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Biomimic devices using induced-charge electro-osmosis (ICEO) is interesting since they have the
possibility to realize high-performance functions with simple structures and with low-energy consumption.
Thus, inspired by a cilium, we propose a two-dimensional artificial elastic valve using hydrodynamic force
due to ICEO with a thin elastic beam in a microfluidic channel and numerically examine the valving
performance. By an implicit strongly coupled simulation technique between a fluid and an elastic structure
based on the boundary-element method, along with the thin-double-layer approximation, we realize stable
calculations and find that the elastic valve using ICEO functions effectively at high frequency with low
applied voltages in a realistic pressure flow. Further, we also examine passive motion of the valve; i.e., it
stops a reverse flow effectively and releases a forward flow in the channel. We believe that our device can
be used in a wide range of microfluidic applications, such as mixers, pumps, etc.
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I. INTRODUCTION

Biomimic devices have much potential to obtain out-
standing functions that ordinary machines cannot achieve.
In particular, artificial cilia [1–4] have attracted much
attention because of their large expectation to microfluidic
applications [5], and the appearance of the artificial cilia is
diverse [1]. For example, den Toonder et al. [6] exper-
imentally reported that two-dimensional (2D) artificial cilia
having a platelike but curled microbeam consisting of
layers of polyimide and chromium can be driven by an
electrokinetic force and generate substantial fluid flow and
mixing in silicone oil. Shields et al. [2] also experimentally
reported that artificial cilia made of rodlike polydimethyl-
siloxane containing dispersed superparamagnetic nanopar-
ticles (Fe3O4) can be driven by a magnetic force and
generate substantial fluid flow. Khaderi et al. [4] theoreti-
cally showed that the amount of fluid propelled is propor-
tional to the area swept by the cilia by using a 2D explicit
weakly coupled method between a fluid and an elastic
beam based on the finite-element method. However, the
magnetic cilia need large coils to produce strong magnetic
fields, while the electrokinetic cilia in water have not been
explored well at least theoretically because of their com-
plexity in spite of their large potential for miniaturization
and suitable circumstances for cells.
Recently, Bazant and Squires [7–9] showed that

induced-charge electro-osmosis (ICEO), which includes
ac electro-osmosis discovered by Ramos et al. [10,11], is a
key concept for understanding the behaviors of metallic
colloidal suspensions and flows around a metal post in a
polarizable solution. ICEO is different from classical
electro-osmosis because it is caused by the interaction

between an electric field and ions in an electric double
layer formed by the polarizing effect of the electric field;
thus, it generates large flow velocity (approximately
1 mm=s) proportional to the applied electric field at low
applied voltages (approximately 1 V), and it can be driven
by ac electric fields. Therefore, the problems due to a dc
electric field (such as a chemical reaction) can be avoided to
some extent. Thus, in our previous papers [12,13], we
propose a rotary microvalve that can move smoothly by
using a slip velocity of ICEO on the surface in viscous-
dominant circumstances, and it is important, since valves
are dispensable elements in biomedical applications [5].
However, making the axis of rotation is a little difficult in
smaller regions, although we believe it is still useful, and
nature provides the solution as cilia in those regions.
Therefore, in this study, we focus on a cilialike 2D elastic

valve using hydrodynamic force due to induced-charge
electro-osmosis in water and elucidate its design concept.
In particular, we consider the ICEO elastic valve having an
oblique conductive beam that is connected directly to the
lower electrode since such an asymmetrical high-ζ potential
structure has not been explored well. Further, by using a
newly developed implicit strongly coupled simulation
method that solves both fluidic and elastic equations simul-
taneously (not alternately) based on the boundary-element
method along with the thin-double-layer approximation, we
report completely stable and mesh-free calculations. Here,
the stable calculation means that the calculation does not
magnify numerical errors during the time evolution.

II. THEORY

A. Geometry model

Figure 1 shows the schematic view of an elastic valve
using ICEO. As shown in Fig. 1, we typically place a*sugioka.hideyuki@canon.co.jp
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conductive elastic beam of length Le ¼ 1.5w and width
d ¼ 0.04w on the lower electrode in a rectangular channel
of length L ¼ 2.25w and width w ¼ 100 μm at a 20° tilt
angle θ and apply an electric voltage V0 ð¼ 1.19 VÞ
between the electrodes under the existence of the pressure
difference ΔP ð≡P2 − P1Þ in water.

