. 8 (P ¼ 0.5%) (dashed lines).
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largely temperature independent [45]. Our theory thus
provides a simple way to estimate the relevance of thermal
and rate-dependent effects for fracture. This result could
have important implications for applications to micro- and
nanomechanical devices whose reliability may crucially
depend on the control of thermally activated failure.
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APPENDIX A: INTERATOMIC POTENTIAL AND
CUTOFF TUNING

The carbon-carbon atom interactions are modeled using
the AIREBO potential [26], which was originally devel-
oped as an extension of the “reactive bond order” (REBO)
potential [46]. In turn, the REBO potential was developed
to describe covalent bond breaking and forming with
associated changes in atomic hybridization within a
classical potential; it has proven an useful tool for modeling
complex chemistry in large many-atom systems. The
AIREBO potential improves the REBO potential with an
adaptive treatment of nonbonded and dihedral angle inter-
actions that is employed to capture the bond breaking
and bond reformation between carbon atom chains. The
analytical form of the AIREBO potential (as discussed in
Ref. [25]) is written as

E ¼ 1

2

X
i

X
j≠i

�
EREBO
ij þ ELJ

ij þ
X
k≠i;j

X
l≠i;j;k

Etorsion
ijkl

�
:

The EREBO term has the same functional form as the
hydrocarbon REBO potential developed in Ref. [46]. We
do not cover here the details of the energetic terms, which
are thoroughly discussed in the mentioned reference. In
short, the REBO term gives the model its short to medium
range reactive capabilities, describing short-ranged C—C,
C—H, and H—H interactions (r < 2 Å). These inter-
actions have strong coordination dependence through a
bond order parameter, which adjusts the attraction between
the i; j atoms based on the position of other nearby atoms
and thus has three- and four-body dependencies. A more
detailed discussion of formulas for this part of the potential
is given in Ref. [26]. The ELJ

ij term adds longer-ranged

interactions (2 < r < rcutoff Å) using a form similar to the
standard Lennard-Jones (LJ) potential. It contains a series
of switching functions so that the short-ranged LJ repulsion
(1=r12) does not interfere with the energetics captured
by the EREBO

ij term. The extent of the ELJ
ij interactions is

determined by a cutoff argument; in general, the resulting
ELJ
ij cutoff is approximately 10 Å, and in this work

we consider a cutoff of approximately 14 Å. Finally, the

Etorsion
ijkl term is an explicit four-body potential that des-

cribes various dihedral angle preferences in hydrocarbon
configurations.
The AIREBO potential is extensively used to simulate

and predict mechanical properties of carbon-based materi-
als, i.e., fullerene, carbon nanotube, and graphene [22].
Furthermore, it offers a valid trade-off between accuracy
and computational efficiency; a realistic fracture of large
system sizes can be simulated in reasonably short time
scales (a few hours on recent computers). Other interaction
models can offer little improvement to the actual realism of
the simulation, at the cost of much larger computational
costs: For example, the Reactive Force Field (ReaxFF)
potential or density-functional theory semiclassical
approaches could describe more accurately the fast time
scales of chemical reactions, but this would not change the
ultimate failure length of the C—C bond: The expected
maximum elongation for a C—C bond in graphene is
around 0.178 nm. On the other hand, the use of faster
but too simplistic models (e.g., Lennard-Jones potentials,
mass and spring systems, or other elastic models) fails to
significantly reproduce a realistic behavior.
However, in order to simulate a realistic bond failure

behavior, the short-scale C—C adaptive cutoff (rc) of the
AIREBO potential has to be tuned. In fact, it has been
observed [15,47] that, during simulations of fracture of
covalent bonds and without cutoff tuning, the shortest-scale
potential introduces a sharp increase of bond forces near the
cutoff distances, which in turn causes a spurious increase in
the fracture stress and strain [22]. It should also be noted
here that this phenomenon is specifically relevant for
perfect graphene and carbon nanotube lattices, while it is
much less pronounced in defected samples, due to the
disorder induced in the lattice by the atom vacancies. This
issue has been solved in the past by incrementing the short-
scale cutoff length of the potential; the cited papers increase
this parameter to 2.0 Å. This, however, has the side effect of
leading to a singular behavior in the atomic pair potential
when the atom-atom distance is exactly 2 Å.
We perform stretching simulations varying the cutoff

