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Effects of disorder scattering critically influence quantum-transport properties of nanostructures both
fundamentally and practically. In this work, we report a theoretical analysis of the important issue of
device-to-device quantum-transport variability (DDV) induced by random configurations of discrete
dopants. Instead of calculating many impurity configurations by brute force, which is practically
impossible to accomplish from first principles, here we use a state-of-the-art atomistic technique where
the configurational average is carried out analytically, thereby, DDV can be predicted for any impurity
concentration. The DDV we quantitatively analyze is the off-state tunnel conductance variability in Si
nanosized field-effect transistor channels with channel lengths ranging from 6.5 to 15.2 nm doped with
different concentrations of boron impurity atoms. The variability is predicted by varying the doping
concentration, channel length, and the doping positions. We find that doping away from the source or drain
contacts of the channel very significantly reduces variability, and doping close to the source or drain
produces a nonintuitive outcome of increasing variability. The physics is understood by analyzing the
microscopic details of the potential profile in the tunnel barrier. Finally, we organize the ab initio data by a
Wentzel-Kramers-Brillouin model.
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I. INTRODUCTION

An increasingly important piece of nanoelectronic
device physics is the device-to-device variability (DDV)
of transport properties due to atomistic disorder or the
random discrete-dopant (RDD) effect [1]. When device size
approaches tens of nanometers, DDV becomes significant
because every individual configuration of dopant atoms
makes the device property slightly different. DDV can
cause serious issues in circuit design; namely, if every
transistor behaves differently, it is hard to achieve a reliable
circuit. For nanoscale transistors, DDV manifests in trans-
port properties such as the conductance, the threshold
voltage, subthreshold swing, and on:off ratio of the drain
current [2–4]. RDD-induced DDV has already become a
key problem in the integrated circuit of sub-50-nm tech-
nology [5,6] and is expected to be a critical issue in the sub-
10-nm-scale nanoelectronics.
Theoretical investigation of DDV is very important for

understanding its microscopic origin, thereby, rectifying it.
To this end, the most widely applied approach is by solving
classical, semiclassical, or effective mass quantum-
transport equations [1,7–9]. These approaches rely on
phenomenological material and device parameters, and
for classical models, there are discrepancies between

simulation results and experimental data [7] when the
device size is approximately 10 nm. A more fundamental
but less applied technique is based on first principles;
namely, the device is analyzed atomistically, and the
transport is calculated quantum mechanically [10–12].
However, a first-principles analysis of DDV often requires
a prohibitively high computational cost. For instance, to
atomistically model a dopant concentration of 10−4, which
is already extremely high for semiconductor devices, one
will need to simulate 10 000 host atoms to just accom-
modate a single dopant atom, and there is a huge ensemble
of dopant configurations to be calculated individually by
brute force in order to determine DDV. Indeed, so far the
first-principles method has been limited to simulate struc-
tures having a very limited number of atoms and unreal-
istically high dopant concentrations.
Clearly, to understand DDV, an approach that avoids

brute-force computation of each and every dopant con-
figuration and one that can deal with a wide range of
impurity concentrations is required. To this end, we have
recently reported a formalism of a nonequilibrium coherent
potential approximation (NECPA) [13] based on which the
RDD-induced DDVat the experimentally relevant impurity
concentrations and device sizes can be calculated quanti-
tatively from first principles parameter-free [14].
In this work, we apply this state-of-the-art first-

