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We demonstrate ultrabroadband and ultrafast midinfrared (MIR) pump-probe spectroscopy by employ-
ing the chirped-pulse up-conversion technique with four-wave difference-frequency generation in a gas.
The full spectra of the MIR probe pulses, which spread from 200 to 5000 cm™!, are recorded on a single-
shot basis. We apply this MIR pump-probe spectroscopy to measure the ultrafast carrier dynamics of an
intrinsic germanium crystal wafer. Ultrafast reflectivity change induced by the excitation of carriers is
observed in the region from far to near infrared. The behavior of the reflectivity-change signals at each

delay time is explained by the Drude model.
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I. INTRODUCTION

Midinfrared (MIR) light is crucially important for studies
in molecular science and solid-state physics since a number
of optical transitions have resonance energies in this
frequency region. Pump-probe spectroscopy using ultrafast
MIR pulses is a powerful tool for studying the ultrafast
dynamics of photoexcited molecules and solid materials
such as vibrational relaxation processes of liquid water
[1-3], proton transfer and isomerization of protein [4,5],
the behavior of Dirac fermions near the Dirac point of
topological insulators [6], and phase transition and elec-
tron-hole transition of semiconductors [7-9].

A typical MIR coherent light source is based on optical
parametric amplification. The bandwidth of the ultrashort
pulses generated from such a light source is limited to
~1000 cm™! because of the phase-matching condition of
the crystals for the parametric amplification [10]. The
bandwidth is not usually broad enough for observing the
high-reflection band caused by the free carriers, which can
spread from the MIR to the terahertz region [11,12].
Moreover, even when narrow absorption lines such as
those caused by lattice vibration are the interest in research,
the high-reflection band caused by strong absorption is
significantly broadened by the Kramers-Kronig relation-
ship [13]. Therefore, an ultrabroadband light source
extending to the MIR region as well as the terahertz region
is desired and extremely important for investigating the
detailed ultrafast dynamics in solids.

Recently, the generation of ultrabroadband MIR coherent
light by using four-wave difference-frequency generation
(FWDEFG) of two-color femtosecond pulses in gases was
demonstrated [14—16]. The use of gas media enables us to
generate ultrabroadband MIR spectra spanning from 200 to
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5500 cm™!. The light sources developed with this technique
have been successfully applied to advanced spectros-
copy [17,18].

On the other hand, the measurement of such an ultra-
broadband MIR spectrum is not a trivial task. While the
Fourier-transform infrared spectrometer is capable of
measuring such an ultrabroadband MIR spectrum, the
acquisition speed is limited because it is necessary to scan
the delay of the interferometer in the spectrometer. The
combination of a multichannel mercury-cadmium-telluride
array and a dispersive spectrometer would be capable
of measuring MIR spectra without scanning the delay.
However, in order to measure a spectrum spanning more
than three octaves, it is necessary to exchange the grating
and repeat the measurement to avoid the stray light from the
high-order diffraction.

An alternative method to detect such an ultrabroadband
MIR spectrum is optically converting the spectrum into
the visible region through nonlinear effects and recording
them with a visible spectrometer [19,20]. Nomura et al.
reported single-shot measurements of ultrabroadband
MIR spectra using chirped-pulse up-conversion (CPU)
with gas media [21]. Thanks to the broadband phase
matching of gas media, MIR spectra extending from 200
to 5500 cm~! are measured.

In this Letter, we demonstrate ultrabroadband MIR
pump-probe spectroscopy using CPU with gas media.
An ultrabroadband MIR pulse generated through filamen-
tation is used as a probe pulse, and the probe pulse reflected
by a sample is up-converted to a visible-light pulse by using
four-wave mixing in nitrogen gas. The spectrum of the
probe pulse is recorded in a single shot by using a visible
spectrometer. As a proof-of-principle experiment, we used
our system to measure free-carrier dynamics of an intrinsic
(100) germanium (Ge) crystal wafer. Ultrafast reflectivity

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevApplied.3.051002
http://dx.doi.org/10.1103/PhysRevApplied.3.051002
http://dx.doi.org/10.1103/PhysRevApplied.3.051002
http://dx.doi.org/10.1103/PhysRevApplied.3.051002

SHIRALI et al.

LETTER

PHYS. REV. APPLIED 3, 051002 (2015)

change, induced by photoinduced free carriers, is clearly
observed in the region from 200 to 5000 cm™'.

II. EXPERIMENT

The ultrabroadband MIR pump-probe spectroscopy with
CPU in gas is realized with the system shown in Fig. 1. The
light source is based on a Ti:sapphire multipass amplifier
system (800 nm, 30 fs, 0.85 mJ at 1 kHz, Femtopower
compactPro, FEMTOLASERS). The output pulse is split
into three with two beam splitters. The first pulse is used for
ultrabroadband MIR generation, the second pulse is used as
the pump pulse for the pump-probe spectroscopy, and the
third pulse is used for preparing a chirped pulse. The
energies of the pulses are 510, 210, and 130 pJ, respectively.

