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With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in
realizations of thin composite layers designed for full absorption of incident electromagnetic radiation,
from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers
are usually called “metamaterial absorbers,” because these composite structures are designed to emulate
some material responses not reachable with any natural material. On the other hand, many thin absorbing
composite layers were designed and used already in the time of the introduction of radar technology,
predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new
topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a
general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave
radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly
absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their
fundamental operational principles. For each of the identified classes, we provide design equations and give
examples of particular realizations. The concluding section provides a summary and gives an outlook on
future developments in this field.
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I. INTRODUCTION

In numerous applications of electromagnetic waves,
from radio to optical frequencies, there is a need to design
and realize layers which effectively absorb the power of
incident electromagnetic waves. Dallenbach [1] and
Salisbury [2] absorbers are classical examples of micro-
wave absorbers, developed along the work on the first
radars. The Dallenbach absorber uses a lossy dielectric
layer backed by a metal ground plane. The layer thickness
is close to a quarter wavelength in the dielectric, so that the
input impedance is real. The loss tangent of the dielectric is
chosen so that the input resistance is matched with the free-
space impedance. The thickness of Salisbury screens is also
equal to a quarter wavelength: A single resistive sheet is
located at quarter-wavelength distance from the metal
ground, where the electric field resulting from the inter-
ference of the incident and mirror-reflected waves has the
maximum value. Information on classical microwave
absorbers based on the use of conventional and artificial
materials can be found in Refs. [3–5]. Analysis of singe-
and multilayered Salisbury absorbers can be found in
Ref. [6]. Because of their resonant sizes, most of these
absorbers are considerably thick. The absorption frequency
band of optically thick absorbers can be quite wide, but the
considerable thickness of these structures makes them not
practical for many applications. To absorb visible light,

layers of various black substances have been used from
prehistorical times. Also, in this case the absorbers are very
thick in terms of the wavelength. Naturally, there is a need
for electrically thin structures (in radio-engineering lan-
guage, it means the same as optically thin, i.e., much
thinner than the wavelength) as microwave absorbers. At
present, the research focus is on optically thin terahertz and
optical absorbers. This research is motivated by the current
development of nanotechnologies and new arising appli-
cations in optical [7] and terahertz [8] sensing of individual
quantum objects and energy harvesting for solar-
photovoltaic [9] and thermophotovoltaic [10] systems.
These new applications require the perfect absorption of
a certain spectrum of incident light in submicron layers.
The recent literature has witnessed great activity in design-
ing thin absorbers for infrared and optical frequencies.
Figure 1 illustrates typical topologies of nearly perfect
absorbers for microwave, terahertz, and infrared frequen-
cies. Interestingly, all of these devices are similar in what
concerns the operational principle (Sec. V B 4).
As we shall see, there are many possibilities to realize

full absorption of normally incident plane waves in
extremely thin layers, but perfect absorption takes place
at just one frequency (or possibly at a set of discrete
frequencies). For thin absorbers, the most practically
relevant problem is the fundamental limitation on the
absorption bandwidth for absorbers of a given thickness
[15,16]. Another important issue is the sensitivity of
absorption on the incidence angle and polarization of the
incident waves. Considerable work has been done in
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finding designs providing angular- and polarization-stable
operation of thin absorbers (see, e.g., Refs. [13,17–25]).
In many recent papers, the name perfect absorber is

adopted for a structure which has zero-reflection and
transmission coefficients for normally incident plane waves
at one given frequency. This terminology appears unfortu-
nate, because from the engineering point of view a perfect
absorber would work at all frequencies and for all incident
angles and polarizations. Moreover, the same word perfect
already appears in the name of the perfectly matched layer
[26], which is indeed perfect in the sense that it fully
absorbs waves of any polarization coming from any
direction. Of course, perfect absorbers in the engineering
sense do not exist. In traditional terminology, a boundary
which fully absorbs a normally incident plane wave at one
frequency is called the matched boundary. However, since
the term perfect absorber appears to be commonly accepted
in the current literature, we use it also in this review.
In a sense, the design of perfect absorbers (stressing

again, perfect at one frequency and for one incidence angle
only) is rather trivial. Just like a load characterized by

an arbitrary impedance with a nonzero real part can be
matched to a cable with any characteristic impedance using
only one reactive element, any reflector-backed material
layer of any nonzero thickness (except totally lossless
layers) can be forced to fully absorb normally incident
plane waves at one frequency using only one reactive
frequency-selective surface (the frequency-selective sur-
face is a sheet characterized by some reactive averaged
surface impedance, for example, an array of thin metal
patches [4]). However, if we impose conditions on the
allowed thickness and materials, and, most importantly, on
the absorption bandwidth and angular stability, design tasks
will be far from trivial and simple.
Recently, the work on perfect absorbers has been

focused on the use of metamaterials and metasurfaces,
two-dimensional analogues of metamaterials. Probably the
first known realization of thin metamaterial absorbers is
based on the use of artificial impedance surfaces [27]. On a
surface with a very high reactive surface impedance, the
magnetic field is close to zero and the electric field equals
twice the incident electric field. Positioning a resistive sheet
at such a high-impedance surface (HIS), one can effectively
dissipate the incident power and decrease reflectivity to
zero. Later, it was shown that there is no need for a separate
resistive sheet, and full absorption in high-impedance
structures can be realized by using a lossy dielectric as a
substrate [19]. Another implementation of the same idea is
the use of an array of split-ring resonators (SRRs) to realize
an artificial magnetic conductor and position a resistive
sheet on top of that surface [28]. More recently, after the
publication of Ref. [29], where the name metamaterial-
based perfect absorber is introduced, designs of thin
composite absorbing layers (now commonly called meta-
material-based absorbers) developed earlier for microwave
frequencies have been extended to higher frequencies, up to
the visible range. There have been perfect absorbers
reported in terahertz [12,30], near-infrared [31], and visible
light [23] frequencies. A recent review of metamaterial-
based electromagnetic wave absorbers can be found in
Ref. [32]. These absorbers can be potentially used in filters
and sensors, for solar energy harvesting, and for many other
applications [7,9,25,33–45].
For the design and optimization of these structures, it is

really critical to understand the physical phenomena which
ensure the absorber operation. One needs conceptually
simple and clear models which should give the conditions
on the effective parameters of the composite layers as
targets for the design and optimization. Earlier approaches
are based on the description of thin absorbing layers as
effectively homogeneous bulk media or on using the
methods based on impedance matching [29,46–49]. The
main idea in this approach is to tune the effective
permittivity ϵ and permeability μ of a metamaterial
absorber to match the effective wave impedance of the
absorber η ¼ ffiffiffiffiffiffiffiffi