principles formalism [14] to investigate the important*qing.shi2@mail.mcgill.ca
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device physics behind the DDV in a silicon nanosized
field-effect transistor (nano-FET) induced by atomic
impurities. In particular, we analyze the off-state tunnel
conductance variability induced by RDD—a very sig-
nificant device merit for Si nano-FET channels in the
realistic ranges from 6.5 to 15.2 nm as a function of
impurity concentration. In our calculations, both the host
Si atoms and the impurity boron atoms are treated
atomistically in equal footing, with the disorder average
carried out by the NECPA formalism [13,14]. For these
channels, the variability is found to be sensitive to the
doping concentration Cd, channel length L, and the
doping positions. Doping-position effects are investigated
under the circumstance of localized doping [15], where
dopant atoms are restricted within some spatial region.
Variability is calculated by moving this narrow region
from the source side to the drain side. While the
dependence on Cd, L are as expected, the dependence
on the doping position is quite nonintuitive. In particular,
doping away from the source and drain contacts of the
channel can very significantly reduce variability, but
doping close to the source or drain has the nonintuitive
outcome of increasing variability. The physics of this
phenomenon can be understood by analyzing the micro-
scopic details of the potential profile in the channel
barrier. Finally, we organize the ab initio results by a
Wentzel-Kramers-Brillouin (WKB) model.
The paper is organized as follows. In Sec. II, we

briefly present the theoretical and computational tech-
nique for completeness and for ease of discussion. In
Sec. III, we report the RDD-induced off-state tunnel
conductance variability. The effects of various doping
profiles on quantum transport are analyzed and micro-
scopic physics revealed. Section IV presents a summary
of the work.

II. METHOD

In this section, we summarize the theoretical and
computational technique for predicting the RDD-induced
variability. For device structures having no disorder,
atomistic first-principles modeling of quantum transport
is achieved by carrying out the density-functional theory
(DFT) within the Keldysh nonequilibrium Green’s function
(NEGF) formalism, as first reported in Ref. [16] and now
widely applied to analyze nonequilibrium quantum-trans-
port problems in nanostructures. In the NEGF-DFT for-
malism, a DFT-like self-consistent field theory is used to
calculate the Hamiltonian of the device model—an open
structure consisting of a device scattering region sand-
wiched between electrodes extending to reservoirs at
infinity where bias voltage is applied and electric current
is collected [17]. With the Hamiltonian, the NEGF is
calculated, which determines the nonequilibrium quan-
tum-statistical information and the nonequilibrium density
matrix of the device scattering region, which, in turn,

provide inputs for calculating a new Hamiltonian. This
process is repeated until self-consistency. Our work in this
investigation builds on the NEGF-DFT formalism, and we
refer interested readers to the original reference for further
technical details [16].
When there are disorders such as impurity atoms in the

device scattering region, one must perform a statistical
average over the ensemble of the disorder configurations.
For the NEGF-DFT formalism, the configurational aver-
age is achieved by the coherent potential approximation
(CPA) at the single-particle Green’s function and
Hamiltonian level and by the nonequilibrium vertex
correction (NVC) theory at the nonequilibrium density
matrix level, as first reported in Ref. [18] and extended
via the theory of NECPA in Ref. [13]. The essential
physical ingredients of the CPA-NVC (and NECPA)
approach are similar to the original equilibrium CPA
[19,20]; namely, by solving a self-consistent coherent
potential, one approximates the disordered system with
an effective medium having translational invariance. The
main difference is that CPA-NVC and NECPA work at
nonequilibrium where the nonequilibrium statistical infor-
mation plays an important role. We refer interested
readers to the original papers [13,18] for further details
of the CPA-NVC and NECPA theories.
Next, in order to predict the transport variability, one

needs not only the average transmission coefficient but also
its variance whose calculation involves the multiplication
of four Green’s functions in the NEGF-DFT formalism.
The configuration average of the transmission variance
gives rise to a more complicated vertex correction self-
energy which must be evaluated. For atomistic modeling,
we have recently reported [14] a theory based on NECPA to
calculate the vertex correction self-energy involving four
Green’s functions so that multiple impurity scattering
effects to the variance of the conductance can be predicted
from atomic first principles parameter-free. In the follow-
ing, we very briefly outline this method which is used in the
rest of this work.
In the Landauer-Büttiker formulism of quantum trans-

port [17], the energy (E)-resolved transmission coefficient
is obtained from the retarded and advanced Green’s
functions gr;a,

TðEÞ ¼ Tr½grðEÞΓLðEÞgaðEÞΓRðEÞ�; ð1Þ
where the overbar indicates the random configuration
average over the ensemble of impurity atoms. ΓLðRÞ are
the linewidth functions of the left and right electrodes,
respectively, and take the form ΓL ðRÞ ¼ iðΣr

L ðRÞ − Σa
L ðRÞÞ.

