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We show that uniaxial color centers in silicon carbide with hexagonal lattice structure can be used to
measure not only the strength but also the polar angle of the external magnetic field with respect to the
defect axis with high precision. The method is based on the optical detection of multiple spin resonances in
the silicon vacancy defect with quadruplet ground state and suggests significant improvement of the angle
sensitivity compared to spin-1 color centers. We demonstrate a good agreement between the experimental
and calculated spin resonance spectra, providing angle resolution better than 1° per Hz1=2 in submillitesla
magnetic fields. Our approach is suitable for ensemble as well as single spin-3=2 color centers, allowing for
angle-resolved magnetometry on the nanoscale at ambient conditions.
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I. INTRODUCTION AND MEASUREMENT
PRINCIPLE

Optically addressable atomic-scale spin centers consti-
tute a basis for nanomagnetometry with high sensitivity and
high spatial resolution [1,2]. The most prominent example
is the nitrogen-vacancy (NV) defect in diamond, and
several benchmark experiments have been performed using
this system [3–5], including proton nuclear-magnetic res-
onance on the nanometer scale [6,7]. The principle of
magnetometry with spin-carrying color centers is based on
optical detection of magnetic-resonance (ODMR) frequen-
cies ν subject to an external magnetic field B. In case of
individual NV defects with spin S ¼ 1, one observes two
ODMR lines (ν1 and ν2) shifting linearly with the magnetic
field as �geμBB cos θ, and, hence, the projection of the
magnetic field on the defect axis B cos θ can be measured.
The NV defect in the diamond cubic lattice is oriented

along one out of four h111i crystallographic axes, and,
therefore, using ensemble experiments, the magnetic field
vector B can be reconstructed [8,9]. Ensembles of the NV
defects are also suggested [10] for the implementation of
high-precision magnetic-field sensors with subpicotesla
sensitivity [11] and solid-state frequency standards [12].
These implementations require high homogeneity of the
NV centers. The NV defects can be fabricated with
preferential alignment [13,14], and in this case, the trans-
verse field component can be reconstructed as well. The
ODMR lines also exhibit a quadratic shift because of

hν1;2 ≈ hν0 ∓ geμBB cos θ þ ξðθÞB2: ð1Þ

As the coefficient ξðθÞ depends on the magnetic-field
orientation, the polar angle θ can be measured [4].
However, the angle sensitivity vanishes rapidly in magnetic
fields in the submillitesla range as δθ ∝ ν0=B2, making the
extruction of the polar angle difficult.
Here, we demonstrate an alternative approach to imple-

ment angle-resolved magnetometry for submillitesla mag-
netic fields, which is suitable for ensembles as well as for
individual uniaxial spin centers with S ¼ 3=2 [15]. In a
spin-3=2 system, two extra ODMR lines (ν3 and ν4) appear,
and in case geμBB ≪ hν0, one can approximate

hν1;2 ≈ hν0 ∓ geμBBfinðθÞ þ ξinðθÞB2;

hν3;4 ≈ hν0 ∓ geμBBfoutðθÞ þ ξoutðθÞB2; ð2Þ
where finðθÞ and foutðθÞ are particular linearly independent
trigonometric functions (Fig. 1) [16]. Therefore, one can
measure the quantity ðν2 − ν1Þ=ðν4 − ν3Þ ¼ finðθÞ=foutðθÞ,
which is independent of the magnetic-field strength B,
thereby allowing us to obtain θ without the need to
determine the quadratic shift ξðθÞB2.

