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The creation of efficient thermoelectric devices remains a technological challenge. Using nanoscale-
engineered devices offers some potential advantages over bulk materials; however, they also present new
problems. The microscopic Hamiltonian of a device which optimizes the efficiency and power output for a
particular load and temperature profile is not necessarily optimum for another temperature difference and
external load. Furthermore, one cannot necessarily manufacture a particular Hamiltonian. In this paper, we
calculate the nonlinear thermoelectric transport through a gate-modulated one-dimensional disordered
semiconducting nanowire connected to two large leads. The disorder is chosen to be Lorentzian, which
allows exact results for transmission through the wire for all strengths of disorder. By tuning the gate
voltage acting on the nanowire, we show that the thermodynamic efficiency can be made large enough to be
industrially competitive. The gate voltage allows one to maximize the efficiency and power output for
particular temperature differences between the leads as well as different external loads.
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I. INTRODUCTION

Thermoelectricity, converting unused waste heat to
electricity or using electricity for refrigeration, has gained
increased attention in recent years. For example, as much as
75% of the energy generated by a car’s internal-combustion
engine ends up lost as waste heat [1]. Because bulk
materials turn out to be inherently inefficient [2,3], the
actual number of commercial applications of thermoelec-
tricity has remained limited. Recent progress in nano-
engineered materials has opened the possibility to build
thermoelectric materials with specific properties to boost
the efficiency [4–12].
One class of nanostructured devices with yet-unrealized

potential for higher efficiency consists of two large leads at
different temperatures connected by a molecule [13–19],
wire [20–23], or quantum dot [24–28]. The electrical
current and heat flow for these systems is determined by
the transmission across the connecting region. From earlier
work on these systems [29] we know that for tunneling
through a single-resonant level the efficiency can approach
the maximum thermodynamic efficiency (Carnot limit), but
only in the limit where the power output also goes to zero.
In the nonlinear-response regime, which is easy to obtain in
these small systems, one can have finite power output at
very high efficiency [29–35]. By placing many of these
nanodevices in parallel one can scale up the power to
macroscopic levels.
While this is quite promising, there are serious problems

from an application point of view. First, while the
Hamiltonians for the central systems may be physically
reasonable for tunneling through certain kinds of mole-
cules, there is no guarantee that a particular optimum-
transmission coefficient will actually be realizable in a

molecular system. Second, and perhaps more important, the
optimum transmission as a function of energy depends on
both the temperature difference between the two sides of
the system and also the external load for the thermoelectric
generator. Thus, if one is lucky enough to find just the right
molecule for tunneling through for a particular temperature
gradient and external load, the same device may not be
optimum for a different temperature difference or exter-
nal load.
Both of these issues, reliable manufacturing and opti-

mization under varying conditions, may be solvable with
semiconducting nanowires. Semiconducting nanowires can
be manufactured reproducibly. By applying a gate to the
wires one can also tune the transmission probability as a
function of energy, allowing for different operating con-
ditions. Indeed, in a recent preprint Brovman et al. [36]
have measured a large Seebeck coefficient in silicon
nanowires. The Seebeck coefficient measures the thermo-
electric voltage in response to a temperature gradient. It is
one of the parameters that enters into the linear-response
figure of merit for thermoelectric generators. According to
the Mott formula [37] the Seebeck coefficient is maximized
for a rapidly varying conductance or transmission coef-
ficient near the Fermi energy. Brovman et al. achieved their
large Seebeck coefficient by using the gate voltage to place
the Fermi energy near the impurity band of the nanowire.
In the nonlinear-response regime, the criterion for

maximizing efficiency is more complicated. It is not
sufficient to just have a rapidly varying transmission
probability or density of states near the equilibrium
Fermi energy. As will be discussed in the next section,
there is an energy Ê that depends on the temperature
differences and the operating voltage. To maximize the
efficiency and power output, one would like the
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transmission to be large above Ê and small below it. Such a
transmission as a function of energy can be achieved for
some models of molecular tunnel junctions [29,38]; how-
ever, this relies on subtle interference effects that require
careful tuning of the parameters of the Hamiltonian for
particular operating conditions.
In this paper we show that the efficiency and power

