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We present a detailed theoretical analysis of the electrostatic built-in fields and the electronic structures
of polar and semipolar dot-in-a-well systems. Our theory is based on a symmetry-adapted multiband k · p
model, parametrized by the incline angle to the wurtzite c axis, that accounts fully for the three-dimensional
quantum-dot structure. As an example, we apply the model to the experimentally relevant semipolar plane
(112̄2). We show here that the built-in fields in isolated (112̄2) semipolar quantum dots are strongly reduced
compared to an equivalent c-plane structure. Our analysis further reveals that in terms of ground-state
transition oscillator strength, the semipolar (112̄2) dot-in-a-well systems show a superior behavior
compared with their polar counterpart. We also find that increasing the InN content in the quantum dot up to
a critical value leads to the unusual behavior that the ground-state electron and hole wave-function overlap
increases and therefore the corresponding oscillator strength. This effect can be attributed to changes in the
built-in potential profile inside the semipolar (112̄2) quantum dot.
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I. INTRODUCTION

For optoelectronic applications, heterostructures based
on the semiconductor family AlN, InN, and GaN and their
respective alloys have attracted considerable attention. In
principle, their band gaps facilitate light emission from
infrared to ultraviolet [1]. However, the optical properties
of nitride-based heterostructures grown along the polar c
axis suffer significantly from the strong electrostatic built-
in fields arising from spontaneous and piezoelectric polari-
zation [2,3]. Therefore, much research interest has been
directed towards the growth of structures on semi- and
nonpolar substrates [4–11]. Here, the growth direction of
the heterostructure forms a nonzero angle with the polar c
axis, leading to a partial or—in an ideal nonpolar quantum
well (QW)—even a complete elimination of the electro-
static built-in field [4,5]. In fact, it has been demonstrated
experimentally that semi- and nonpolar QWs exhibit
reduced built-in fields [4,6]. However, compared to stan-
dard c-plane systems, unless grown on expensive high-
quality substrates, the optical properties of semi- and
nonpolar QWs are considerably affected by the existence
of large densities of (extended) defects, such as basal-plane
stacking faults [11–13].
An alternative to planar QW structures is the growth of

semi- and nonpolar quantum dots (QDs). Their three-
dimensional confinement induces a localization of carriers
in a narrow spatial region and, therefore, prevents the
carriers from diffusing to nearby defects, leading to non-
radiative recombination. Different groups have recently
focused on the growth of non- and semipolar QD structures
[14–17]. Despite their potential for novel classical and also
nonclassical light emitters, in comparison with QWs, little
theoretical work has been directed towards nonpolar QDs

[18–23]. Even fewer theoretical studies discuss semipolar
QDs [18,23].
The idea of using QDs to improve the performance of

optoelectronic devices could be taken even a step further by
embedding these systems in a QW. This so-called dot-in-a-
well (DWELL) concept has been successfully used in
InGaAs-based QDs for emission in the 1200–1400 nm
spectral range [24–27]. We transfer this idea to the nitride
system. Here, a semipolar DWELL system should have a
clear advantage over the polar system, since the semipolar
plane exhibits a substantially reduced internal field and
permits electrons and holes to be unhindered in diffusing
across thick wells (> 4 nm). Embedded IncdGa1−cdN dots
of high InN content cd (and thus a lower band gap than the
surrounding IncwGa1−cwN QW) can capture the diffusing
carriers. This potentially results in efficient recombination
even at longer wavelengths. A schematic illustration of
this idea is given in Fig. 1. The carrier capture and the
recombination processes are spatially separated, which
appears to be a promising approach to achieve extremely
high recombination efficiencies.
The aim of our present work is to study both polar

and semipolar IncdGa1−cdN=IncwGa1−cwN=GaN DWELLs,
where cd and cw denote the InN content in the dot and in the
well, respectively. When analyzing the electronic properties
of these DWELLs, we vary both the InN content in the well
(cw) and in the dot (cd). Due to the three-dimensional QD
confinement, the theoretical description of these systems
is more involved than modeling planar QW structures.
Multiband k · p models are a widely used tool to compute
the electronic properties of semiconductor nanostructures,
such as QDs, as they combine great flexibility in the
geometrical representation of nanostructures with high
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computational efficiency. In combination with linear elas-
ticity theory, to account for strain and piezoelectric poten-
tials, these models were in the past successfully applied to
answer a wide variety of questions related to semiconductor
nanostructures [28–34]. To provide a continuum-based
description of DWELLs grown on semipolar surfaces,
different approaches can be selected. For instance, one
approach could be to rotate the QD geometry inside the
computational domain [35,36]. In this case, the standard
c-plane k · p Hamiltonian, including strain and piezo-
electricity, could be used. This approach could become
computationally expensive since, depending on the
QD geometry, the number of grid points has to be adjusted
to avoid (potential) discretization problems when
mapping realistic semipolar QD geometries on a grid
designed for c-plane calculations. An alternative approach
could be to rotate the coordinate system of the system, as
discussed, for example, by Milnar et al. for InAs=GaAs
QDs [37].
To achieve both high numerical efficiency and flexibility,

we present a symmetry-adapted formalism to compute the
elastic, piezoelectric, and electronic properties of semi-
conductor nanostructures grown along arbitrary crystallo-
graphic directions. Our formalism depends only on the
angle θ between the substrate orientation and the wurtzite c
axis. It should be noted that our approach is similar to
the ansatz presented in Refs. [18] and [23]. However,
we present complete analytic expressions for the required
quantities such as stiffness tensor, polarization vector
field, and (strain-dependent) k · p Hamiltonian. This
approach has several benefits. For example, the derived
analytic expressions allow for a more transparent analysis
of the results, or for a straightforward implementation
into available software packages (e.g., S/PHI/nX [38,39]);
these expressions can also be directly applied to other
wurtzite systems, and might be used as the starting point
for analytic calculations in the framework of surface
integral techniques [40,41].

As an example, we focus here on DWELLs grown on
c- and (112̄2)-oriented substrates. The semipolar (112̄2)
plane has been used for growth of both ðIn;GaÞN QWs and
QDs [6,8]. As a qualitative measure for the strength of
radiative recombination, we discuss the oscillator strength
of the ground-state transition, which is proportional to the
corresponding spatial overlap of ground-state electron and
hole wave functions. Our findings indicate that the built-in
fields in polar DWELL systems have a detrimental effect
on the oscillator strength, even in comparison to an isolated
polar IncdGa1−cdN QD of the same composition. In the
semipolar DWELL case, we find that the built-in field is
also increased inside the dot when it is placed inside a well.
However, in terms of the ground-state transition oscillator
strength, the semipolar DWELL structures outperform
significantly their polar counterparts. Interestingly, in the
semipolar system, when keeping the InN content in the well
region fixed, the oscillator strength increases with increas-
ing QD InN content up to a critical value. Beyond this
critical value, the oscillator decreases again. We show that
this unexpected behavior can be attributed to changes in the
complex built-in potential profile in a semipolar (112̄2)
DWELL. Thus, our theoretical results highlight the poten-
tial benefit of semipolar (112̄2) DWELLs for future
optoelectronic devices.
The paper is organized as follows. In Sec. II, we

introduce the theoretical framework. Model structure and
discussion of available experimental structural data on
semipolar QDs are given in Sec. III. Our results are
presented in Sec. IV. In Sec. IVA, we analyze the built-
in potentials in polar and semipolar DWELLs in detail,
while Sec. IV B focuses on their electronic structure. Our
work is summarized in Sec. V.

