
Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large
Perpendicular Magnetic Anisotropy

Gabriel D. Chaves-O’Flynn,1 Georg Wolf,1,* Jonathan Z. Sun,2 and Andrew D. Kent1
1Department of Physics, New York University, New York, New York 10003, USA
2IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 15 May 2015; revised manuscript received 8 July 2015; published 18 August 2015)

The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular
magnetization as a function of their lateral size is of great current interest for high-density magnetic
random-access memory devices. Here we determine the micromagnetic states that set the energy barrier to
thermally activated magnetization reversal of circular thin-film nanomagnets with large perpendicular
magnetic anisotropy. We find a critical length in the problem that is set by the exchange and effective
perpendicular magnetic anisotropy energies, with the latter including the size dependence of the
demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly
coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to
the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain
wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are
derived for these two limiting cases and verified using full micromagnetic simulations with the string
method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy
barrier versus diameter dependence at large diameters.
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I. INTRODUCTION

Nanomagnets with bistable states are being explored for
use in magnetic random-access memories (MRAM). Data
loss is associated with relatively rare thermally activated
transitions between magnetic states and is typically mod-
eled with methods from statistical mechanics [1,2]. The
rate of data loss is well approximated by an Arrhenius law
Γ ¼ Γ0 exp ð−U=kBTÞ, where U is the energy barrier to
magnetization reversal, kBT is Boltzmann’s constant times
the temperature, and Γ0 is an attempt frequency set by a
natural time scale of the system (typically, approximately
109 Hz). One major challenge in creating higher-density
magnetic memory chips is maintaining a large U=ðkBTÞ to
ensure long-term data retention.
Recent developments in thin-film materials with large

perpendicular magnetic anisotropy provide a path to achiev-
ing that goal [3–6]. Their anisotropy is associated with
magnetocrystalline interface or bulk magnetic anisotropy
[7–9]. As such, elements can be in the shape of a thin
disk with their magnetization oriented perpendicularly to the
plane of the disk. This allows denser packing of MRAM
cells, since magnetic dipole interactions between neighbor-
ing magnetic elements is reduced in comparison to those of
in-plane magnetized elements. However, the scaling of an
element’s energy barrier with the disk diameter remains
a key issue. A macrospin model, where the magnetization

is treated as uniform, predicts a quadratic increase of the
energy barrier with the disk diameter.
However, experimental results from field-driven switching

as well as spin-transfer torque-driven switching experiments
in variable-diameter magnetic tunnel-junction devices with
fixed layer thickness do not show the expected behavior.
Reference [10] reports an almost linear dependence of the
energy barrier on the device diameter. Reference [11]
presents a quadratic scaling of the energy barrier below a
distinct device diameter. Moreover, both studies show
saturation of the energy barrier for large diameters.
A starting point to understand the thermally activated

reversal is a macrospin model [12], where the energy den-
sity of an elliptically shaped magnetic element is given by

E ¼ μ0M2
s

2
m · N ·m − Kpm2

z − μ0Msm ·Hext; ð1Þ

whereMs is the saturation magnetization,m is a unit vector
in the direction of magnetization, andmz is its z component.
N is the demagnetization tensor of the structure, Kp
is the intrinsic perpendicular anisotropy energy density
(energy per unit volume) of the material, and Hext is an
externally applied magnetic field. The energy barrier is
defined as the difference between the metastable energy
minima and the lowest-energy saddle state, also known
as the transition state. Approximating the thin disk as an
ellipsoid, the demagnetizing tensor is diagonal with trace 1
(Nxx þ Nyy þ Nzz ¼ 1). Because of the cylindrical sym-
metry, the in-plane components of the tensor are equal
(Nxx ¼ Nyy), and the demagnetizing energy density can
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be reduced to an expression that depends only on Nzz, the
demagnetizing factor in the direction perpendicular to
the film plane,

U ¼ ½Kp − μ0M2
sð3Nzz − 1Þ=4� π

4
d2t: ð2Þ

Thus, in this model of coherent (macrospin) magnetiza-
tion reversal, the energy barrier should depend mainly on
the element area (or, equivalently, its volume) with
corrections due to changes in the demagnetization factor
with area.
However, this simple macrospin is a poor description

of thermally activated reversal processes because the
elements studied experimentally are typically larger than
characteristic magnetic lengths. One length scale is set
by the width of a domain wall, which is related to the
ratio of the exchange constant A (in J/m) [13] to the
effective anisotropy per unit volumeKeff , λDW ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=Keff

p
.