μ=ϵ
p

to the free-space wave impedance

FIG. 1. (a) Experimental realizations of thin nearly perfect
absorbers at microwaves. This figure is reproduced with permis-
sion [11]. ©The Institution of Engineering and Technology.
(b) Experimental realizations of thin nearly perfect absorbers at
terahertz. This figure is reproduced with permission [12]. ©SPIE
publication. (c) Experimental realizations of thin nearly perfect
absorbers at infrared [13]. ©IOP Publishing. This figure is
reproduced by permission of IOP Publishing. All rights reserved.
(d) Experimental realizations of thin nearly perfect absorbers at
near-infrared frequencies. This figure is reprinted with permis-
sion from Ref. [14]. Copyright (2010), AIP Publishing LLC.
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η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
. However, the use of this method is limited

by the problem of the applicability of the effective medium
model to (usually single) arrays of resonant cells. There are
also methods based on the reflection interference model
[50–53]. Another popular method is using circuit- and
transmission-line-based models [54–59]. Also, models and
explanations based on Fabry-Pérot and other cavity reso-
nances [60–62] have been introduced as alternative inter-
pretations of the absorption mechanism in metamaterial
absorbers.
Although all these models explain the same physical

phenomena, they are not always ideal in clarifying different
physical aspects of the processes in various absorbers and
for use as design tools. In some of these models interactions
between inclusions in the absorbing array are not taken
into account, and in some others near-field interactions
between two layers on the two sides of a spacer are
neglected. The majority of the known models are mostly
qualitative and cannot be used as effective design tools, so
that the design is based only on extensive numerical
simulations and optimizations. Moreover, the analysis of
recent literature shows that there is still some confusion in
the explanations of the absorption mechanisms. For exam-
ple, in Refs. [51,63], it is claimed that a magnetic response
is not necessary to realize metamaterial-based absorbers.
However, opposite statements are found in numerous
publications, e.g., Refs. [46,64–66]. Another physically
important aspect of the perfect absorption in thin layers is
the symmetry or asymmetry of absorption for illumination
of the two opposite sides of the absorbing structure. In fact,
the possible asymmetry of absorption is linked to bianiso-
tropic properties of the layers (excitation of both electric
and magnetic polarizations by both electric and magnetic
excitations), and it is possible to find very general and
simple design requirements for all kinds of electrically
thin perfect absorbers, both symmetric and asymmetric at
illuminations from the opposite sides [67].
The goal of this tutorial overview is to provide a general

view on the phenomenon of perfect absorption in optically
thin layers, give the most general design equations for the
required induced currents, and provide classification of
perfect absorbers based on their operational principles.
Explanations of the general concepts are complemented
by a broad overview of particular realizations of perfect
absorbers of each fundamental class, which illustrate and
exemplify the general design principles. The concluding
section summarizes the state of the art and provides an
outlook for further developments.

II. PERFECT ABSORBERS:
OPERATIONAL PRINCIPLE

Here we will show that the operational principles of any
thin perfect absorber can be well understood in terms of
effective electric- and magnetic-current sheets which model
the polarization and conduction currents induced in the

respective composite structures. Figure 2 illustrates a
generic composite layer illuminated by a normally incident
plane wave. The layer thickness is assumed to be optically
small, so that the layer can be considered as a metasurface:
a microscopically structured sheet (usually periodic) with
the period of the structure smaller than the wavelength in
the surrounding media. This restriction on the period is
necessary to ensure that the absorbing layer does not
generate diffraction lobes, and for an observer in the far
zone the response is that of an effectively homogeneous
sheet. We do not impose any other restrictions on the
geometry of the layer. It can be asymmetric with respect
to the two sides; it can be asymmetric with respect to
mirror inversion (chiral) or have nonreciprocal elements
(magnetized ferrite or plasma inclusions).
Under the assumption of an electrically small thickness

and the period smaller than the wavelength, the reflected
and transmitted waves are plane waves created by the
surface-averaged electric- and magnetic-current sheets Je
and Jm, respectively, as illustrated in Fig. 2. In composite
sheets, the layer has a complicated microstructure, usually
containing some electrically small but resonant inclusions
(such as complex-shape patches or split rings or small
helices). The surface-averaged current densities can be
related to the electric and magnetic dipole moments p and
m, respectively, induced in each unit cell as

Je ¼
jωp
S

; Jm ¼ jωm
S

: ð1Þ

Here S is the unit-cell area, and we use the time-harmonic
convention expðjωtÞ. The higher-order multipoles induced
in the unit cells do not contribute to the radiated plane-wave
fields of the infinite array (higher-order modes are impor-
tant in calculations of the dependence of the induced
averaged currents on the incident fields).
In this overview, we describe thin composite layers

acting as perfect absorbers, that is, layers which have
zero-reflection and transmission coefficients: R ¼ T ¼ 0.
We formulate the necessary requirements on the induced
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FIG. 2. Geometry of a generic optically thin absorbing layer
(left) and its equivalent model as a set of two current sheets (right).
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surface-current densities and explain how these require-
ments can be realized in various absorbing structures.

A. General considerations

To ensure zero reflection and zero transmission, the
absorber device must create a forward-directed plane wave
which cancels the incident plane wave. At the same time,
the absorber device should not create any radiation in the
direction towards the source (no reflection). First of all,
we note that an infinitely thin sheet of any nonmagnetic
material cannot act as a perfect absorber. It is clear from the
fact that, in this case, conduction or polarization currents
induced on the sheet by the incident plane wave are
confined to one plane in space. This current sheet will
radiate symmetrically in the forward and backward direc-
tions, while a perfect absorber should radiate only in the
forward direction. In fact, it is easy to show that an
infinitely thin sheet can absorb maximum 50% of the
incident power (e.g., Ref. [68]). This simple consideration
brings us to a conclusion that any perfect absorber must
have a nonzero physical thickness (the use of negligibly
thin magnetic-material sheets implies nonphysical infinite
values of the permeability).
The simplest volumetric distribution of current in a

thin finite-thickness layer is a set of two parallel infinitely
thin sheets of electric current. Thus, let us next consider
an absorber device formed by two parallel material or
composite sheets separated by distance d. The incident field
will induce some electric currents on the two sheets
(conduction or displacement currents), and we denote the
corresponding surface-current densities as Je1 and Je2. Let
the incident planewave come from the side of sheet 1, and its
amplitude at the position of the second sheet isEinc. The two
sheets will act as a perfect absorber if the sum of the electric
fields in two plane waves created by the two sheets cancels
the incident field behind the second sheet:

− η0
2
Je1e−jk0d − η0

2
Je2 ¼ −Einc; ð2Þ

while the electric fields of the two reflected plane waves
cancel in the opposite direction:

− η0
2
Je1 − η0

2
Je2e−jk0d ¼ 0: ð3Þ

Here, η0 is the free-space impedance and k0 is the
propagation constant. The above formulas for the ampli-
tudes of electric fields created by electric-current sheets
simply express the classical boundary conditions on
surfaces which maintain surface currents [a more general
form valid for oblique incidence can be found, e.g., in
Eq. (4.34) of Ref. [69]]. The solution of this system of
equations reads

Je1 ¼
j

η0 sinðk0dÞ
Einc; ð4Þ

Je2 ¼ − jejk0d

η0 sinðk0dÞ
Einc: ð5Þ

In this simple case of currents concentrated on two sheets,
we have a unique solution for the surface-current densities
of a perfect absorber (for a fixed thickness d). Examples of
absorbers of this type include the Salisbury screen [2]
and lossy capacitive grids (for example, arrays of patches)
over a ground plane [11,19,27], which we will call
high-impedance surface absorbers. While the realizations
can be quite different, in all of these absorbers
the surface-current densities on the two layers obey (4)
and (5).
Let us next find the required boundary conditions on the

two surfaces, relating the electric surface-current densities
with the total tangential fields on these surfaces. Actually,
Eq. (2) implies that in absorbers formed by only two
electric-current sheets the second surface must be perfectly
electrically conducting (PEC boundary). Indeed, Eq. (2)
directly states that the total tangential electric field at the
second surface