II. THEORY

In this section, we briefly outline the theoretical frame-
work. We refer to the appendixes for the explicit equations
of the stiffness tensor and the k · p Hamiltonian. The
general framework can be separated into different steps. We
start with the coordinate transformation matrix for arbitrary
rotations around one coordinate axis. Subsequently, we
introduce the formalisms applied to compute elastic energy,
spontaneous and piezoelectric polarization, and electronic
properties.

A. Coordinate transformation of vectors and tensors

In order to develop a symmetry-adapted framework,
we need to establish the transformation rules for vectors
and tensors in general. A transformation of vectors k and
tensors ϵ from ðx; y; zÞ to ðx0; y0; z0Þ coordinates can be
achieved via the expressions [42]

k0i ¼
X
α

Uc
iαkα; ϵ0ij ¼

X
α;β

Uc
iαU

c
jβϵαβ: ð1Þ

FIG. 1. Schematic illustration of an IncdGa1−cdN=
IncwGa1−cwN=GaN DWELL, where cd and cw denote the InN
content in the dot and in the well, respectively. Assuming a
semipolar substrate, the carrier transport is not being dominated
by the interfacial built-in fields. The QD active region is expected
to exhibit efficient carrier capture and photon emission.
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Here, Uc denotes a unitary coordinate transformation
matrix that can be written as a function of the Euler angles.
For a rotation around the y axis by an angle θ,Uc reads [43]

Uc ¼

0
B@

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

1
CA: ð2Þ

We assume that the z axis is parallel to the c axis. Making
use of transformation rules given in Eq. (1), we derive
stiffness tensor, strain tensor, polarization vector field, and
k · p Hamiltonian as a function of the incline angle θ
to the c axis.

B. Strain-field calculations

The large lattice mismatch between InN and GaN
(∼10%) leads to the appearance of strong strain fields
in ðIn;GaÞN-based heterostructures. Thus, for a realistic
description of the electronic and optical properties of
these systems, strain effects have to be taken into
account. Approaches to calculate strain fields in QD
structures range from atomistic to continuum-based models
[44–46]. Since the electronic-structure theory applied here
is based on a continuum approach, we model the strain field
in the framework of continuum elasticity [47]. Within the
framework of continuum-elasticity theory, the total elastic
energy F of the whole system is minimized with respect to
the displacement field u [29]. In general, the elastic energy
F of the system can be written as [48]

F ¼ V
2

X
ijkl

Cijklϵijϵkl; ð3Þ

where V is the volume of the system, ϵij are the strain-
tensor components, and Cijkl denote the stiffness-tensor
components (elastic constants). To calculate and minimize
the elastic energy F for different substrate orientations,
we have rotated the stiffness tensor C and calculated
the elastic constants as a function of the incline angle θ.
The results of this transformation are given in Appendix A.
Similar approaches have been used to describe strain
fields in polymorph nanowires [49] or to derive elastic
constants for wurtzite from zinc-blende materials (or vice
versa) [50,51].

C. Polarization vector field

Semiconductor materials without inversion symmetry
exhibit an electric polarization with applied strain or stress
[52]. This strain-dependent electric polarization is referred
to as the piezoelectric polarization. The first-order piezo-
electric-polarization vector field in a c-plane system is
given by [53,54]

Ppiezo ¼

0
B@

2e15ϵxz
2e15ϵyz

e31ðϵxx þ ϵyyÞ þ e33ϵzz

1
CA

¼

0
B@

Pshear;x

Pshear;y

Paxial

1
CA: ð4Þ

The strain-tensor components are denoted by ϵij, while
eij are the first-order piezoelectric coefficients. Based
on the c-plane expression, Eq. (4), we denote contributions
arising from the piezoelectric coefficients e31 and e33 as
axial contributions, while contributions originating from
e15 are referred to as shear-strain contributions. Making use
of the transformation rules for tensors and vectors, Eq. (1),
the components of the piezoelectric-polarization vector
field P0

piezo in the coordinate system ðx0; y0; z0Þ read

P0
piezo;x ¼ −2e15 cosθ½ðϵ0xx − ϵ0zzÞ cosθ sinθ− ϵ0xz cos2θ�

− e31 sinθ½ϵ0yy þ ϵ0xxcos2θþ ϵ0xz sin2θþ ϵ0zzsin2θ�
− e33 sinθ½ϵ0zzcos2θ− ϵ0xz sin2θþ ϵ0xxsin2θ�;

P0
piezo;y ¼ 2e15½ϵ0yz cosθ− ϵ0xy sinθ�;

P0
piezo;z ¼ −2e15 sinθ½ðϵ0xx − ϵ0zzÞ cosθ sinθ− ϵ0xz cos2θ�

þ e31 cosθ½ϵ0yy þ ϵ0xxcos2θþ ϵ0xz sin2θþ ϵ0zzsin2θ�
þ e33 cosθ½ϵ0zzcos2θ− ϵ0xz sin2θþ ϵ0xxsin2θ�: ð5Þ

Note that our result for P0
piezo;z is similar to the analytic

result in Ref. [55] with one difference: the prefactor 2 in the
shear-strain-related contribution in Ppiezo, Eq. (4), is miss-
ing in Ref. [55]. Since Romanov et al. [55] have focused on
QWs only, no expressions for the components P0

piezo;x and
P0
piezo;y are given in their work. Equation (5) shows that the

expressions for these in-plane contributions are much more
complicated than in the c-plane system, Eq. (4). In the
c-plane structure, only shear-strain contributions occur and
thus only e15 is involved. The component P0

piezo;x of the
rotated polarization vector depends on all three piezo-
electric coefficients e15, e31, and e33.
In addition to the strain-dependent piezoelectric polari-

zation, wurtzite nitride systems exhibit a spontaneous
polarization [56]. The spontaneous-polarization vector field
in the ðx0; y0; z0Þ coordinate system is given by

P0
spont;x ¼ −PSP sin θ;

P0
spont;y ¼ 0;

P0
spont;z ¼ PSP cos θ:

For θ ¼ 0, this expression reduces to the standard c-plane
result [56].
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The expression derived here for the spontaneous and
piezoelectric polarization can now also serve as the
starting point for analytic built-in field calculations in
the framework of surface integral techniques. As shown,
for example, by Williams et al. [40], for certain QD
geometries, complete analytic solutions can be derived,
once the full expression for the polarization vector field
is known.
The corresponding built-in potential ϕtot is calculated by

solving Poisson’s equation,

∇½κ0κrðrÞ∇ϕtot� ¼ −∇P0
tot ¼ ρtot; ð6Þ

where κr denotes the position-dependent dielectric con-
stant, κ0 the vacuum dielectric constant, and ρtot is the
charge density arising from the total (spontaneous plus
piezoelectric) polarization vector field P0

tot.