We assume the effective anisotropy per unit volume
Keff ¼ Kp − μ0M2

sð3Nzz − 1Þ=4, consisting of a contribu-
tion from the intrinsic anisotropy Kp and a counteracting
demagnetizing term, discussed further below. We treat the
demagnetizing energy as we did in the macrospin model,
which is a good approximation for a nonuniform magneti-
zation configuration of a domain wall as long as the
magnetic elements are much larger than the domain-wall
width. The energy density per unit length for a domain wall
is given then by [14]

E ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
AKeff

p
t: ð3Þ

The energy associated with creating a domain wall that
bisects a magnetic element is, thus, given by

U ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
AKeff

p
dt ð4Þ

and depends linearly on the diameter of the element.
In a prior modeling study by some of the authors, a linear

dependence of the energy barrier on diameter over a large
range of sample sizes was found [15]. It also indicates that
the transition state has a domain wall, which in zero applied
field, bisects the element. A puzzling result is that even at
seemingly small sample diameters, the energy barrier does
not depend on the area, but it continues to be proportional
to the disk diameter. In contrast to this previous work, we
determine the length scale at which there is a crossover
between uniform and nonuniform thermally activated
magnetization reversal and a corresponding change in
the relationship between the energy barrier and element
size. We also show the effect of applied fields on the
transition state and energy barrier and find a saturation of
the energy barrier at large element sizes. Analytic results
are derived that can guide experimental analysis and
magnetic device design.

II. RESULTS

A. Analytic model

The basic physics can be seen from Eqs. (2) and (4).
For a given material system, there is a critical diameter
dc where the domain-wall energy becomes less than the
energy barrier for the coherent reversal. The critical
diameter depends on the square root of the ratio of the
exchange constant and the effective anisotropy,

dc ¼
16

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

KeffðdÞ

s
: ð5Þ

Since KeffðdÞ depends on the diameter, this expression
must be evaluated for each element diameter using the
appropriate demagnetizing factor NzzðdÞ. Figure 1(a)
shows the demagnetization factor ð3Nzz − 1Þ=2 of a disk
as a function of d=t. We choose to compute the demag-
netizing energy numerically by saturating the sample along
its principal axes and treat the result as the equivalent
demagnetizing tensor elements as described in Ref. [16]. It
is clear that the demagnetizing energy is significantly
reduced as the diameter is decreased, even for aspect ratios
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FIG. 1. (a) Demagnetizing coefficient as a function of the ratio
of disk diameter d to thickness t. (b) Rescaled energy barrier
U=U0 for macrospin reversal (solid line) and for a domain state
(dashed line) as a function of the normalized diameter d=dc.
The blue open squares represent energy barriers obtained
from micromagnetic simulations using the string method. The
insets show the micromagnetic configuration of the transition
states for the coherent reversal d=dc ¼ 0.23 and domain-wall
d=dc ¼ 2.17 cases.
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as large as approximately 50. For typical film thicknesses
between 1 and 2 nm, this aspect ratio corresponds to
elements that are less than 50 nm in diameter, which are in
the size range that are of great importance technologically
(see, for example, Ref. [3]). Thus, this correction factor due
to the finite-size disk aspect ratio needs to be considered
when investigating the thermal stability. Ferromagnetic
resonance experiments on magnetic tunnel junctions show
a similar trend of the effective anisotropy decreasing with
increasing device diameter [17].
In Ref. [15], material parameters for Co=Ni multilayers

were used (A¼8.3pJ=m,Ms¼713kA=m, Kp¼403kJ=m3,
and t ¼ 1.6 nm), resulting in a critical diameter of
dc ≈ 40 nm. The number of elements smaller than this
was quite limited in that study, so the crossover between
coherent rotation and domain-wall reversal could not be
observed clearly.
The macrospin UMS [Eq. (2)] and domain-wall UDW

[Eq. (4)] energy barriers can be rewritten in terms of dc to
show that their characteristic scale is a product of the
exchange constant and film thickness At. We denote U0,

U0 ¼
64

π
At; ð6Þ

UMS

U0

¼
�
d
dc

�
2

; ð7Þ

UDW

U0

¼ d
dc

: ð8Þ

For this reason, we can choose a different set of material
parameters that allow us to study this crossover more
conveniently to avoid discretization issues in micromag-
netic modeling that occur for very small element sizes. We
takeMs ¼ 300 kA=m, A ¼ 83.0 pJ=m, Kp ¼ 83.6 kJ=m3,
and t ¼ 1.6 nm to give a critical diameter of dc ≈ 275 nm.
The material parameters are considered to be constant
throughout the sample volume, since spatial variations are a
rather complex topic and beyond the scope of this study.
Figure 1(b) shows the rescaled energy barrier as a

function of the ratio d=dc for the set of material parameters
chosen here. Using the rescaled expression, the curves for
both material parameters fall on top of each other, which
demonstrates that we have identified the relevant length and
energy scales in this problem.

