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The mode shape of bending waves in thin silicon and silicon-carbide membranes is measured as a
function of space and time, using a phase-shift interferometer with stroboscopic light. The mode shapes
hold information about all the relevant mechanical parameters of the samples, including the spatial
distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor
components of the prestress, with a spatial resolution much better than the wavelength of the bending
waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost
any situation, where the fields determining the state of the system can be measured as a function of space
and time.
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I. INTRODUCTION

Mechanical waves are a powerful tool to study material
properties over a broad range of length scales. The
applications range from seismic-wave methods to studying
the structure of the Earth [1], SONAR for underwater
location and navigation [2], ultrasonic testing of materials
in engineering [3,4] and medical ultrasonography [3], down
to methods applicable to micro- and nanostructures like
acoustic microscopy [3], Brillouin scattering [5], and pico-
second pump-probe spectroscopy [6,7]. For all these meth-
ods, the length scale of the inhomogeneities of the material
properties is supposed to be larger than the wavelength.
In a previous work [8], we show how to extract the

dispersion relation of bending waves of prestressed thin
plates from measured mode shapes. Stress and bending
stiffness of the membrane are determined as fit parameters
using a theoretical model of the dispersion relation. Since
the existence of a well-defined dispersion relation requires
a homogeneous system, this method has the same short-
comings as the methods listed above. Here, we present an
approach using full knowledge of the wave function to
determine the mechanical properties of the sample. We
measure the shape of a bending-wave mode in direct space
and compare it to the equation of motion. The parameters
found in the equation are the components of the stress
tensor divided by the density of the membrane σij=ρ, as

well as a constant proportional to the bending stiffness.
With our simple algorithm, these parameters are obtained
as a function of space using a linear fit. Since the full mode
shape is available and we are not limited to far-field
information, the wavelength of the bending waves is no
limit for the spatial resolution. For the measurement of the
stress-tensor components of semiconductors, all optical
methods can be applied with spatial resolution in the
order of a few micrometers [9,10] to roughly 100 μm
[11], depending on the respective methods. However, these
methods make use of particular optical properties and
cannot straightforwardly be generalized to insulators or
metals.

II. EXPERIMENT

For qualifying the methods, two different types of
membranes are studied: single-crystal silicon membranes
as well as silicon-carbide membranes. Both types are a few
hundred nanometers thick and have a lateral size of roughly
500 μm. They are fabricated from coated silicon wafers
using a wet-etching process [8] adapted from Ref. [[12]].
The wafers used are standard silicon-on-insulator wafers
and silicon-carbide-coated silicon wafers [13].
The flatness of the silicon membranes is better than 1%

of the lateral size. A small static buckling is caused by the
formation of native oxide leading to a compressive stress
[8,14,15]. During the measurement, we apply a pressure
difference of 50 mbar between the top and the bottom side
of the membrane, so it is bent by 8 μm. As a consequence,
there is an inhomogeneous and anisotropic tensile stress.
The silicon-carbide films and therefore the membranes

have an average tensile stress of tens to hundreds of
megapascals, so there is no need to use air pressure to
stretch them. The tensile stress is highest at the bottom side
of the membrane and lowest on the top. We use the radius
of curvature of a curled free-membrane flake to estimate
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the stress gradient perpendicular to the membrane plane.
When the top layer of the membrane is removed, the
average stress increases. Therefore, we can design spatially
resolved stress patterns using reactive ion etching with an
SF6-O2 plasma using an etch mask defined by electron-
beam lithography.
A sketch of the experimental setup used for measuring

the bending waves of silicon membranes is shown in
Fig. 1(a). The membrane samples consist of freestanding
membrane films connected to a rectangular solid frame,
that is glued to a piezoelectric ring. Applying an ac voltage,
we induce thickness oscillations of the piezoelectric ring
and therefore couple vibrations into the membrane. Using
an imaging interferometer with a stroboscopic light source,
we measure the surface profile zð~r; tÞ of the oscillating
membrane as a function of space and time. Two examples
of zðx; yÞ measured at fixed time for two different frequen-
cies are given in Fig. 2. Using a Fourier series in time, the
mode shape of frequency eigenmodes ~zð~r;ωÞ is calculated
from the time-domain data zð~r; tÞ. ω stands for the angular
frequency of the excitation or a higher harmonic of it.
For measurements on silicon-carbide membranes, a similar
excitation mechanism is used, but the whole sample is
placed inside a vacuum cell. In this case, it is not possible
and not necessary to apply a pressure difference between
the top and the bottom side. The setup used for measure-
ments in vacuum is shown in Fig. 1(b). More detail about
the experimental procedure to measure the vibrational
modes ~zð~r;ωÞ at several frequencies ω has been published
in a previous paper [8]. Although the resolution of the
amplitude is much better than 1 nm, for the analysis here,
we use amplitudes in the range of 1 nm to several 100 nm.
The upper limit of the useful amplitudes is given by
instrumental limits (interference fringes get washed out
at higher amplitudes) and by nonlinear effects of the
mechanical system. The lower limit is given by the
signal-to-noise ratio (SNR). Modes with poor SNR
enhance the calculation effort but do not improve the
resolution of the stress images. As we will show, the three

independent components of the stress tensor σij are
unambiguously determined by the mode shapes ~zð~r;ωÞ.