Etot ¼ Einc − η0
2
Je1e−jk0d − η0

2
Je2 ¼ 0: ð6Þ

As a check, one can use the last relation to express
the incident field in terms of the total field and current
densities and substitute in Eq. (5). As a result, it is seen that
the surface impedance of the second surface is zero
(Je2 × 0 ¼ Etot). Because also the tangential magnetic field
behind a perfect absorber is zero, the theory can be
reformulated for the dual case of a perfect magnetic
conductor (PMC) as a second surface or, more generally,
for an arbitrary boundary. From the practical point of view,
this result tells us that within this realization scenario we
need at least three effective current sheets to realize
symmetric absorbers (equally absorbing from both sides).
Of course, the boundary condition Eq. (6) bounds only

the surface-averaged fields and currents, which means that
the conclusion that the second sheet is a PEC or PMC
boundary holds only for homogeneous-material sheets.
In structured layers, the evanescent fields formed close
to the inhomogeneities do not equal zero everywhere at and
behind the second sheet (they exponentially decay behind
and in front of the absorber). We will see examples of
absorbers formed by arrays of particles without any ground
plane in the following sections.
Let us write the required sheet impedance of the first

sheet, which relates the total electric field and the surface-
current density Je1 at that plane. The total field is the sum
of the incident field Eincejk0d at that plane and the fields
created by electric currents Je1;2 induced on the two
surfaces, but, since the reflection coefficient is zero, the
sum of the fields created by the currents is zero [Eq. (3)].
Thus, we can write the total field at the first sheet as

REVIEW ARTICLE

Y. RA’DI, C. R. SIMOVSKI, AND S. A. TRETYAKOV PHYS. REV. APPLIED 3, 037001 (2015)

037001-4



Etot ¼ Eincejk0d ¼ ZgJe1 ¼ −jη0 sinðk0dÞejk0dJe1: ð7Þ

Here we have expressed Einc in terms of Je1 using Eq. (4).
We see that the required sheet (grid) impedance [69] of the
first layer reads

Zg ¼ −jη0 sinðk0dÞejk0d; ð8Þ

and the corresponding admittance equals

Yg ¼
1

Zg
¼ j

η0

e−jk0d
sinðk0dÞ

¼ j
η0 tan k0d

þ 1

η0
: ð9Þ

As an example, for the Salisbury absorber (d ¼ λ0=4,
k0d ¼ π=2), Eq. (8) shows that the surface impedance of
the first layer should be purely resistive and equal to
Zg ¼ η0. In the modern optical literature, the effect of full
absorption in a thin sheet when the matching condition
Eq. (9) is satisfied is usually called critical coupling
[70–74]. Because of the complexity of actual geometries
used in optical devices, the effect is usually revealed by
using numerical optimizations. However, the physics of this
effect is the same as of the Salisbury absorber described in
Ref. [75]. If the distance between the two sheets is arbitrary
(usually considerably smaller than λ0=4), Eqs. (8) and (9)
give the general design requirements for high-impedance
surface absorbers [see Eq. (90), discussions in Sec. V B 4,
and detailed derivations in Appendix A].
More generally, we can consider perfect absorbers where

induced currents are filling the whole volume of a slab of
the thickness d instead of being concentrated only on two
sheets. In this case, the requirements for perfect absorption
take the form of two integral equations [the sums in Eqs. (2)
and (3) replaced by integrals over the slab thickness], and
the solution for the required current densities is no longer
unique.
An important conclusion at this stage is that for perfect

absorption of the power of a plane wave we need to ensure
that the absorber creates at least two coherent and interfer-
ing plane waves, to enable asymmetric actions in the
forward and backward directions. These waves can be
created by current sheets induced on two infinitesimally
thin layers (one of them can be a mirror), by currents in
the whole volume of a slab, or by other means. With this
respect, it is interesting to note recent papers on so-called
“coherent absorbers,” where the second coherent wave is
created by splitting the incident beam into two and
directing both beams to the same thin lossy sheet via a
system of mirrors [76–79] or a prism [80]. The name
coherent absorber was introduced in Ref. [81] as specific to
that particular device, but, as we see, the operation of any
perfect absorber is based on interference of mutually
coherent waves. Actually, in any perfect absorber where
the energy is dissipated in an optically thin layer, that layer
is illuminated by two (or more) coherent plane waves. The

operational principle of the two-beam device [76] is very
similar to the Salisbury screen [2] or the circuit-analog
absorber [4], where the second incident coherent beam,
which illuminates a thin absorbing sheet, is created simply
by a mirror behind a lossy sheet.
Let us note in passing that Eqs. (4) and (5) suggest a

possibility to realize an active absorber if the incident field
is known. Indeed, if we know Einc in advance, we can
realize the required surface-current densities by construct-
ing, for example, two arrays of electric dipole antennas fed
by appropriately chosen sources. Although the system is
active, for the incident plane wave it will work as a perfect
absorber. This idea is similar to the recently introduced
concept of the active cloak [82,83], where arrays of
antennas are used to generate fields which cancel fields
scattered from an object which one wants to cloak.
After this brief discussion which concerns resonant

perfect absorbers of any thickness, let us next consider
the fundamentals of optically thin absorbing layers.

B. Optically thin perfect absorbers

The operational principle of a generic optically thin
absorber is convenient to explain by using the same
example of two polarizable sheets tuned to work as a
perfect absorber. Let us rewrite Eqs. (2) and (3) in terms of
the symmetric and antisymmetric surface-current sheets,
defining

Js ¼
1

2
ðJe1 þ Je2Þ; Ja ¼

1

2
ðJe2 − Je1Þ: ð10Þ

Equations (2) and (3) take the form

− η0
2
Jsð1þ e−jk0dÞ − η0

2
Jað1 − e−jk0dÞ ¼ −Einc; ð11Þ

− η0
2
Jsð1þ e−jk0dÞ − η0

2
Jað−1þ e−jk0dÞ ¼ 0: ð12Þ

For optically thin (meaning that jk0jd ≪ 1) absorbers, we
can replace the exponents with the first terms of their Taylor
expansions. The first term in Eqs. (11) and (12) reduces to

− η0
2
Jsð1þ e−jk0dÞ ≈ − η0

2
ð2JsÞ ¼ − η0

2
ðJe1 þ Je2Þ:

ð13Þ
We recognize this quantity as the electric field of the plane
wave generated by the electric-current sheet

Je ¼ Je1 þ Je2 ð14Þ
at the position of this sheet. Obviously, the surface-current
density Je is simply the total electric-current density
induced in the thin absorber.
The second term in Eq. (11) for thin absorbers

simplifies to
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− η0
2
Jað1 − e−jk0dÞ ≈ − η0

2
Jajk0d ¼ − 1

2
ðjωμ0dÞJa:

ð15Þ

We recognize this quantity as the electric field of the plane
wave generated by a sheet of magnetic current at the
absorber plane. Indeed, the magnetic surface-current den-
sity Jm is related to the magnetic moment per unit areaM as
Jm ¼ jωM, and the magnetic moment is related to the
antisymmetric part of the electric-current distribution as
M ¼ −μ0dz0 × Ja (z0 is the unit vector normal to the
absorber plane and pointing towards the source of the
incident plane wave). Thus, jωμ0dJa ¼ z0 × Jm.
Finally, Eqs. (11) and (12) take the physically clear,

simple, and general form

− η0
2
Je − 1

2
z0 × Jm ¼ −Einc; ð16Þ

− η0
2
Je þ

1

2
z0 × Jm ¼ 0: ð17Þ

Solving these equations, we find the required electric and
magnetic surface-current densities:

Je ¼
1

η0
Einc; ð18Þ

z0 × Jm ¼ Einc; Jm ¼ −z0 ×Einc ¼ η0Hinc: ð19Þ

As a check, we can see that the same follows directly from
Eqs. (4) and (5) in the assumption k0d ≪ 1:

Je ¼ Je1 þ Je2 ¼
1

η0

j
k0d

ð1 − ejk0dÞEinc ≈
1

η0
Einc; ð20Þ

Jm ¼ −jωμ0 d
2
z0 × ðJe2 − Je1Þ ≈ −ωμ0 d

2

2

η0k0d
z0 ×Einc

¼ −z0 ×Einc ¼ η0Hinc: ð21Þ

Although we have derived these formulas considering a
model of two polarizable sheets, it is clear that the result
in fact holds for any optically thin absorber, because the
plane-wave response of any optically thin structure reduces
to plane-wave fields created by surface-averaged electric-
and magnetic-current sheets, as illustrated in Fig. 2. We
can use this result for thin homogeneous layers, periodical
structures, and arrays of discontinuous cells, with the only
limitation that the structural period in the absorber plane
is smaller than the wavelength in free space (ensuring that
no diffracted plane waves are generated). For absorbers
realized in the form of arrays of particles (or any dis-
connected unit cells), it is more convenient to rewrite
Eqs. (16) and (17) in terms of the electric (p) and magnetic
(m) dipole moment of a single unit cell. As already

discussed, these dipole moments relate to the respective
surface-current densities as in Eq. (1).