D. Rotated k · p Hamiltonian

To calculate the valence states of wurtzite ðIn;GaÞN-
based DWELLs grown on different substrate orientations,
we use a six-band k · p formalism. We derive the k · p
Hamiltonian as a function of the incline angle θ to the
wurtzite c axis, giving us the flexibility to study systems
grown along arbitrary crystallographic directions. Our start-
ing point is a conventional six-band k · p Hamiltonian,
designed for a (0001)-oriented system, expanded using basis
states with symmetry

ðjX↑i; jY↑i; jZ↑i; jX↓i; jY↓i; jZ↓iÞT:

The (0001)-oriented k · p Hamiltonian in this basis is
taken from Ref. [57], neglecting interactions between
conduction and valence bands. To obtain the six-band
Hamiltonian for different substrate orientations, we pro-
ceed as described in detail by Voon et al. in Ref. [58]. The
rotation of the k · p Hamiltonian from the [0001] direction
to an arbitrary growth direction can, in general, be broken
down into three steps. In the first step, one neglects the
spin and rotates the basis functions of the Hamiltonian.
Subsequently, the unprimed wave vector k and the strain
tensor ϵ of the (0001)-oriented system are replaced by the
primed ones, k0 and ϵ0, in the rotated system. Finally, the
matrix is reexpressed in terms of the modified basis states.
The rotated k · p Hamiltonian, with all matrix elements
expressed as a function of the incline angle θ, and with
more details of the calculation, is given in Appendix B.
To describe the electron single-particle states, we use a

single-band effective mass model. Here, the Hamiltonian
Ĥelec reads

Ĥelec ¼
ℏ2

2m0

1

me
k2 þ acTrðϵÞ þ V tot þ ECB: ð7Þ

Since the effective electron masses parallel and
perpendicular to the c axis are similar in InN and GaN
[59], we assume an isotropic effective electron mass me.
The conduction-band-edge energy is given by ECB, ac
denotes the conduction-band-edge deformation potential,
and TrðϵÞ ¼ ϵxx þ ϵyy þ ϵzz. The potential arising from
spontaneous and piezoelectric polarization is denoted
by V tot and is related to ϕtot, Eq. (6), by V tot ¼ −eϕtot,
with e being the elementary charge. Here, we take
into account that the different quantities are position
dependent.
As we discuss above, we apply our formalism to a

six-band model for the valence-band structure and a
one-band model for the conduction band states. The same
procedure can be applied to, e.g., a full eight-band k · p
model as demonstrated in Ref. [43]. Since we are mainly
interested in wave-function or charge-density localization
effects, transition energies are of secondary importance
here. Thus, the applied formalism is already sufficient.
Our theory will be extended to an eight-band model in
future work.

E. Numerical implementation

The analytical expressions for stiffness tensor, strain
tensor, polarization vector field, and strain-dependent
k · p Hamiltonian derived as a function of the incline
angle θ are implemented in the plane-wave-based soft-
ware library S/PHI/nX [38,60]. Due to its generalized
formulation, the equations for the different quantities
can be employed without any modification of the soft-
ware source code [39,61]. Only the input deck (stiffness
tensor, polarization vector field, Hamiltonian) needs to be
adjusted. A schematic illustration of the numerical imple-
mentation and the simulation work flow within S/PHI/nX is
shown in Fig. 2.

FIG. 2. Schematic illustration of the work flow in S/PHI/nX
starting from the input deck parameters (compositions and
geometries). The user-defined input is indicated in red.
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III. DWELL-MODEL SYSTEM AND
MATERIAL PARAMETERS

In this section, we introduce the model system for our
calculations. A schematic illustration of the system under
consideration is displayed in Fig, 1. We will use the same
geometry and supercell for both polar and semipolar
DWELLs. Since ourmain focus is on the semipolar systems,
we use available experimental data on semipolar (112̄2)
IncdGa1−cdN QDs as input for the model geometry.
Here, we consider a lens-shaped QD in accordance with

the experimental data on semipolar (112̄2) QDs [15]. The
QD height is 2.5 nm and the base diameter is 10 nm, similar

to experimental observations [15,16]. The lens-shaped
IncdGa1−cdN QD is embedded in an IncwGa1−cwN QW of
4.5-nm width. The QW InN content cw is varied between
0% and 10%, to study the impact of the QW composition
on the electronic structure of the IncdGa1−cdN QDs. The
whole structure is embedded in a GaN matrix and periodic
boundary conditions are applied. All calculations are
carried out on supercells with dimensions of 40 × 40×
40 nm3. Due to the cubic supercell and periodic boundary
conditions, our system represents a cubic array of QDs.
As discussed in detail in Refs. [53] or [62], this cubic
symmetry affects the hexagonal symmetry of the under-
lying c-plane wurtzite lattice. However, by choosing the
supercell sufficiently large, the wave functions localized
inside the isolated QD are only slightly affected if they are
well confined inside the QD. Furthermore, here we are
interested in ground-state wave functions and InN contents
larger than 25% InN in the QD. Therefore, our wave
functions are localized inside or near the QD. Artifacts,
introduced by the finite-size supercell, are expected to be
less or equal to the uncertainty in the known values of
the material parameters and their dependence on the alloy
composition.
The material parameters employed are summarized in

Table I. Composition-dependent bowing parameters for
conduction and valence-band edge were taken from
Ref. [63]. For the spontaneous polarization, we use the

bowing parameter bðIn;GaÞNSP given in Ref. [64]. For all other
parameters, we assume a linear interpolation.

IV. RESULTS

For a detailed discussion of our results obtained for
the polar and semipolar (112̄2) DWELLs, we start with the
built-in potential (Sec. IVA). In Sec. IV B, we present
the electronic structure of the DWELL systems and how it
is modified by changing the InN content in the well and in
the dot.

A. Built-in potential

Figure 3 shows the total (spontaneous plus piezoelectric)
built-in potential V tot in an isolated QD and in DWELLs.
The InN content cw in the well is given on top of each graph
along with the In content in the dot (cd). Figures 3(a)
and 3(d) in the left column show the built-in potential V tot

of a polar and a semipolar (112̄2) In0.25Ga0.75N=GaN QD,
respectively.
The built-in potential profile of the isolated polar

In0.25Ga0.75N QD system, Fig. 3(a), shows the well-known
behavior with a strong potential drop along the c axis [53].
The close proximity of different isolines inside the QD
indicates the steep slope of the potential. This steep slope
leads to a strong spatial separation of electron and hole
wave functions along the c axis [53]. In the corresponding
semipolar case, Fig. 3(d), several interesting features are

TABLE I. Material parameters for GaN and InN. Lattice
constants are denoted by alat and clat, respectively. The elastic
constants are given by Cij, while eij are the piezoelectric
coefficients. Band gaps, crystal-field splitting, and spin-orbit
coupling energy are denoted by Eg, ΔCF, and ΔSO, respectively.
The effective mass parameters are given by me and Ai, while the
conduction- and valence-band deformation potentials are ac and
Di, respectively. The bowing parameter for the spontaneous

polarization PSP is given by bðIn;GaÞNSP . The band offset between

InN and GaN is denoted by ΔEInN=GaN
VB .