B. Numerical model

Numerically, we consider a 2D quasistatic Stokes flow
without Brownian motion and a 2D quasistatic motion of
the elastic beam; i.e., we consider the limit in which the
Reynolds number Re tends to zero, and the Peclet number
is infinite with the balance between the viscous and elastic
forces at each time step without considering inertia effects
because of small Re. Namely, we solve a 2D implicit
strongly coupled calculation method that solves both the
fluidic and elastic equations simultaneously by the boun-
dary-element method (BEM) along with the thin-double-
layer approximation. I.e., we calculate the flow fields and
deflections of the beam by using the Stokes equations of a
fluid and Navier’s equations of a solid,

μ∇2v − ∇p ¼ 0; ∇ · v ¼ 0; ð1Þ

∇ · σe ¼ 0; σe ¼ μe½∇uþ ð∇uÞT � þ λeð∇ · uÞI; ð2Þ

v ¼ ~vþ Vs; on Sob; ð3Þ

f eð¼ f e0 þ f depÞ ¼ f f; on Sib; ð4Þ

where p is the pressure, μ (approximately 1 mPa s) is the
viscosity, v is the velocity, σe is the stress tensor of the
beam, u is the displacement, μe and λe are Lame’s constants
on a solid, Sob and Sib denote the surfaces defined as the
outside and inside edges, respectively, of the double layer, ~v
is the velocity on Sib, Vs is the slip velocity on Sob, f

dep
e is the

surface traction due to the dielectrophoresis (DEP), f e0 is
the surface traction due to the deflection of a solid, and f e

and f f are the total surface traction vectors (defined by the
opposite normal vectors) of the beam and fluid, respec-
tively. Further, by solving the Laplace equation (∇2ϕ ¼ 0)
under the condition that ϕ ¼ V0 and ϕ ¼ 0 on the upper
and lower electrodes, respectively, and n · ∇ϕ ¼ 0 on Sob,
we obtain the slip velocity Vs on Sob at each time step on the
basis of the Helmholtz-Smoluchowski formula:

Vs ¼ − ϵζ
μ
Es; ð5Þ

where Es ð¼ −∇ϕÞ is the tangential electric field, ϵ
(approximately 80ϵ0) is the dielectric permittivity of the
solvent (typically water), ϵ0 is the vacuum permittivity, ζ
ð≡ϕi − ϕoÞ is the ζ potential, n is the surface normal unit
vector, and ϕo and ϕi ð¼ 0Þ are the potentials at Sob and Sib,
respectively. Furthermore, we obtain the DEP traction due
to the Maxwell stress as

f dep ¼ − 1

2
ϵE2

sn: ð6Þ

Please note that in many papers (e.g., in Refs. [14–17]), we
can find the boundary equations of the fluid and solid
corresponding to Eqs. (1) and (2) separately, and they are
very similar expressions. Thus, we obtain the similar
matrix formulations that ½Hf�fvg þ ½Gf�ff fg ¼ 0 and
½He�fug þ ½Gf�ff eg ¼ 0, where [] denotes a matrix, fg
denotes a column vector, and fvg and ff fg [fug and
ff eg] are node vectors of the velocity and traction of
fluid [displacement and traction of solid], respectively.
Therefore, by considering fut¼t0þΔtg ¼ fut0g þ
Δtf~vt¼t0þΔtg with the boundary conditions of Eqs. (3)
and (4), we obtain the unified matrix expression
½A�fx0g ¼ fbg, where fx0g is an unknown vector consisting
of unknown node traction and velocity vectors of a fluid at
t ¼ t0 þ Δt. Here, Δt denotes a time-step interval, and t0 is
arbitrary time. Similarly, the Laplace equation (∇2ϕ ¼ 0)
also can be written in the matrix form; i.e., for the problem
of ϕo, we obtain that ½Hp�fϕog þ ½Gp�fEn;og ¼ 0, where
fϕog and fEn;og are node vectors of the potential and
electric-field component perpendicular to the surface,
respectively. Thus, by using Eq. (5) with the relation that
Es ¼ −∇ϕo and ζ ¼ ϕi − ϕo ¼ −ϕo at the beam surface,
we obtain Vs. Please note that specific forms of ½Hp� and
½Gp� also can be found in the standard textbooks for the
boundary-element method, and sometimes we can use a
fluidic solver for the Stokes equation as an electric potential
solver for the Laplace equation by setting ∇p ¼ 0.

C. Simple model of the ICEO elastic valve

From the viewpoint of engineering, even the simplest
model is useful as a first step. Namely, by considering a
slender-body limit as half of an elliptical particle with the
Lorentz reciprocal theorem [14,18], we approximate the
torque due to an ICEO flow as

FIG. 1. Schematic view of an elastic valve using ICEO. 1: Pair
of electrodes. 2: Conductive elastic beam. 3: Electro double layer.
We place a conductive elastic beam of length Le ¼ 1.5w and
width d ¼ 0.04w on the lower electrode in a rectangular channel
of length L ¼ 2.25w and width w ¼ 100 μm at a 20° tilt angle θ.
Here, typically, the applied voltage V0 is 1.19 V, ym ¼ 0.4w, and
the pressure difference ΔP ð≡P2 − P1Þ is −4 Pa. The Poisson
ratio ν and shear modulus G of the elastic beam are 0.5 and
0.01 MPa, respectively, while the viscosity μ is 1 mPa s.
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TICEO ≃− μ