output can be optimized more robustly for semiconducting
nanowire with an external gate. We consider a model of a
gate-modulated semiconductor nanowire device and show
that the ideas of Ref. [29] about the interplay of the
microscopic and thermodynamic parameters can be imple-
mented by using the gate voltage Vg as a tuning parameter.
We calculate the full nonlinear thermodynamic efficiency η
and power output P as a function of the gate-voltage
parameter Ug ¼ −eVg. We will show explicitly that for a
given set of microscopic parameters of the disordered wire
and thermodynamic parameters of the leads, the relative
efficiency η=ηc, where ηc is the Carnot efficiency, can be
increased from zero to η=ηc > 0.5 by simply changing the
gate voltage. The results should be insensitive to incoherent
processes, and should remain valid for large temperature
and voltage gradients relevant for practical devices.
The rest of the paper is organized as follows. In Sec. II

we briefly review the idea of the interplay of thermody-
namic and microscopic parameters as proposed in
Ref. [29]. In Sec. III we describe the complete model
system, consisting of one-dimensional (1D) disordered
nanowire plus three-dimensional (3D) leads. We first
explain how the gate modulation allows for a simple and
effective implementation of the interplay described in
Sec. II. We then obtain an exact expression for the trans-
mission function across the wire in terms of the impurity-
averaged Green’s function of a 1D disordered wire and the
surface Green’s function of a 3D perfectly conducting lead.
In Sec. IV this transmission function is used to evaluate
the efficiency and power output of the model device as a
function of the external gate voltage. In Sec. V we
summarize the results and briefly discuss the issues not
covered in this work.

II. INTERPLAY OF THERMODYNAMIC
AND MICROSCOPIC PARAMETERS

In the linear-response regime, a large efficiency of the
thermoelectric device at temperature T is obtained when the
figure of merit ZT defined as

ZT ≡ TGS2e
κ

ð2:1Þ

is large, where G and κ are the electrical and thermal
conductances, respectively. The thermopower or Seebeck
coefficient Se can be written in the low-temperature limit, in
the absence of interactions, as

Se ¼
π2

3

kB
e
ðkBTÞ

d
dE

ln T ðEÞjE¼EF
; ð2:2Þ

where T ðEÞ is the energy-dependent transmission function.
Thus, in the linear-response regime a large ZT or a large Se
require a large variation of T ðEÞ at the Fermi energy.
This was used in Ref. [36] to argue that the large Se in the
experiment resulted from a large variation of the conduct-
ance near the band edge.
In contrast, as shown in Ref. [29], this is not a necessary

or sufficient condition in the nonlinear regime, which is
more appropriate for nanodevices with large temperature
and voltage gradients. In the absence of interactions, the
power output should be written in terms of T ðEÞ as

P ¼ ðμR − μLÞIN ; IN ≡ 1

h

Z
dET ðEÞFðEÞ;

FðEÞ≡ fLðμL; TL;EÞ − fRðμR; TR;EÞ: ð2:3Þ

Here, IN is the number current and fjðμj; Tj;EÞ≡
1=ð1þ eðE−μjÞ=kBTjÞ, j ¼ ðL;RÞ, are the Fermi functions
in the left (hot) and right (cold) leads. Note that while the
so-called thermopower or Seebeck coefficient Se is an
intensive quantity, the actual power P defined in (2.3) is an
extensive quantity and therefore can be scaled up. Using
T ðEÞ the efficiency can be written as (TL > TR)

η ¼ ðμR − μLÞ
R
dET ðEÞFðEÞR

dEðE − μLÞT ðEÞFðEÞ : ð2:4Þ

This expression, together with Eq. (2.3), allows us to
optimize the efficiency as well as the power output by
carefully matching T ðEÞ for a given FðEÞ. Since FðEÞ
changes sign at Ê given by FðÊÞ ¼ 0, or

Ê ¼ TLμR − TRμL
TL − TR

; ð2:5Þ

the ideal T ðEÞ turns out to be a square wave [29,30]. While
the lower edge of the square wave that maximizes the
efficiency for a given fixed power has been calculated in
Ref. [30], it is more useful for our purposes to obtain large
power and high efficiency simultaneously, to maximize the
number current IN by choosing the lower edge at Ê. In this
case the negative value of FðEÞ for E < Ê, which reduces
the contribution to the number current in the positive
direction, is minimized by allowing transmission only
for E > Ê. In practice, this requires a mechanism to reduce
T ðEÞ for E < Ê as much as possible. The t-stub model
considered in Ref. [29] relies on the destructive interference
from two possible paths to provide this reduction. We will
show below that a nanowire-lead system with a tunable gate
voltage can provide a simple, efficient, and practically
robust way of obtaining the same goal.
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III. THE NANOWIRE-LEAD SYSTEM