parameter from rc ¼ 0.17 nm (default value) to rc ¼
0.2 nm in both the armchair (X) and zigzag (Y) directions
of the graphene sheet with no vacancies (P ¼ 0). The
stress-strain curves obtained from the numerical simula-
tions are shown in Fig. 6. For rc < 0.195 nm, a sharp
increase on tensile stress for large strains is observed,
leading to an unphysical ultrahigh failure stress and
corresponding failure strain. Increasing the rc in the range
0.195 ≤ rc ≤ 0.2 nm strongly suppresses this phenome-
non. Moreover, the stress-strain data reported in Fig. 6
clearly display that the failure strain varies from 0.13 to
0.25 when rc is in the range 1.95 < rc ≤ 2, whereas the
failure stress exhibits a much weaker fluctuation (from
85 × 109 to 95 × 109 Pa). Finally, we notice that for
defected samples like those investigated in the present
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article, i.e., P ≠ 0, the values of the failure stresses and
strains do show a much less marked dependence on the
choice of rc, whenever 1.95 < rc ≤ 2.

APPENDIX B: DETAILS OF THE FITTING
METHOD

To fit the numerical simulations with Eq. (7), we first
obtain ρðεcÞ from simulations at a low temperature (i.e.,
T ¼ 1 K). As shown in Fig. 4, the numerical survival
distribution function −ðln SðσÞ=NÞ, obtained at T ¼ 1 K

and _ε ¼ 0.128 × 108 s−1, can be nicely fitted with the
following exponential form: Ae−ðσ=Eε0Þ. The theoretical
prediction for the survival probability distribution furnished
by Eq. (9) requires − ln

R∞
σ=E dεcρðεcÞ ¼ Ae−ðσ=Eε0Þ, once

we assume that V0 ≡ Va when T → 0. Hence, we obtain

ρðεcÞ ¼ Aeðεc=ε0Þ−Aeεc=ε0 ; ðB1Þ
which corresponds to a Gumbel distribution of failure
strains [3]. The numerical values of the fitting parameters A
and ε0 are reported in the caption of Fig. 4 for three vacancy
concentrations P. We notice that the simulated samples
for T ¼ 1 K are 250 in the case of P ¼ 0.1%, 850 for
P ¼ 0.2%, and 800 for P ¼ 0.5%.
We then perform the least-square fit of the numerical

survival probabilities −ðln SðσÞ=NÞ, obtained for different
values ofT, _ε, and porositiesP [see Figs. 3(a), 3(b), 7, and 8],
with the following function:

− ln SnðσjT; _εÞ
N

¼ −Va

V0

ln

�Z
∞

σ=E
dεcAeðεc=ε0Þ−Ae

ðεc=ε0Þ

× e−ðω0=_εÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0E=πkBT

p
½e−ðεc−σ=EÞ2ðV0E=kBTÞ−e−ε2cðV0E=kBTÞ�

�
;

ðB2Þ
where the fitting parameters are the representative volume
element V0 and the characteristic frequency ω0. The atomic

FIG. 6. Tuning the AIREBO potential. The stress-strain curve is
obtained as a function of the cutoff rc. The simulated graphene
sheet is composed by N ¼ 104 carbon atoms at T ¼ 300 K,
without in-built defects (P ¼ 0) and pulled at constant strain rate
_ε ¼ 0.128 × 108 s−1. For rc < 0.195 nm the stress displays a
spurious increase, while for rc ¼ 2 nm the pair potential shows
an unphysical singularity (not shown). The chosen value of rc is
set to 0.195 nm.

