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The acoustic diode (AD) can provide brighter and clearer ultrasound images by eliminating acoustic
disturbances caused by sound waves traveling in two directions at the same time and interfering with each
other. Such an AD could give designers new flexibility in making ultrasonic sources like those used in
medical imaging or nondestructive testing. However, current AD designs, based on nonlinear effects, only
partially fill this role by converting sound to a new frequency and blocking any backward flow of the
original frequency. In this work, an AD model that preserves the frequencies of acoustic waves and has a
relatively high forward-power-transmission rate is proposed. Theoretical analysis indicates that the
proposed AD has forward, reverse, and breakdown characteristics very similar to electrical diodes.
The significant rectifying effect of the proposed AD is verified numerically through a one-dimensional
example. Possible schemes for experimental realization of this model as well as more complex and efficient
AD designs are also discussed.
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I. INTRODUCTION

The invention of the electric diode, which realized the
rectification of electric-current flux for the first time,
marked the advent of modern electronics and eventually
changed our daily lives significantly. Inspired by the
remarkable energy-rectification characteristics of electric
diodes, recent years have witnessed growing research
interest in controlling other forms of energy flux in a
similar manner [1–6]. Among these contributions, a lot of
attempts have been made to design an acoustic diode (AD)
that can rectify acoustic-energy flux. The acoustic diode is
a device that allows acoustic or elastic waves to travel along
one direction but not in the opposite direction. This one-
way flow of sound would provide brighter and clearer
ultrasound images by eliminating acoustic disturbances
caused by sound waves going in two directions at the same
time and interfering with each other. In practice, such an
AD could give designers new flexibility in making ultra-
sonic sources like those used in medical imaging or
nondestructive testing [7,8]. This kind of device also
promises to be of great benefit for shock-wave lithotripsy
[9], vibration mitigation, environmental noise control [10],
and could even be used as a building block in acoustic-
elastic logic gates, in analogy to electronics [11,12].
The first theoretical model of an AD was presented by

Cheng and coworkers in 2009 [7], and then various AD
models that can achieve asymmetrical transmission of
acoustic waves were suggested [12–17]. It is worth noting,

however, that all proposed ADs based on linear structures
should not be identified as diodes in a strict sense because
the reciprocity principle of linear systems must be
respected [18]. The ADs based on the nonlinear effect
all need to change the frequencies of acoustic waves. Due
to the poor conversion efficiency in nonlinear systems, only
a small part of wave energy can pass through the systems.
Therefore, the forward-power-transmission rates of these
ADs are relatively low. A major challenge yet to be tackled
is how to utilize nonlinear effects to achieve acoustic-wave
rectification in a perfectly asymmetric fashion without
changing the direction and frequency of the incident wave
and, at the same time, maintaining higher forward-power-
transmission rates [18]. It is worth noting that a strictly
nonreciprocal acoustic circulator (not an AD) with high
forward transmission without using nonlinear effects was
proposed in Ref [19]. The scheme in that article seems
another promising way to design effective ADs.
In this work, a different theoretical model is proposed for

ADs. Compared with other ADs based on nonlinear effects
[7,8,12], the distinctive feature of the proposed model is
such that one-way energy transmission can be achieved
without changing the frequencies of the incident waves.
Because of the weak nonlinearity, most of wave energy can
be kept in the original frequency. So, theoretically, if the
impedance of the interfaces can be designed appropriately,
a perfect acoustic isolator [18] can be realized, for which the
corresponding power-transmission rate RT is almost unity
(i.e., RT ≈ 1) in one direction and RT ≈ 0 in the opposite
direction. Possible schemes for experimental realization of
this model, as well as more complex and efficient acoustic
diode designs, are also discussed in this paper.
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II. THEORETICAL MODEL