C. Thin absorbers as Huygens sheets

Two important conclusions follow from Eqs. (16) and
(17). First of all, and as was already noted before, a thin
perfect absorber must support both electric and magnetic
surface currents (both Je and Jm must be nonzero). Indeed,
if one of them is zero, then the other one must be also zero
to ensure zero reflection, and in that case the layer is fully
transparent. Second, we observe that any optically thin
perfect absorber is a Huygens surface, because the induced
surface-current densities obey the relation (17):

η0Je ¼ z0 × Jm; ð22Þ
which is the same as the relation between the electric and
magnetic fields in the incident plane wave. Physically, this
result means that the plane-wave fields created by the
induced electric and magnetic currents cancel each other in
the backward direction (again we see interference of two
mutually coherent plane waves). Let us stress also here that
this conclusion holds for any optically thin layer which has
a zero-reflection coefficient. In the case of a perfect
absorber, the two waves sum up in the forward direction
and cancel the incident field [Eq. (16)].
Actual realizations can contain some homogeneous

layers (e.g., a thin slab of magnetic or dielectric material
on a PEC ground plane) or periodical arrays with the
transverse period smaller than the wavelength in free space
(e.g., arrays of resonant dielectric spheres, double arrays of
metal patches, or arrays of metal patches over a PEC plane).
In the case of a periodical structure, it can be more
convenient to write the equations in terms of electric and
magnetic dipole moments induced in each unit cell, p and
m; then Eq. (22) takes the form

η0p ¼ z0 ×m: ð23Þ
Because the dipole moments of cells and the surface-
averaged current densities are simply proportional to each
other [Eq. (1)], both continuous and periodical absorbers
can be understood in terms of induced electric and
magnetic moments, either per unit cell or per unit area.

III. THIN PERFECT ABSORBERS: GENERAL
DESIGN EQUATIONS

In the previous section, we found the required values
of induced surface-current densities which ensure perfect
absorption of a normally incident plane wave. Next, we
address the design question: What should be the electro-
magnetic parameters of the layer, such that the induced
currents indeed take the desired values? As discussed
above, the electromagnetic response of thin material or
composite sheets can be described in terms of either
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relations for induced surface-current densities or induced
electric and magnetic moments per unit cell or per unit area.
We will first use the formalism of induced dipole moments.
The material of this section is based on Ref. [67].

A. Induced polarization densities and currents

In the most general case of a thin linear sheet, composite
or homogeneous, we can write the linear relations between
the induced moments in each unit cell (or in a unit area of
the sheet) and the incident fields as

�
p

m

�
¼

"
¯̂̄αee

¯̂̄αem
¯̂̄αme

¯̂̄αmm

#
·

�
Einc

Hinc

�
: ð24Þ

Here the dual bars denote dyadic (tensor) quantities, and the
hat marks the collective polarizabilities, which measure
the response of the unit cells to external fields incident on
the infinite array. For composite sheets, these polarizabil-
ities include the effects of particle interactions and depend
not only on the individual cell topology and dimensions but
also on the distances to the other inclusions in the lattice. In
view of Eq. (1), this dependence is equivalent to relating the
induced surface-current densities to the incident fields.
Indeed, Eq. (24) is equivalent to

�
Je
Jm

�
¼ jω

S

"
¯̂̄αee

¯̂̄αem
¯̂̄αme

¯̂̄αmm

#
·

�
Einc

Hinc

�
ð25Þ

(S is the unit-cell area). We know that in perfect absorbers
the induced current densities relate to the incident fields as
in Eqs. (18) and (19). Thus, we can determine the required
unit-cell polarizabilities of perfect absorbers as solutions of
the following system of equations:

jω
S

"
¯̂̄αee

¯̂̄αem
¯̂̄αme

¯̂̄αmm

#
¼

�
1
η0
¯̄It 0

0 η0
¯̄It

�
: ð26Þ

Here, ¯̄It is the two-dimensional unit dyadic (matrix) defined
in the absorber plane. Obviously, there are infinitely many
solutions for the polarizabilities, since we have more free
design parameters than the number of equations. To clarify
the possible choices and different absorption and matching
mechanisms, it is more convenient to first find the reflec-
tion and transmission coefficients in terms of the collective
polarizabilities and then study what combinations of these
parameters realize perfect absorbers.
To do that, first we note that the dyadics in Eqs. (24)

and (26) are not the most general two-dimensional dyadics,
but they possess rotational symmetry, because perfect
absorbers should absorb normally incident plane waves
of any polarization. This property means that the absorber
structure should have no preferred direction along the
absorber plane. In terms of the electromagnetic parameters,

the layer must be a uniaxial structure, where the only
preferred direction is given by the unit vector normal to the
surface, z0. The uniaxial symmetry ensures the isotropic
response for normally incident plane waves of arbitrary
polarizations.
Thus, for the most general thin perfect absorber we can

write all the polarizabilities in (24) in the form

¯̂̄αee ¼ α̂coee
¯̄It þ α̂cree

¯̄Jt;
¯̂̄αmm ¼ α̂comm

¯̄It þ α̂crmm
¯̄Jt;

¯̂̄αem ¼ α̂coem
¯̄It þ α̂crem

¯̄Jt;
¯̂̄αme ¼ α̂come

¯̄It þ α̂crme
¯̄Jt; ð27Þ

where indices co and cr refer to the symmetric and
antisymmetric parts of the corresponding dyadics, respec-
tively. Here, ¯̄It ¼ ¯̄I − z0z0 is the two-dimensional unit
dyadic, and ¯̄Jt ¼ z0 ×

¯̄It is the vector-product operator.
In the last set of relations, it is convenient to separate
the coupling coefficients responsible for reciprocal and
nonreciprocal coupling processes:

¯̂̄αem ¼ ðχ̂ þ jκ̂Þ¯̄It þ ðV̂ þ jΩ̂Þ ¯̄Jt;
¯̂̄αme ¼ ðχ̂ − jκ̂Þ¯̄It þ ð−V̂ þ jΩ̂Þ ¯̄Jt: ð28Þ

In the following, we use the classification of magnetoelec-
tric coupling effects in terms of reciprocity and the
symmetry of their magnetoelectric coupling dyadics.
There are two reciprocal classes (chiral and omega,
measured by the parameters κ̂ and Ω̂, respectively) and
two nonreciprocal classes (“moving” and Tellegen, mea-
sured by V̂ and χ̂, respectively) [5]. The four main types of
magnetoelectric coupling are summarized in Table I. Note
also that for reciprocal particles the electric and magnetic
polarizabilities ¯̂̄αee and

¯̂̄αmm are always symmetric dyadics;
that is, α̂cree ¼ 0 and α̂crmm ¼ 0 in all reciprocal structures.
In the rest of the review, we use double signs to

distinguish the illuminations of the thin absorbing layer
from its two sides, where the top and bottom signs
correspond to the incident plane wave propagating along
the −z0 and z0 directions, respectively (Fig. 2). In the
incident plane wave, the electric and magnetic fields satisfy