B. Micromagnetic modeling

In order to confirm this simple model’s predictions, we
also perform string method calculations [18], a minimal
energy path method, which evolved in the OOMMF [19]
framework without the precessional term, as described in
Ref. [15]. The parametrized string consists of a set of
micromagnetic configurations connecting the two stable
configurations of the disk. The micromagnetic state with

highest energy in the converged string corresponds to the
transition state, and the difference in energy with respect to
the equilibrium state is the energy barrier. The open blue
squares in Fig. 1(b) show the energy barriers obtained by
this method for a wide range of element diameters. The
insets in Fig. 1(b) also shows the micromagnetic transition
states for a disk with d=dc ratio 0.23 (60 nm) and 2.17
(600 nm) representing the two different reversal regimes.
The d=dc ¼ 0.23 disk reverses through a nearly coherent
process, while in the d=dc ¼ 2.17 disk, a domain wall that
bisects the element is the lowest-energy transition state.
The micromagnetic results agree with the predictions of the
macrospin model up to the critical diameter (dc) where the
domain-wall transition state becomes lower in energy;
above dc, the simulation results follow the domain-wall
energy barrier. This quantitative agreement can be achieved
only by using the demagnetization factor NzzðdÞ from
Fig. 1 in Eq. (2). The energy barriers found in the
micromagnetic simulation, which captures the full nonlocal
nature of the dipole-dipole interactions, does not deviate
from those predicted by the macrospin model nor does it
deviate from those for a simple domain-wall model in their
respective regimes. This result demonstrates that a thin-film
nanomagnet in the shape of a circle can be treated within a
model where the demagnetizing field is considered in a
spatially averaged way, i.e., with only a single value Nzz,
that gives the appropriate demagnetization energy for a
uniformly magnetized element. However, as already noted,
this value is a function of the sample diameter, as shown
in Fig. 1(a).

C. Effect of applied fields

In experimental studies, it is also noted that fringe fields
from a proximal magnetic reference layer (e.g., in a
magnetic tunnel junction or spin valve) might alter the
energy barrier [11,20]. Thus, in addition to this zero-field
case, we also study the dependence of the energy barrier
on a perpendicularly applied field. In the macrospin limit,
the energy barrier still scales with the volume, only the
prefactor (i.e., U0) is altered by the field. However, in the
domain-wall transition-state limit, the situation is more
complex. In addition to the domain-wall energy, there is
now a reduction of the energy barrier due to the Zeeman
energy from the reversed subvolume of the magnet which
has to be considered,

U ¼ −2μ0MsHextΩtþ 4
ffiffiffiffiffiffiffiffiffiffiffi
AKeff

p
Λt; ð9Þ

where Ω is the area of the subvolume and Λ the length of
the domain wall, which have the unit of a length and, thus,
should be normalized to dc,

U
U0

¼ − 16

π

Hext

Hk

Ω
d2c

þ Λ
dc

: ð10Þ

THERMAL STABILITY OF MAGNETIC STATES IN … PHYS. REV. APPLIED 4, 024010 (2015)

024010-3



Hk is the effective anisotropy field, Hk ¼ 2Keff=ðμ0MsÞ.
The problem now becomes an optimization of the area of
the subvolume versus its perimeter. The string method
calculations [see Fig. 2(a)] reveal that the transition state at
larger diameters form a domain state with a curved wall,
where the area and length of the wall depend on the
diameter. It is plausible that the shape of the reversed
section is circular. In a simple model the reversed area is
enclosed by the overlap of two intersecting circles of the
diameters d and ds and opening angles ϕ and ϕs [see
Fig. 2(b)]. This model assumes that the domain wall forms
a 90° angle with the edge of the element, which minimizes
the wall length. This 90° angle constrains the opening
angles and the diameters to be

ϕþ ϕs ¼ π=2;
d2s
d2

¼ tanðϕÞ: ð11Þ

Under these assumptions, the total area Ω and the length of
the wall Λ can be written in terms of the element diameter d
and the opening angle ϕ,

Ω ¼ ϕ

4
d2 − 1

8
d2 sinð2ϕÞ − π=2 − ϕ

4
d2tan2ðϕÞ

þ 1

8
d2tan2ðϕÞ sinð2ϕÞ; ð12Þ

Λ ¼ d

�
π

2
− ϕ

�
tanðϕÞ: ð13Þ

The energy is a nontrivial function of ϕ with a maximum
that represents the energy barrier