One of the key points for designing the present AD
model is resorting to the nonlinear periodic systems (e.g., a
nonlinear phononic crystal) that can provide amplitude-
dependent band structures [20], in order to break the
restriction of the reciprocal theorem in linear acoustic
systems. Since amplitude-dependent dispersion is only a
weak nonlinear effect in this wave propagation system,
the energy associated with the excited higher-frequency
harmonic waves can be ignored [21], which may ensure
the high forward-power-transmission rate. Asymmetric
linear structures are then introduced to modulate the
wave amplitudes in an incident direction-dependent way.
This constitutes the other cornerstone of the present
AD model.
Figure 1 illustrates schematically a prototype of the

proposed AD model. A harmonic force acts on the left
side of the AD device, If the amplitude and the frequency of
the incident wave [i.e., ðω; AÞ] are located in the passband
of the weakly nonlinear phononic crystal, whose dispersion
property is wave-amplitude dependent, then the harmonic
wave can pass through the filter nearly lossless. However,
due to the asymmetry deliberately introduced into the
system, if the same harmonic excitation acts on the right
side of the AD device, the amplitude of the incident wave
may be modulated to A0 and ðω; A0Þ may locate in the
forbidden band of the nonlinear phononic crystal. Under
these circumstances, the wave coming from the right side
cannot pass through the system and the system can be
reasonably referred to as an AD.

III. NUMERICAL EXPERIMENT

A. A one-dimensional, semidiscrete example

Although the aforementioned principle can be applied to
designing ADs in any spatial dimension, here a fairly
simple, one-dimensional example is chosen to verify the
effectiveness of the proposed AD model. As shown in
Fig. 2(a), a one-dimensional AD is constructed of a number
of rigid balls connected by linear and weakly nonlinear
springs. The asymmetry of the system is introduced by one,
uniform cross-section, linear elastic rod and another linear
elastic rod with variable cross sectional area at two ends of
the mass chain. When an acoustic wave propagates through
the nonuniform rod, its amplitude is changed because of the
energy-conservation principle. Furthermore, the magnify-
ing coefficient can be controlled by appropriately selecting
the structural parameters of the rod.
Assume that the force-elongation relationship of the

weakly nonlinear spring [the yellow spring in Fig. 2(a)] is
f ¼ αkδþ Γδ3, where δ denotes the elongation of the
nonlinear spring and αk ðα > 0Þ and Γ > 0 are the stiffness
parameters of the spring ðΓδ2=αk ≪ 1Þ. Here, the symbol k
is the stiffness coefficient of the linear spring [the blue
spring in Fig. 2(a)]. With use of the perturbation approach
[20], it can be found that the dispersion relationship of the
weakly nonlinear mass-spring system is

ω̄≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ α− 2 cosðpÞ

p
þ 3

8

Γd2

k
jĀ0j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ α− 2 cosðpÞp ; ð1Þ

where ω̄ ¼ ω=ω0, with ω0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
denoting the non-

dimensional frequency, and d and m are the length of the
unit cell and the mass of the ball, respectively. In Eq. (1),
p ¼ hd is the nondimensional Bloch wave number with h
denoting the usual Bloch wave number and Ā0 ¼ A0=d is
the nondimensional amplitude of the incident wave.
Figure 2(b) depicts the dispersion relationship predicted

by the perturbation analysis with different wave ampli-
tudes. Figure 2(c) presents a closer view of the dispersion
behavior near the upper cutoff frequency. It can be seen that
the mass-spring system has only one passband, and that the
lower and the upper bound of the passband increase when
the amplitude of the incident wave is increased. This
indicates that, when the incident-wave frequency falls into
the range of 2.236ω0–2.253ω0 [the orange shaded area in
Fig. 2(c)], only when jĀ0j2 > aω (aω is a function of ω,
and aω > 0.001), then the incident wave can propagate
through the nonlinear mass-spring chain. However, when
jĀ0j2 < aω, the wave will undergo exponential attenuations
as it propagates. Therefore, for a specific range of frequen-
cies, the nonlinear mass-spring chain can serve as an
amplitude-dependent wave filter. This property plays a
crucial role in the current AD model.
As shown in Fig. 2(a), the asymmetry wave amplitude

modulation can be achieved by placing an elastic rod r1

FIG. 1. Schematic illustration of the AD model. When the
harmonic force with amplitude f and frequency ω acts on the left
side, the wave incident on the nonlinear periodic structure is
outside the passband gap (PBG) and can pass through the system.
While the same force acts on the other side, the wave cannot pass
through the system.
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with uniform cross-sectional area at the left side of the
nonlinear mass-spring chain, while placing an elastic rod r2
with nonuniform cross-sectional area at the other side.
Actually, when the area of the rod varies along its length
and is in the form of SðxÞ ¼ S0 exp½lnðSl=S0Þx=l� (here, S0
and Sl are the small-end area and the big-end area,
respectively, and l denotes the length of the rod), the
corresponding magnifying coefficient (i.e., the ratio of the
displacements at x ¼ 0 and x ¼ l) can be obtained as

M ¼
ffiffiffiffiffiffiffiffiffiffiffi
S0=Sl

p
ReðAe−iql þ BeiqlÞ
ReðAþ BÞ ; ð2Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2=c2Þ − ðχ2=4Þ

p
and χ ¼ ð1=lÞ lnðS0=SlÞ.