A semiconductor nanowire system similar to that used in
Ref. [36] has the possibility to provide the crucial feature
that T ðEÞ is negligible for E < Ê, without depending on
subtle quantum effects such as interference. This is possible
by taking advantage of the band structure of the wire-lead
system and the fact that the impurity band of the wire can be
adjusted by the applied gate voltage. Figure 1 shows the
sketch of our proposed device with external gate voltage,
consisting of many parallel wires. Each can be considered
as quasi-1D wires, and not coupled to each other. We can
therefore calculate the transmission function and the
resulting thermoelectric efficiency and power output for
one wire, and as shown in Ref. [29], essentially scale up
the power output by multiplying by the number of wires
without compromising the efficiency.
For explicit calculations, we will choose each of our

nanowires to be effectively 1D with hopping parameter tw
and strength of disorder W. We note that for a strictly 1D
(single “channel”) disordered wire, the localization length
is equal to the mean free path. A thin but multichannel wire
remains “quasi 1D” as long as the width remains much
smaller than the localization length, which is given by the
mean free path multiplied by the number of transverse
transmission channels. Without inelastic scattering a wire
with N channels can be mapped onto N-independent 1D
models with renormalized parameters. For small N we
expect the transmission functions for the modes to be
similar. In such an effectively 1D model the impurity band
will be restricted to E0

L≤E≤E0
U, where E

0
L¼ð−2tw−W=2Þ

and E0
U ¼ ð2tw þW=2Þ are the lower and upper impurity-

band edges, respectively, in the absence of an external gate
voltage. The source and the drain can be considered as 3D
perfectly conducting semi-infinite leads on the left (L) and
right (R) that act as reservoirs at temperatures TL and TR,
respectively. The 3D conduction band of the leads is within
the range ½−6t; 6t�, where t ¼ tL ¼ tR is the tight-binding
hopping parameter in each of the leads, assumed to be
symmetric for simplicity. When a gate voltage Vg is applied
on the wire, the impurity band is shifted relative to the
conduction band by Ug ¼ −eVg.
As shown in Fig. 2, the edges of the impurity band now

depend on the gate voltage, and the transmission from the
left lead will be blocked for all E < EL or E > EU, where
EL ¼ ðE0

L þUgÞ and EU ¼ ðE0
U þ UgÞ are the lower and

upper impurity-band edges, respectively, in the presence of
the external gate voltage. In other words, the gate voltage
can be used to tune the position of the lower band edge
(determined by the microscopic parameters of the wire),
with respect to the value of Ê (determined by the param-
eters of the reservoirs).
In particular, let us suppose the 1D wire consists of N

sites with lattice spacing a, connected to the leads by
symmetric couplings VL ¼ VR ¼ V, where VL connects
site 1 with the left lead and VR connects site N with the
right lead. Then the (retarded) Green’s function G of the
wire connected to the semi-infinite leads is given [39] in
terms of the (retarded) Green’s function G0 of the isolated
wire by a 2 × 2 matrix

G−1 ¼ ðG0Þ−1 − Σ0I2; Σ0 ¼ jVj2g0; ð3:1Þ

where I2 is a 2 × 2 identity matrix and g0 ¼ g0L ¼ g0R is the
surface Green’s function of the isolated semi-infinite lead.
The relevant off-diagonal element of the full connected
Green’s function is then given by

G1N ¼ G0
1N

ðα0 þ β0Þðα0 − β0Þ
; ð3:2Þ

where α0 ≡ 1 −G0
NNΣ0 and β0 ≡G0

1NΣ0. Here G0
11 and

G0
NN are the diagonal elements of G0, the 2 × 2 Green’s

function of the isolated wire of length L ¼ Na, and G0
1N

and G0
N1 are the corresponding off-diagonal elements.