Σr;a
L ðRÞ are the retarded and advanced self-energies due to

interactions of the left (L) and right (R) electrodes to the
scattering region of the device, and i is the imaginary unit.
In the subsequent numerical calculations of the Si nano-
FET (see below), the impurity scattering occurs in the
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device scattering region and not in the electrodes far from
it. Therefore, self-energies Σr;a

L ðRÞ are nonrandom quantities

and can be calculated by the standard transfer-matrix
technique [16]. Therefore, the configuration average TðEÞ
requires calculating only the average grðEÞΓLðEÞgaðEÞ
which involves the average over two Green’s functions,
and this average leads to the vertex correction self-energy
which accounts for multiple impurity scattering, as
discussed in Ref. [18]. The numerical computation for
the configurationally averaged transmission function
TðEÞ in Eq. (1) can be realized by atomistic first
principles using the CPA-NVC theory [18] and/or the
NECPA theory [13].
The DDV is quantified by the variance of the trans-

mission function TðEÞ, namely,

dT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − T2

q
; ð2Þ

whose evaluation requires the configurational average

T2ðEÞ. Clearly, since TðEÞ requires averaging over two
Green’s functions grðEÞΓLðEÞgaðEÞ, the calculation of

T2ðEÞ involves averaging over four Green’s functions of

the type T2 ∼ grΓLgaΓRgrΓLgaΓR. This configurational
average determines the physical effects of multiple
impurity scattering to the transport variance through
Eq. (2).
In our earlier work, Ref. [14], an analytical expression

was deduced for evaluating T2 in terms of the config-
urationally average Green’s functions gr;a and various
impurity scattering self-energies. While the derivation is
complicated and tedious, the spirit is as follows. One
starts from the scattering form of the total Green’s
function

gr ¼ ḡr þ
X
R

ḡrtrRḡ
r þ

X
R

X
R0≠R

ḡrtrR0 ḡrtrRḡ
r

þ
X
R

X
R0≠R

X
R00≠R0

ḡrtrR00 ḡrtrR0 ḡrtrRḡ
r þ � � � ; ð3Þ

where R labels the atomic site, and trR the retarded
scattering matrix represents multiple impurity scattering
at site R. Within CPA (and NECPA), the trR’s are random
variables which can take the value tr;QR with probability of
cQR for the impurity species labeled by Q; cQR is the
probability of site R occupied by atom species Q and is
generally related to the concentration of species Q. After
inserting Eq. (3) and its advanced counterpart into the

expression of T2 and noting that typically the concen-
tration of defects and/or dopants is rather small, a
compact form for dT of Eq. (2) can be obtained [14],

ðdTÞ2 ¼
X

R;Q>0

cQRðYα;Q
R þ Yβ;Q

R þ Yγ;Q
R Þ2;

Yα;Q
R ¼ Trfta;QR ½ḡaΓRḡrΓLḡa�R;Rg;

Yβ;Q
R ¼ Trftr;QR ½ḡrΓRḡaΓLḡr�R;Rg;

Yγ;Q
R ¼ Trftr;QR ½ḡrΓLḡa�R;Rt

a;Q
R ½ḡaΓRḡr�R;Rg; ð4Þ

where Q ¼ 0 refers to the host atom species whose
concentration is large compared to dopants or defects.
This expression can be explicitly calculated by the CPA-
NVC theory [18] and/or NECPA theory [13] since it
involves only configurationally averaged single-particle
Green’s functions. We refer interested readers to the
original Ref. [14] for details of the derivation.
In the rest of the paper, we apply Eq. (4) within the

NEGF-DFT first-principles formalism to analyze
RDD-induced DDV for Si nano-FET channels. It is worth
mentioning that Eq. (2) or, equivalently, Eq. (4), enables us
to determine DDV by a single self-consistent NEGF-DFT-
NECPA calculation.