II. SPIN RESONANCES OF SILICON
VACANCIES IN ARBITRARILY
ORIENTED MAGNETIC FIELDS

As a model system, we consider a silicon vacancy (VSi)
in silicon carbide (SiC) [17–20]. Because of the polymor-
phism of SiC, there is a large variety of vacancy-related
defects with appealing quantum properties confirmed in
ensemble [15,16,21–28] as well as in single-defect [29–32]
experiments. All measurements presented here are per-
formed at room temperature on a 4H-SiC bulk crystal
possessing hexagonal lattice structure. The crystal is grown
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by the standard sublimation technique, such that the [0001]
crystallographic direction (c axis) is inclined at an angle of
7° to the surface normal, i.e., to the z axis of the laboratory
coordinate system [Fig. 2(a)]. In order to generate VSi
defects, the crystal is irradiated with neutrons (5 MeV) with
a fluence of 1016 cm−2. Their presence is verified by the
characteristic photoluminescence (PL) in the near-infrared
spectral range [33].

The VSi defects in hexagonal SiC have a spin-3=2 ground
state, which is split in two spin sublevels mS ¼ �1=2 and
mS ¼ �3=2 at zero magnetic field [16]. The zero-field
splitting 2D between these sublevels depends on the lattice
site and polytype. In 4H-SiC there are two nonequivalent
lattice cites and, hence, two different VSi defects. They are
distinguished by their spectroscopic features and labeled as
V1 and V2 centers [18]. Here, we present results for the
VSiðV2Þ center with 2D=h ¼ 70 MHz [Fig. 2(a)]. A
detailed characterization of the system is presented else-
where [15,16,23,32,33]. Interestingly, VSi can be incorpo-
rated into SiC nanocrystals [28], and their density can be
controlled over 8 orders of magnitude down to the single-
defect level [32].
A laser diode operating at 785 nm is used to optically

pump the VSiðV2Þ center in the host SiC, which has a band
gap of 3.23 eV. The optical excitation followed by spin-
dependent recombination results in preferential population
of the mS ¼ �1=2 sublevels [34,35]. The PL from these
centers is passed through 800- and 850-nm long-pass filters
and detected by a Si photodiode (up to 1050 nm). The PL
intensity is spin dependent; in the case of VSiðV2Þ, it is
higher when the system is initialized into the mS ¼ �3=2
states. The radio frequency (rf) provided by a signal
generator (2-dBm power) is guided to a thin copper wire
and terminated with 50-Ω impedance. The laser beam is
focused close to the wire using a 10× optical objective
(N:A: ¼ 0.25), and the PL is collected through the sample
using a biconvex lens. The x axis of the laboratory
coordinate system is set parallel to the wire. The external
magnetic field B can be applied along arbitrary directions
using a 3D coil arrangement. The magnet is calibrated
using a 3D Hall sensor providing an angle resolution of 2°.
Without an external magnetic field, a resonance rf

ν0 ¼ 2D=h induces magnetic dipole transitions between
the spin-split sublevels ð�1=2 → �3=2Þ [Fig. 2(a)], result-
ing in a change of the PL intensity (ΔPL). To increase the
sensitivity, the rf is chopped at 677 Hz, and the output PL
signal is locked in. An example of the ODMR spectrum
(i.e., the ODMR contrast ΔPL=PL versus the applied rf)
obtained for B → 0 is shown in Fig. 2(b) (lower curve). The
ODMR line is split around ν0 ¼ 70 MHz due to the
geomagnetic and stray magnetic fields.
We now discuss the evolution of the ODMR spectra

in external magnetic fields. The corresponding spin
Hamiltonian is written in the form

H ¼ geμBB · SþD½S2z − SðSþ 1Þ=3�: ð3Þ

Here, ge ≈ 2.0 is the electron g factor, μB is the Bohr
magneton, and Sz is the projection of the total spin on the c
axis of 4H-SiC [16]. For the sake of simplicity, we do
not consider the hyperfine interaction. We also neglect
any deviation from the uniaxial symmetry described
by the transverse zero-field splitting parameter E ≪ D.
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FIG. 2. (a) The c axis of the 4H-SiC crystal is oriented at an
angle of 7° with respect to the surface normal. The silicon
vacancy VSiðV2Þ has a spin-3=2 ground state with zero-field
splitting ν0 ¼ 70 MHz. (b) Room-temperature ODMR spectra of
the VSiðV2Þ defect in different magnetic fields applied parallel to
the surface normal (B∥z).
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FIG. 1. Polar plot of linearly independent trigonometric func-
tions fin;outðθÞ ¼ j3 cos θ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3sin2θ
p