The transmission function can then be obtained from

T ðEÞ ¼ Tr½ΛLG1NΛRG
†
1N �; ð3:3ÞFIG. 1. Sketch of the device, consisting of many parallel

nanowires with an external gate voltage.
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FIG. 2. Sketch of the band structure for a 1D wire connected to
3D leads. The 3D conduction band of the leads allows the range
−6t < E < 6t. The 1D impurity band of the nanowire (shaded
blue), on the other hand, is restricted from E0

L ¼ð−2tw−W=2Þ≤
E≤E0

U ¼ð2twþW=2Þ in the absence of the applied gate voltage.
The thermodynamic parameters fix Ê, which we take to lie
somewhere within the impurity band. The applied voltage Vg

can then be tuned to shift the lower impurity-band edge by
Ug ¼ −eVg such that ðE0

L þUgÞ ¼ Ê.
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and the incoming and outgoing velocities are included in
the functions

ΛL ¼ ΛR ≡ Λ ¼ −2Im½Σ0� ¼ −2jVj2Im½g0�: ð3:4Þ

Thus, the main task in calculating the power output or the
thermoelectric efficiency as given in Eqs. (2.3) and (2.4)
reduces to evaluating the Green’s functions G0

1N and G0
NN

for an isolated 1D disordered wire and the surface Green’s
function g0 of the isolated semi-infinite 3D leads. The
interplay with thermodynamic parameters will be possible
once a gate voltage is applied to the wire.

A. Model for the one-dimensional disordered wire

For a 1D disordered wire, the Lloyd model [40] with a
Lorentzian distribution of disorder is exactly solvable for
the transmission function T ðEÞ needed for the thermo-
electric properties. We therefore choose a Lorentzian
distribution for our disordered nanowire and use the known
Green’s functions for the Lloyd model to evaluate the
transmission as a function of energy. We choose the
Hamiltonian of the nanowire with N sites to be the standard
tight-binding model:

H ¼ −tw
XN−1

i¼1

ðc†i ciþ1 þ H:c:Þ þ
XN
i¼1

ϵic
†
i ci; ð3:5Þ

where c†i and ci are the creation and annihilation operators
of an electron at site i in the nanowire and tw is the hopping
energy. The site energy ϵi is random, assumed to have a
distribution of the form

PðϵiÞ ¼
1

π

W
ϵ2i þW2

; ð3:6Þ

where W is the width of the distribution. We will assume
that the energy band of the wire is broadened from −2tw <
E < 2tw to ð−2tw −W=2Þ < E < ð2tw þW=2Þ as in the
case of box disorder with width W. The disorder-averaged
Green’s function is given by [41]

hGðzÞi ¼ ðzIN − FÞ−1; ð3:7Þ

where IN is the N × N identity matrix and

Fm;n ¼ −iWδm;n þ twðδm;nþ1 þ δm;n−1Þ: ð3:8Þ

The matrix ðzIN − FÞ is tridiagonal and symmetric, and can
be inverted analytically [42]. The results are

G0
11 ¼ G0

NN ¼ − 1

tw

sinNθ

sinðN þ 1Þθ ;

G0
1N ¼ ð−1ÞNþ1

1

tw

sin θ
sinðN þ 1Þθ ; ð3:9Þ

where cos θ ¼ ðzþ iWÞ=ð−2twÞ and we add a superscript
zero to indicate that this is the Green’s function when the
wire is still isolated, not connected to any leads. Separating
the real and imaginary parts θ ¼ ϕþ iγ and replacing
z ¼ E, we get

cosϕðEÞ ¼ −2E=ΓðEÞ; cosh γðEÞ ¼ ΓðEÞ=ð4twÞ;

ΓðEÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ þW2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2− þW2

q
; ð3:10Þ

where E� ≡ 2tw � E. In the large N limit, the Green’s
functions can be simplified. In this limit we can identify the
parameter γ with the inverse localization length, from the N
dependence of jG0