Led

Z
s¼Leþd

s¼Le

ðn · rÞðr × VsÞds

≃− μ

Led
L2
eV

edge
s dð−kÞ≃ μLeV

edge
s k; ð7Þ

where r ¼ x − xm, xm is the position ð1; ymÞ, and k is a unit
vector in the direction of z; thus, the equivalent concen-
trated force at xp due to ICEO in the upper direction of the
beam is approximated as

F�;ICEO ≃ μVedge
s : ð8Þ

Please note that we consider only the edge slip velocity
Vedge
s as a dominant factor, and we approximate that

Vedge
s ≃ ceUw, where Uw ¼ ϵwE2

0=μ is a characteristic
velocity of ICEO of the channel, and ce is a shape factor
related to the concentration of electric fields; here, ce ≃ 3
from the results of our calculations [in Fig. 3(c)].
Further, by considering a simple fluidic resistor model in

a Poiseuille flow, we approximate the pressure drop in the
valve region as

ΔPv ≃ Rv

RV þ Ro
ΔP ¼ 1

1þ Ro=Rv
ΔP; ð9Þ

where Rv ¼ 12μLe cos θ=ðw − Le sin θÞ3, Ro ¼ 12μðL−
Le cos θÞ=w3, and Ro=Rv ¼ ½ðL=Le cos θÞ − 1�ð1−
Le sin θ=wÞ3. Thus, we can approximate the torque due
to the pressure difference as

TΔPð≡LeF�;ΔPÞ≃
Z

Le

s¼0

�
1 − s

Le

�
ΔPvssin2θds

≃ 1

6
ΔPvL2

esin2θ; ð10Þ

where F�;ΔP is the equivalent concentrated force due to ΔP
at the edge, and ½1 − ðs=LeÞ�ΔPvsin2θds is the local force
perpendicular to the beam at s (0 ≤ s ≤ Le). Thus, we
obtain F�;ΔP ≃ 1

6
ΔPvLe sin2 θ. Here, we assume that a

triangle zone under the beam is so-called dead water,
and in this zone, the pressure is approximately constant;
thus, we can approximate that the parallel force exerted
on the beam changes linearly from ΔPv sin θds at the
beam bottom to zero at the beam edge, as a first
approach. Furthermore, as for the pressure force, we
cannot neglect the effect of the deflection of the beam
(δbeam), and by considering a projection length of the beam
to the x axis in the deflection state, F�;ΔP should be
rewritten as

F�;ΔP ≃ 1

6
ΔPvðLe sin θ þ δbeam cos θÞ sin θ: ð11Þ

Please note that we consider that 1
6
ΔPv sin θ is the

resistance coefficient for the projection length of the beam.

Thus, from Eqs. (8) and (11), the total equivalent con-
centrated force at the edge is

~P≡ F�;ICEO þ F�;ΔP

¼ ceϵV2
0=wþ 1

6
ΔPvðLe sin θ þ δbeam cos θÞ sin θ: ð12Þ

By using the linear beam theory, we can approximate the
deflection of the beam as

δbeam ≃ ~PL3
e

3EI
; ð13Þ

where E ¼ 2Gð1þ νÞ is Young’s modulus, and I ¼ d3=12
is the moment of the inertia for the rectangular cross section
of the unit thickness. Therefore, from Eqs. (12) and (13),
we obtain

δbeam ≃ AceϵV2
0=wþ ABLe sin θ
1 − AB cos θ

; ð14Þ

where A ¼ L3
e=3EI and B ¼ 1

6
ΔPv sin θ. Here, we assume

that ΔPv is constant, for simplicity. Further,

xp ¼ w − Le sin θ − δbeam cos θ; ð15Þ

Up ¼ Q
w
≃ ðw − Le sin θ − δbeam cos θÞ3

12μLew cos θ
; ð16Þ

where Q is the volumetric flow rate. From the kinematic
and geometrical conditions, the moving and closing
conditions of the elastic valve are roughly estimated as
~P ¼ F�;ICEO þ F�;ΔP > 0 and δbeam cos θ ≥ ðw − Le sin θÞ,
respectively. Under the conditions of Fig. 2, we obtain
F�;ICEO ¼ μceUw ¼ 30 μN=m, F�;ΔP ¼ −10 μN=m, ~P ¼
20 μN=m, δbeam cos θ=w ¼ 0.53, and ðw − Le sin θÞ=
w ¼ 0.49; i.e., the moving and closing conditions are
satisfied in our calculations. Thus, the results of our
numerical calculations are reasonable.