Parameter GaN InN

alat (Å) [63] 3.180 3.542
clat (Å) [63] 5.172 5.711
C11 (GPa) [65] 368.6 233.8
C12 (GPa) [65] 131.6 110.0
C13 (GPa) [65] 95.7 91.6
C33 (GPa) [65] 406.2 238.3
C44 (GPa) [65] 101.7 55.4
e15 (C=m2) [63] −0.32 −0.42
e31 (C=m2) [63] −0.44 −0.58
e33 (C=m2) [63] 0.74 1.07
PSP (C=m2) [63] −0.040 −0.049
κr [66] 9.6 15.3
Eg (eV) [67] 3.51 0.69
ΔCF (eV) [68] 0.019 0.024
ΔSO (eV) [64] 0.017 0.005
me (m0) [59] 0.209 0.068
A1 (ℏ2=2m0) [59] −5.947 −15.803
A2 (ℏ2=2m0) [59] −0.528 −0.497
A3 (ℏ2=2m0) [59] 5.414 15.251
A4 (ℏ2=2m0) [59] −2.512 −7.151
A5 (ℏ2=2m0) [59] −2.510 −7.060
A6 (ℏ2=2m0) [59] −3.202 −10.078
ac (eV) [53,64] −4.08 −7.2
ac −D1 (eV) [68] −5.81 −3.64
ac −D2 (eV) [68] −8.92 −4.58
D3 (eV) [68] 5.45 2.68
D4 (eV) [68] −2.97 −1.78
D5 (eV) [68] −2.87 −2.07
D6 (eV) [68] −3.95 −3.02
bðIn;GaÞNSP (C=m2) [64] −0.037
ΔEInN=GaN

VB (eV) [69] 0.62
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clearly visible. First, the built-in potential profile looks
much more complicated in the semipolar case. Second, the
overall potential magnitude is significantly reduced com-
pared to the equivalent polar system [cf. Fig. 3(a)]. Third, in
the semipolar case, the minima and maxima of the built-in
potential are mainly outside the QD structure. Fourth, the
built-in potential V tot is very weak inside the semipolar QD
compared with the polar system. Thus, one could expect
that the spatial wave-function overlap is much higher in the
semipolar QD than in the corresponding polar dot.
We turn now to the DWELL systems. The center column

of Fig. 3 shows V tot for the In0.25Ga0.75N QDs embedded in
a IncwGa1−cwN QW with a width of 4.5 nm and 5% InN
(cw ¼ 0.05). The built-in potential is again shown for both
polar and semipolar DWELLs in Figs. 3(b) and 3(e),
respectively. In the right column, the InN content in the
well is increased to 10% (cw ¼ 0.1). For the polar system
(upper row), the magnitude of the built-in potential at the
QD interfaces is increased with increasing InN content in
the well. This can be explained in terms of linear con-
tinuum-elasticity theory. In this approach, the built-in
potential V tot of the DWELL system is the sum of the
potential arising from the QW plus a contribution

originating from the QD. Therefore, it can be expected
that the spatial separation of electron and hole wave
functions is increased with increasing InN content cw in
the well. Furthermore, when increasing cw, not only is the
built-in potential increased, but also the band-gap differ-
ence between dot and QW is reduced. Thus, the wave
functions might no longer be localized in the QD region.
Consequently, the DWELL concept might not be of great
benefit to increase the radiative recombination rate in polar
systems. At 10% InN in the well, Fig. 3(c), the QD structure
inside the well leads only to slight changes in the otherwise
parallel potential isolines.
For the semipolar (112̄2) DWELL structures (lower row

of Fig. 3), we find a similar trend as in the polar case.
Again, the magnitude of the overall built-in potential
is increased with increasing QW InN content cw. The
overall magnitude of V tot for an InN content of 10% in the
QW, Fig. 3(f), is comparable to the magnitude of Vtot in an
isolated polar QD. However, the magnitude of the built-in
potential inside the semipolar (112̄2) QD is, in fact,
reduced in comparison with the case of an isolated polar
QD. Therefore, we expect that, as long as the electron and
hole wave functions are localized inside the dot, the

FIG. 3. Contour plots of the built-in potential in polar and semipolar (112̄2) DWELLs for a slice through the center of the QD. The
upper part displays the results for the polar system, while the lower part depicts the results for the semipolar structures. The results are
shown as a function of the InN content in thewell (cw) surrounding the In0.25Ga0.75NQD(cd ¼ 0.25). The dashed lines indicate theQDand
QW interfaces.
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spatial separation of the wave functions in the semipolar
DWELL is smaller than in the equivalent polar system. We
also find that the potential profile inside the semipolar
DWELL is slightly changed compared with the isolated
semipolar QD. In the case of the isolated QD, the wave
functions will mainly be separated along the x0 axis, while
the potential isolines become almost parallel to the x0-y0
plane in the semipolar DWELL with 10% InN in the QW
[cf. Fig. 3(f)]. Thus, the spatial charge distribution could
change accordingly.
For a more detailed analysis of the built-in potential

profiles V tot, we decompose it into contributions arising
from the piezoelectric coefficients e33 and e31, e15, and the
spontaneous polarization PSP. As we discuss in Sec. II C,
and based on the c-plane situation, we denote the con-
tribution arising from e33 and e31 as axial. In the c-plane
system, the contribution attributed to e15 is shear-strain
related. Figure 4 shows the built-in potential originating
from axial contributions (left column), the shear part
(middle column), and the spontaneous polarization (right
column). The upper row corresponds to the isolated polar
In0.25Ga0.75N=GaN QD, while the lower row shows the
different contributions for the respective semipolar (112̄2)

system. Note that Fig. 4 shows the potential only near the
QD, the full supercell is not shown.
For the polar system (upper row), the magnitude of the

axial contribution, Fig. 4(a), is largest. While the axial and
the spontaneous contributions, Fig. 4(c), are largest near
the interfaces, the shear-strain-related part, Fig. 4(b),
spreads considerably into the barrier material. For the
InN content chosen here, spontaneous and shear-strain-
related contributions are comparable in magnitude but
opposite in sign at the upper and lower QD interface
[cf. Fig. 4(b) and 4(c)]. For instance, the spontaneous
contribution to the polarization potential VSP is negative
near the upper interface, while the shear-strain-related
contribution Ve15 is positive in this region. Since the
magnitudes are comparable, the shear-strain-related contri-
bution cancels parts of the spontaneous polarization con-
tribution in and around the c-plane QD. Note that this is a
direct consequence of the negative piezoelectric coefficient
e15 [70]. Both positive and negative values for e15 can be
found in the literature, with more recent data pointing
towards a negative value [55,63,71,72]. We conclude there-
fore that, for the polar isolated In0.25Ga0.75N=GaN QD, the
total built-in potential V tot is mainly dominated by the

FIG. 4. Contour plots of the different contributions to the built-in potential in an isolated In0.25Ga0.75N=GaN QD for a slice through the
center of the QD. The upper part displays the results for the polar system, while the lower part depicts the results for the semipolar QD.
Axial contribution: e15 ¼ 0, e33 ≠ 0, e31 ≠ 0, PSP ¼ 0; shear-strain contribution: e15 ≠ 0, e33 ¼ e31 ¼ 0, PSP ¼ 0; spontaneous
contribution: e15 ¼ e33 ¼ e31 ¼ 0, PSP ≠ 0. The dashed lines indicate the QD interfaces.
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axial contribution Ve31;e33 . This is consistent with the result
shown in Fig. 3(a).
The bottom row in Fig. 4 depicts the different contri-

butions for the isolated semipolar (112̄2) In0.25Ga0.75N=
GaN QD. In contrast to the c-plane system, the contribution
arising from e33 and e31 is smallest in magnitude. Similar to
the c-plane system, the e15-related contribution, Fig. 4(e), is
opposite in sign to the contributions arising from e31, e33
and spontaneous polarization. Since spontaneous and e15-
related contributions exhibit a similar profile, these two
contributions almost cancel each other inside and outside
the QD, at least for the InN content chosen here. The total
built-in potential in the semipolar QD is therefore domi-
nated by the e33- and e31-related contribution [cf. Fig. 4].