For the rod with uniform cross-sectional area, we have
χ ¼ 0. In Eq. (2), ω is the frequency of the incident wave,
c ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

denotes the wave velocity (E and ρ are the
Young’s modulus and density of the rod material, respec-
tively) and A and B represent the amplitude of the incident
and the reflected wave in the rod, respectively.

B. Numerical method and parameters

The propagation of acoustic waves in this nonlinear
system can be investigated numerically by using the
Runge-Kutta algorithm. The rods at the two ends are
discretized as two linear mass-spring chains through a
lumped mass method. Then the driving forces are exerted
on the mass located at the edge of the discretized rods. To
simulate a nonreflecting infinite plane wave, a perfectly
matched layer is set at both ends of the simulated system
[20]. The material and geometry parameters adopted in
the numerical simulation (in dimensionless form) are
ρ1S1l1=m¼15, ρ2S2l2l2=m¼70, E1l1=k¼6, E2l2=k¼30,

S1=l12¼0.01, S2l2=l2
2¼0.01, S2l2=S20¼9, l1=d ¼ l2=

d ¼ 50, Γd2=k ¼ 5, α ¼ 1, and the number of the units
in the nonlinear mass-spring chain is 16. These parameters
may not be optimal, but they are enough to verify the
effectiveness of the proposed AD model.
It is worth noting that for the realization of an AD, the

driving frequency ω must locate near the cutoff frequency
of the nonlinear chain and the amplitude of the driving
force should be appropriately chosen such that, when the
driving force acts on one end of the device, ω should locate
in the passband. When the driving force acts on the other
end, ω must fall into the band gap. In other words, the AD
effect can only be observed in a narrow frequency range
with specific wave amplitude. It is also worth noting that, if
a unit cell of the nonlinear periodic chain comprises N
masses, there will be 2N frequency ranges that can be used
for wave modulation, and the locations of these frequency
ranges can also be changed by adjusting the parameter α.
Some more interesting phenomena are discussed at the end
of this paper.

C. Results

1. High forward transmission
without changing frequencies

Here, we choose a particular value of the normalized
frequency ω̄ ¼ 2.237 and the amplitude of the driving force
is taken as jfj ¼ 0.175kd. Figures 3(a) and 3(b) illustrate
the snapshot of the deformed shapes of the system at time
point 1.5π=ω̄ when the driving force acts on the left side
and the right side, respectively. These figures illustrate
clearly that when the force acts on the left side, ω̄ falls into
the passband and the wave propagates through the non-
linear chain [the line with symbols in Fig. 3(a)] in the form

FIG. 2. (a) A simple, one-dimensional
example of the AD model in this
work. (b) The dispersion relationship
of the nonlinear periodic chain with
different wave amplitudes. Here α ¼ 1,
Γd2=k ¼ 5. (c) A closer view of the
dispersion behavior near the upper cut-
off frequency.

FREQUENCY-PRESERVED ACOUSTIC DIODE MODEL WITH … PHYS. REV. APPLIED 3, 064014 (2015)