1N j2, given by

jG0
1N j2 →

4

t2w
½cosh2 γ − cos2 ϕ�e−2ðNþ1Þγ: ð3:11Þ

This result implies an exponential decay of the transmission
probability, in the form exp½−L=ξ�, where L ¼ Na is the
length of the wire and ξ is the localization length, a being
the lattice spacing. Thus, we identify

a
ξðEÞ≡ γðEÞ: ð3:12Þ

We note that the localization length at E ¼ 0 is given by

ξ0 ≡ a
γðE ¼ 0Þ ¼

1

cosh−1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðW=2twÞ2

p
� : ð3:13Þ

B. Perfectly conducting 3D leads

The surface Green’s function of the 3D leads is given by

g0ðEÞ ¼
Z

π

0

dkx
π

Z
π

0

dky
π

g01DðEþ 2t cos kx þ 2t cos kyÞ;
ð3:14Þ

where t is the hopping parameter in the leads. Here g01D is
the surface Green’s function of a one-dimensional lead
given by

g01DðjEj ≤ 2tÞ ¼ − 1

t

�
E
−2tþ iEt

�
;

g01DðjEj ≥ 2tÞ ¼ −
1

t

�
E
−2tþ sgnðEÞEt

�
; ð3:15Þ

where Et ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðE=2tÞ2

p
. It is possible to use the full

integral for g0ðEÞ to evaluate the transmission function,
but it turns out that a very simple analytic expression
approximates the integral in the range away from the
3D band edge, where the transmission function is non-
negligible. In particular, for jEj ≤ 3t one can use, to
a very good approximation, Re½g0� ≈ sinðE=2Þ=3t and
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Im½g0� ≈ ðπ=6bÞðb − E2Þ, where b≡ ð9π2Þ=ðπ2 − 3
ffiffiffi
3

p Þ.
While the imaginary part has a jE=tj3=2 dependence and
the real part falls off as 1=jEj near the band edges at
E ≈�6t, we will see that for our choice of the parameters
the impurity band restricts the transmission within an even
smaller range. This will allow us to use the above simple
forms in our evaluations of the efficiency and power output.

C. Transmission function

For large N, G0
1N is exponentially small compared to

G0
NN , so that in the expression for G1N in Eq. (3.2), we can

neglect G0
1N compared to G0

NN . Then G1N ≈G0
1N=α

2
0. The

final expression for transmission function then becomes

T ðEÞ ≈ 4jVj4
d2

ðIm½g0�Þ2jG0
1N j2; ð3:16Þ

where

d≡ 1þ λ2jg0j2 þ 2λðRe½g0� cosϕ − Im½g0� sinϕÞ;

λ≡ jVj2
tw

e−γ: ð3:17Þ

IV. EFFICIENCY AND POWER OUTPUT:
TUNING BY GATE VOLTAGE

When a gate voltage Vg is applied to the wire, all E in the
wire are shifted by the energy Ug ¼ −eVg but the lead
energies are not. Thus, we need to replace E by Eþ Ug in
the expression forG0

1N of the isolated wire, but energy in g0

of the isolated leads remains unshifted. In order to under-
stand how this affects the interplay of the microscopic and
the thermodynamic parameters, we will choose an explicit
example. All energies will be denoted in units of t. We will
consider the relative efficiency η=ηc, where ηc≡1−TR=TL
is the Carnot efficiency. The power P will be described in
units of t2=h.
As an explicit example, let us choose a nanowire of

length L ¼ N ¼ 20 (lattice spacing a ¼ 1) with hopping
parameter tw ¼ 1 and Lorentzian disorder characterized
by W ¼ 0.01. This corresponds to the localization length
ξ0 ∼ 10L so that it can be considered as weak disorder.
The wire is connected to the leads by a coupling
V ¼ 0.5. Our choice of the microscopic parameters of
the wire then fixes the lower impurity-band edge at
E0
L ¼ ð−2tw −W=2Þ ¼ −2.005.
We now need the thermodynamic parameters. Ideally,

one would like to have the cold (right) lead to be at room
temperature (TR ∼ 300 K) and the hot (left) lead to be at
TL ∼ 450 K, such that the Carnot efficiency ηc≡
1 − TR=TL ∼ 1=3. We take TL ¼ 0.3t and TR ¼ 0.2t,
which gives the same Carnot efficiency. For simplicity,
we will choose μL ¼ −1.75 and μR ¼ −1.5, although in
practice one of them will be fixed by the load connected to

the thermoelectric device. This fixes the characteristic
energy Ê ¼ −1.0, which is above the lower impurity-band
edge, as shown in Fig. 2.
Applying a gate voltage Vg shifts all of the energies in