B. Electronic states

In the following, we analyze the electronic structures
of the polar and semipolar (112̄2) DWELL systems. In
Sec. IV B 1, we study the role of the QW InN content cw,
while keeping the QD InN content cd fixed at 25%.
In Sec. IV B 2, we discuss the electronic structure as a
function of the InN content in the QD, while keeping the
InN content in the well fixed at 5% and 10%.

1. Varying InN content in the well

To analyze changes in the electronic structure when
changing the substrate orientation and/or the InN content in
the well, we use the oscillator strength fλ of the ground-
state transition as a measure. The oscillator strength fλ, in
general, is defined as [30]

fλ ¼ 2

m0ℏω
jhψe;λ

cd;cw je · pjψh;λ
cd;cwij2: ð8Þ

The index λ denotes here the polar (P) or the semipolar (SP)
case. In the following, we keep the prefactor in Eq. (8)
constant between different calculations, so that a relative
oscillator strength (ratio of two oscillator strengths) is
mainly determined by the wave-function overlap. The
ground-state electron and hole wave functions are denoted
by jψe;λ

cd;cwi and jψh;λ
cd;cwi, respectively. The light polarization

vector is given by e and p denotes the momentum operator.
Based on the Hamiltonian in Sec. II D, the electron ground-
state wave function is purely determined by s orbitals, i.e.,
jψe;λ

cd;cwi ∼ jSi. The hole ground-state wave function is
given as a linear combination of jXi-, jYi-, and jZi-like
states: jψh;λ

cd;cwi¼aX↑ jX;↑iþaX↓ jX;↓iþaY↑jY;↑iþaY↓jY;↓iþ
aZ↑jZ;↑iþaZ↓jZ;↓i. The expansion coefficients aα↕ are
obtained from the eigenvectors of the valence-band
Hamiltonian given in Appendix B. For instance, we find
here that the hole ground-state charge density of the
isolated c-plane QD, due to the symmetry of the c plane,
consists of approximately 50% jXi- and 50% jYi-like
states. This situation is changed in the semipolar system.

Here, we find, for instance, that in the case of the isolated
semipolar (112̄2) QD, the hole ground state has a charge
density with approximately 98% jY 0i-like character. This
originates from the fact that, in the case of the semipolar
system, the strain is anisotropic in the growth plane,
breaking the symmetry of the jX0i- and jY 0i-like states.
Additionally, the effective masses are different along
different directions, contributing to the splitting of the
different states. Consequently, semipolar (112̄2) QDs or
DWELLs might be ideal candidates for emitters with a high
degree of linear optical polarization. The detailed analysis
of the optical polarization properties is beyond the scope of
the present study. To evaluate Eq. (8), we need to calculate
jhSjpαjαij2 with α ∈ ðX; Y; ZÞ. According to the results in
Ref. [73] and following Refs. [30,74,75], the values of
jhSjpαjαij2 are taken to be equal. In the following, we
assume a light polarization vector of e ¼ 1=

ffiffiffi
2

p ð1; 1; 0ÞT .
It should be noted that in other studies (e.g.,

Refs. [10,19,33]), charge-density overlaps have been used
to analyze the charge-carrier separation in semiconductor
nanostructures. Such a scheme could give a first, qualitative
insight into the spatial separation of charge carriers.
However, it might fail to give quantitative results, espe-
cially for excited states, since it neglects band-mixing
effects and symmetry properties of the involved wave
functions. The approach presented here overcomes these
limitations and provides a quantitative measure for the
wave-function separation.
Figure 5 shows the normalized oscillator strength

~fλðcwÞ of the ground-state transition in polar (diamonds)
and semipolar (squares) In0.25Ga0.75N=IncwGa1−cwN=GaN
DWELLs as a function of the InN content cw in the well.
With the index λ denoting the polar (P) or the semipolar
(SP) case, ~fλðcwÞ is defined as

FIG. 5. Relative oscillator strength ~fλ in polar and semipolar
In0.25Ga0.75N=IncwGa1−cwN=GaN DWELLs. The oscillator
strength is shown as a function of the InN content cw of the
well. The results are normalized to the oscillator strength in the
isolated (cw ¼ 0) polar In0.25Ga0.75N=GaN QD.
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~fλðcwÞ ¼
fλðcd ¼ 0.25; cwÞ

fPðcd ¼ 0.25; cw ¼ 0Þ : ð9Þ

In a first step, we analyze the normalized oscillator
strength in the polar system. Due to the definition of
~fλðcwÞ, Eq. (9), ~fPðcwÞ ¼ 1 if cw ¼ 0 [cf. Fig. 5]. With
increasing QW InN content cw, the normalized oscillator
strength ~fPðcwÞ decreases. At 10% InN in the QW, the
oscillator strength is negligible compared with the isolated
polar QD [ ~fPð0.1Þ ≈ 0]. This analysis indicates that polar
DWELL structures have inferior properties in terms of the
normalized oscillator strength when compared with an
isolated polar dot of the same composition.
The situation is different for the semipolar (112̄2)

DWELL systems. The normalized oscillator strength
~fSPðcwÞ is shown in (red) squares in Fig. 5. For the isolated
semipolar dot (cw ¼ 0), the normalized oscillator strength
of the ground-state transition is approximately four times

as large as in the equivalent polar system [ ~fSPð0Þ ≈ 3.9].
This reflects the reduced built-in potential we discuss
in Sec. IVA and shown in Fig. 3. With the InN content in
the QW increasing, ~fSPðcwÞ decreases. However, while in
the polar DWELL ~fPð0.1Þ is negligible, in the semipolar
case ~fSPð0.1Þ ≈ 0.9. Even at 10% InN in the QW, the
normalized oscillator strength of the ground-state transition
in the semipolar DWELL is approximately equivalent to the
oscillator strength in an isolated polar In0.25Ga0.75N=GaN
QD. This highlights that semipolar (112̄2) DWELLs are
promising candidates to achieve significantly improved
optical recombination rates compared with polar structures.
Figure 6 displays the electron (red) and hole (green)

ground-state charge densities of both polar and semipolar
DWELL systems. The light and dark isosurfaces are shown
at 5% and 50% of the maximum charge density, respec-
tively. QW and QD interfaces are indicated by the dashed
lines. The upper row gives the results for the polar
In0.25Ga0.75N=IncwGa1−cwN=GaN DWELL system, while