III. EQUATION OF MOTION OF A THIN PLATE
WITH INHOMOGENEOUS PRESTRESS

As we have shown in an earlier work [8], the equation of
motion for the deflection z of a homogeneously prestressed
thin plate is

−̈zþ
X

i;j∈fx;yg

σij
ρ

∂2z
∂i∂j

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
prestressed membrane

−
D
hρ

Δ2z
|fflfflffl{zfflfflffl}
thin plate

¼ 0; ð1Þ

with the density ρ and the stress tensor σij both averaged
over the thickness h of the plate. The bending stiffness
D ¼ Eh3=½12ð1 − ν2Þ� depends on Young’s modulus E
and the Poisson ratio ν. Δ denotes the Laplace operator.
The first addend in Eq. (1) corresponds to the inertia of
the system, the second one to the restoring force of a
prestressed membrane, the third one to the bending force of
a thin plate [16–19]. In the following, we show that Eq. (1)
still holds for inhomogeneous stress.
The general form of the prestressed membrane term is

known from the literature [17],

X
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In our system, the phase velocity for longitudinal waves
is much larger than the one of bending waves, because
Young’s modulus is large compared to the stress-tensor
components. Therefore the lateral motion is considered to
be always in equilibrium during the bending-wave oscil-
lation. Using the condition for lateral equilibrium [17],

X

j

∂
∂i

σij ¼ 0;

FIG. 1. Sketch of the experiment showing schematically the
mounting of membrane samples in the optical profilometer.
The sample is glued to a piezoelectric ring used to excite the
vibrations. (a) For measurements on silicon membranes, we use a
pump to apply a pressure difference between the upper and lower
sides of the membrane. (b) Measurements on silicon-carbide
membranes are performed in a vacuum cell.

FIG. 2. Examples of amplitude profiles measured on a silicon-
carbide membrane with size 685 × 625 μm2, recorded at an
excitation frequency of f ¼ 393.1 kHz (left) and 1.020 MHz
(right). These modes feature relatively high amplitude because
they correspond to eigenmodes of the system [left, (2,2) mode
and right, (5,5) mode, where ðn;mÞ denotes the number of
extremes in x and y directions].
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the general term in Eq. (2) simplifies to the homogeneous-
stress term used in Eq. (1).
The equivalence of the equations for the homogeneous

and the inhomogeneous case, however, is not self-evident.
For example, in case of an inhomogeneous bending stiff-
ness D, the equation of motion becomes much more
complex, including several spatial derivatives of D. As a
result, there are four additional addends to Eq. (1). In
principle, the method described below would still be
applicable using four more fit parameters. In practice, a
fit with an excessive number of free parameters requires
experimental data with unachievable precision and is
therefore not viable. For that reason, we limit ourselves
to systems for which D is constant or negligible.

IV. FIT METHOD

In this section, we present a method to calculate the
spatially resolved mechanical constants of the system from
measured mode shapes z. The knowledge of two quantities
is required: First we need the field zð~r; tÞ as a function of
space ~r and time t. For oscillatory linear systems with an
angular frequency ω, it is advantageous to use the harmonic
ansatz

zωðx; y; tÞ ¼ ~zðx; y;ωÞeiωt ð3Þ

and to work with ~zð~r;ωÞ instead of zωð~r; tÞ. In general, the
following procedure works both in the time domain as well
as in the frequency domain, but in the following we restrict
ourselves to the frequency domain. A false-color image of
the measured mode ~zð~r;ωÞ is shown in Fig. 3, highlighted
by a blue frame. Since the method works for arbitrary ω,
we demonstrate it here for a higher order mode with many
maxima and minima (blue and red areas).
The second requirement is an equation that can be

written as

0 ¼
X

l

plð~rÞX̂lz; ð4Þ

with operators X̂l, which are linearly independent and
which do not depend on any unknown parameters. Usually
some of the coefficients pl are well-known constants while
others correspond to the material properties we are looking
for. Let Ωunknown be the set of indices l of the unknown
properties pl, so our goal is to extract the values for the
coefficients pl with l ∈ Ωunknown.
The equation of motion for prestressed thin plates