III. RESULTS

A. Active closing motions

Figure 2 shows the closing motion of the elastic valve
using ICEO under the conditions that ΔP ¼ −4 Pa,
V0 ¼ 1.19 V, ν ¼ 0.5, and G ¼ 0.01 MPa (typical value
of poly-urethane). As shown in Fig. 2(a), initially we
observe the substantial Poiseuille flow, but it is suppressed
largely by the deflection of the beam at t=T0 ¼ 5 ms as in
Fig. 2(b). Finally, it is stopped at t=T0 ¼ 30, although the
tangential flow around the beam due to an ICEO slip
velocity remains as shown in Fig. 2(c). Here, T0 ¼ 1 ms.
Please note that although we use T0 andUc ¼ w=T0 for the
convenience in this paper, they are just units, and they are
not the represented values for time and velocity. Figure 2(d)
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shows a potential field at t=T0 ¼ 5, and it tells us clearly
that the oblique structure connected to the lower electrodes
gives the preferable large-ζ potential and large tangential
electric field around the peak position (xp). This fact is an
origin of the large slip velocity at the edge of the beam in
the direction of the lower right. Because of this large slip
velocity, the response time of the elastic valve becomes
very short. Actually, as shown in Figs. 2(e) and 2(f), the
response time of the peak position xp and the average flow
velocity Up is approximately 5–10 ms; here, Up is
measured at y ¼ 0. Further, the time-evolution curves of
xp and Up are invariable under the condition that
Δt=T0 ¼ 0.05, 0.1, and 0.2; it shows excellent stability
of our calculations using the implicit strongly coupled
method explained in Sec. II. Please note that in our trial, the
explicit weakly coupled method that solves fluid and solid
equations alternatively becomes unstable because of the
high nonlinearity of an ICEO flow even for small Δt; i.e.,
although we need to neglect the variance of fluidic (elastic)
surface traction during the step period Δt when we solve
the solid (fluid) equations in the weakly coupled method,
the sum of numerical errors increases rapidly. Thus, after
several time steps, the matrix calculation becomes unable to
converge even for small Δt.
Figure 3 shows detailed characteristics of the ICEO

elastic valve. As shown in Figs. 3(a)–3(c), the ζ potential,
tangential electric field, and slip velocity are very high at
the edge of the elastic beam (1.5 ≤ s ≤ 1.5þ d) during the
closing motion. In particular, the maximum ζ potential is

comparable to the applied voltage (ζedge ≃ V0 ≃ 1.19 V),
and the maximum tangential electric field is several times
the average electric field (Es ≃ 4E0 ≃ 40 kV=m); thus, the
maximum slip velocity also becomes several times that of
the ICEO characteristic flow velocity of the channel
(Vedge

s ≃ 3Uw ≃ 30 mm=s), where Uw ¼ ϵwE2
0=μ. Please

note that, roughly speaking, the value of Vedge
s is about

30 times higher than that of the ordinary ICEO character-
istic flow velocity (approximately 1 mm=s). Further,
Fig. 3(d) shows that the traction due to the DEP effects
also has the maximum value at the edge, but it does not
contribute largely to the deflection of the beam as shown in
Fig. 3(e). Please note that in Fig. 3(e), the circles show the
time evolution of the peak position considering DEP
effects, while the triangles show the time evolution of
the peak position not considering DEP effects.
Furthermore, in Fig. 3(f), the square, circle, triangle, and
cross show the time evolution of xp at ΔP ¼ −2, −4, −8,
and −16 Pa, respectively; thus, we find that the ICEO
elastic valve works under the condition that ΔP ≥ −4 Pa
at V0 ¼ 1.19 V.
Figure 4 shows the dependence of xp on V0 at ΔP ¼ 0

with the various parameters. As shown in Fig. 4, the value
of xp approaches zero as V0 increases under the condition
that Le ≥ 1.5w, θ ≥ 20°, and d ≤ 0.08w. It simply means
that to close a valve at suitable applied voltages, the
stiffness of the oblique beam should be weak enough to
deflect. Further, in Fig. 4, the numerical results agree fairly
well with those of the simple model described by Eq. (15)
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FIG. 2. Active closing motion of the ICEO
elastic valve. Here, L=w ¼ 2.25, Le=w ¼ 1.5,
d=w ¼ 0.04, T0ΔP=μ ¼ −4, T0G=μ ¼ 104,
ν ¼ 0.5, and T0Uw=w ¼ 0.1; e.g., w ¼
100 μm, T0 ¼ 1 ms, μ ¼ 1 mPa s, ΔP ¼
−4 Pa, G ¼ 0.01 MPa, and V0 ¼ 1.19 V.
(a) Flow field at t=T0 ¼ 0. (b) Flow field
at t=T0 ¼ 5. (c) Flow field at t=T0 ¼ 30.
(d) Potential field at t=T0 ¼ 5. (e) Depend-
ence of xp on time. (f) Dependence of Up
on time.
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at small applied voltages (V0 < 0.3), although there is
much discrepancy between the analytical and numerical
values under the condition that G ≥ 20 kPa, d=w ≥ 0.08,
and V0 > 0.7 V. Thus, we can rely on the simple model to
some extent at ΔP ¼ 0 for small applied voltages.
Figures 5(a)–5(d) show the dependence of xp on Le, θ,

