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We numerically demonstrate a practical means of systematically controlling topological transport on the
surface of a three-dimensional topological insulator, by introducing strong disorder in a layer of depth d
extending inward from the surface of the topological insulator. The dependence on d of the density of
states, conductance, scattering time, scattering length, diffusion constant, and mean Fermi velocity are
investigated. The proposed control via disorder depth d requires that the disorder strength be near the large
value which is necessary to drive the topological insulator into the nontopological phase. If d is patterned
using masks, gates, ion implantation, etc., then integrated circuits may be fabricated. This technique will be
useful for experiments and for device engineering.
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I. INTRODUCTION

Recently, a new kind of material has been predicted and
measured: topological insulators, which do not permit
current to flow through their interior but do allow metallic
conduction along their surfaces [1–5]. The conducting
states residing on the topological insulator (TI) surface
are protected topologically, meaning that they are safe-
guarded by the bulk’s insulating property from local
perturbations as long as a mobility gap is maintained
between the bulk bands. Consequently, the surface states
are only weakly sensitive to the fine details of the bulk
Hamiltonian, such as lattice structure, details of atomic
bonding, or interactions. They are, however, vulnerable to
any conduction through the bulk at energies lying in the
bulk band gap and, therefore, demand a very high-purity
bulk. Any engineering of TI devices for either practical or
scientific applications will likely use a very pure and
unaltered TI bulk and utilize only the TI’s surface.
There are several compelling motivations for using TI

surfaces instead of conventional materials to carry current.
Power dissipation may be reduced by the TI’s robustness
against disorder. TIs also lock spin to momentum, which
will be useful for creating spin-polarized currents and for
conducting spin over long distances. They may also host
exotic states that could be used for quantum computing,
such as Majorana fermions or strongly interacting topo-
logical phases [6–8]. However, these applications all suffer
from the topological state’s resilience against the mecha-
nisms usually employed to direct or switch off electronic

conduction, such as gating and etching. TI surface states are
difficult to control.
In this article, we propose a way of engineering TI device

properties to match engineering requirements. Our main
contribution is the observation that introducing disorder
only near the TI’s surface, in a region beginning on the TI
surface and extending inward to a depth d, is a practical
way of controlling the surface states. As the electron moves
across the disordered surface of the TI, from time to time it
becomes almost trapped at a particular site and dwells there
for a while before continuing its journey. This trapping is
unable to destroy or localize the in-gap surface state, but it
does cause a localized increase in the surface state’s
probability density, and our numerical results show a
corresponding increase in the in-gap density of states ρ.
Moreover, the increased dwell times at individual sites
cause, on average, a decrease in the Fermi velocity vF. The
altered density of states and Fermi velocity change also
the scattering time τ, diffusion constant D ¼ v2Fτ=2, and
coupling constant α ¼ e2=ϵℏvF controlling interactions.
The impact of surface disorder on a topologically

protected state is ordinarily limited by the state’s tendency
to shift into the clean bulk to avoid disorder. However,
we can trap the topological state in the disordered region
by tuning the disorder strength W near the critical value
Wc which causes the disordered TI to transit from the
topological phase to the nontopological phase.
Our main point is to demonstrate that when the topo-

logical state is trapped in the disordered region, it is
strongly sensitive to the disorder depth d. This is a unique
control parameter, which, if patterned on a TI surface, can
create areas with slower conduction and increased density
of states, introduce control points that are sensitive to*vincent@sacksteder.com
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gating voltages, and direct conduction along particular
channels.
We emphasize that there are several practical and

achievable techniques for producing patterned surface
disorder. Already, many experiments have studied the
effects on TI surfaces of disorder induced by atmosphere,
by deliberate introduction of adsorbed molecules
and dopants, and even by mechanical surface abrasion
[9–18]. Numerous experiments have also demonstrated
that capping can effectively protect a TI surface, so
masking and etching techniques are promising, as is ion
implantation [19].
Ion implantation, in particular, gives precise control of

impurity concentration and depth and allows control of
the Fermi level by mixing ions. This technique has been
developed extensively for applications to semiconductors,
but its application to TIs is at an exploratory stage. The
related technique of ion milling, useful for controlling
sample thickness and for polishing the surface, was first
applied to TIs in 2010, and is now in widespread use [20].
Ion implantation was first applied to TIs in studies of the
spin response to a magnetic field [21,22], and more recently
has been used to dope the Fermi level [23] and to add
disorder to the TI surface [24].