[Eq. (1)] is equivalent to Eq. (4) using the parameters pl

and the operators X̂l shown in Table I. Using the harmonic
ansatz in Eq. (3), we can replace −̈z by ω2z. ω is known
from the experiment, h is measured separately by ellips-
ometry, and ρ, E, ν are taken from literature, so D is a
known constant. There are three unknown parameters
(Ωunknown ¼ f2; 3; 4g) in Table I, corresponding to the

components of the stress tensor. A graphical visualization
of Eq. (4) is shown in Fig. 3. The panels in the first column
show false-color images of the parameters plð~rÞ. The
parameters with l ∈ Ωunknown (highlighted by a red frame),
corresponding to the components of the stress tensor, are
the quantities we are looking for. The procedure to calculate

FIG. 3. Visualization of the fitting method showing all the
addends in the equation of motion [Eqs. (1) and (4)] for a mode at
one fixed frequency ω. The sample shown here is a 340-nm-thick
silicon membrane with a lateral size of 714 × 691 μm2 bent by a
pressure difference of 50 mbar. The measured mode shape is
highlighted by a blue frame. In this case, it is a higher order mode
with many maxima and minima. The goal is to obtain the stress-
tensor components highlighted by a red frame. The waveforms
X̂l ~z in the center column are calculated using numerical deriv-
atives on the measured mode shape. Each row corresponds to one
addend with one value for the index l. The parameters pl are
either trivial (1), known from the geometry (D=hρ), or they can
be treated as free-fit parameters (σij=ρ, red frame). In the right
column, the product plX̂l ~z is shown. The image at the bottom
right is the sum

P
lplX̂l ~z, which should be equal to zero

according to the equation of motion [Eq. (4)]. This equality is
used as a condition to find the free parameters (red frame). All the
false-color images use arbitrary units, with green corresponding
to zero, blue to negative, and red to positive values. For the
complex quantities X̂l ~z and plX̂l ~z, the real part is shown.
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them from the experimental mode shapes is explained
below.
Equation (4) is equivalent to

err(ω; fplð~rÞg; ~r) ¼ 0 ð5Þ

for all ω, using the single-frequency error function,

err(ω; fplð~rÞg; ~r) ¼
X

l

plð~rÞX̂l ~zð~r;ωÞ: ð6Þ

Equations (5) and (6) give one equation per mode.
Therefore, at least as many modes as unknowns are needed,
if all the equations are linearly independent. Even under
ideal conditions with zero noise, linear independence is not
necessarily the case. To account for this problem, at least
one additional equation, meaning one additional mode, is
necessary. More modes increase the SNR in the stress-
pattern images; see below. The sum Eq. (6) is illustrated
in Fig. 3 for an arbitrary but fixed frequency ω. Each row
in the figure corresponds to one of the addends in the
equation, defined by the product plð~rÞX̂l ~zð~r;ωÞ. On the
left-hand side of the figure, there is a false-color image of
the best-fit values of plð~rÞ. How to calculate them from the
data is explained below. X̂l ~zð~r;ωÞ can be calculated from
the experimental data. X̂l ~zð~r;ωÞ is depicted in the center
column. On the right-hand side of the figure, a false-color
image of each addend, the product plX̂l ~z, is shown.
err(ω; fplð~rÞg; ~r), defined by the whole sum, is shown
in the bottom right panel. Since err is calculated from
measured data with finite uncertainty, it is not exactly equal
to zero, but it is much smaller than one addend on its own.
The total error function is defined as

Err(fplð~rÞg; ~r) ¼
X

ω

wðωÞjerr(ω; fplð~rÞg; ~r)j2 ≥ 0: ð7Þ

The sum runs over all the modes measured at several
frequencies ω. The choice of the weight function wðωÞ > 0
is arbitrary; in our example we use

wðωÞ ¼ 1

hjω2 ~zðωÞj2i ; ð8Þ

with the spatial average h·i, so the average contribution
of the inertia term ω2z is the same for all frequencies.