j=2 [16]. The line thick-
nesses reflect the ODMR contrast of the corresponding spin
transitions calculated as explained in the text.
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Remarkably, the mS ¼ �1=2 (mS ¼ �3=2) states remain
doubly degenerated even in the presence of electric and
strain fields, in accordance with Kramers theorem. We,
hence, take E ¼ 0 as a good approximation [16,31].
When an external magnetic field is applied parallel to the

symmetry axis B∥c (θ ¼ 0°), the spin states are split as
ϵ�1=2 ¼ −D� geμBB=2 and ϵ�3=2 ¼ þD� 3geμBB=2
[Fig. 3(a)]. One of the dipole-allowed transitions is
ð−1=2 → −3=2Þ with ΔmS ¼ −1, and the corresponding
ODMR line ν1 ¼ jν0 − geμBB=hj shifts linearly with the
magnetic field, as shown in Fig. 3(c). Another dipole-
allowed transition is ðþ1=2 → þ3=2Þ with ΔmS ¼ þ1,
and the corresponding ODMR line ν2 ¼ ν0 þ geμBB=h
shifts linearly towards higher frequencies. For magnetic
fields smaller than B0 ¼ hν0=ðgeμBÞ ¼ 2.5 mT, the split-
ting between the ODMR lines yields ν2 − ν1 ¼ 2geμBB=h
[middle curve in Fig. 2(b)], and for higher magnetic fields
B > B0, this splitting is ν2 − ν1 ¼ 4D=h [upper curve in
Fig. 2(b)]. Remarkably, the dipole-allowed transition
ð−1=2 → þ1=2Þ expected between ν1 and ν2 at frequencies
geμBB=h is not observed in the ODMR spectra. The reason
is the equal population of the mS ¼ �1=2 sublevels due to
the optical pumping [18].
The behavior becomes much more complex when the

magnetic-field vector B is no longer parallel to the defect

symmetry axis. It is instructive to consider a certain
pronounced case in detail, namely, when the magnetic
field is applied at an angle θ ¼ 20° with respect to the c
axis. By solving Hamiltonian (3), we find the energy level
positions and the eigenfunctions jji (j ¼ 1; 2; 3; 4) depend-
ing on B [Fig. 3(b)]. The mixing of the mS ¼ �1=2 states
in the transverse component of the magnetic field B sin θ
results in the appearance of two additional ODMR lines,
which are labeled ν3 and ν4 in Fig. 3(d). The level
anticrossing seen in Fig. 3(b) at 1.3 mT (between states
j2i and j3i) and around 2.0 mT (between states j1i and j2i)
appears as “turning points” at frequencies νAC3 ¼ 6 MHz
and νAC1 ¼ 39 MHz in the calculated spectra of Fig. 3(d).
Furthermore, according to Fig. 3(b), the population of
states j1i and j2i becomes equal at 3.0 mT and the ODMR
contrast tends to zero, seen as a discontinuity at νZ1 ¼
47 MHz in Fig. 3(d).
We now explain how the field-dependent ODMR spectra

in Fig. 3(d) are calculated. To obtain the probability of the
rf-induced transitions between states jji and jki, we apply

Wjk ∼ jhjjB1 · S1jkij2: ð4Þ

Here, B1 is the driving rf field (in our experiments B1∥y).
We modify the spin-3=2 matrices S1 in Eq. (4) to take into
account that the mS ¼ �1=2 states are equally populated
due to the optical pumping and, hence, do not contribute to
the ODMR signal. Namely, the matrix elements coupling
these states are set to zero [16]. Finally, we simulate the
ODMR spectra assuming Lorentzian line shapes with the
experimental value for the full width at half maximum of
2.7 MHz [16]. One can see from Fig. 3(d) that for an
arbitrary strength and orientation of the magnetic field, up
to six ODMR lines can be observed.
It should be mentioned that, in general, the ODMR