The ultrabroadband MIR pulse (@), which is used as the
probe pulse, is generated by combining the fundamental
(800 nm, w;) and second harmonic (SH, 400 nm, w,)
pulses output from the Ti:sapphire amplifier by FWDFG
(w1 + w1 — wy > wy) through filamentation in nitrogen.
The pulse duration of the MIR pulse is 8.2 fs, which is
confirmed with a cross-correlation frequency-resolved
optical-gating measurement [15].

The generated MIR pulse is collimated by a concave
mirror (f = 0.25 m) with a hole. Since the MIR pulse has a
ring-shaped beam profile with the cone angle of ~3°
[15,16,22], the use of the concave mirror with a hole is
one of the most efficient ways to remove the residual visible
beams (fundamental and SH) traveling along the MIR
pulse. Additionally, the MIR pulse is reflected by three
fused-silica substrates coated with indium tin oxide (ITO,
t = 300 nm), which is transparent for visible light and
reflects the MIR light effectively [23], to further reduce the
residual visible beams. The MIR pulse is focused onto a
sample by using a concave mirror (f = 0.75 m). The
diameter of the MIR pulse on the sample is 0.4 mm.
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The pulse energy at the sample position is measured as
0.2 uJ by using a pyroelectric detector (J-10MB-LE,
Coherent). From these values, the fluence of the MIR
pulse at the sample is estimated as ~125 uJ/cm?.

The pump pulse (800 nm, 30 fs) is collimated down to
the diameter of 4 mm with a combination of a concave
mirror and a convex mirror, and overlapped with the MIR
pulse on the sample. The angle between the pump pulse and
the MIR pulse is ~3°. In this scheme, the relative delay
between the pump pulse and the probe pulse varies with the
transverse position on the sample. This effect reduces the
time resolution to ~70 fs. For shot-to-shot data acquisition
of reflectivity-change signals, every second pump pulse is
blocked by using a mechanical chopper, which is synchron-
ized with the half-frequency of the repetition rate of the
laser pulse train.

The third beam is sent through four BK7 (+ = 10 mm)
substrates and a ZnSe (¢t = 5 mm) substrate at the Brewster
angles. The transmitted pulse is chirped with the total group
delay dispersion of ~6900 fs?>. The chirped pulse is
combined with the MIR pulse using a mirror with a hole.
The combined beam is focused into nitrogen with an off-
axis parabolic mirror (f.; =50 mm) and up-converted
into visible light (w,, 400-500 nm) through an FWDFG
process (w; + @; — ®y — w,) of the chirped pulse and the
MIR pulse.

The up-converted spectrum is recorded with a spec-
trometer consisting of an imaging spectrograph and
an electron-multiplying CCD camera (SP-2358 and
ProEM + 1600, Princeton Instruments). The up-converted
spectrum is obtained at each delay time between the pump
and probe pulses by averaging 100 pairs of infrared
spectra with or without pump to achieve a reasonable
signal-to-noise ratio. The whole system is purged with
nitrogen to reduce the absorption of carbon dioxide and
water vapor.
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Schematic illustration of ultrabroadband MIR pump-probe spectroscopy with chirped-pulse up-conversion in gas. BBO,

p-BaB,0,; DLP, delay plate; DWP, dual-wave plate; ITO, indium-tin-oxide—coated plate; CM1, r = 1 m concave mirror; CM2,
r = 0.5 m concave mirror with a hole (¢ = 0.7 mm); CM3, r = 1.5 m concave mirror; S, sample; MH, aluminum-coated mirror with a
hole (¢ = 7 mm); OP, off-axis parabola (f.; = 50 mm); BF, blue filter.
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III. RESULT AND DISCUSSIONS

Figure 2(a) shows a typical spectrogram of the up-
converted MIR pulse obtained by changing the delay
between the chirped pulse and the MIR pulse. The
frequency resolution of the CPU is proportional to the
inverse of the pulse duration of the chirped pulse. The pulse
duration of the chirped pulse is estimated as ~0.4 ps from
a cross-correlation curve obtained by integrating the
spectrogram along the frequency axis [Fig. 2(b)]. The
frequency resolution in this condition is estimated as
~40 cm™!, which is enough for resolving reflection spectra
of free carriers. Although higher frequency resolution could
be obtained by further stretching the chirped pulse, it would
also decrease the signal level.

In general, the up-converted spectrum is distorted by
cross-phase-modulation caused by the chirped pulse.
The original MIR spectrum is retrieved from the distorted
up-converted spectrum by using a Fourier-transform algo-
rithm [24]. The algorithm requires an experimental value of
the second-order spectral-phase parameter of the chirped
pulse, which is obtained by measuring a spectrally resolved
cross-correlation signal between the chirped pulse and
the MIR pulse as a function of the delay time [20,21].
The dotted line in Fig. 2(a) shows the instantaneous
frequency of the chirped pulse, which is obtained by fitting
the instantaneous up-converted frequency of the absorption
line of the carbon dioxide with a linear function. The
second-order spectral-phase parameter of the chirped pulse
is estimated as 3.26 x 10° fs2.