FIG. 6. Isosurfaces of the electron (red) and hole (green) ground-state charge densities in polar and semipolar DWELLs. The results
are shown for a slice through the center of the QD. Light isosurfaces correspond to 5% of the maximum charge density, while the dark
isosurfaces correspond to 50% of the maximum charge density. The upper part displays the data for the polar system, while the lower
part depicts the charge densities for the semipolar DWELLs. Again, the InN content in the well surrounding the In0.25Ga0.75N QD varies
between cw ¼ 0 (single QD) and cw ¼ 0.1. The dashed lines indicate the QD and QW interfaces.
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the lower row displays the charge densities for the semi-
polar (112̄2) structures. These systems correspond to the
structures considered in Fig. 5. In Fig. 6, the three columns
depict the electronic structure for a QWwith an InN content
of cw ¼ 0, cw ¼ 0.05, and cw ¼ 0.1, respectively. In the
polar system, we find that with adding more InN to the
well, both electron and hole wave functions are pushed
towards the interfaces of the surroundingQW.This behavior
is consistent with the increase in the built-in potential that
we discuss in Sec. IVA and the calculated reduction in the
normalized oscillator strength ~fP shown in Fig. 5. Figure 6
reveals that the low value of ~fP ≈ 0 at cw ¼ 0.1 is caused by
the localization of the hole wave function outside the QD at
the lower QW interface. Likewise, the probability density of
the electron wave function tends to be preferentially
localized at the upper QW interface, with some contribu-
tions at the upper QD interface. With increasing well width,
this effect should become more pronounced. However, it
could be counterbalanced by increasing the InN content in
the dot to force the wave functions back into the dot region.
But in turn, the wave-function separation will also be
increased inside the dot, due to the larger built-in field
inside the dot. These results further support that polar
DWELLs are not ideally suited for carrier-capturing proc-
esses and increased radiative transition rates.
In the semipolar systems, the situation is different, as

expected from the built-in potential discussed in Sec. IVA
and the results for the normalized oscillator strength
~fSPðcwÞ of the ground-state transition shown in Fig. 5.
In the isolated semipolar dot [Fig. 6(d)], the built-in field is
strongly reduced compared with the c-plane system, and
thus the charge densities are only slightly separated along
the x0 axis. When increasing the InN content in the well,
Figs. 6(e) and 6(f), the built-in field increases slightly and
also the potential profile is slightly changed as we discuss
in Sec. IVA. As shown in Figs. 6(e) and 6(f), the wave-
function separation has both a component along the (112̄2)
growth direction (z0 axis) and an in-plane component
(x0 axis). However, and in contrast to the polar DWELL
system, the electron and hole wave functions are still
localized inside the QD, even at 10% InN in the QW
[cf. Fig. 6(f)]. Thus, the semipolar In0.25Ga0.75N=
In0.10Ga0.90N=GaN DWELL could be an attractive option
to achieve both efficient carrier capturing and an increased
radiative recombination rate due to the three-dimensional
QD confinement.

2. Varying InN content in the dot

In the following section, we investigate the influence
of the QD InN content cd on the normalized oscillator
strength. At first, we assume a constant QW InN content cw
of 5%. This value represents an intermediate system in
terms of the relative oscillator strength [cf. Fig. 5]. We
focus our attention mainly on the semipolar system. Below,

we also discuss the results for the case of a QW InN content
of 10% (cw ¼ 0.1).
For the semipolar (112̄2) IncdGa1−cdN=In0.05Ga0.95N=

GaN DWELL structure, we define ~fSPðcdÞ, following
Eq. (9), as

~fSPðcdÞ ¼
fSPðcd; cw ¼ 0.05Þ

fPðcd ¼ 0.25; cw ¼ 0Þ : ð10Þ

Even though the full InN content range is experimentally
inaccessible, we vary the InN content in the dot over the full
range to analyze trends in the wave-function overlap and,
therefore, the relative oscillator strength. We focus our
attention on first-order piezoelectricity only. Second-order
effects, that might come into play at high InN contents, are
neglected. Considerable work on second-order piezoelectric-
ity has been carried out for zinc-blende materials [47,76–79].
Far less work has been dedicated to second-order piezoelec-
tricity in wurtzite semiconductors. Therefore, the second-
order piezoelectric coefficients for wurtzite InN and GaN are
still far less known than their zinc-blende counterparts. For
example, the wurtzite second-order coefficients derived in
Ref. [72] are related to diagonal strain-tensor components ϵii
only. For c-plane QW systems, this is sufficient due to the
absence of shear strain. However, Grimmer [80] has shown,
based on group theory, that the second-order piezoelectric
tensor for wurtzite exhibits shear-strain-related contributions.
As we have seen from our analysis of first-order piezo-
electricity, these shear-strain-related contributions could
become very important in semipolar DWELLs. Therefore,
the approach given in Ref. [72] cannot be applied to our
system. Prodhomme et al. [81] calculated the full wurtzite
second-order piezoelectric tensor using density-functional

FIG. 7. Normalized ground-state transition oscillator strength
~fSP in semipolar IncdGa1−cdN DWELLs with well InN contents

cw ¼ 0.05 and cw ¼ 0.10, respectively. ~fSP is shown as a
function of the InN content cd in the QD.
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perturbation theory within local density approximation
(LDA). Since LDA severely underestimates the band gap,
the second-order wurtzite piezoelectric coefficients for InN
are given with error bars in Ref. [81]. It is not immediately
obvious how these uncertainties affect the built-in field,
especially in the case of semipolar planes with different
contributions canceling each other. Therefore, we include
only first-order piezoelectric effects in the present study. Note
that our symmetry-adapted approach to describe piezoelec-
tricity in non-c-plane systems can easily be extended to
second-order effects, once all second-order piezoelectric
coefficients are known. We have previously done this
in our study on (111)-oriented zinc-blende QDs [43].
With the approach presented here, no further coding is
required, only the analytic expression for the second-order
piezoelectric polarization field as a function of the incline
angle θ has to be derived.
Figure 7 shows that the relative oscillator strength ~fSPðcdÞ

for cw ¼ 0.05 stays approximately constant up to cd ¼ 0.45
and then increases with increasing InN content cd in the
dot up to cd ¼ 0.85. At a QD InN content of 85%, ~fSPð0.85Þ
in the semipolar (112̄2) In0.85Ga0.15N=In0.05Ga0.95N=GaN

DWELL system is more than a factor of 2 larger than in an
isolated polar In0.25Ga0.75N=GaN QD. In a c-plane system,
since the built-in potential increases with increasing
InN content, originating from the strain dependence of the
piezoelectric potential, the spatial separation between elec-
tron and hole ground-state wave functions is increased. For
the semipolar (112̄2) DWELL system, this decrease of the
overlap is visible for cd > 95%. However, even at 100% InN
in the dot, thewave-function overlap is still larger than in the
semipolar system with 65% InN, as reflected in the ~fSP

values shown in Fig. 7. Compared with an isolated polar
In0.25Ga0.75N=GaN QD, the ground-state wave-function
overlap in the semipolar (112̄2) InN=In0.05Ga0.95N=GaN
DWELL is approximately a factor of 2.25 larger. Even
though these very high InN contents are experimentally
unrealistic, our calculations show again the potential benefit
of using semipolar DWELL structures for efficient opto-
electronic devices.
To understand the origin of this interesting result,

Fig. 8 shows the built-in potential and the ground-state
charge densities of electrons and holes in the semipolar
IncdGa1−cdN=In0.05Ga0.95N=GaN DWELL for cd ¼ 0.35