G, and d, respectively, at V0 ¼ 0.3 V and ΔP ¼ 0. As

shown in Fig. 5, the tendency of the numerical results
agrees fairly well with that of the results of the simple
model described by Eq. (15). Further, in Fig. 5, the broken
lines show the initial positions at V0 ¼ 0 V and
ΔP ¼ 0 Pa; thus, we can see the gap length of the channel
and the deflection of the beam at the same time. In
particular, from Eq. 5(b), we find that the dependence of
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0.16 kPa in (d)], respectively. (a) Dependence
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FIG. 3. Characteristics of the ICEO elastic
valve during an active closing motion. Here,
Uc ¼ w=T0, L=w ¼ 2.25, Le=w ¼ 1.5,
d=w ¼ 0.04, T0ΔP=μ ¼ −4, ν ¼ 0.5,
T0G=μ ¼ 104, and T0Uw=w ¼ 0.1; e.g.,
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δbeam on θ is more complex than that of the simple model
at θ < 20°.
Figure 6 shows steady peak positions xp and the

corresponding average flow velocities Up for active
motions. In Figs. 6(a) and 6(c) [in 6(b) and 6(d)], solid,
broken, and dotted lines show the results of the simple
model at T0ΔP=μ ¼ 0, −2, and −4 (at V0 ¼ 0, 0.99, and
1.19), respectively. As shown in Fig. 6, since the problem is
a highly complicated nonlinear problem, the analytical and
numerical results are not in agreement with each other at
V0 ≥ 0.99 V and at T0Δp=μ ≤ −2; however, both the
numerical and analytical results show that the open states

of the valve at T0ΔP=μ ¼ 0, −2, and −4 (at V0 ¼ 0, 0.99,
and 1.19) can be switched to the closed states by increasing
the applied voltage (pressure). Thus, the simple model is
still important as the first estimation for the ICEO elastic
valves.

B. Passive opening and closing motions

Figure 7 shows a passive opening motion for a forward
pressure flow. As shown in Figs. 7(a) and 7(b), the
forward pressure flow at ΔP ¼ −4 Pa deflects the beam
in the lower direction and releases the flow more. Further,
Figs. 7(c) and 7(d) [Figs. 7(e) and 7(f)] show the
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dependence of xp and Up on time, respectively, at
T0ΔP=μ ¼ −4, −2, and −1 [at Le=w ¼ 1.3, 1.5, and
1.7] during the passive opening motion. As shown in
Figs. 7(c) and 7(d), the response time of the passive

motions at ΔP ¼ −4 Pa is about 20 ms, and it is
preferably short.
Figure 8 shows a passive closing motion for a reverse

pressure flow. As shown in Figs. 8(a) and 8(b), the reverse
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pressure flow at T0ΔP=μ ¼ þ4 deflects the beam
in the upper direction and stops the flow. Further,
Figs. 8(c) and 8(d) [Figs. 8(e) and 8(f)] show the depend-
ence of xp and Up on time, respectively, at T0ΔP=μ ¼ þ4,
þ2, and þ1 [at Le=w ¼ 1.3, 1.5, and 1.7] during the
passive motions. As shown in Figs. 8(c) and 8(d), the
response time of the passive closing motion at T0ΔP=μ ¼
þ4 is about 10 ms, and it is also preferably short.
Figure 9 (Fig. 10) shows the dependence of xp (Up) onΔP

for the steady state of the passive motions at V0 ¼ 0 V. As
shown in Fig. 9, the passive elastic valve can be closed
completely under the condition thatLe=w ≥ 1.5 and θ ≥ 20°.
This is because a too large deflection is required to close

completelyatθ ¼ 10° andLe=w ¼ 1.3. Further, inFigs. 9and
10, the peak position slowly approaches the constant value,
and the corresponding average velocity increases almost
linearly, approximately in the range T0ΔP=μ ≤ −4.
Furthermore, the values of xp and Up agree fairly well
between the numerical and analytical results approximately
in the range T0ΔP=μ ≤ þ1, as shown in Figs. 9 and 10.
Figures 11(a)–11(d) show the dependence of xp on Le, θ,

G, and d, respectively, at V0 ¼ 0 V and T0ΔP=μ ¼ −2. As
shown in Fig. 1, the tendency of the numerical results
agrees fairly well with that of the results of the simple
model described by Eq. (15). Further, in Fig. 11, broken
lines show the initial positions at V0 ¼ 0 V and
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FIG. 10. Average flow velocity of the pas-
sive valve at V0 ¼ 0 V. Here, the characters
show the results of numerical calculations
using the BEM, while the lines show the
result of the simple model. The set of standard
parameters is L=w ¼ 2.25, Le=w ¼ 1.5,
d=w ¼ 0.04, ν ¼ 0.5, T0G=μ ¼ 104, and
T0Uw=w ¼ 0; e.g., w ¼ 100 μm, T0 ¼
1 ms, μ ¼ 1 mPa s, and G ¼ 0.01 MPa.
(a) Dependence of Up on ΔP (V0 ¼ 0 V).
(b) Dependence of Up on ΔP (V0 ¼ 0 V).
(c) Dependence of Up on ΔP (V0 ¼ 0 V).
(d) Dependence of Up on ΔP (V0 ¼ 0 V).
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ΔP ¼ 0 Pa. As shown in Figs. 11(a) and 11(b), the initial
positions approach the upper electrode as the values of Le
and θ increase; however, because of the passive opening
motions due to the forward flow, the steady opening
positions are approximately constant. Thus, the value
condition of Le and θ (e.g., Le ≥ 1.5 and θ ≥ 20°) is
preferable for the valve design.