Hinc ¼∓ 1

η0
z0 ×Einc: ð29Þ

Radiation from infinite sheets of electric and magnetic
currents can be easily solved (e.g., Ref. [84]), and the
electric field amplitudes in the reflected (Eref ) and trans-
mitted (Etr) plane waves are written as

Eref ¼ − jω
2S

½η0p ∓ z0 ×m�;

Etr ¼ Einc − jω
2S

½η0p� z0 ×m�: ð30Þ
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Expressing the induced dipole moments in terms of the
incident electric field and the polarizabilities in the form of
Eq. (28), we get

Eref ¼ − jω
2S

��
η0α̂

co
ee � 2jΩ̂ − 1

η0
α̂comm

�
¯̄It

þ
�
η0α̂

cr
ee ∓ 2χ̂ − 1

η0
α̂crmm

�
¯̄Jt

�
· Einc; ð31Þ

Etr ¼
��

1 − jω
2S

�
η0α̂

co
ee � 2V̂ þ 1

η0
α̂comm

��
¯̄It

− jω
2S

�
η0α̂

cr
ee ∓ 2jκ̂ þ 1

η0
α̂crmm

�
¯̄Jt

�
· Einc: ð32Þ

General expressions (31) and (32) for the reflected
and transmitted fields from planar uniaxial bianisotropic
layers allow the derivation of required conditions for
perfect absorption in terms of the polarizabilities of the
unit cells. By definition, a perfect absorber does not reflect
power and creates perfect shadow behind the sheet; that is,

Eref ¼ 0; Etr ¼ 0: ð33Þ

Let us consider the two requirements of perfect absorption
Eq. (33) separately.

B. Zero-reflection condition for
collective polarizabilities

As discussed above, the zero-reflection property requires
that the layer behaves as a Huygens sheet, with the induced
dipole moments satisfying Eq. (23). From Eq. (31), we see
that the zero-reflection condition requires the following
relation between the two polarizabilities (electric and
magnetic) and the omega coupling coefficient:

η0α̂
co
ee � 2jΩ̂ − 1

η0
α̂comm ¼ 0 ð34Þ

(under this condition the copolarized reflection vanishes).
Let us recall that the � signs in this relation refer to
illuminations from the two sides of the thin layer. Thus, if
there is no magnetoelectric coupling in the layer (Ω̂ ¼ 0),
the reflection coefficient is the same for illumination from
both sides. In particular, it is clear that any thin absorber on
a metal surface is a bianisotropic layer with omega coupling
in the microstructure. This result is obvious from the fact
that the reflection coefficient from the side of the ground

plane is always −1, while it is zero from the side of the
absorbing layer.
Continuing the analysis of the zero-reflection require-

ment, we note that the cross-polarized reflection vanishes if

η0α̂
cr
ee ∓ 2χ̂ − 1

η0
α̂crmm ¼ 0: ð35Þ

All the polarizabilities which enter this relation can have
nonzero values only if the layer is nonreciprocal. In view
of practical realizations, the simplest way to ensure that
Eq. (35) is valid is to use only reciprocal materials in the
absorber design. If nonreciprocity is required (for example,
to realize different transmission coefficients for waves
coming from the opposite directions), the nonreciprocal
responses due to electric, magnetic, and magnetoelectric
polarization processes must be balanced as is dictated by
Eq. (35) in order to ensure zero reflection from the
absorber. In the following, we concentrate on reciprocal
absorbers. Nonreciprocal absorbing sheets are discussed
in Ref. [67].

C. Zero transmission condition for
collective polarizabilities

The transmitted field is zero when the sum of the plane-
wave fields created by induced electric- and magnetic-
current sheets compensates the incident field:

jω
2S

½η0p� z0 ×m� ¼ Einc: ð36Þ

Recall that the amplitudes of waves created by the electric
and magnetic dipole moments are equal (as they cancel out
in the reflected field). Again, we note that magnetoelectric
coupling (nonreciprocal parameter V̂) is responsible for
the possible difference of transmission coefficients for
illumination from the two sides of the sheet. Naturally,
for reciprocal sheets (V̂ ¼ 0) the transmission coefficient is
the same as seen from both sides, and the requirement of
full absorption reads

η0α̂
co
ee þ

1

η0
α̂comm ¼ 2S

jω
: ð37Þ

If the sheet is reciprocal, then the electric and magnetic
polarizabilities are symmetric dyadics (α̂cree ¼ 0, α̂crmm ¼ 0),
which brings us to the conclusion that all reciprocal
polarization-insensitive thin perfect absorbers are nonchiral
(κ̂ ¼ 0). With this respect, we note that this conclusion does

TABLE I. Magnetoelectric coupling effects (parameters Ω, κ, V, and χ for lossless structures are real).

Omega Chiral Moving Tellegen

¯̄αem ¼ ¯̄αme ¼ jΩ ¯̄Jt ¯̄αem ¼ − ¯̄αme ¼ jκ ¯̄It ¯̄αem ¼ − ¯̄αme ¼ V ¯̄Jt ¯̄αem ¼ ¯̄αme ¼ χ ¯̄It
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not exclude the use of chiral elements (like metal spirals) in
the design of thin absorbers. However, for proper operation,
chiral elements should be arranged so that the overall
structure of the layer is nonchiral. The most common
known topologies contain random mixtures or regular
arrays of chiral particles over a perfectly conducting ground
plane [85–87]. Because the mirror images of spirals have
the opposite handedness, the overall response is nonchiral
(the reflected wave has the same polarization as the incident
wave, if the arrangement of spirals is isotropic, and
the transmitted field is zero behind the PEC plane). A
discussion about advantages of microscopically chiral
absorbers can be found in Ref. [87] and references therein.
In summary, thin perfect reciprocal absorbers which

absorb waves incident on both sides of the sheet are simple
electrically and magnetically polarizable layers (no biani-
sotropy). Thin perfect reciprocal absorbers which absorb
waves incident only on one side of the sheet (various
reflection properties are possible if one illuminates the
other side) are bianisotropic layers with the antisymmetric
coupling dyadic (omega structures). Equations (34)
and (37) give the necessary conditions on the collective
polarizabilities of the unit cells of perfect absorbers.

D. Required values of collective polarizabilities

For the most general case of thin reciprocal perfect
absorbers, we can assume that the response can be
asymmetric, meaning that only one side of the layer is
perfectly absorbing, while the other side is characterized by
the reflection coefficient R. From Eqs. (31) and (32), we
find the requirements on the collective polarizabilities in
terms of the reflection coefficient R of the “imperfect” side:

η0α̂
co
ee þ 2jΩ̂ − 1

η0
α̂comm ¼ 0; ð38Þ

− jω
2S

�
η0α̂

co
ee − 2jΩ̂ − 1

η0
α̂comm

�
¼ R; ð39Þ

η0α̂
co
ee þ

1

η0
α̂comm ¼ 2S

jω
: ð40Þ

Solving for the required polarizabilities, we find

η0α̂
co
ee ¼

�
1 − R

2

�
S
jω

; ð41Þ

jΩ̂ ¼ R
2

S
jω

; ð42Þ

and

1

η0
α̂comm ¼

�
1þ R

2

�
S
jω

: ð43Þ

Let us write the induced electric and magnetic currents for a
sheet with such polarizabilities. Suppose that the perfectly
absorbing side is illuminated (the incident wave propagates
along−z0). In this bianisotropic layer, the electric current is
induced by both the electric and magnetic fields:

Je ¼
jω
S
p ¼ jω

S
ðα̂coeeEinc þ jΩ̂z0 ×HincÞ: ð44Þ

Using the plane-wave relation between the fields in the
incident wave, z0 ×Hinc ¼ Einc=η0, and substituting the
parameters from Eqs. (41) and (42), we find that