FIG. 7. Survival distribution of defected graphene at P ¼ 0.5%.
We report the survival distribution obtained from simulations
at T ¼ 300 K, N ¼ 104, and three strain rates _ε. The vacancy
concentration is set to P ¼ 0.5%. The fitting function is provided
by Eq. (B2). The values of the fitting parameters V0 and ω0 are
reported in Fig. 5.

FIG. 8. Survival distribution of defected graphene at different
P. We report the survival distribution obtained from simulations
at T ¼ 300 K, _ε¼0.128×108 s−1, and N¼104 for three vacancy
concentrations P. The numerical data are fitted with the exp-
ression (B2) (dashed lines) using the proper values of A and ε0
reported in Fig. 4. The fitted values of V0 and ω0 are shown in
Fig. 5 for P ¼ 0.2% and P ¼ 0.5%. For P ¼ 0.1%, the least-
square fit gives V0 ¼ 0.3806� 0.0003 nm3 and ω0 ¼ 4.1416�
0.0006 × 107 s−1. The set of parameters A, ε0, V0, and ω0 which
characterize uniquely the theoretical expression (B2) (dashed
lines) are inserted into Eq. (B4) to calculate the mean average
rupture stress hσin as a function of N, shown in Fig. 2(a).
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volume Va is evaluated by considering a density of
38.18 atomsper nm2 and a sheet thickness equal to 0.335nm,
yielding Va ¼ 8.744 × 10−3 nm3. For any value of P, the
corresponding values of A and ε0 obtained from the best
fit of the data in Fig. 4 are plugged into Eq. (B2). The

fitted V0 and ω0 corresponding to Figs. 3(a), 3(b), 7, and 8
are reported in Fig. 5.
Finally, we provide the analytical expression for the

distribution of failure stresses defined as PnðσjT; _εÞ ¼−ðdSn=dσÞ:

PnðσjT; _εÞ ¼ n
Sn−1ðσjT; _εÞ

E

�
Aeðσ=Eε0Þ−Aeσ=Eε0e−ðω0=_εÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0E=πkBT

p
½1−e−ðV0σ2=EkBTÞ� þ ω0ffiffiffi

π
p

_ε

�
V0E
kBT

�
3=2

×
Z

∞

σ=E
dεcAeðεc=ε0Þ−Ae

εc=ε0

�
εc − σ

E

�
e−ðεc−σ=EÞ2ðV0E=kBTÞe−ðω0=_εÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0E=πkBT

p
½e−ðεc−σ=EÞ2ðV0E=kBTÞ−e−ε2cðV0E=kBTÞ�

�
: ðB3Þ

Equation (B3) allows one to derive the mean failure stress as

hσin ¼ n
Z

∞

0

dσ
σ

E
Sn−1ðσjT; _εÞ

�
Aeðσ=Eε0Þ−Aeσ=Eε0e−ðω0=_εÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0E=πkBT

p
½1−e−ðV0σ2=EkBTÞ� þ ω0ffiffiffi

π
p

_ε

�
V0E
kBT

�
3=2

×
Z

∞

σ=E
dεcAeðεc=ε0Þ−Ae

εc=ε0

�
εc − σ

E

�
e−ðεc−σ=EÞ2ðV0E=kBTÞe−ðω0=_εÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0E=πkBT

p
½e−ðεc−σ=EÞ2ðV0E=kBTÞ−e−ε2cðV0E=kBTÞ�

�
: ðB4Þ

This quantity can be analytically calculated and plotted as a function of N, setting n ¼ NðVa=V0Þ, as shown in Fig. 2(a) for
T ¼ 300 K, _ε ¼ 0.128 × 108 s−1, and three values of the vacancy concentration P. We emphasize that in this case no fit, but
just the numerical evaluation of the integral expression of hσin (B4), is provided, making use of the proper values of A, ε0,
V0, and ω0, obtained by fitting the survival probabilities displayed in Figs. 4 and 8.
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