IV. DISCUSSION

A. The meaning of the ICEO elastic valve

Although the analysis of a conductive membrane that
considers an ICEO flow exists [19], the cilialike ICEO
elastic valve is first proposed and examined theoretically in
this paper. Further, different from the magnetic cilia by
Shields et al. [2] and the 2D electrokinetic cilia by den
Toonder et al. [6], the ICEO elastic valve works at low
voltages (V0 ∼ 1 V) in water and with a high response time
(tICEO elastic valve
r ∼ 5–10 ms) without large equipment.

Thus, it is promising for various biomedical applications.
In addition, the active closing time of the ICEO elastic
valve is approximately 1.5 to 3 times higher than that of the
ICEO rotary valve (tICEO rotary valve

r ¼ 16 ms) [12] under the
same condition that ΔP ¼ −4 Pa, V0 ¼ 1.19 V, and
w ¼ 100 μm, although from Eqs. (11) and (12) we can
predict that the ICEO elastic valve having a thick beam
does not work well. Thus, the cilialike ICEO elastic valve is
useful in a relatively narrow channel (e.g., w ≤ 100 μm),
while the ICEO rotary valve [12] is useful for a relatively
wide channel (e.g., w ≥ 100 μm). Furthermore, the direct
connection between the lower electrode and the conductive
elastic beam intrinsically provides larger-ζ potentials and
larger flow velocities than the ordinary ICEO structures

such as elliptical or circular cylinders, as shown in Fig. 3.
Thus, there is much potential for the cilialike ICEO elastic
valve to be used in efficient pumps, mixers, etc. In addition,
by using the semiconductor process or microelectrome-
chanical-systems technology (similar to Refs. [2,6]), in the
future, we can experimentally realize the elastic valve using
ICEO, although it might be a challenging problem.

B. Neglect of an unsteady term in the Stokes equation

Because ions diffuse more slowly than vorticity by a
factor of D=ν ¼ ρD=μ≃ 10−3, it is customary in micro-
fluidic and colloidal systems to neglect the unsteady term
(ρ∂v=∂t) in the Stokes equation, as mentioned in Ref. [8].
Here, D (¼ 10−9 m2=s, for water) and ν (¼ μ=ρ≃
10−6 m2=s, for water) are the diffusion constant and the
dynamic viscosity, respectively. Please note that for a
colloidal particle of radius a ð≪ wÞ in an electrolyte, the
natural characteristic length lc and time tc are the radius a
and the ion diffusion time a2=D, respectively. Thus, the
Reynolds number that we should first consider for
the vorticity and Navier-Stokes equations concerning the
colloidal system is Refirst ¼ lcðlc=tcÞ=ν ¼ ð1=νÞðl2c=tcÞ ¼
ð1=νÞða2=a2=DÞ ¼ D=ν ¼ 10−3. That is, the Reynolds
number does not depend on the selection of the character-
istic length in this case, and it is very small. Further, for the
motion of the elastic valve, we need to select d as lc rather
than w, since the slip velocity of the beam edge (Vedge

s ) of
length d (typically, 4 μm) dominates the motion of the
valve and the surrounding flow. Furthermore, of course,
Vedge
s ð¼ ceϵE2

0=μÞ should be selected as a characteristic
velocity for the motion of the elastic valve, and the
maximum value of Vedge

s is approximately 30 mm=s.
Thus, the Reynolds number that we should consider second
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is Resecond ¼ Vedge
s d=ν≃ 0.12 at most, and it is also small

enough. Therefore, the neglect of the unsteady term is also
justified as a first attempt.