Je ¼
jω
S

�
α̂coee þ

1

η0
jΩ̂

�
Einc ¼

1

η0
Einc; ð45Þ

for an arbitrary reflection coefficient R of the opposite
side of the layer. Thus, the necessary relation between the
incident field and induced current Eq. (18) is indeed
satisfied. Similarly, one can check that the induced mag-
netic current satisfies Eq. (19) for any R.
Let us specialize the above results for the case when a

thin absorbing structure is covering a perfectly conducting
surface (the most interesting scenario for microwave
absorbers). In this situation, the reflection coefficient from
the PEC side equals −1, while we demand perfect
absorption in the cover. If the structure is perfectly
absorbing plane waves traveling along −z0 and fully
reflects (R ¼ −1) waves propagating along z0, the polar-
izabilities read

η0α̂
co
ee ¼

3

2

S
jω

; ð46Þ

jΩ̂ ¼ − 1

2

S
jω

; ð47Þ

and

1

η0
α̂comm ¼ 1

2

S
jω

: ð48Þ

It is important to note that, due to the omega coupling, the
induced electric and magnetic surface-current densities are
balanced, although the normalized magnetic polarizability
is 3 times as small as the electric polarizability. From the
point of view of realizations at very high frequencies
(especially in the infrared and visible ranges), the main
problem is to provide enough strong magnetic response,
because naturally magnetic media are not available, and
artificial magnetism is a weak second-order effect of spatial
dispersion (e.g., Ref. [5]). The possibility to use stronger,
first-order effects of bianisotropic omega coupling is
clearly an advantageous route. If it is enough to ensure
full absorption only from one side of the layer and the
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reflection coefficient from the other side can be arbitrary, it
is reasonable to choose the realization with the smallest
possible absolute value of the required magnetic polar-
izability α̂comm. Inspecting Eq. (43), we see that the best
choice is the case of full mirror reflection from the back
side, R ¼ −1.
To realize symmetric perfect absorption from both sides

of a thin layer, we must ensure that

η0α̂
co
ee ¼

1

η0
α̂comm ¼ S

jω
: ð49Þ

In this case there is no magnetoelectric coupling, and the
electric and magnetic responses are balanced (equally
strong).
It is important to note that the results of this section are

not restricted by any assumption on the explicit topology
of bianisotropic sheets. The structure can contain one or
several composite or homogeneous layers, and the required
conditions for induced electric and magnetic polarizations
may be realized in structures which mimic the required
bianisotropic response, not containing any bianisotropic
particles with dipolar response.

IV. REQUIRED SURFACE SUSCEPTIBILITIES
AND UNIT-CELL POLARIZABILITIES

A. Symmetric absorbers: Impedance or admittance
boundary conditions

While the above relations for the required induced
electric- and magnetic-current densities and collective
polarizabilities of unit cells provide good insight into the
operational principle of perfect absorbers, for the design of
absorbing layers it is more convenient to express the current
densities as functions of the total tangential electric and
magnetic fields, so that the coefficients would have the
usual meaning of surface impedance or admittance. For
symmetric structures (both sides perfectly absorptive), we
can find the total surface-averaged fields right on the
absorbing sheet plane as the averaged values of the
tangential fields on the two opposite surfaces of the layer:

Etot ¼
1

2
ðEþ þ E−Þ; Htot ¼

1

2
ðHþ þH−Þ: ð50Þ

The total fields can be related to the induced surface-current
densities simply by noticing that the total fields on the
surface are the sums of the incident fields and the fields
created by the currents on the surface:

Etot ¼ Einc − η0
2
Je; ð51Þ

Htot ¼ Hinc − 1

2η0
Jm: ð52Þ

Note that, with the current values given by Eqs. (18)
and (21), relations (50) are equivalent to

Etot ¼
1

2
Einc; Htot ¼

1

2
Hinc ð53Þ

(this is expected, because on the illuminated side the field
equals to the incident field, and on the other side it is zero).
Substituting the incident fields into Eqs. (18) and (19), we
find that on the surface of a symmetric perfectly absorbing
sheet the following sheet conditions are satisfied:

Je ¼
2

η0
Etot; Jm ¼ 2η0Htot: ð54Þ

Thus, the layer is a set of two purely resistive (the
coefficients in the above relations are purely real) sheets:
one electric, with the surface resistance equal to η0=2, and
the dual “magnetic resistor” sheet, both positioned at the
same plane of the sheet absorber.

B. Asymmetric absorbers

1. Impedance or admittance matrices

For asymmetric absorbers, the impedance or admittance
matrix (e.g., Ref. [69]) is an appropriate model. In this
model, the structure response is described in terms of linear
relations between the total fields at the two sides of the
layer:

�
Eþ
E−

�
¼

�
Z11 Z12

Z21 Z22

�
·

�
z0 ×Hþ
z0 ×H−

�
: ð55Þ

Here the indices � mark the tangential fields at the two
opposite sides of the layer. Let us find the impedance
parameters for a layer acting as a perfect absorber from the
“þ” side (incident waves along the −z0 direction) and
having reflection coefficient R for the illumination of the
opposite side (the same as considered in Sec. III D). To do
that, we write the expression (55) first for illuminations of
the absorbing side and then for the reflecting side:

�
Einc

0

�
¼

�
Z11 Z12

Z21 Z22

�
·

�
z0 ×Hinc

0

�
; ð56Þ

�
0

ð1þRÞEinc

�
¼
�
Z11 Z12

Z21 Z22

�
·

�
0

−ð1−RÞz0×Hinc

�
:

ð57Þ
Obviously, these relations are satisfied if

Z11 ¼ η0; Z22 ¼ −η0 1þ R
1 − R

; Z12 ¼ Z21 ¼ 0:

ð58Þ
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Knowing the Z matrix, we can find the parameters of the
equivalent T circuit (e.g., Sec. 2.4 in Ref. [69]). The result
is shown in Fig. 3. Obviously, the symmetric absorber
which is modeled as a set of resistive sheets in the same
plane [Eq. (54)] corresponds to a symmetric T circuit with
both impedances equal to η0.
Similarly, to determine the structure of the equivalent

Π circuit, we can find the parameters of the admittance
matrix ¯̄Y:

�
z0 ×Hþ
z0 ×H−

�
¼

�
Y11 Y12

Y21 Y22

�
·

�
Eþ
E−

�
; ð59Þ

which is the inverse of ¯̄Z. Its components read

Y11 ¼
1

η0
; Y22 ¼ − 1

η0

1 − R
1þ R

; Y12 ¼ Y21 ¼ 0:

ð60Þ

This matrix corresponds to the equivalent Π circuit
shown in Fig. 4. For the purposes of the topology design,
it may be convenient to make use of the equivalent
scattering or transmission matrices of the layer. They
can be found by using standard formulas of microwave
engineering, e.g., Ref. [88].
The presence of either short- or open-circuit components

in the equivalent networks does not imply that the actual
realizations of perfect absorbers must include an impen-
etrable wall. In fact, these two equivalent T and Π circuits
can model one and the same absorber, which does not
contain neither electric nor magnetic wall. For symmetric

absorbers (R ¼ 0 in the above relations), the equivalent
circuits are symmetric and contain only resistors equal
to η0. Such absorbers can be modeled both as a symmetric
two-port, described in terms of matrix ¯̄Z or ¯̄Y, or as a set
of two resistive sheets (one electric and one magnetic,
in the same plane), described by relations (54). If the
absorber is asymmetric (R ≠ 0), the two-port matrix
model (55) is appropriate. The relations between the
asymmetry of the equivalent circuit and the omega-type
bianisotropy of the physical structure are analyzed in detail
in Ref. [89].