The surface-state control which is proposed here is
obtained only at the critical disorder W ≈Wc, which is
generally quite large, roughly the same as the bulk band
width EB, but can be reduced to much smaller values by
tuning the Fermi level [25,26]. At small disorder W ≪ Wc
the topological state is pinned at the outer boundary of the
disordered region, as seen in Fig. 1(a). Its conduction is,
therefore, insensitive to the region’s depth. In the opposite
case of large disorder W ≫ Wc, the disordered region fills
with nontopological states deriving from the bulk band
[Fig. 1(c)] [27–30] which contribute to conduction, and the
conductance and the density of states both depend on d.
Only nearW ≈Wc does the topological state depin from the
TI’s outer surface and stretch inward to the interface with the
clean bulk [Fig. 1(b)], producing conduction which is both
topological and sensitive to the disorder depth d.
In Sec. II, we analyze these three types of transport and

determine in each case how the transport parameters scale
with the disorder depth d. Next, Sec. III presents our
numerical model and confirms numerically the existence of
the depinned topological state whose transport can be
controlled by disorder depth. We conclude with Sec. IV,
which discusses how to pattern topological conduction to
meet device requirements.

II. SCALING ANALYSIS OF
DISORDERED TRANSPORT

Depending on the disorder strength, three different types
of conducting states may be obtained. These states have
clear signatures in the dependence of the conductance G
and the 2D density of states ρ2D on disorder depth d, which
we show in Table I and will exhibit in our numerical results.
The pinned topological state at W ≪ Wc is not sensitive
to d. At the other extreme W ≫ Wc, nontopological states
in the disordered region are important. The scattering
length l of these strongly disordered states is comparable
to the lattice spacing and much smaller than the disorder
depth, so these states undergo true 3D diffusive transport,
with G and ρ2D both linear in d.
In contrast, the depinned topological state at W ≈Wc

can be identified clearly by the signature of a d-linear 2D
DOS ρ2D combined with a constant conductance G.
The linear ρ2D is caused by the state depinning from the
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FIG. 1. The three types of transport illustrated in a disordered
surface layer of depth d ¼ 5. Panel (a) shows the probability
density jψ j2 at small disorder W ¼ 4.5; the topological state is
pinned to the sample’s bottom surface. Panel (b) shows a
topological state at W ¼ 7.5, near Wc. It is fully depinned from
the bottom surface but, nonetheless, supports topologically
protected conduction. Panel (c) shows strong disorder
W ¼ 9.0, where the disordered region is no longer topological
and hosts the bulk states seen here. A topological state at the
disorder boundary coexists with these bulk states, and both
contribute to the conductivity. The sample dimensions are
l × w × h ¼ 80 × 80 × 20, with periodic boundary conditions
in the x and y directions, and EF ≈ 0.

TABLE I. The transport parameters’ scaling with disorder depth
d. G is the conductance, ρ2D is the density of states, vF is the
mean Fermi velocity, τ is the scattering time, l is the scattering
length, D is the diffusion constant, and α is the dimensionless
coupling constant governing interactions.

Conducting state G ρ2D vF τ l ¼ vFτ D α

Topological and pinned 1 1 1 1 1 1 1
Topological and depinned 1 d 1=d d 1 1=d d
Nontopological d d 1 1 1 1 1

SACKSTEDER, OHTSUKI, AND KOBAYASHI PHYS. REV. APPLIED 3, 064006 (2015)

064006-2



TI surface, while the constantG controverts nontopological
conduction, which would exhibit 3D diffusion and a linear
conductance.
This signature is unambiguous. The linear DOS cannot

be attributed to any nontopological surface or bulk states
distinct from the depinned topological state, because all
in-gap states are located in the disordered region, which
near Wc delocalizes and hosts only extended states like
that seen in Fig. 1(b). In the parallel case of 2D TIs with
edge disorder, very few in-gap states are localized, and
the conductance remains quantized [29,31,32]. In both 2D
and 3D at W ≈Wc all states mix and participate in the
topological conduction.
The depinned state is very remarkable for being simul-

taneously robustly conducting and extremely disordered.
This is seen clearly in Fig. 1, where we calculate the states’
inverse participation ratios (IPRs), a measure of their
volumes defined by