U
U0

¼ d
dc

�
π

2
− ϕmax

�
tanðϕmaxÞ

−
Hext

Hk

�
d
dc

�
2
�
ϕmax

4
− 1

8
sinð2ϕmaxÞ

−
π=2 − ϕmax

4
tan2ðϕmaxÞ

þ 1

8
tan2ðϕmaxÞ sinð2ϕmaxÞ

�
: ð14Þ

We choose to find the maximum numerically, since deriv-
ing an analytical expression for ϕmax is not possible.
Figure 3 shows the combined results of the string method
and the analytic models. The energy barriers obtained from
the string method (dots) for small diameters follow the
quadratic dependency of the macrospin and are in good
agreement with the solutions of the domain-wall model
(dashed lines) in the case of the larger diameters. In general,
larger fields lead to less change in the energy barrier as the
diameter increases. In the limit of a very large ratio of d=dc,
the reversed area becomes a semicircle and the energy
barrier saturates. The saturation energy barrier Usat and
the saturation diameter dsat are given by the ratio of the
applied field to the anisotropy field,

Usat

U0

¼ π2

32

Hk

Hext
;

dsat
dc

¼ π

8

Hk

Hext
: ð15Þ

This field dependence of the energy barrier might explain
the experimentally observed saturation of the energy barrier
for larger diameters. The model shows a plateau in the
energy barrier at a diameter only twice as big as the critical
diameter for an external field of 20% of the anisotropy
field. It is usually assumed that the stray field from the
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FIG. 2. (a) Transition states for different diameters larger than
the critical diameter in an applied field of 0.22Hk (40 mT).
(b) Geometry of the domain-wall transition state in an applied
field. Reversed area Ω is given by the intersection of two circles,
one the set by the diameter of the element d and the other by the
diameter of the reversed subvolume ds, with opening angles ϕ
and ϕs.
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reference layer is much less than the anisotropy field of the
free layer. We note that the model prediction is for a
uniform field in the perpendicular direction, while in real
devices, the stray field has a nonuniform distribution across
the device and in-plane components, which might enhance
this effect. Also, defects in the structure can function as
nucleation centers for a domain wall, and are not consid-
ered in our model.

III. DISCUSSION

This study determines the energy barrier for thermally
activated magnetization reversal, which gives the lifetime
for data retention of such a magnetic element in a storage
device and, thus, the device’s thermal stability. From
Eq. (5), it is clear that as Keff is increased to increase
the stability of smaller elements, the critical diameter also
decreases, and a domain-wall state can become the lowest-
energy saddle state further reducing the stability. This
reduction in the thermal stability can be counteracted only
by increasing the exchange energy. It will, thus, be of
greater importance when scaling to smaller dimensions to
not only increase the perpendicular magnetic anisotropy
of magnetic memory elements but also increase their
exchange energy.
Furthermore, in a macrospin model for spin-transfer

torque-driven reversal, the critical current density is directly
proportional to the anisotropy field. Thus, the critical
current should show a similar dependence on the device
size as the energy barrier for sample diameters less than the
critical diameter dc. For larger diameters, it is presently not
clear if the energy barrier and critical current will scale in
the same way with the sample diameter. The experimental
results reported in Ref. [10] show that the critical write
current density is almost independent of the device area
and, thus, appears not to be correlated to the energy barrier;
this suggests that the critical current density continues to be
proportional to the anisotropy field while the energy barrier
does not. Recent modeling of the spin-transfer torque-
switching dynamics in perpendicularly magnetized disks
reveals that a dynamic instability leads to an incoherent
reversal [21]. The instantaneous spatial profile of this
instability shows a domainlike state, which can reduce
the effective energy barrier during reversal, as we show
here. This topic deserves further study, particularly how the
spin-current-induced instabilities reported in Ref. [21] vary
with disk diameter in the regimes identified here.

IV. SUMMARY

In summary, we demonstrate that the scaling of the
energy barrier of a circularly shaped thin-film nanomagnet
with perpendicular anisotropy depends strongly on the ratio
between exchange constant A and the effective anisotropy
Keff . Only large exchange and relatively small effective
perpendicular anisotropy will lead to the quadratic scaling

of the energy barrier on normalized diameter d=dc. The
energy barriers determined with the string method and
micromagnetics confirm that the analytical macrospin and
domain-wall model describe the scaling when appropriate
demagnetizing factors are used in the analytic model.
Even in an applied field, there is an analytic expression
for the geometrical configuration of the magnetization that
describes the transition states, and, thus, a prediction of the
energy barrier can be made without extensive numerical
calculations. We also observe a plateau of the energy barrier
for larger fields and large diameters of the disk, at a value
which depends on the ratio of the applied field to the
anisotropy field.
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