FIG. 8. Built-in potential and electron and hole ground-state charge densities in an In0.35Ga0.65N=In0.05Ga0.95N=GaN, an
In0.75Ga0.25N=In0.05Ga0.95N=GaN, and an InN=In0.05Ga0.95N=GaN DWELL, respectively. The built-in potential is shown for a slice
through the center of the heterostructure. The electron (red) and hole (green) ground-state charge densities are shown at 5% and 50% of
the maximum value. QD and QW interfaces are indicated by dashed lines.
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(left), cd ¼ 0.75 (center), and cd ¼ 1 (right). We find that,
with increasing QD InN content cd, the magnitude of the
built-in potential increases (upper row). This is expected,
since increasing the InN content leads to a larger lattice
mismatch and, therefore, a larger piezoelectric polarization.
However, as we discuss in Sec. IVA, the extrema of the
built-in potential are located mainly outside the QD for the
semipolar system. This originates from the more compli-
cated interplay between contributions arising from e15-,
e33-, and e31-related piezoelectric components and the
spontaneous polarization [cf. Fig. 4]. Inside the QD, the
built-in potential is also increased; however, in this case, the
potential profile also changes. The change in the built-in
potential profile leads to a change in the electron and hole
wave-function localization characteristics as shown in the
bottom part of Fig. 8. The charge densities show that, in the
case of 35% InN (cd ¼ 0.35), the wave functions are mainly
separated along the x0 axis while, with increasing InN
content, the wave functions are shifted towards the center
of the QD. However, when comparing the results with 75%
InN (cd ¼ 0.75) [cf. Fig. 8(e)] and 100% InN (cd ¼ 1)
[cf. Fig. 8(f)], the electron charge density is shifted towards
the bottom right corner of the QD. Additionally, at 100%
InN, the electron wave function leaks further into the QW
region when compared with the case for 75% InN. Thus, the
electron and hole wave-function overlap should decrease
slightlywhen comparing the cd ¼ 0.75with the cd ¼ 1 case.
This effect is consistent with the results shown in Fig. 7.
Also, the almost constant relative oscillator strength for

cd ≤ 0.45 with cw ¼ 0.05 in Fig. 7 can be understood by
looking at the charge densities. For example, when looking
at the electron and hole ground-state charge densities for
the cd ¼ 0.35 and cw ¼ 0.05 case [cf. Fig. 8(d)] and
comparing these with the cd ¼ 0.25 and cw ¼ 0.05 sit-
uation [cf. Fig. 6(e)], there is very little difference in the
charge-density localization characteristics. This is further
supported by the similarities in the built-in potentials
inside the QD for these two cases [Fig. 3(e) vs Fig. 8(a)].
Therefore, one could expect that the relative oscillator
strength should only be slightly affected by increasing the
QD InN content from 25% to 35%. This is reflected in the
relative oscillator strength ~fSP shown in Fig. 7.
In Fig. 7, we show also the result for 10% InN in the well

(cw ¼ 0.1). Overall, the curve shows a similar behavior as
for cw ¼ 0.05. Again, the normalized oscillator strength
increases with increasing QD InN content up to 85%–95%
InN. Beyond this value, the overlap decreases. However,
even at cd ¼ 1 (InN=In0.1Ga0.9N=GaN DWELL), fSP is
much larger than in the isolated polar In0.25Ga0.75N=GaN
QD. This shows that the surprising result of an increasing
wave-function overlap with increasing dot InN content is
robust against changes in the QW composition. There are
two main differences between the cw ¼ 0.05 and cw ¼ 0.1
cases. The first difference is that, when cw ¼ 0.1, ~fSPðcdÞ
increases also in the cd ≤ 0.45 regime. We find in the

cw ¼ 0.1 case that, when increasing cd, the electron and
hole ground-state charge densities are clearly shifted
towards each other along the x0 direction (not shown).
This shift along the x0 direction increases the spatial
electron and hole ground-state wave-function overlap
and, therefore, ~fSP increases also for cd ≤ 0.45, as shown
in Fig. 7. The second difference is that ~fSPðcdÞ is shifted to
smaller values from cw ¼ 0.05 to cw ¼ 0.1. With increas-
ing QW InN content cw, the built-in potential of the QW is
expected to start at some point to dominate the overall built-
in potential profile, therefore explaining the smaller values
for ~fSPðcdÞ at cw ¼ 0.1.

V. CONCLUSION

We present a detailed theoretical analysis of the built-in
potential and the electronic structure of polar and semipolar
(112̄2) DWELL systems. Our simulations are based on a
symmetry-adapted k · p approach that includes strain and
polarization fields. All analytic expressions are derived as a
function of the incline angle θ to the c axis and imple-
mented in the highly flexible software package S/PHI/nX.
Our model can be easily applied to QDs, DWELLs, or QWs
with thickness fluctuations, grown on arbitrary wurtzite
crystallographic planes that can be described by a single
incline angle. As an example, we choose the semipolar
plane (112̄2), using available experimental data.
Isolated (112̄2) semipolar QDs exhibit strongly reduced

built-in fields in comparison with an equivalent polar
system. As a consequence, the electron and hole ground-
state wave-function overlap in the semipolar system is
significantly higher than in the corresponding polar case.
Embedding an In0.25Ga0.75N c-plane QD in an

IncwGa1−cwN QW leads to a reduction of the ground-state
wave-function overlap and, therefore, a reduced oscillator
strength when increasing the InN content in the well. This
effect arises from the increase in the built-in potential inside
the QD. A similar behavior is observed in the equivalent
semipolar (112̄2) DWELL system. However, the effect is
strongly reduced compared to the c-plane system. In the
composition range that we study, the relative oscillator
strength of the ground-state transition in the semipolar
(112̄2) DWELL is still larger than in an equivalent polar
system. Thus, semipolar (112̄2) DWELL systems are
promising candidates for future optoelectronic devices with
improved carrier capture and radiative recombination rates.
This conclusion is further supported by the finding that the

relative oscillator strength increases in the semipolar (112̄2)
DWELLswith increasing theQD InN content, up to a critical
value, for a given QW InN content. Above this critical InN
value, the relative oscillator strength decreases with increas-
ing InN content in the dot. This surprising result of an
increasing wave-function overlap with increasing InN con-
tent is attributed to a change in the built-in potential profile,
which results in a change of the localization of electron and
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hole ground-state wave functions and, therefore, of the
corresponding oscillator strength.
The results of Funato et al. [18] and Hong et al. [23] on

isolated semipolar QDs indicate that the electronic structure
of these systems depends on the semipolar growth plane. In
future studies, our analysis of semipolar DWELLs will be
extended to different growth planes and a more detailed
analysis of the InN content both in the dot and in the well.
Furthermore, variations of the QD size and shape will be
studied to analyze their impact on the electronic and optical
properties of semipolar DWELLs.
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APPENDIX A: STIFFNESS TENSOR

Using the rotation matrix Uc defined in Eq. (2), the
transformation of the stiffness tensor is

C0
ijkl ¼

X
α;β;γ;δ

Uc
iαU

c
jβU

c
kγU

c
lδCαβγδ; ðA1Þ

where Cαβγδ are the stiffness-tensor components of the
standard c-plane system, which are given in Table I. The
stiffness tensor C in the c-plane wurtzite systems in Voigt
notation reads [82]

C ¼

0
BBBBBBBB@

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2
ðC11 − C12Þ

1
CCCCCCCCA
:

The transformation given in Eq. (A1) yields the stiffness
tensor C0 for an arbitrary wurtzite growth plane charac-
terized by the incline angle θ,