P
i½
P

4
α¼1 jψði; αÞj2�2 with ψði; αÞ

the αth component of the wave function on the site i.
These eigenfunctions are obtained by diagonalizing the
Hamiltonian using the sparse matrix diagonalization sub-
routine FEAST built with the Intel FORTRAN Math Kernel
Library. The system size is 80 × 80 × 20, and periodic
boundary conditions are imposed in the x and y directions,
while the open boundary condition is imposed in the
z direction. The IPR of the wave function of the depinned
state [Fig. 1(b)] is 2.09 × 10−3, an order of magnitude
larger than those of the pinned and bulk states [Figs. 1(a)
and 1(c)], which are 1.25 × 10−4 and 1.73 × 10−4, respec-
tively. In nontopological systems, this type of volume
reduction will be accompanied by Anderson localization,
i.e., the state’s extent along the x and y axes parallel to
the surface will be much smaller than the sample size.
Here, topology ensures that the depinned state remains
conducting and extended across the entire sample.
The depinned state is topologically guaranteed to con-

duct over large distances and, therefore, must have a long-
wavelength limit where the average parameters of 2D
surface transport are well defined, including the 2D density
of states ρ2D, average Fermi velocity vF, etc. [29]. We will
show that these quantities are strongly dependent on d,
beginning with the Fermi velocity vF ¼ dE=dk, the eigen-
value’s derivative with respect to k. Its scaling can be
determined from the fact that the depinned topological state
is not localized. Therefore, the eigenvalues within the gap
repel each other according to Wigner-Dyson level repul-
sion, and the energy scale dE in vF ¼ dE=dk is set by the
level spacing ΔE [29]. The depinned state extends inward
to depth d, so its 2D DOS ρ2D is proportional to d, and ΔE
scales with 1=d. Since in strongly disordered samples the
momentum scale dk in vF is controlled by the inverse of
the lattice spacing a and is not sensitive to d, we obtain
vF ∝ 1=d.
Next, we note that at W ≈Wc the scattering length l is

close to the lattice spacing and independent of d. Since

l ¼ vFτ, the scattering time grows linearly with d, inversely
to ΔE. We report these scaling relations, along with
D ¼ v2Fτ=2 and the dimensionless coupling constant
α ¼ e2=ðϵℏvFÞ which controls interaction effects, in
Table I [33]. Table I’s results for the depinned state can
be determined directly from dimensional analysis by
finding each quantity’s scaling with either the scattering
time τ ∝ d or its inverse, the energy ∝ 1=d. In summary,
vF; τ; D, and α are all very sensitive to the disorder depth d,
while G and l are not.

III. NUMERICAL RESULTS

We turn to calculations of the effect of disorder depth d
on ρ and G, which will confirm numerically the existence
of a depinned topological state with the scaling listed in
Table I. The topological surface conduction which interests
us is independent of any microscopic details of the
Hamiltonian. Therefore, we study a computationally effi-
cient minimal tight binding model of a strong Z2 TI
implemented on a cubic lattice. We leave the TI bulk pure,
since the main effects of bulk disorder can be duplicated by
narrowing the bulk band gap and increasing the penetration
depth in a pure TI [25,26,34–36]. We also omit the effects
of bulk defects, which are known to dope the Fermi level
toward the conduction band or valence band depending
on the defect type and at sufficient concentrations also
cause a conducting impurity band to be formed inside the
bulk band gap [37]. We will return to doping in Sec. IV.
With four orbitals per site, the model’s momentum
representation is

H ¼
X3

i¼1

��

ι
t
2
αi −

1

2
β

�

e−ιkia þ H:c:
�

þ ðmþ 3Þβ; ð1Þ

αi ¼ σx ⊗ σi and β ¼ σz ⊗ 1 are gamma matrices in the
Dirac representation, t ¼ 2 is the hopping strength,
m ¼ −1 is the mass parameter, and a ¼ 1 is the lattice
spacing [36,38–40]. This noninteracting model exhibits a
bulk band gap in the interval EF ¼ ½−jmj; jmj� and a single
Dirac cone in the bulk gap. To this model we add
uncorrelated white-noise disorder uðxÞ chosen randomly
from the interval ½−W=2;W=2�, where W is the disorder
strength. In the 3D limit, this model’s topological phase
transition occurs at Wc ≈ 7.5 when the Fermi energy is at
the Dirac point [36,41]. The disorder is added only on the d
layers nearest the TI sample’s upper boundary and also the
d layers nearest the lower boundary, as shown in Fig. 2.
Each of these layers has the same disorder strength, and the
interior is left clean, so the disorder’s spatial profile is a step
function.
We will present numerical results about the global

density of states ρðEÞ and the conductance GðEÞ. The
density of states is defined as ρðEÞ ¼ Tr½δ(E −H)�, where
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δ is the matrix version of the Dirac δ-function. We calculate
ρðEÞ in large 400 × 400 × 20 slabs, with periodic boundary
conditions in the slab plane, using the highly scalable
kernel polynomial method [42]. Tr½δ(E −H)� is approxi-
mated with an expansion in its Chebyshev moments, the
resulting sum over moments is truncated at some maximum
number of moments, and this truncation is smoothed using
the Jackson kernel. We verify convergence by systemati-
cally recalculating our results with different numbers of
moments going as high as 10 000 moments. We find that
the density of states is self-averaging so that ten samples are
sufficient to obtain high-accuracy results.
For the conductance, we use the Landauer formula