2. Required parameters of discrete unit cells
(individual polarizabilities)

In the previous section, we derived the required effective
parameters of asymmetric perfect absorbers in terms of
their impedance or admittance matrices. However, there is a
useful alternative model for asymmetric perfect absorbers
which consist of an array of electrically small particles. If
the interaction of particles in the array can be considered as
the interaction of corresponding electric and magnetic
dipoles, it is possible to find the required polarizabilities
of a single individual particle in free space, such that, when
arranged in a lattice, a perfect absorber would be realized.
Knowing the requirements on single particles allows
designing individual unit cells.
Finding relations between collective and individual

polarizabilities is one of the fundamental problems of
applied electromagnetics, and it has been discussed in
dozens of papers and (for simple dipole arrays) in books,
e.g., Ref. [69]. For understanding and designing perfect
absorbers, we need a rather general solution presenting the
relation between the collective and individual polariz-
abilities in closed form which would be applicable beyond
the quasistatic approximation (which is used in most
publications). Moreover, here we need the solution for
bianisotropic arrays. Recently, in Ref. [67], the needed
expressions were found for uniaxial square arrays of
bianisotropic particles whose electric and magnetic
moments are induced in the array plane. By using these
results, for arrays of bianisotropic omega particles the
individual polarizabilities as functions of the collective
ones can be written as

αcoee ¼
α̂coee þ βmðα̂coeeα̂comm − Ω̂2Þ

1þ ðβeα̂coee þ βmα̂
co
mmÞ þ βeβmðα̂coeeα̂comm − Ω̂2Þ ;

αcomm ¼ α̂comm þ βeðα̂coeeα̂comm − Ω̂2Þ
1þ ðβeα̂coee þ βmα̂

co
mmÞ þ βeβmðα̂coeeα̂comm − Ω̂2Þ ;

Ω ¼ Ω̂
1þ ðβeα̂coee þ βmα̂

co
mmÞ þ βeβmðα̂coeeα̂comm − Ω̂2Þ :

ð61Þ

FIG. 3. T-circuit model of a perfectly absorbing layer.

FIG. 4. Π-circuit model of a perfectly absorbing layer (the
shown values are resistances).
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Explicit analytical expressions for the interaction
constants βe and βm can be found, e.g., in Ref. [69].
As an example, let us give explicit design formulas
for an asymmetric absorber which is fully reflective
(R ¼ −1) from the nonabsorbing side. The required
collective polarizabilities are given by Eqs. (46)–(48).
Substituting into the above relations, we find that the
required individual polarizabilities of unit cells read

αcoee ¼
3
2
þ βe

jωη0

ð1þ βe
jωη0

Þ2
1

jωη0
;

αcomm ¼
1
2
þ βe

jωη0

ð1þ βe
jωη0

Þ2
η0
jω

;

Ω ¼
1
2

ð1þ βe
jωη0

Þ2
1

ω
: ð62Þ

By knowing these required polarizabilities of one single
unit cell in free space, the shape and dimensions of the
particle can be found from analytical models or by using
numerical simulation and optimization techniques.

V. POSSIBLE REALIZATIONS OF PERFECTLY
ABSORBING SHEETS

Next, we consider particular realizations of thin absorb-
ers and explain how they realize the required conditions on
induced electric- and magnetic-current sheets to form
absorptive Huygens pairs. We start from the simpler case
of symmetric structures, equally absorbing power from
both sides of the layer.

A. Symmetric perfect absorbers

1. Impedance-matched layers

Let us consider a material layer with μr ¼ ϵr. Because
the impedance is equal to that of free space, at an interface
with such a medium there is no reflection (considering
only normal incidence). If we in addition assume that the
material is very lossy, the wave will quickly decay, and we
can use an electrically thin (compared to the free-space
wavelength) layer as a perfect absorber. In practice, one can
position this layer on a PEC ground plane, if the thickness d
is such that the wave decays before reaching the PEC plane.
It is possible if k0dj ffiffiffiffiffiffiffiffi

ϵrμr
p j ≫ 1.

To find the equivalent electric surface-current density in
the skin layer, we first write the volumetric-current density

je ¼ jωP ¼ jωðD − ϵ0EÞ ¼ jωϵ0ðϵr − 1ÞE; ð63Þ

where E is the electric field inside the absorbing layer.
The electric field at the input interface equals the incident
field (because there is no reflected wave), and in the
layer it exponentially decays: EðzÞ ¼ Eince−jk0

ffiffiffiffiffiffi
ϵrμr

p
z. The

equivalent surface-current density is found as an integral of
the volumetric-current density over the skin depth:

Je ¼
Z

∞

0

jedz ¼ jωϵ0ðϵr − 1Þ 1

jk0
ffiffiffiffiffiffiffiffi
ϵrμr

p Einc ≈
1

η0
Einc;

ð64Þ

in the assumption jϵrj ¼ jμrj ≫ 1. Because of duality, we
can do the same derivation for the magnetic current to
obtain

Jm ¼
Z

∞

0

jmdz ¼ jωμ0ðμr − 1Þ 1

jk0
ffiffiffiffiffiffiffiffi
ϵrμr

p Hinc ≈ η0Hinc:

ð65Þ

As we see, the induced surface current densities are indeed
the same as required for perfect absorption in a thin sheet
[Eqs. (20) and (21)].
Now we can find the effective impedances and admit-

tances, relating the induced surface current densities to the
total tangential electric and magnetic fields in the sheet
plane, instead of the incident fields as in Eqs. (64) and (65).
To do that, we add to the left- and right-hand sides of
Eq. (64) the plane-wave fields created by Je (the electric
fields generated by Jm differ by sign on the two sides of the
sheet and, thus, do not contribute to the averaged electric
field):

η0Je − η0
2
Je ¼ Einc − η0

2
Je ¼ Etot: ð66Þ

Thus,

Je ¼
2

η0
Etot: ð67Þ

Likewise, we obtain

Jm ¼ 2η0Htot: ð68Þ

As expected, these are the required resistive-sheet con-
ditions for symmetric absorbers (54). In this case, the
magnetoelectric coupling is absent, because essentially we
assume that the wave decays to zero over the slab thickness.
The same isotropic slab can be illuminated from the
opposite direction, and the power will be equally totally
absorbed. As we have shown before, in this case thin
absorbers have no bianisotropy. Practical realizations of
sheets implementing the condition k0dj ffiffiffiffiffiffiffiffi

ϵrμr
p j ≫ 1 with

μr ¼ ϵr are challenging due to the lack of materials with the
needed permittivity and permeability, especially for broad-
band and high-frequency applications.
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2. Arrays of small resonant particles

The required electromagnetic properties of matched
absorbing layers can be emulated by periodical arrays of
small resonant particles. The electromagnetic properties of
dense arrays (the period is smaller than the wavelength in
the surrounding medium) can be modeled by the grid
impedance Zg, which connects the averaged electric sur-
face-current density Je and the averaged tangential electric
field in the array plane:

Etot ¼ ZgJe: ð69Þ

For perfect absorption, the required value of this parameter
is Zg ¼ η0=2 [Eq. (54)]. In terms of the polarizability of
each individual particle in the array, the grid impedance
reads [69]

Zg ¼ −j S
ω

�
Re

�
1

αee
− βe

�
þ j

�
Im

1

αee
− k30
6πϵ0

��
:

ð70Þ

Here, αee is the electric polarizability of one inclusion in
free space, βe is the interaction constant in the infinite array,
and, as before, S is the unit-cell area. Apparently, in order to
achieve perfect absorption, the imaginary part of Zg should
vanish. Physically, this requirement means that we should
work at the resonance frequency of the particles in the array
[the reactive coupling with the other inclusions is modeled
by ReðβeÞ]. Equating the real part of the grid impedance to
η0=2, we find the required loss parameter of the inclusions.
Obviously, the imaginary part of the inverse polarizability
should satisfy

Im

�
1

αee

�
¼ η0

2

ω

S
þ k30
6πϵ0

: ð71Þ

The last term (proportional to k30) is the measure of
scattering loss of any dipole particle, and the first term
tells how strong dissipation we need in each particle. Note
that the required absorption parameter is inversely propor-
tional to the unit-cell area S. This result means that there is
no need to tune the particle losses to a prescribed value, as
the overall losses can be adjusted varying the array period.
Dual relations hold for the magnetic-current density and
magnetic fields, from which we find the required condition
on magnetic losses in each particle:

Im
�

1

αmm

�
¼ 1

2η0

ω

S
þ k30
6πμ0

: ð72Þ

Similarly to the case of electric dipoles, the last term
models magnetic dipole scattering loss, and the first term
tells how much absorption loss we need in each magnetic
dipole particle.