III. TRANSPORT VARIABILITY IN SILICON
NANO-FET CHANNELS

The theory outlined in Sec. II makes a first-principles
analysis of DDV possible, and in this section we investigate
the conductance variability due to RDD effects in the
technologically important Si nano-FET channels schemati-
cally shown in Fig. 1. Our goal is to predict the source-
to-drain conductance variability in the off-state for
channels ranging from 6.5 to 15.2 nm, doped with different
concentrations of boron impurity atoms. Note that these
length scales are technologically relevant for current and
near-future FETs. Off-state conductance is an extremely
important short-channel property which measures the
source-to-drain tunnel leakage that plays an increasingly

FIG. 1. Schematic of n-p-n Si nano-FET channel with length L
and p doped by boron atoms. The left and right regions in red are
the heavily doped source and drain contacts, respectively.
(a) Uniform doping where dopants are randomly distributed in
the whole channel indicated by blue. (b) Localized doping where
dopants are randomly distributed in a narrow region indicated by
blue, and the region in gray indicates intrinsic Si regions.
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dominating role for power consumption of the device
operation.

A. Device model

Figure 1 schematically shows the two-probe structure
of the nano-FET where the heavily doped Si source and
drain electrodes sandwich a Si channel of length L. In the
NEGF-DFT-NECPA calculations, the cross section of the
supercell is set to one unit cell of Si crystal, 5.43 × 5.43 Å2,
and is periodically extended in the transverse dimen-
sions. We attach 6.5-nm buffer layers to both sides of
the device to ensure a smooth matching of the potential at
the simulation box edges. For L ranges from 6.5 to
15.2 nm, the number of atoms per supercell within the
scattering region of the device varies from 288 to 416. In
the NEGF-DFT framework, the device Hamiltonian Hdev
takes the following form:

Hdev ¼ T þ VH þ Vext þ VXC; ð5Þ

where T ð¼ −∇2=2Þ is the kinetic energy operator of the
electron, VH is the Hartree potential, Vext the external
potential, and VXC the exchange-correlation potential. In
this work, we employ the tight-binding linear muffin-tin
orbitals (TB LMTO) as the basis [21–23]. The main
advantage of using TB LMTO comes from two aspects:
(i) the device Hamiltonian matrix becomes nearly orthogo-
nal under such basis thereby greatly speeding up the
computation [24]; (ii) it is compatible with the CPA
formulism [24]. To describe the electronic properties of
the valence electrons (four for silicon and three for boron),
nine atomic orbitals (s, p, d) are used for each atom,
localized within each muffin-tin sphere.
We consider two doping profiles: uniform doping where

dopants are randomly distributed in the whole channel as
depicted in Fig. 1(a) and localized doping where dopants
are randomly distributed in a restricted spatial region as
shown by the blue atoms in Fig. 1(b). Boron atoms are the
dopants to the channel whose concentration Cd is related to
the doping probability cd of each atomic site as

Nccd ¼ CdVc; ð6Þ
where Nc denotes the total number of atoms in the device
channel and Vc the channel volume. cd is identical to cQR
mentioned in the previous section, and index R is omitted
for the sake of simplicity. The source and drain are
uniformly and degenerately doped to a concentration of
5 × 1019 cm−3 using the technique of virtual crystal
approximation [25].
For the semiconductor devices, it is crucial to correctly

determine the band gap. To this end, we employ the
modified Becke-Johnson semilocal exchange [26] in our
NEGF-DFT calculation; for bulk Si, we obtain an indirect
band gap of 1.11 eV in excellent agreement with the

experimental value. We carry out the first-principles device
modeling using the NANODSIM quantum-transport package
[27] which implements the theory of DDV [13,14,18]
described in Sec. II.