contrast depends on decay rates and the optical pumping
rate, which are also orientation dependent [36]. In our
calculations, we neglect this dependence and obtain the
proportionality constant between the rf-induced transition
probability of Eq. (4) and the ODMR contrast by com-
parison with the experiment in a magnetic field of 3.5 mT
and a polar angle of 7° [the high-frequency ODMR line in
Fig. 2(b)]. The proportionality constant is then fixed for all
field orientations and strengths. Within such an approach,
we are able to describe many features of the ODMR
spectra. Figure 4(a) presents the evolution of the ODMR
spectra when the external magnetic field is applied parallel
to the z axis of the laboratory coordinate system, i.e., at an
angle θ ¼ 7° with respect to the c axis [see Fig. 2(a)].
Because the deviation from the defect symmetry axis is
small, the behavior is very similar to the high-symmetry
case (B∥c) of Fig. 3(c). The difference is the manifestation
of anticrossing (νAC1 ¼ 13 MHz) between the (mS¼−3=2)-
like and (mS ¼ −1=2)-like states at 2.5 mT. Furthermore, in
addition to the inner resonances ν1 and ν2, the outer
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FIG. 3. Spin sublevels in the VSiðV2Þ ground state calculated
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resonances ν3 and ν4 appear. They shift with twice the slope
of the inner resonances. This behavior is closely repro-
duced by our calculations shown in Fig. 4(b).

III. EXPERIMENTAL DEMONSTRATION OF
ANGLE-RESOLVED MAGNETOMETRY

As another demonstration, we measure the evolution of
the ODMR spectra when the external magnetic field is
applied in the y-z plane at an angle θ0 ¼ 60° with respect to
the z axis [Fig. 5(a)]. This alignment corresponds to the
angle θ ≈ 61° between B and the c axis. It is close to the
magic angle θm ¼ arccosð1= ffiffiffi

3
p Þ ≈ 54.7° when the splitting

between the inner ODMR resonances vanishes. Indeed, we
experimentally observe ν2 − ν1 ≪ ν4 − ν3 [Fig. 5(b)].

Furthermore, when the magnetic field is significantly
inclined from the symmetry axis, the outer resonances ν3
and ν4 become much more pronounced. This complicated
behavior is reproduced in the calculated ODMR spectra of
Fig. 5(c) as well.
We now discuss how the polar angle of the magnetic

field can be reconstructed. Figure 6(a) shows the evolution
of the ODMR spectra depending on the magnetic-field
orientation at a fixed strength B ¼ 0.8 mT. The orientation
angle varies from 0° (B∥z) to 90° (B⊥z). As the defect
symmetry axis is not exactly parallel to the z axis [the
schematic of Fig. 5(a)], there is a difference in the polar
angle with respect to the calculated spectra of Fig. 6(b).
This angle difference is 7°, as we determine exactly later.
As one can see from Figs. 6(a) and 6(b), the splitting
between the inner (ν2 − ν1) and outer (ν4 − ν3) resonances
changes with magnetic-field orientation. Figure 6(c)
represents the interconnection between the polar angle θ,
i.e., the angle between the magnetic-field vector and
the c axis, and the relative splitting between resonances
κðθÞ ¼ ðν2 − ν1Þ=ðν4 − ν3Þ.
Thus, the algorithm to determine the orientation of the

magnetic field can be described as follows. For the
relatively large polar angles θ > 54.7°, the mS ¼ �1=2
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states are strongly mixed, and the outer resonances are well
resolved. To determine θ in this case, one measures the
relative distance between the ODMR lines κ and uses
the calibration curve shown by the solid line in Fig. 6(c). In
the opposite case when θ < 54.7°, the mS ¼ �1=2 states
are weakly mixed, and the outer ODMR lines have lower
amplitude (less than 50%) compared to the inner ODMR
lines. The corresponding calibration curve to determine θ is
shown by the dashed line in Fig. 6(c). All in all, the polar
angle can be unambiguously derived from the relative
positions of the ODMR lines.
To examine this algorithm, we present the measurements

of Fig. 6(a) by open symbols in Fig. 6(c). The shift of the
experimental data by 7° (solid symbols) results in a perfect
agreement with the theoretical curve. Remarkably, this
angle coincides with the tilting angle of the c axis with
respect to the z axis.