Other weighting functions can be chosen such that modes
with high amplitude have more weight to improve the
SNR. Equation (5) and therefore also the equation of
motion [Eq. (4)] is equivalent to

Err(fplð~rÞg; ~r) ¼ 0: ð9Þ
The equality only holds for exact solutions ~z and the correct
parameters pl. When measured data with finite uncertainty
are used instead, Err is always positive and it is minimal,
when the unknown parameters pl with l ∈ Ωunknown are
close to their true values. The minimum is found using the
condition

∂
∂pl

Err(fplð~rÞg; ~r) ¼ 0; l ∈ Ωunknown; ð10Þ

leading to a system of linear equations,

0 ¼
X

k

Alkð~rÞpkð~rÞ; l ∈ Ωunknown;

Alkð~rÞ ¼
X

ω

wðωÞRefðX̂l ~zÞ�ðX̂k ~zÞg; ð11Þ

where Re is the real part and the asterisk represents the
complex conjugate. First, Alk is calculated using the
numerical derivatives [see Table I and the center column
of Fig. 3] on the measured modes ~zð~r;ωÞ, then the system
of linear equations, Eq. (11), is solved to obtain the best-fit
values of the parameters pk with k ∈ Ωunknown shown in the
red frame in Fig. 3. Since the method explained above and
especially the numerical derivatives are sensitive to noise in
the experimental data, filtering of z might be necessary. We
use a two-step filtering process. First, the data are smoothed
by a Gaussian bandpass filter centered around the mean
wave number of the given modewith a variance of twice the
mean wave number. Since some of the modes are excited
with a much smaller amplitude than others, there are large
variations in the SNR. Therefore, as a second filtering step,
modes with low SNR are removed from the data set. The
mode selection is easily automated in an iterative process
using the tools presented above. First, the method is applied
to the whole data set to obtain some initial values for pl,
then the modes with high average err(ω; fplð~rÞg; ~r) are
removed and the procedure is repeated.

V. RESULTS

We find the components of the stress tensor σij
by multiplying the pl with the mass density of silicon
[20] ρSi ¼ 2330 kg=m3 or silicon carbide [21] ρSiC ¼
3210 kg=m3. The experimental values σij on siliconmem-
branes bent by a pressure difference of 50 mbar are
compared to finite-element simulations. The results are
shown in Fig. 4. Details about the simulation have been
published in an earlier paper [8]. For the diagonal

TABLE I. Inserting the coefficients pl and operators X̂l from
this table into the general equation of motion [Eq. (4)] leads to the
equation for prestressed thin plates [Eq. (1)].

l 1 2 3 4 5

pl 1 σxx=ρ σyy=ρ σxy=ρ D=hρ

X̂l −ð∂2=∂t2Þ or ω2 ∂2=∂x2 ∂2=∂y2 2ð∂2=∂x∂yÞ −Δ2

WAITZ et al. PHYS. REV. APPLIED 3, 044002 (2015)

044002-4



components σxx and σyy, there is good quantitative agree-
ment. For the shear stress σxy, there is agreement in the
order of magnitude, but since it is much smaller than the
diagonal components, the SNR is insufficient for quanti-
tative comparison. For all the components, there are
artifacts along the edges of the membrane, because the
computation of the numerical derivatives fails there.
In Fig. 5, a false-color image of the stress of a silicon-

carbide membrane is shown, with a cross-shaped area of
reduced thickness and increased stress. The etch pattern is
designed to produce sharp, clearly visible features for the
stress pattern. Therefore, the sample is used to estimate
the spatial resolution of the method presented in this paper.
To produce this image, 24 modes in the frequency range
from 0.4 to 1.7 MHz are analyzed. For comparison, we
perform finite-element simulations. The geometry of the
sample from the experiment is captured by optical micros-
copy, ellipsometry, and atomic-force microscopy in order to
design an accurate model for the simulation. The prestress
in the membrane plane is homogeneous and isotropic but
we do not know much about the stress distribution in the
normal direction. The simplest model that fits the exper-
imental results is a linear stress gradient with a tensile stress
of 200 MPa at the bottom and zero at the top side of the
membrane. The stress-tensor components from a simula-
tion using this model are shown on the right-hand side of
Fig. 5. We know that the average stress is 78 MPa, from
measurements of the dispersion relation of bending waves
of unpatterned silicon-carbide membranes fabricated from
the same wafer. To estimate the stress gradient, we cut a

membrane flake out of the frame. From the curling radius R
of the now free membrane, the stress gradient is calculated
[22] ∂σ=∂z ¼ E=ð1 − ν2ÞR. That way, we obtain a stress
difference of approximately 150 MPa from the top to the
bottom side. Both values are about 25% lower than the
values used for the simulation, which is a good agreement,
given the rough approximation of a linear stress distribution.
In order to estimate the spatial resolution, we compare

the experimental data on the left-hand side of Fig. 5 with
the finite-element simulations shown on the right-hand
side. At the edges and corners of the cross pattern, the stress
from the simulation is discontinuous on the micron scale.