B. Variability of uniformly doped channels

The uniform doping concentration of boron atoms is
fixed to 5 × 1018 cm−3, and channel length L varies from
6.5 to 15.2 nm. For each L, after the self-consistent NEGF-
DFT-NECPA calculation of the two-probe structure is
converged, we calculate the average transmission coeffi-
cient T̄ as well as its variability dT as discussed in Sec. II.
The configuration-averaged conductance G and its vari-
ability dG are then obtained, G ¼ G0T̄ and dG ¼ G0dT,
where G0 ≡ e2=πℏ is the conductance quanta with e the
carrier charge and ℏ the reduced Planck constant. Other
numerical details can be found in Ref. [28].
Figure 2(a) plots G (black down triangles) and dG (blue

up triangles) versus L. As expected, G reduces in some
exponential fashion due to the tunneling physics consistent
with the behavior of the potential along the channel shown
in Fig. 2(b); namely, devices with longer L have a higher
tunneling potential VðzÞ. The variability dG also has an
exponential behavior with L, which exemplifies the sig-
nificance of DDV when L is small.
Apparently, G and dG in Fig. 2(a) do not quite follow a

simple e−L behavior, which is true if the tunnel barrier VðzÞ
has no z dependence. For our Si channel, the calculated
VðzÞ is shown in Fig. 2(b) which has a strong z dependence.
To abstract a general behavior from the ab initio data, we
consider a WKB model of the transmission coefficient,

T ∼ e−2γ; γ ¼ 1

ℏ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�jVðzÞ − EFj

p
dz; ð7Þ

where z is along the tunneling direction, VðzÞ is the
potential, m� the effective mass, and the integration is
limited to the region of VðzÞ − EF > 0. We approximate
VðzÞ of Fig. 2(b) by a triangle whose height is the peak
value of VðzÞ and whose base is an equivalent channel

C C

FIG. 2. (a) The calculated average conductanceG and variability
dG in units of G0 per unit cell versus L ¼ 6.5, 8.7, 10.9, 13.0, and
15.2 nm at doping concentration Cd ¼ 5 × 1018 cm−3. Symbols
are ab initio data points and dashed lines are the WKB fitting.
(b) The calculated potential along the channel (averaged over the
cross section of the supercell). Ef indicates the Fermi level.
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length equal to the width of VðzÞ above the Fermi energy.
Because the source and drain doping is much larger than
that in the channel (by a factor of 10), the equivalent
channel width is almost the same as L. In addition, as
shown in Fig. 2(b), the height of VðzÞ is also proportional to
L. With these rough approximations, it is straightforward to
derive the conductance from Eq. (7):

G ¼ C1e−A1L
3
2 ; ð8Þ

where C1; A1 are constants. As shown in Fig. 2(a),
this WKB formula fits the ab initio data very well [29].
This exercise suggests that the G versus L curve in
Fig. 2(a) is controlled by the potential shape such that
G ∼ expð−L3=2Þ.
Next, to organize the ab initio data for the variability dG

by a WKB formula, we make the following ansatz:

dG ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ∂G∂l
����2
l̄
þ
���� ∂G∂h

����2
h̄

s
; ð9Þ

where l and h are parameters characterizing VðzÞ such as its
width and height [30]. The letter with the overbar means
evaluating at the average of l or h. The spirit of this ansatz is
that due to RDD, the potential profiles of individual dopant
configurations deviate from some “average potential,”
thereby, inducing a conductance variability dG. For uni-
form doping, as shown in Fig. 2(b), the potential height is
proportional to L, i.e., h ∼ L; hence, Eq. (9) reduces to only
one variable l. Using Eq. (8), we arrive at