C. Charging time for the edge region

In general, the charging time plays an important role in
ICEO phenomena, and two kinds of charging time are well
known [20]: the Debye charging time τD ¼ λ2D=D and the
RC charging time τRC ¼ λDðlg=2Þ=D, where λDð¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkT=2z2e2C0

p
Þ is the Debye screening length, k is the

Boltzmann constant, T is the absolute temperature, ze is
the ion charge, and C0 is the bulk ion concentration.
Please note that τD is often referred to for colloidal
particles, while τRC is often considered for the problems
of a parallel electrode whose gap distance is lg. For our
problem, since L ≫ d, the charging time of the edge
region should be estimated by τD or τA ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

τDτdif
p ¼

λDd=D rather than τRC, where τdifð¼ d2=DÞ is a diffusion
time over the edge region. Please note that the capacitance
of the edge region of the length d is much smaller than the
capacitance of the counter electrode of the length L by the
order of d=L. Specifically, if we set C0 ¼ 1 mM,
d ¼ 4 μm, and lg ≃ 50 μm (as a typical value correspond-
ing to the calculation in Fig. 2), we obtain λD≃10nm,
τD ¼ 0.1 μs, τA ¼ 40 μs, and τRC ¼ 0.25 ms. Thus, our
calculations are justified since tICEO elastic valve

r (approxi-
mately 5–10 ms) is much larger than τD and τA. Further,
although we think that the value of τRC is obviously an
overestimation for the edge charging problem, even this
worst estimation might be acceptable for the value of
tICEO elastic valve
r as a first attempt, since our conclusion that
tICEO elastic valve
r ∼ 5–10 ms is not changed even if there is a
delay time of 0.25 ms.

D. Response time of the ICEO elastic valve

From Figs. 2(e) and 2(f), we consider that the response
time of the ICEO elastic valve is about 5–10 ms at
ΔP ¼ −4 Pa. However, the response time includes the
effect of the pumping function of the elastic valve in the
−x direction. That is, at t ¼ 5 ms, the forward flow is
stopped by the pumping effect as shown in Fig. 2(f);
however, the deflection of the beam is not enough to achieve
the geometrical closing state as shown in Fig. 2(e). In other
words, the geometrical closing time of the ICEO elastic
valve is about 10–15 ms at ΔP ¼ −4 Pa, from Fig. 2(e).
Thus, the real response frequency of the elastic valve is about
67–100 Hz. Therefore, the response frequency is still high,
but it is marvelously comparable to the higher range of the
beating frequency of the cilia in nature, since the beating or
rotation frequency of the natural cilia (whose typical length
is on the order of 10 μm) is 10–100 Hz [21]. Please note that
the response frequency of the ICEO valve does not depend
on the unit scale of w if the average electric field E0ð¼
V0=wÞ is constant, although we predict that it increases as

the value of δbeam=w≃ ð12ceϵV2
0=9w

2GÞðLe=dÞ3 ¼
ð4ceϵE2

0=3GÞðLe=dÞ3 increases at ν ¼ 0.5 and ΔP ¼ 0
from Eq. (13).

E. An oscillatory field

Since an ICEO flow velocity is proportional to E2
0½¼ ðV0=wÞ2�, instead of the dc pulse voltage of a width

Tp, we can use an ac applied voltage of the width Tp with a
frequency fac that is smaller than the charging frequency
1=τA but larger than 1=Tp (i.e., 1=Tp < fac < 1=τA).
Further, since the ICEO active closing time and the passive
opening time at ΔP ¼ þ4 Pa is about 15 and 10 ms,
respectively, the maximum beating frequency fICEOb of
the ICEO valve is about 1=0.025 ¼ 40 Hz. Of course,
there is no relation between this beating frequency and
the ac frequency because of the ICEO characteristics.
Furthermore, different from the natural cilia, the ICEO
valve geometrically propels the same volume of water
during active and passive motions; thus, we cannot expect
the pumping effect directly from the beating motion.
However, because of the asymmetrical structure of the
oblique beam, a net ICEO flow in the −x direction
generates during the active motion; thus, a pumping
function in the −x direction can be expected at ΔP ¼ 0
during the beating motion. Moreover, in general, our
proposed numerical method is useful for the study of the
natural cilia. However, to use it effectively, we need to
model the special beam of the cilia, which is very different
from the ordinary elastic beam; i.e., the beam of the cilia
works as an elastic beam during the power stroke, whereas
it is rather folded during the recovery stroke.

F. The passivation film for the upper electrode

Since the elastic beam is conductive, it is bad for the
device if it touches the upper electrode. Thus, we need to
use a passivation film for the upper electrodes in practical
applications, although we omit the explanation for
simplicity. For example, SiO2 insulation films whose
thickness is about 10 nm are needed on the upper
electrode to prevent the shortage of the electrical circuit
and to avoid the breakdown of the power supply.
However, several mechanisms exist to suppress this
undesirable contact, although those mechanisms do not
work completely to prevent the contact. For example, the
reverse torque due to the elasticity of the beam simply
increases as the deflection value increases. Further, as
shown in Fig. 5(f) in Ref. [12], the ICEO torque on the
beam reduces significantly because of the boundary effect
as the beam approaches the upper electrode. Thus, even
at ΔP ¼ 0, the beam approaches the upper electrode
slowly. In addition, at ΔP < 0, the pressure torque that
lowers the beam increases because of the increasing
projection length in the y direction as the beam
approaches the upper electrode; i.e., a forward flow also
seems to suppress the contact.
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G. The passive valve