064014-3



of a Bloch wave. On the other hand, as the incident
direction is reversed, ω̄ is in the band gap and the wave
decays exponentially through the chain [the dashed line
with symbols in Fig. 3(b)].
Figure 3(c) illustrates the spatial distribution of the time-

averaged energy flux as the wave is incident from the left
side and the right side of the system. The time-averaged
energy flux is equal to the time-averaged energy-flux
density multiplied by the cross-sectional area of the rod.
In the nonlinear chain, the time-averaged energy-flux
equals the time-average energy exchange between adjacent
masses. The input power is not the same when the external
force acts on the left side and right side. Actually, the input
power is much larger when the wave comes from the left
side. This indicates clearly that the response of the
proposed AD is nonreciprocal, which is an important
feature of true ADs, as pointed out in Ref. [18]. It is also
worth noting that, although the wave-energy flux will decay
when the wave goes through the structure from either
direction, the underlying mechanism is quite different. The
attenuation of the energy flux from the left side is caused by
the mismatch of wave impedance at the interfaces between
the nonlinear chain and rods. When the force acts at the
right side, the wave is evanescent mainly because of
multiple scatterings in the nonlinear chain rather than
the impedance mismatch of the interfaces.
Even if the interface reflection is inevitable because of the

impedance mismatch, the power-transmission rate of the
wave energy from the left side is still as high as
RTl ¼ Eout

l =Ein
l ≈ 0.5. This value is much larger than those

of other ADs in the literature [7,8,12]. It can be expected that
the power-transmission rate can be even higher if thematerial
properties and structures involved can be optimized appro-
priately, but it seems unlikely to reach the ideal value because
of the difficulty in matching the impedances between the

discrete mass-spring chain and the continuous rods for this
sample. Furthermore, the output powers associated with the
left-side stimuli and right-side stimuli are Eout

l ≈ 3.4 × 10−3
and Eout

r ≈ 1.0 × 10−5, respectively. The former is almost 2
orders magnitude higher than the latter.

2. Forward, reverse, and breakdown characteristics

Figure 3 demonstrates the effectiveness of the present
system as an AD, which restricts the energy flux in
one particular direction and has a high forward-power-
transmission rate. Because the transmission of the incident
wave is amplitude dependent, it is necessary to analyze how
the amplitude of the driving force will influence the output
power of the acoustic wave. The output-energy flux W
versus f is plotted in Fig. 4. The positive (negative) value of
the force amplitude and the energy flux indicates that the
wave comes from the left side (right side). It is clearly
observed that the intrinsic relation between the force
amplitude and the energy flux illustrated in Fig. 4 is very
similar to the voltage-current-flow relationship of an
electrical diode. Our AD also has the same forward,
reverse, and breakdown characteristics as those known in
an electrical diode. To be more specific, with a small
forward bias, the frequency ω̄ is in the band gap of the
nonlinear chain, where only a small normalized [divided by
E1S1d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðml2Þ

p
] forward output power (10−5–10−6) is

conducted. At a specific value of the forward force (i.e.,
f ≈ 0.17kd), the diode starts to “conduct” significantly.
This indicates that ω̄ has shifted to the passband and the
mode of wave propagation in the nonlinear chain has also
been changed. The force fd ≈ 0.17kd can be called as the
knee force or cut-in force as in the electrical diode. When
the forward force is larger, the energy will propagate
through the nonlinear chain in the form of a Bloch wave

FIG. 3. A snapshot of the deformed
shapes of the system at t ¼ 1.5π=ω̄
when the driving force acts on the left
side (a) and the right side (b). The lines
with symbols denote the deformation
of the nonlinear chain. (c) The spatial
distributions of the time-averaged en-
ergy flux (or the internal power) as the
acoustic wave is incident on the left
side and the right side of the system.
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and the W-f curve will approach a straight line asymp-
totically because of the weak nonlinearity of the system.
The reverse-biased situation is similar to the forward-biased
one. When −0.4kd < f ≤ 0, the AD has only a very small
normalized reverse output power (10−7–10−6). While
f < −0.4kd, a process called reverse breakdown occurs,
which will lead to a large increase in the output power.

Therefore fbr ¼ −0.4kd can be called the breakdown force
of the AD device. For an electrical diode, reverse break-
down usually damages the device permanently, but this is
not the case for ADs. As shown in Fig. 4, when the
magnitude of the force is larger than jfbrj, the wave can
pass through the device from either direction. It is also
obvious that the device can work as an AD when the
amplitude of the external force is in the range of
½0.17kd; 0.40kd�. A thermal diode with similar character-
istics was proposed in Ref [22].