dG ¼ B1L1=2e−A1L3=2 ð10Þ
for uniform doping, where B1 is another constant.
Figure 2(a) shows a very good agreement between
Eq. (10) and the ab initio data [29], suggesting a scaling
of dG ∼ expð−L3=2Þ. Equation (10) also indicates a strong
short-channel non-self-averaging effect; namely, the nor-
malized quantity dG=G scales with L1=2 for short channels.
It is interesting to investigate dG by varying the doping

concentration Cd, as shown in Fig. 3(a). L is fixed at
10.9 nm, and the channel doping varies from 0.5 to
5 × 1019 cm−3. Figure 3(b) plots the calculated potential
VðzÞ, which gets higher and wider as the doping concen-
tration increases, and, accordingly, dG drastically reduces
[see Fig. 3(a)]. Again, we can organize the ab initio data by
the WKB formula Eqs. (7) and (9). Approximating VðzÞ by
a triangle, we obtain

G ¼ C2e−A2LH1=2
;

lnðdGÞ ¼ 1

2
ln

�
H þ L2

4H

�
− A2LH

1
2 þ B2; ð11Þ

whereH is the height of VðzÞ, and A2; B2; C2 are constants.
These expressions fit the ab initio data very well as shown

by the dotted lines in Fig. 3(a) [29]. Finally, the inset of
Fig. 3(a) plots the normalized variability dG=G versus
doping concentration Cd, showing the expected behavior
that a smaller Cd generates weaker DDV.

C. Variability of locally doped channels

Having presented a DDV for uniformly doped channels,
we now investigate dG for localized doping. Localized
doping is interesting since certain doping profiles signifi-
cantly reduce the source-to-drain off-state tunnel leakage
[15]. Here, we expect dG to also reduce, since by
definition, localized doping has less randomness in dopant
positions. Similar to Ref. [15], we put dopant atoms (boron)
randomly in a narrow region of 1.1 nm inside a channel of
L ¼ 10.9 nm, and dG is calculated by moving this narrow
region from the source side to the drain side. To compare to
uniform doping, the localized doping concentration is fixed
by Eq. (6) to 5 × 1019 cm−3.
Figure 4(a) plots G (blue down triangles) and dG (red up

triangles) versus localized doping position. Figure 4(b)
gives VðzÞ along the channel including that of uniform
doping for a comparison. In agreement with Ref. [15],
localized doping generates higher potential barriers VðzÞ
than uniform doping unless the localized doping position is
close to the source or drain. As an outcome of VðzÞ, dG is
drastically reduced when the doping position is away from
the source or drain as shown in Fig. 4(a). Figure 4(c) shows
the normalized DDV dG=G: the variability has a relatively
large value of approximately 12.5% of the tunnel conduct-
ance when the doping position nears the source or drain,
and it is reduced to approximately 6% when the doping
position is in the middle of the channel.
Again, we may organize the ab initio data by our WKB

approximation. The curves in Fig. 4(b) indicate that VðzÞ
above the Fermi level can be approximated by triangles
with a nearly identical base but different heights. For each
triangle [to fit each VðzÞ], its vertex is at the midpoint of the

FIG. 3. Average conductance G and its variability dG versus
channel-doping concentration Cd, with L ¼ 10.9 nm. (a) Black
and red triangles are ab initio data of G and dG (units G0 per unit
cell); red and purple dashed curves are the WKB fitting by
Eq. (11). Unit of Cd is 1 × 1019 cm−3. The inset plots dG=G
versus Cd. (b) Calculated VðzÞ along the channel with different
Cd: from low to high Cd ¼ 0.5; 1; 3; 4, and 5 × 1019 cm−3. Black
dashed line indicates the Fermi level.
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localized doping region. Therefore, the quantity of γ in
Eq. (7) can be expressed as a function of the potential
height H, and Eqs. (7) and (9) give