Our simple model includes a simple static model for the
passive valve at V0 ¼ 0 V, and it clearly predicts that the
passive valve closes for a reverse pressure flow at ΔP > 0,
whereas the passive valve opens for a forward pressure flow
atΔP < 0, as shown in Figs. 9 and 10. This valving function
mainly originates in the movable beam and the difference of
the rotational direction of the beam in the fluid, since the
Stokes flow is characterized by the relation that uðx;−ΔPÞ¼
−uðx;þΔPÞ if there is no movable portion in the channel.
Further, since the closing time of a passive valve is about
10 ms from Fig. 8(d), the closing frequency is about 100 Hz
at ΔP ¼ þ4 Pa, and the closing frequency does not depend
on the unit scale of w if the average pressure gradient ΔP=L
is constant, although it increases as the value of δbeam=w≃
½sin2θ=6ð1þRo=RvÞ�ð12ΔP=9GÞðLe=dÞ3ðLe=wÞ increases
at ν ¼ 0.5 and V0 ¼ 0 from Eq. (13). Here, we neglect the
change of the projection length due to the deflection.
Furthermore, the contact between the beam and the upper
electrode inevitably happens during a closing motion of the
passive pressure valve. Different from the active closing
motion due to ICEO, the closing torque due to the pressure
difference increases as the beam approaches the upper
electrodes, although the reverse torque due to the elastic
beam increases. Thus, we may need to prepare a thicker
passivation film for the passive valve than that for the ICEO
valve to prevent the physical damage of the upper electrode.

H. The possibility of a decreasing of the response
time in experiments

Although the large flow velocities (approximately
1 mm=s) of the ICEO flows are experimentally observed
for distilled water and electrolyte solutions at low ionic
concentration (< 10 mM), there is a tendency that ICEO
experimental velocities are often smaller than those
predicted by the standard theory, and sometimes they
are smaller by an order of magnitude, especially for the
electrolyte solution at high ionic concentration (> 10 mM)
[22]. Thus, there is a possibility that this fact makes the
valve move much slower in experiments than predicted in
this paper. However, researchers continue to make an effort
to clarify the problems; e.g., Pascall and Squires [23]
experimentally showed that the contamination of the
driving surface provides a natural mechanism for ICEO
flow suppression. Thus, for example, in future experiments,
we may avoid a decreasing of the response time of ICEO
elastic valves by keeping the driving surface clean. Of
course, to solve the problem at a practical level, we need to
understand the surface phenomena more deeply from the
viewpoints of both fundamental physics and engineering.

I. The large deflection problem of the elastic beam

For simplicity, we just consider the linear beam theory of
Eq. (13) for the analytical theory in Sec. II C. However, the

presented problem is highly complex. In fact, it belongs to a
so-called large deflection problem that requires a highly
nonlinear beam theory. Thus, we mainly consider the
problem based on the boundary-element method that
considers the large deflection problem at each time step.
Therefore, the discrepancies between the numerical and
analytical results in Sec. III are acceptable as a first attempt.
For example, as shown in Figs. 5(d) and 11(d), the
dependence of xp on d in the analytical model is not in
good agreement with that in the numerical model; i.e., as
the value of d increases, the deflection value decreases
rapidly in the analytical model, whereas the deflection
value decreases slowly in the numerical model. In other
words, the elastic beam in the thicker region is much more
flexible than the prediction of the linear simple theory.
Here, the discrepancy is reasonable if we consider the large
deflection of the elastic beam; e.g., in Figs. 5(d) and 11(d),
the elastic beam at d=w ¼ 0.1 initially might be stiff, but it
becomes flexible as the deflection value becomes large,
since the cross-section area (or thickness) of the beam also
becomes small in the large deflection process.

V. CONCLUSION

In conclusion, we propose an elastic valve using
induced-charge electro-osmosis around a conductive elastic
beam in water and numerically examine the outstanding
valving performance. By multiphysics simulations using an
implicit strongly coupled calculation method between a
fluid and an elastic structure along with the thin-double-
layer approximation, we find that (1) because of the direct
connection between the lower electrode and the conductive
elastic beam, the typical ζ potential of the edge position of
the beam becomes comparable with the applied voltage
(ζedge ≃ V0). (2) The typical tangential electric field of the
edge position is also very large because of the oblique
structure of the beam (Eedge

s ≃ 4E0). (3) The typical
maximum slip velocity of the edge position is approx-
imately 30 mm=s, whose value is about 30 times higher
than that of an ordinary ICEO flow (Vedge

s ≃ 30Uc). (4) The
typical closing time of the elastic ICEO valve is about
5–10 ms at V0 ¼ 1.19 V, and it is marvelously short.
(5) Further, the oblique beam stops a reverse flow effec-
tively and releases a reverse flow promptly at E0 ¼ 0. We
believe that in the future, our device can be used
as a promising biomimic actuator, such as a mixer, a
pump, etc.
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