A typical up-converted spectrum of the MIR pulse is
shown as the upper curve in Fig. 3. The spectrum spreads
from 400 to 510 nm. The up-converted spectrum could be
obtained with the MIR pulse energy as low as 6 nJ in this
experimental condition. The original MIR spectrum can be
retrieved by flipping and shifting the up-converted spec-
trum [21]. The retrieved MIR spectrum is shown as the
lower curve in Fig. 3. It is clear that the full spectrum of the
ultrabroadband MIR pulse, which spreads from 200 to
5000 cm™!, can be obtained with the CPU technique.
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FIG. 2. (a) A typical spectrogram of the up-converted MIR
pulse obtained by changing the delay between the chirped pulse
and the MIR pulse. The dotted line is the instantaneous frequency
obtained by fitting the absorption line of carbon dioxide. (b) The
cross-correlation signal obtained by integrating the spectrogram
along the frequency axis.
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FIG. 3. A typical up-converted spectrum (upper curve) and the
retrieved MIR spectrum (lower curve).

To test the performance of our CPU system, we
measured MIR absorption spectra of water by using a
setup similar to that in Ref. [25] and compared the result
with spectra measured with a conventional FT-IR spec-
trometer (FT/IR-6100, JASCO). Those spectra agreed
almost completely in this frequency region. This result
indicates that the CPU system allowed us to measure the
spectra accurately without nonlinear effects such as satu-
ration in our experimental condition.

We apply the system to measure the transient reflec-
tivity change of an intrinsic Ge crystal wafer with a
thickness of 5 mm. Figure 4 shows the transient reflec-
tivity-change signals AR/R of a Ge crystal wafer at the
excitation fluence of 135 uJ/cm?. As a distinct feature,
positive and negative reflectivity-change signals are
clearly observed and the negative signal spreads to
~5000 cm™!'. The use of ultrabroadband MIR probe
pulses enabled us to obtain the entire spectrum of the
transient reflectivity-change signals.

Such a reflectivity-change signal indicates a signature
of metallic phase induced by photoinduced free carriers.
The change in the complex permittivity of semiconductors
caused by free carriers can be described by the Drude
model [7]. The complex permittivity e(w) is expressed as
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FIG. 4. Transient reflectivity-change signal AR/R of Ge under
135 uJ/cm?.
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FIG. 5. Time-resolved reflectivity-change spectra AR/R at 3,
50, and 450 ps under 135 uJ/cm? excitation fluence. The circles
are experimental results. The error bars are standard errors
estimated by averaging over 100 spectra. The dashed lines are
the fitting curves with the Drude model shown as Eq. (1)

() = ew(l ‘ﬁ) (1)

where €, is the limiting value of the permittivity at high
frequency, and y is the carrier scattering rate. The plasma
frequency wp is defined as wp = \/Ne?/eye,m*, where N
is the carrier concentration, €, is the vacuum permittivity,
and m* denotes the electron effective mass. The measured
reflectivity-change signals are fitted by using the plasma
frequency and damping rate as the variable parameters.
The Fresnel reflection at the same experimental condition is
taken into account for the calculation. The MIR pulse is
incident at an angle of 45° with p polarization. We assumed
m* = 0.34m, [26] and e, = 16 [27]. Reference reflectance
is set to 0.24, which corresponds to a condition where free
carriers are not present in the Ge crystal wafer.

Figure 5 shows the reflectivity-change signals at differ-
ent delay times under 135 pJ/cm? excitation fluence.
The circles show the experimental data, whereas the error
bars show standard errors estimated by averaging over 100
spectra. The standard errors around 1600 cm™! are large
because the up-converted spectrum around this wavelength
region has relatively large fluctuation. The dashed curve
shows the fitting curve obtained with the Drude model,
which agrees well with the experimental data at each delay
time. Therefore, we believe that the Drude model is suitable
to explain the dynamics of the reflectivity change observed
in this experiment.

In previous visible-light-pump and MIR-probe experi-
ments, the bandwidths are narrow [9,28]. In contrast, the
bandwidth of our probe pulse is so broad that the entire
free-carrier behavior predicted by the Drude model could
be experimentally visualized. Although such reflectivity-
change spectra in a similar MIR range has been measured
by using a synchrotron radiation source with 100 ps time

resolution [26], our time resolution of 70 fs is several orders
of magnitude higher.

IV. CONCLUSION

In conclusion, we demonstrate ultrabroadband MIR
pump-probe spectroscopy using chirped-pulse up-
conversion with FWDFG in a gas medium. The time
resolution is 70 fs and the detection frequency range is
from 200 to 5000 cm~!. We succeed in measuring the
transient reflectivity change caused by the photoinduced
free carriers of an intrinsic Ge crystal wafer. The observed
transient-reflectivity-change signals can be qualitatively
explained by using the Drude model. The lowest MIR
pulse energy for detecting the CPU spectra is as low as
~6 nJ in our experimental condition. This suggests that
the up-conversion could be achieved with less expensive
laser systems with lower pulse energies. We believe that
the demonstrated pump-probe system based on chirped-
pulse up-conversion is useful for the studies in solid-state
physics and molecular science.
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