G ¼ C3e−A3H1=2
; dG ¼ B3H−1=2e−A3H1=2

; ð12Þ

where A3; B3; C3 are fitting parameters. As indicated by the
dashed lines in Fig. 4(a), these WKB expressions fit the
ab initio data very well [29]. Several observations are in
order. (i) Localized doping away from the source or drain
suppresses not only the tunnel conductance G as found
before [15] but also suppresses its variability dG, in
comparison to that of uniform doping. Suppression of
dG agrees with the intuitive expectation since dopant
positions are less random in localized doping. (ii) On
the other hand, localized doping near the source or drain
can, in fact, enhance dG over the uniform doping; this
completely nonintuitive outcome is due to the microscopic
details of potential change. Indeed, from Eq. (12) we
conclude that dG increases if the potential height H
decreases, which is the case for doping positions close
to the source or drain. Clearly, a reduction of H near the
source or drain is due to the screening effects since the
source and drain are heavily doped [15].
Figure 4(d) presents dG versus the localized doping

position for different channel lengths from 6.5 to 15.2 nm,
where the horizontal lines are dG of uniform doping with
concentration 5 × 1018 cm−3. The corresponding localized
doping concentrations are obtained from Eq. (6) to be 3, 4,
5, 6 and 7 × 1019 cm−3 for L ¼ 6.5; 8.7; 10.9 (plotted again
for comparison purposes), 13.0, and 15.2 nm channels. For

all L, the general trend is the same as that of Fig. 4(a);
namely, doping away from the source or drain reduces dG.
Again, we observe a clear short-channel behavior; namely,
the value of dG increases with decreasing L.
Finally, we mention in passing the computational cost of

the above analysis. All the calculations were done by a
computer cluster with seven Intel X5650 processors (each
processor has six cores, 2.66 GHz, 12-MB cache). For an
L ¼ 10.9 nm device, the self-consistent NEGF-DFT-
NECPA calculation takes approximately 7.6 h. In addition,
the transmission and variability calculation takes 12 and
5 m per energy point, respectively.

IV. SUMMARY

Using an atomistic first-principles technique, we analyze
the variability of tunnel conductance in Si nano-FET
channels of various lengths L and impurity doping con-
centration, for both uniform doping and localized doping
profiles. The variability comes about due to the well-known
random discrete-dopant effect, and in this work, it is due to
the randomness in positions of the boron dopants. When
the channel is doped uniformly, the variability dG is found
to scale exponentially as expð−L3=2Þ showing a significant
short-channel effect. dG also increases significantly with
respect to the decrease of the channel doping concentration.
We find that by localized doping, the tunnel conductance G
can be not only drastically reduced as found before [15],
but dG can also be significantly reduced. While naively this
is expected since localized doping is less random than
uniform doping, it is surprising that if the doping region is
close to the source or drain, dG actually increases over that
of the uniform doping. The reason lies in the microscopic
details of the tunnel potential profile VðzÞwhich is reduced
for doping near the heavily doped source and drain, causing
both G and dG to increase. Nevertheless, if one can control
the doping region to be somewhat near the middle of the
channel away from the source or drain, dG is predicted to
be controllable to a reasonable fraction of G (i.e., approx-
imately 6%). Finally, our ab initio data can be organized by
a WKB formulation of the tunneling physics. In particular,
after fitting a few constants in the WKB expressions, very
good agreement to the first-principles results is obtained by
the WKB formula, which reveals interesting trends of dG
against device parameters L and the potential height H. We
conclude that for Si nano-FET channels around 10 nm
lengths, localized doping should provide an interesting
approach to rectify the RDD-induced variability in the
off-state tunnel conductance.
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FIG. 4. (a) G and dG versus doping position for L ¼ 10.9 nm.
The black (red) triangles are the ab initio data, and the blue
(purple) dashed line is the WKB fitting. Horizontal black dotted
lines are for uniform doping. (b) Potential VðzÞ along the channel
for various localized doping positions. (c) dG=G versus doping
positions. (d) dG versus doping positions for channel lengths,
from low to high L ¼ 6.5; 8.7; 10.9; 13.0 and 15.2 nm. Horizontal
straight lines refer to the corresponding uniform doping case.
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