FIG. 4. False-color images of the components σij of the stress
tensor in a silicon membrane bent by a pressure difference of
50 mbar. On the left-hand side (a), the experimental data are
shown, obtained using the method presented in this paper. For
comparison, the results of finite-element (FE) simulations are
shown on the right-hand side (b).

FIG. 6. Cross sections through the panels for σxx and σyy of
Fig. 5 taken at the dotted lines. The vertical dashed lines indicate
the uncertainty of the determination of the edges of the stress
pattern.

FIG. 5. False-color images of the components σij of the stress
tensor in a prestressed silicon-carbide membrane. The thickness
is 264 nm outside and 169 nm inside of the cross-shaped area.
The experimental results (a) are compared to the results of finite-
element simulations (b). The sharp features of the stress pattern
are used to estimate the spatial resolution of 30 μm, which is
much better than the smallest wavelength λ > 115 μm of the
measured modes.
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The experimental data show a smooth transitionwith awidth
of 30 μm, as visualized by the vertical dashed lines in Fig. 6.
Therefore, spatial resolution is much better than the smallest
wavelength, λ > 115 μm, of the measured modes used to
compute the experimental values for the stress tensor. This
comparison proves our claim that the wavelength limit for
the resolution does not apply to this method. The resolution
is limited by the Gaussian bandpass filter applied to z and by
the diffraction limit of the optical profilometer of 2–3 μm.
While it is possible to measure wavelengths down to 23 μm
with our setup (based on the necessity to capture roughly 10
pixels per wavelength to map the wave shape with sufficient
precision), the signal-to-noise ratio decreases drastically for
high frequencies. The minimum wavelength used here is
given by the mode-selection filter. By adjusting the param-
eters of the Gaussian bandpass filter and the mode selection
filter, we find a compromise between spatial resolution and
good signal-to-noise ratio in the stress maps.

VI. POSSIBLE APPLICATIONS TO OTHER
FIELDS OF PHYSICS

In principle, the method presented above is applicable to
a large variety of systems in physics. The only requirements
are an equation that can be written in the form of Eq. (4),
as well as the complete knowledge of the function z for
several modes or configurations. Of course, the necessity to
measure the complete state of the system z is an important
limitation for practical purposes. On the other hand, there
are very few preconditions on the structure of the equation:
(a) In our case, the equation used is the equation of

motion, but this is not a requirement.
(b) In our example, z∶ ð~r; tÞ → C is scalar. In general, it

can be a vector function z∶ Rd → Cn.
(c) The equation must be linear in pl, but it may be

nonlinear in z, since the operators X̂l are allowed to be
nonlinear.

(d) Equation (4) seems to be homogeneous, but an
inhomogeneity fð~r; tÞ can be added by adding an
additional addend X̂0z ¼ fð~r; tÞ, with the nonlinear
operator X̂0, which does not depend on the field zð~rÞ.

In many cases, the parameters pl in Eq. (4) are not
independent, but some are partial derivatives of others. As
an example, we will discuss diffusion in inhomogeneous
systems. On the one hand, methods to measure the concen-
tration [23] or the temperature [24] in particle or heat-
diffusion systems as a function of space and time are known.
On the other hand, inhomogeneous diffusion is a topic of
continuing theoretical interest, which has been discussed for
several decades [25–31]. In order to know the diffusion law,
themicroscopic nature of the systemhas to be examined [27].
We will use the simplest one, Fick’s law in two dimensions,

0 ¼ −
∂n
∂t þDΔnþ ∂D

∂x
∂n
∂x þ

∂D
∂y

∂n
∂y ;

with the concentration n and the diffusion constant D. For
our method, there are three free-fit parameters,D and its two
spatial derivatives. If the experimental uncertainty for the
measurement of n is low enough, a fit with three parameters
might give good results. In this case, the experimentally
obtained derivatives of D could be compared to numerical
ones, to verify the diffusion equation that is used.
If the diffusion constant varies only slowly compared to

the length scale of concentration changes, the derivatives
of D can be neglected. In this case, there is only one free
parameter left, but the spatial resolution of the method is
limited by this length scale.

VII. CONCLUSION AND SUMMARY

We study bending waves in silicon and silicon-carbide
membranes with inhomogeneous anisotropic prestress.
We present an algorithm to calculate the lateral components
of the stress tensor as a function of location from the
experimentally observed mode shapes at several frequen-
cies. The spatial resolution achieved is much better than the
wavelengths of the modes. The results show nice agreement
with finite-element simulations. In principle, the method is
applicable to a wide range of systems, in order to measure
inhomogeneities in material parameters, not only in
mechanics. The main limitation is the necessity to measure
the state of the system as a function of space and time.
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