G ¼ G0Trðt†tÞ, where G0 ¼ e2=h is the conductance
quantum and we average over 100 statistical realizations.
t is the TI’s transmission matrix, which we compute using
the transfer-matrix method [43–45]. We calculate the
conductance at zero temperature so only states at the
Fermi level EF contribute, in contrast to finite temperatures
where the Fermi level is smeared across a range of order
kBT. Since the critical disorder strengthWc depends on the
Fermi level, at nonzero temperature the conductance will
have contributions not only from the topological depinned
state but also from the topological pinned state and the
nontopological state. The size of these contributions and
also of the conductance from thermally activated bulk
carriers can be controlled by reducing the temperature.
We minimize the leads’ effects by using metallic leads.

Each TI site adjacent to the leads is connected to a perfectly
conducting 1D wire, similar to network models. We use a
slab of height h ¼ 20, length l ¼ 40 between the two leads,
and width w ¼ 40 with periodic boundary conditions along
this transverse axis. The scattering length is less than 40 for
all disorder strengths greater than W > 2, so finite-size
effects from the sample width and length are small [30].
Moreover, because we study disordered boundaries whose
maximum depth is d ¼ 5 layers, the two disordered
boundary layers are always separated by at least ten layers

of pure nondisordered bulk. Changing the clean bulk’s
depth from 10 to 15 while keeping d ¼ 5 fixed confirms
that the conductance is unchanged when the disorder in the
boundary is not too large (W ¼ 3; 6 at EF ¼ 0, 0.25), but at
larger disorder the conductance increases. Since the clean
bulk’s depth is equal to h − 2d ¼ 20 − 2d, and our numeri-
cal results keep h ¼ 20 fixed, our results on the conduc-
tance’s depth dependence underestimate the behavior
of a thick slab. This does not affect our qualitative
conclusions.
In Fig. 3 we focus our attention on the normalized

density of states in the bulk gap EF ¼ ½−1; 1�, where the
topological surface states are found. The smallest-disorder
curves are linear in EF, i.e., ρ ∝ jEFj, which is a hallmark
of 2D Dirac fermions. As seen in the inset, the slope
grows with increasing disorder, because disorder causes a
decrease in the Fermi velocity vF ¼ dE=dk. At larger
disorder W ≥ 3, the DOS departs from the linear Dirac
form in two intervals near EF ¼ �1, and by W ≥ 6 these
intervals expand to fill the whole band gap. In these
intervals, the topological state consecutively becomes
strongly disordered, depins, and then is joined by non-
topological states in the disordered region [28,29]. In
particular, depinned states occur at two critical energies
EcðWÞ, which, in the disorder-free W ¼ 0 case, lie at the
band edges Ec ¼ �1 but move inward toward the Dirac
point as the disorder grows stronger. At W ¼ Wc, the
critical energies meet at the Dirac point EF ¼ 0, and at
larger W > Wc the disordered region no longer hosts
topological states. The detailed values of Ec;Wc are
material dependent, but the qualitative behavior described
here is generic to every topological insulator.
Figure 4 shows signatures of the three types of con-

ducting states in the dependence on depth d of the DOS ρ

FIG. 3. The normalized density of states inside the bulk gap
evolving from small disorder W ¼ 1.5 to large disorder W ¼ 9.
The disorder depth is d ¼ 5. The inset shows that at small
disorder the DOS is linear in EF, which signals that here the Dirac
cone is intact.