the impurity band of the wire by Ug relative to the
conduction band of the lead. Figure 3 shows the power
output and the efficiency of the nanowire system, for the
above-chosen set of parameters, as a function of Ug.
Several features are important. First, the relative efficiency
η=ηc can be tuned by the gate voltage from zero to almost
0.6, keeping in mind that η=ηc > 0.3 is expected to be
industrially competitive [29]. Second, the maximum of the
relative efficiency occurs at Ug ¼ 1.005, where the lower
impurity-band edge is pushed up from ð−2tw −W=2Þ ¼
−2.005 to ð−2tw −W=2þUgÞ ¼ −1, which coincides
with Ê. As shown in Fig. 4, for this choice of Ug all
negative contributions to the number current [see Eq. (2.3)]
due to the negative values of FðEÞ are now cut off by the
band edge. Finally, the power output is also a maximum
near the same value ofUg, so both efficiency and power can
be optimized simultaneously. There is a broad range of
values of the gate voltage corresponding to 0.85≤Ug ≤ 1.2
(in units of t) for which the efficiency is larger than 0.5ηc
and the power is larger than 5 × 10−4 (in units of t2=h).
As noted above, both power output and the efficiency

peak around the same value of Ug ≈ 1. However, the
absolute value of the power output P for a single wire is
clearly very small and practical applications will require
many orders of magnitude larger values for P. For the
present model, this means that in Fig. 1, the number of
wires should be sufficiently large. At the same time, the

0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

Ug

P x 10
3

/η ηη η// c

FIG. 3. Relative efficiency η=ηc (red solid curve) and power
output P (blue dashed curve) as a function of gate-voltage
parameter Ug ¼ −eVg for the set of microscopic and thermo-
dynamic parameters as chosen in the text. The disorder is chosen
to be weak, given by L ∼ 0.1ξ0. The maximum efficiency occurs
at Ug ¼ 1.005, for which the lower impurity-band edge coincides
with Ê. For 0.85 ≤ Ug ≤ 1.2 the device can be considered
optimal.
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distances between the wires also need to be sufficiently
large in order to keep them from interacting with one
another. We estimate that putting parallel wires 10 nm apart
in a 3D array will result in P∼6×10−4×ðt2=hÞ=ð10−8mÞ2∼
4×106W=m2. Here, supplying all proper units, we use
kBTR ¼ 0.2t, where kB is the Boltzmann constant and
TR ¼ 300 K. This is orders of magnitude larger than
currently available commercial devices, although it requires
a gate voltage applied to multiple layers as opposed to a
single layer of wires shown in Fig. 1. Of course, Pwould be
smaller if, e.g., the wire-lead coupling V is weaker, or if the

disorder of the wire is stronger, than the values chosen here.
In Fig. 5, we show efficiency and power for two much
longer wires, with L ∼ ξ0 and L ∼ 2ξ0, compared to the
chosen value L ∼ ξ0=10 in Fig. 3. Here ξ0 is the localization
length. Note that L=ξ0 is a measure of disorder, such that
for a fixed width of the distribution W, longer wires imply
stronger disorder (L=ξ0 > 1 correspond to the localized
regime). Since the transmission function decreases with
increasing disorder, the power output decreases signifi-
cantly, as shown in Fig. 5. However, the efficiency remains
high because apparently in the ratio, the number and heat
currents largely cancel out the disorder effects. (It is not
clear why the peak efficiency slightly increases with
increasing disorder.) Thus, weaker disorder is needed not
for higher efficiency, but for larger power output. We
mention that the total power also depends on how close the
wires can be put together. On the other hand, the results are
largely insensitive to incoherent scatterings or nonuniform-
ity of the wires.