D. Further insight

Things will be more interesting if the nonlinear
monatomic chain in the present AD model is replaced
with a nonlinear polyatomic chain and the ratios of the
masses in the unit cell can be chosen appropriately (the
stiffness coefficients and the length of the springs are not
changed).
The dispersion relationship of this nonlinear polyatomic

chain can be calculated approximately through a perturba-
tion approach [20] as

ω̄ ≈ ω̄0 þ
3

8

Γd2

k
jĀ0j2
ω̄0

; ð3Þ

where the linear dispersion with two branches can be
obtained as

ω̄0 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ αÞð1þ βÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð2þ αÞ2ð1þ βÞ2 − 16βð2þ αÞ2 þ 64βcos2ðpÞ

qr
; ð4Þ

with β ¼ m2=m1 denoting the masses ratio. Other param-
eters are the same as those adopted in the previous
monatomic chain example.
The band diagram of the nonlinear diatomic chain with a

masses ratio of β ¼ 1.01 is illustrated in Fig. 5. In this case,
the two branches of the dispersion are very close and they

are also amplitude dependent. As shown in Fig. 5(b), when
the amplitude of the incident wave is small, the nondimen-
sional frequency ω̄ ¼ 1.75 (ω̄ ¼ ω=ω1, ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k=m1

p
) is

in the optical branch (the upper branch) and therefore the
incident wave can pass through the chain. When the
amplitude is larger, the dispersion curves shift up so that

FIG. 4. The output power W versus the driving force f. Note
three main areas of operation: breakdown, reverse-biased, and
forward-biased. Here, fbr and fd denote the breakdown and
conducting force, respectively. Both terms are borrowed from the
electrical diode.

FIG. 5. (a) The dispersion relation-
ship of the nonlinear periodic diatomic
chain with different amplitudes. Here,
the masses ratio β ¼ 1.01, and the
spring parameters α ¼ 1, Γd2=k ¼ 5
are the same as those in the previous
monatomic chain. (b) A closer view of
the dispersion behavior near the non-
dimensional frequency ω̄ ¼ 1.75.
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ω̄ ¼ 1.75 will fall into the band gap and the wave cannot
propagate through the chain. If the amplitude of the wave is
increased further, the frequency ω̄ ¼ 1.75 will shift into the
acoustic branch (the lower branch) of the passband and the
wave can pass through again.
This phenomenon is similar to the tunneling effect in

quantum mechanics. Consequently, it can be expected that
if the nonlinear diatomic chain is used as the amplitude-
dependent filter in an AD, the corresponding AD will have
forward and reverse characteristics similar to the tunnel
diode. The tunnel diode is also known as the Esaki diode,
a special and important type of electricity diode. When a
unit cell has more several masses, there will be much
more operating-force ranges of the AD. To the best of
our knowledge, there are still no similar diodes in
electronics.

IV. DISCUSSION AND CONCLUSIONS

We present an AD model formed by coupling a weakly
nonlinear periodic structure with asymmetric linear struc-
tures at two ends. Compared with other ADs in the
literature, the proposed AD model can achieve wave
rectification without changing the frequency of the incident
wave and has a relatively high forward-power-transmission
rate. We present numerical verification of a simple example
of this model. A significant rectifying effect is observed at
specific wave amplitudes and frequency ranges, and the
forward-power-transmission rate of the AD is as high as
0.5. It can be expected that the power-transmission rate can
be even higher if the material properties and structures can
be optimized appropriately. Furthermore, the proposed AD
model has very similar forward, reverse, and breakdown
characteristics to those of electrical diodes.
The present model is sufficiently simple and efficient to

encourage practical studies of experimental realization of
this AD. The one-dimensional weakly nonlinear chain can
be emulated by cross-combining the linear springs or one-
dimensional array of granular crystals under precompres-
sion [12]. In fact, the asymmetric structural pattern can also
be triggered by external forces [23,24] and, when the
external forces are released, the induced structural asym-
metry will disappear. This may provide the possibility of
designing force-mediated, reversible, adaptive AD devices.
Recent research also indicates that some materials can
deform under the stimuli of external magnetic and electric
fields. These mechanisms can be used to introduce a certain
degree of tunability of the asymmetry of the linear
structures in the present AD model. In this way, the band
structure of the AD system can also be controlled actively
by electric field, magnetic field, or prestress. In our future
research, we will choose suitable materials and structures to
do experiments and design more complex ADs whose
operating-force ranges and efficiencies can be tuned by
electric or magnetic fields and by prestress.
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