IV. ANGLE RESOLUTION

An important question is the accuracy of the proposed
method. First, we discuss the angle resolution δθ due to the
nonlinear shift of the ODMR lines as for the NV defects in
diamond with S ¼ 1 [4]. We take into account the linear
and quadratic contributions only, in accordance with
Eq. (1). We use the exact solution for the frequencies
ν1;2 [4] and obtain to the first order ξðθÞ ≈
K0g2eμ2B sin

2 θ=ðhν0Þ with K0 ¼ 3=2 (Appendix A). The
angle resolution is determined by the angle-dependent
shift of the spin resonance frequencies at a given mag-
netic-field strength B as well as by the ODMR linewidth,
and, hence, it can be directly linked to the field resolution
δB as (Appendix A)

δθS¼1ðθÞ ≈
180

π

1

K0 sin 2θ

hν0
geμBB

δB
B

: ð5Þ

Here, δθ is given in degrees. Remarkably, for magnetic
fields below Bc ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hν0δB=ð

ffiffiffi
τ

p
3πgeμBÞ

p
(τ is the integra-

tion time), the field orientation cannot be resolved using
this method. For instance, in the NV defects
ν0 ¼ D=h ¼ 2.87 GHz, and taking a dc field resolution
δB ¼ 10 μT=

ffiffiffiffiffiffi
Hz

p
, we obtain for τ ¼ 1 s the critical

field Bc ≈ 0.3 mT.
An obvious solution to increase the angle resolution is to

use defects with smaller D. The VSiðV2Þ in SiC has
ν0 ¼ 2D=h ¼ 70 MHz, and the critical magnetic field
Bc ≈ 0.05 mT is obtained using Eq. (5) with the same
values of δB and τ as in the previous case. This is illustrated
in Fig. 6(d), where the mean value ðν2 þ ν1Þ=2≈
ν0 þ ξðθÞB2 is calculated using Eq. (3) and plotted versus
the magnetic-field strength for different polar angles.
Indeed, for B < 0.1 mT, the mean values are hardly
distinguishable. For B ¼ 0.8 mT, the quadratic shift

ξðθÞB2 becomes detectable [the dashed line in Fig. 6(b)],
allowing us to resolve the magnetic-field orientation.
We now consider the method to measure the polar angle

described in the present paper. As in the previous case,
the angle resolution can be directly linked to the field
resolution as (Appendix B)

δθS¼3=2ðθÞ ≈
180

π

1

KðθÞjdκðθÞ=dθj
δB
B

: ð6Þ

Here, KðθÞ describes the experimental accuracy to measure
κðθÞ. Comparing to Eq. (5), the term hν0=ðgeμBBÞ is
absent, and the angle resolution can be significantly
improved in weak magnetic fields. We calculate the
field-independent trigonometric functions KðθÞ and
dκðθÞ=dθ, as presented in Fig. 7. In the most sensitive
case of θ → 90°, these functions take values KðθÞ ¼ 0.5
and dκðθÞ=dθ ¼ 3, and we obtain for B ¼ 0.8 mT the
angle resolution δθ ∼ 0.5°=

ffiffiffiffiffiffi
Hz

p
, assuming in our experi-

ments δB ≈ 10 μT=
ffiffiffiffiffiffi
Hz

p
[16]. For small angles θ < 20°,

the resolution becomes significantly lower. Remarkably, for
θ → 0°, the outer resonances disappear, and the polar-angle
resolution can be estimated from δθðΔθÞ ¼ Δθ, yielding
δθ ∼ 9°=

ffiffiffiffiffiffi
Hz

p
in this case. Further improvement is possible

by using advanced read-out protocols [2].