C0 ¼

0
BBBBBBBB@

C0
11 C0

12 C0
13 0 C0

15 0

C0
12 C0

22 C0
23 0 C0

25 0

C0
13 C0

23 C0
33 0 C0

35 0

0 0 0 C0
44 0 C0

46

C0
15 C0

25 C0
35 0 C0

55 0

0 0 0 C0
46 0 C0

66

1
CCCCCCCCA
;

with the elastic constants

C0
11 ¼ C11cos4θ þ C33sin4θ þ 4

�
C13

2
þ C44

�
cos2θsin2θ;

C0
22 ¼ C11;

C0
33 ¼ C11sin4θ þ C33cos4θ þ 4

�
C13

2
þ C44

�
cos2θsin2θ;

C0
44 ¼ C44cos2θ þ

1

2
½C11 − C12�sin2θ;

C0
55 ¼ C44

�
1 − 1

2
sin22θ

�

þ cos2θsin2θ½C11 − 2C13 þ C33 − 2C44�;

C0
66 ¼

1

2
½C11 − C12�cos2θ þ C44sin2θ;

C0
12 ¼ C12cos2θ þ C13sin2θ;

C0
13 ¼ C13

�
1 − 1

2
sin22θ

�
þ cos2θsin2θ½C11 þ C33 − 4C44�;

C0
15 ¼ cos θ sin θ½C11cos2θ − C33sin2θ�

− ½C13 þ 2C44� cos θ sin θcos22θ;
C0
23 ¼ C13cos2θ þ C12sin2θ;

C0
25 ¼ ½C12 − C13� cos θ sin θ;

C0
35 ¼ cos θ sin θ½C11sin2θ − C33cos2θ�

þ ½C13 þ 2C44� cos θ sin θcos22θ;

C0
46 ¼ cos θ sin θ

�
C11

2
− C12

2
− C44

�
:

These quantities are used as input in Eq. (3) to determine
the strain field in a heterostructure grown on different
crystallographic wurtzite planes.

APPENDIX B: ROTATED SIX-BAND
k · p HAMILTONIAN

Following the general procedure described in Sec. II D
and taking into account the transformation rules for vectors
and tensors outlined in Sec. II A, the six-band Hamiltonian
H0

k⋅p in the rotated frame, expanded using basis states with
symmetry ðjX0↑i; jY 0↑i; jZ0↑i; jX0↓i; jY 0↓i; jZ0↓iÞT, can
be written as

H0
k⋅p ¼

�
M0ðk0Þ Γ0

SO

−Γ0�
SO M0�ðk0Þ

�
; ðB1Þ

where M0ðk0Þ and Γ0
SO are both 3 × 3 matrices. The matrix

M0ðk0Þ can be decomposed in several submatrices,

M0ðk0Þ ¼ M0
PE þM0

CF þM0
KE þM0

str þM0
SO: ðB2Þ

The potential energy component M0
PE, which contains

terms independent of k0, is given by
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M0
PE ¼

0
B@

~EVB 0 0

0 ~EVB 0

0 0 ~EVB

1
CA:

The average unstrained valence-band edge is denoted by
~EVB, which is defined as

~EVB ¼ EVB þ V tot − ΔSO

3
; ðB3Þ

where ΔSO denotes the spin-orbit coupling energy. EVB is
the averaged valence-band edge on an absolute scale and
V tot is the potential arising from the total (spontaneous plus
piezoelectric) built-in potential.

The crystal-field splitting component M0
CF is given by

M0
CF ¼

0
B@

−ΔCFsin2θ 0 ΔCF cos θ sin θ

0 0 0

ΔCF cos θ sin θ 0 −ΔCFcos2θ

1
CA;

with ΔCF denoting the crystal-field splitting energy.
The kinetic-energy component M0

KE is given by

M0
KE ¼

0
B@

h011ðk0Þ h012ðk0Þ h013ðk0Þ
h012ðk0Þ h022ðk0Þ h023ðk0Þ
h013ðk0Þ h023ðk0Þ h033ðk0Þ

1
CA;

with

h011 ¼ ðA2 þ ðA4 þ A5Þcos2θÞ½k0x cos θ þ k0z sin θ�2 þ ðA1 þ A3cos2θÞ½k0x sin θ − k0z cos θ�2
þ ½A2 þ ðA4 − A5Þcos2θ�k02y þ

ffiffiffi
2

p
A6½ðk02x − k02z Þ cos θ sin θ − k0xk0z cos 2θ�sin 2θ;

h012 ¼
ffiffiffi
2

p
A6½k0xk0y sin θ − k0yk0z cos θ� sin θ þ 2A5½k0xk0y cos θ þ k0yk0z sin θ� cos θ;

h013 ¼ A3 sin θ cos θ½k0x sin θ − k0z cos θ�2 þ ½A4 þ A5� sin θ cos θ½k0x cos θ þ k0z sin θ�2
þ

ffiffiffi
2

p
A6½k0xk0z − ðk02x − k02z Þ cos θ sin θ cos 2θ − 4k0xk0zcos2θsin2θ� þ ðA4 − A5Þ½k02y sin θ cos θ�;

h022 ¼ ½A1 þ A3�½k0z cos θ − k0x sin θ�2 þ ½A2 þ A4 − A5�½k0x cos θ þ k0z sin θ�2 þ ½A2 þ A4 þ A5�k02y ;
h023 ¼

ffiffiffi
2

p
A6½k0yk0z cos θ − k0xk0y sin θ� cos θ þ 2A5½k0xk0y cos θ þ k0yk0z sin θ� sin θ;

h033 ¼ ½A2 þ ðA4 þ A5Þsin2θ�½k0x cos θ þ k0z sin θ�2 þ ½A1 þ A3sin2θ�½k0x sin θ − k0z cos θ�2
þ ½A2 þ ðA4 − A5Þsin2θ�k02y þ

ffiffiffi
2

p
A6½k0xk0z cos 2θ þ ðk02z − k02x Þ cos θ sin θ� sin 2θ:

The parameters Ai play a similar role as the Luttinger
parameters in a zinc-blende material.
The strain-dependent component M0

str can be written as

M0
str ¼

0
B@

h0str11 h0str12 h0str13

h0str12 h0str22 h0str23

h0str13 h0str23 h0str33

1
CA: ðB4Þ

The matrix elements h0strij of the strain-dependent part
M0

str of the full HamiltonianH0
k⋅p, Eq. (B1), can be obtained

from the matrix elements h0ijðk0Þ by the simple substitution
rules

Ai → Di ðB5Þ

k0ik
0
j → ϵ0ij; ðB6Þ

with Di denoting the valence-band deformation potentials.
The spin-orbit related contributions M0

SO and Γ0
SO are

given by

M0
SO¼

ΔSO

3

0
B@
0 −i 0
i 0 0

0 0 0

1
CA; Γ0

SO¼
ΔSO

3

0
B@

0 0 1

0 0 −i
−1 i 0

1
CA: ðB7Þ

Possible differences of the spin-orbit coupling energy
parallel (Δ∥

SO) and perpendicular (Δ⊥
SO) to the c axis are

neglected. Consequently, in this quasi-cubic approximation
only one spin-orbit coupling energyΔSO ¼ Δ⊥

SO ¼ Δ∥
SO has

to be considered. This is a widely used approximation
[67,75,83–85], also when extracting spin-orbit coupling
information from experimental data [86,87]. Due to the
assumed isotropy of the spin-orbit interaction [88], the
contributions M0

SO and Γ0
SO are identical to the contribu-

tions in the standard wurtzite c-plane system [57].
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