V. SUMMARY AND OUTLOOK

In this paper we present calculations to demonstrate
that gated semiconducting nanowires are excellent candi-
dates for high efficiency and power thermoelectric devices.
Our model consists of an effectively one-dimensional
disordered semiconducting nanowire connected to three-
dimensional leads. We emphasize that the theoretical model
considered here is not just a toy model, but is relevant for
actual devices. For example, for our purposes a disordered
wire is effectively one dimensional as long as the locali-
zation length ξ0 is much larger than the width of the wire.
For a wire with length L ¼ 1 μm and L=ξ0 ¼ 10, this
means that wires with width ∼10 nm are effectively 1D.
Such wires can be easily made with current technology
[21]. The disorder in the wire is assumed to be Lorentzian,
which allows us to calculate the transmission function
T ðEÞ through the wire exactly. However, we expect that
more realistic types of disorder will only change some
numbers like the power output by a small factor, but the
important result that the efficiency is largely independent of
disorder, as shown in Fig. 5, will remain valid. The
maximum efficiency and power output occur when the
transmission function is large for energies greater than Ê
and small for energies less than Ê. The energy scale Ê
depends on the temperature difference between the leads
and the operating voltage. Through the application of a gate
voltage the transmission function T ðEÞ may be adjusted to
have this property. As Fig. 3 shows, there is a wide range of
values for the gate voltage where a single-wire device can
be “optimal,” with efficiency η=ηc > 0.5 and the power
output P > 5 × 10−4ðt2=hÞ per wire. It should then be
possible to increase the power by connecting many wires in
parallel, without compromising the efficiency. The oper-
ation should be robust against incoherent processes, and
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FIG. 4. Transmission function T ðEÞ (blue dashed curve) and
difference of Fermi functions FðEÞ (red solid curve) for the same
set of parameters as chosen in Fig. 3, the gate-voltage parameter
being fixed at Ug ¼ 1.005 where the efficiency is maximum. The
lower impurity-band edge at E0

L ¼ −2.005 in the absence of Vg is
shifted to Ê for Ug ¼ 1.005, such that all negative contributions
to the number current arising from negative values of FðEÞ are
now cut off by the band edge.
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should remain valid at arbitrary temperature or voltage
gradients. We note that the ideas presented here can also be
implemented using parallel 2D sheets instead of a 3D array
of nanowires.
One factor that we have not included in the current work

is the magnitude of the phonon thermal conductance.
We assume that the heat current is carried entirely by
the electrons. In general, the phonon contribution to the
thermal conductance κph adds to the energy current,
reducing the efficiency. However, the present model has
two intrinsic advantages. First, it is well known that the
surface scattering in a disordered Si nanowire can greatly
reduce κph [22]. Second, in the present geometry, phonon
transmission is also greatly reduced due to large reflection
from the contact, i.e., a large Kapitza resistance [43,44]. In
particular, phonons in the leads with transverse wavelength
larger than the cross-sectional dimension of the wire will be
backscattered with high probability, reducing the trans-
mission and therefore the thermal conductivity [45,46].
Indeed, Boukai et al. [21] measured κph ¼ 0.76 W=ðmKÞ
in Si nanowires that are several microns long (L) and 10 nm
wide, around temperature T ¼ 200 K. This corresponds to
Kph ≡ κphLT ¼ 7.6 × 10−4 W, where for the purpose of
definiteness, we chose L ¼ 5 μm. These wires are highly
doped and as a result “metalliclike” (increasing conduc-
tivity with decreasing temperature), so we compare the
above value of Kph with the corresponding Kel for a weakly
disordered wire. For that, we rewrite Eq. (2.4) as η ¼ P=K,
and using the peak values of P and η from Fig. 3 for a
weakly disordered wire, we obtain K ¼ Kel ∼ 3 × 10−3 W
(using ηc ¼ 1=3). Thus, Kph < Kel, and including the
phonon contribution such that K ¼ Kel þ Kph, we find
that η=ηc ∼ 0.48, which is still larger than 0.3. Thus the
phonon thermal conductance can indeed be made small in
nanowires. Note that if necessary, disorder can be made
weaker by choosing a shorter wire, which also helps
limiting any inelastic scattering that might affect the
performance of the device. In fact, shorter wires might
also be required to operate in the nonlinear regime
depending on the load and the leads. Finally, we
remark that electron-phonon interactions as well as
charging and screening effects can be amplified in the
nonlinear regime. Further studies are needed to address
these issues.

ACKNOWLEDGMENTS

We thank J.-L. Pichard for stimulating discussions
during early stages of this work.

Note added in proof.—A related complementary work
appears in this issue (see Ref. [47]) where a similar
thermoelectric device consisting of gate-modulated nano-
wires is considered. It focuses on the strongly disordered

phonon-assisted variable range-hopping regime within
linear response, as opposed to the weakly disordered wire
considered here focusing on the nonlinear regime.
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