V. SUMMARY

Uniaxial spin-3=2 centers in a hexagonal lattice can be
used to measure the magnetic-field strength and to recon-
struct the magnetic-field orientation with respect to the
symmetry axis of the crystal (i.e., the polar angle). The
method is based on the ODMR technique and is applicable
for ensembles of spin centers as well as for single centers.
As a probe, we use the VSi spin center in 4H-SiC, and the
polar-angle resolution of about 1°=

ffiffiffiffiffiffi
Hz

p
is demonstrated in

submillitesla magnetic fields. The experiments are very
well described by our model for any magnetic-field
orientation. It should be mentioned that this method does
not provide information about the azimuthal angle, but this
can potentially be overcome by using differently oriented
centers, for instance, along the c axis and in the basal plane
of the crystal. The selective optical addressability [23] and
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coherent control [22] of single-VSi centers [31] are
reported. The combination of these capabilities with our
findings suggests promising perspectives for vector mag-
netometry and local imaging down to the nanoscale.
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Note added.—Recently, theoretical aspects of silicon-
carbide-based vector magnetometry have been posted in
Ref. [37], which are in accordance with our experimental
findings and clearly depict the high potential of this spin
system.

APPENDIX A: ESTIMATION OF THE ANGLE
RESOLUTION FOR A SPIN-1 SYSTEM

Following Eq. (1), the difference and the product of the
ODMR frequencies can be expressed in the form

hν2 − hν1 ¼ 2β cos θ ðA1Þ

and

h2ν2ν1 ¼ ðDþ ξB2Þ2 − ðβ cos θÞ2; ðA2Þ

with β ¼ geμBB and D ¼ hν0. Using 3β2¼ðhν2−hν1Þ2þ
h2ν2ν1−D2 [4], we obtain assuming ξB2 ≪ D,

ξðθÞ ≈ 3g2eμ2B sin
2 θ

2D
: ðA3Þ

The polar angle θ can be reconstructed by analyzing the
angle-dependent shift of the mean value at a given
magnetic-field strength hðν2 þ ν1Þ=2 ¼ h~ν ≈Dþ ξðθÞB2.
The angle resolution δθ is, hence, determined by the
accuracy to measure the frequency shift δ~ν,

δθ ¼ 1

jd~νðθÞ=dθj δ~ν ¼
2D

3g2eμ2BB
2 sin 2θ

δ~ν: ðA4Þ

As δ~ν is directly linked to the magnetic-field sensitivity
δ~ν ¼ geμBδB=h, we obtain Eq. (5) in the main text after
conversion from radians to degrees.

APPENDIX B: ESTIMATION OF THE ANGLE
RESOLUTION FOR A SPIN-3=2 SYSTEM

The angle resolution δθ is determined in this case by the
accuracy to measure the ratio between the frequency shifts
of the inner and outer resonances δκ,

δθ ¼ 1

jdκðθÞ=dθj δκ: ðB1Þ

Following Eq. (2), ν2 − ν1 ¼ νin ¼ 2finðθÞgeμBB=h and
ν4−ν3¼ νout¼ 2foutðθÞgeμBB=h [16] and as κ ¼ νin=νout,
and, consequently,

δκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δνin
νout

�
2

þ
�
νinδνout
ν2out

�
2

s
; ðB2Þ

we obtain using δνin;out ¼ 2geμBδB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2Kin;out

q
,

δκ ¼ δB
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

fout

�
2 1

Kin
þ
�
fin
f2out

�
2 1

Kout

s
: ðB3Þ

Here, KinðθÞ and KoutðθÞ are relative ODMR contrasts with
respect to the case of θ ¼ 0°, for instance, Kinð0°Þ ¼ 1 and
Koutð0°Þ ¼ 0. With

1

KðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1

fout

�
2 1

Kin
þ
�
fin
f2out

�
2 1

Kout

s
; ðB4Þ

we obtain Eq. (6) in the main text after conversion from
radians to degrees.
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