FIG. 2. Schematic of the sample geometry. The shaded region is
disordered. In the calculation of the density of states, periodic
boundary conditions (PBC’s) are imposed in the x and y direc-
tions. In the conductance calculation, pbc’s are imposed in the y
direction and current flows in the x direction. In both cases, fixed
boundary conditions are imposed in the z direction.
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(left panels) and the conductance G (right panels).
Figures 4(a) and 4(d) show that at small disorder, both ρ
and G are independent of d, as expected from theW ≪ Wc
pinned topological state. At stronger disorder, both quan-
tities become sensitive to d, as expected of W ≫ Wc
nontopological states in the strongly disordered region.
Figures 4(c) and 4(f) demonstrate that the d dependence is
always roughly linear.
Figures 4(b) and 4(e) allow us to pinpoint the transition

from no d dependence to linear dependence, by plotting
the magnitude of the change when d is changed from 2 to
4, and from 3 to 5. Figure 4(b) shows that at EF ¼ 0, 0.25,
the DOS becomes dependent on d starting atW ≈ 6.5, 5.5,
and the d dependence becomes large aroundW ≈ 7.0, 6.5.
This transition signals depinning from the TI surface
shown in Fig. 1(b). Figure 4(e) shows that G remains
constant in d atW ¼ 6 for EF ¼ 0 and nearly constant also
at W ¼ 7.5; EF ¼ 0. In this region, we have constant G
and linear ρ, which is the signature of the depinned
topological state.

In summary, we confirm numerically that the depinned
state’s conduction obeys the depth dependence in
Table I, which is based on the fact that this state is both
very strongly disordered and robustly conducting. Con-
sequently, its scattering time τ scales linearly with the
disorder depth d, and its scattering length is independent
of d. This determines the depth dependence of all other
conduction parameters.

IV. APPLICATIONS

Using this effect, a topological state’s conduction can be
engineered and patterned to meet device requirements by
introducing a layer of strong W ≈Wc surface disorder and
patterning the layer’s depth d. d must substantially exceed
the bulk penetration depth λ, which is typically 2–3 nm in
the Bi2Se3 family of TIs [46]. It is necessary that the
disorder’s spatial distribution has a step function profile; the
disorder strength should be constant from the surface up to
depth d and then drop to zero. Ion implantation produces a
Gaussian depth distribution around a mean depth controlled
by the beam energy; a step function distribution may be
approximated by applying the beam twice at two different
beam energies.
Increasing the density of states of the in-gap surface

states will make them less sensitive to bulk defects, which
are known to cause bulk conduction by introducing
carriers. Depending on the defect type, the defects shift
the Fermi level toward either the valence band or the
conduction band [47,48]. When disorder is used to increase
the surface density of states, the Fermi level will be less
sensitive to bulk defects and shift further into the gap,
increasing the TI quality. In patterned devices, points with
increased disorder depth d and density of states ρ will
respond more strongly to external static or ac voltages.
Interaction with light also will be increased if the light’s
penetration depth exceeds λ [49]. Moreover, the state’s self-
interaction will be increased, which favors transitions to
strongly interacting topological phases [7,8].
Engineered lines of increased d on a TI surface can be

used to direct the topological current’s flow across the
surface and to divide current flow and later reunite it,
similar to integrated circuits in conventional semiconductor
devices. These channels can be controlled by using external
gates to locally shift the Fermi level. Because the critical
disorder Wc is sensitive to the Fermi level EF, if the Fermi
level is either too large or too small then the topological
state will reroute to the boundary of the disordered region
and will lose its depth dependence. Therefore, external
gates can control the density of states at specific points on
the TI surface, regulating the current flow through chan-
nels, or switching current from one channel to another. In
summary, the topological current can be focused, directed
along particular channels, and switched, supplying all
of the components necessary for realizing topological
integrated circuits.

FIG. 4. Transport signatures in the DOS ρ (left panels) and
conductance G (right panels) at two values of the Fermi level
EF ¼ 0, 0.25. We shift the EF ¼ 0 conductance downward byG0

for clarity. The pinned topological state is indicated when ρ is
independent of the disorder depth d. Nontopological states are
indicated when G is linear in d. The depinned topological state
shows a constant G and linear ρ. Panels (a) and (d) show the
dependence on W. Panels (b) and (e) show the change in ρ
and G caused by adding two disorder layers. Panels (c) and
(f) demonstrate linearity in d.
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We conclude by discussing a specific device, a spectral
analyzer of incoming transient pulses. Its crucial compo-
nent is a region where the disorder depth d grows con-
tinuously. A topological state diffusing through this region
will experience a spatially nonuniform scattering time τ.
Its diffusion is similar to Brownian motion of classical
particles in the presence of a temperature gradient, since the
time between Brownian steps varies inversely with the
temperature. As is well known from the celebrated Ludwig-
Soret thermodiffusion effect, the diffusing state will expe-
rience an effective force deflecting it along the gradient
of τ and d [50–52]. The deflection is greatest when the
topological state’s energy E is at the critical value Ec
associated with depinning, so the spectral analyzer will
spatially resolve incoming pulses according to their com-
ponent energies.
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