For example, assuming the Lorentz resonant model for
the particle polarizability αee

1

αee
¼ ω2

0e − ω2 þ jωΓe

Ae
þ j

k30
6πϵ0

ð73Þ

(the last term models the radiation damping; see, e.g.,
Ref. [69]), we find the perfect absorption condition

Γe

Ae
¼ η0

2

1

S
: ð74Þ

From duality, we find the condition on the loss factor of
resonant magnetic dipoles sitting in the same unit cells as
the electric dipoles:

Γm

Am
¼ 1

2η0

1

S
: ð75Þ

The realization of a single array of resonant particles
working as a perfect absorber is reported in Refs. [90,91].
In that work, a periodic planar array of right- and left-
handed chiral particles is used [see Fig. 5(a)]. An equal
number of right- and left-handed helices makes the effec-
tive chirality negligible, as is required for symmetric perfect
absorbers, and the shape of the spirals is chosen so that
the electric and magnetic polarizabilities are balanced.
Figures 5(b) and 5(c) show an illustration of the response
of this symmetric absorber (the design parameters are taken
from Ref. [90]).
Another design for symmetric absorbers realized as

an array of resonant particles is presented in Ref. [92]
(the authors of Ref. [92] actually used two-layer arrays,
but using the same concept it can be done also with a
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FIG. 5. (a) Topology of a symmetric absorber. Absorption at
different incidence angles θ for (b) TE- and (c) TM-polarized
plane-wave incidences.
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single layer of resonant inclusions). Yet another proposed
topology uses an array of dielectric-coated metal
cylinders [93].
In the following sections, we give examples of thin

asymmetric absorbers, with different response to waves
incident on the two sides of the layer. As shown above, these
structures realize balanced bianisotropic (omega) layers.

B. Asymmetric perfect absorbers

Asymmetric perfectly absorbing structures exhibit per-
fect absorption properties only for illumination from one
of the two sides of the layer. The reflection coefficient of
the opposite side is different from zero, and, as explained
above, the layer is a bianisotropic omega structure.
Although the physical operational principle of all thin
asymmetric absorbers is the same, and the induced electric
and magnetic surface-current densities are the same, actual
topologies of the layer and the materials from which the
absorber is made can vary a lot. In the following, we
classify asymmetric perfect absorbers first into single
arrays of electrically small dipolar inclusions in a homo-
geneous host (usually free space) and structures which
contain a mirror or an interface (from ideally conducting
surfaces to moderately lossy dielectric half-spaces). Still
there is a great variety of structures which contain a ground
plane, and we classify them into structures which contain
an ideal or nearly ideal boundary (PEC or PMC plane) and
structures which have a finite-conductivity (or moderately
lossy) ground plane.

1. Arrays of resonant bianisotropic omega particles

As explained in Sec. III D, the polarizabilities (per unit
cell or per unit area) of asymmetric perfectly absorbing
sheets are the same as those of bianisotropic omega
particles. Thus, it appears that the most natural realization
of such absorbers would be in the form of periodical
two-dimensional arrays of omega particles, whose collec-
tive polarizabilities are tuned to the values given by
Eqs. (41)–(43). This scenario has been studied in detail
in Ref. [67]. In that paper, Ω-shaped pieces of thin
conducting wires are considered as possible bianisotropic
omega inclusions, but it is shown that particles formed by a
single Ω-shaped piece of wire are not suitable for this
application. The reason for this limitation is that the
different polarizabilities of such particles cannot be con-
trolled independently, as they are related to each other (all
the polarizabilities are defined by the same resonant current
mode; see details in Ref. [94]). As shown in Ref. [94], this
limitation can be lifted by using asymmetric particles or
unit cells containing more than one conducting element. A
natural choice is to use a set of two metal patches of
different dimensions or shapes located close to each other,
effectively forming one bianisotropic inclusion.
As an example, Fig. 6(a) shows an absorbing layer

possessing omega coupling. This layer is composed by two

very closely positioned arrays of different metal patches.
The calculated absorptions for waves hitting different sides
of the layer are shown in Fig. 6(b). The results demonstrate
completely different behavior for waves coming from
different sides.
Topologically, the structures described in Refs. [22,46,

95,96] function as omega unit cells (two arrays of asym-
metric metal patches), which means that these structures
can fully absorb power from one side but can have
controllable reflection for the wave illuminating the oppo-
site side (transmission must be symmetric due to reciproc-
ity). On the other side, the structure described in Ref. [29]
looks like an omega unit cell (a complex-shaped capacitive
patch next to a metal strip), but in fact the dimensions of the
strip array are chosen so that it behaves as a nearly perfectly
conducting plane (our simulations show that within the
operational frequency band the reflection coefficient of the
strip array is close to 0.9, and the reflection phase is about
−170°). Thus, it is one of the many realizations of high-
impedance surface absorbers, described in Sec. V B 4.
There are other bianisotropic structures which were

proposed to work as absorbing layers. For example, putting
a symmetric dual-patch structure on top of a substrate, one
can break the symmetry and introduce bianisotropic cou-
pling in the structure [31] (see Fig. 7). However, the layers
described in that paper are electrically thick. More about
the use of substrate-induced bianisotropy can be found in
Sec. V B 11. For most applications, illumination of only
one side of the absorbing structure is relevant. Apparently
for this reason, the role of bianisotropic coupling and
consequently the possibilities to realize and control differ-
ent responses for different sides have not been realized
earlier. In many papers on asymmetric bianisotropic
absorbers, e.g., Refs. [20,22,29,31,46,95,96], only absorp-
tion of waves coming from one of the two sides of the layer
is considered.
Most of the known realizations of asymmetric perfect

absorbers contain a ground plane or an interface between
two different media, possessing high optical contrast, and
we describe them next.
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FIG. 6. A typical topology of an omega layer. (a) An example
of an array of resonant particles possessing omega coupling.
(b) Absorption for −z- and þz-directed waves.
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2. Asymmetric absorbers containing a ground plane:
General considerations

Possible strategies of the realization of perfect absorbers
positioned at an interface with a homogeneous medium can
be conveniently understood with the use of an equivalent
circuit. The input impedance and admittance of a half-space
filled with an isotropic medium with the relative parameters
ϵs and μs read

Zs ¼ η0

ffiffiffiffiffi
μs
ϵs

r
¼ Rs þ jωLs; Ys ¼

1

Zs
¼ Gs − jBs

ð76Þ

(writing in this form, we emphasize that the imaginary part
of the surface impedance of metals or lossy dielectrics is
inductive: ωLs > 0, B > 0). Asymmetric absorbers can be
realized by positioning an electrically thin layer of a
homogeneous or composite material on the interface sur-
face. The electromagnetic properties of such a layer can be
always modeled by a set of linear relations between the
surface-averaged tangential field components on its two
surfaces, in the form of a transmission matrix or impedance
(admittance) matrix; see Sec. IV B 1. This modeling is
possible even for composite layers (for example, arrays
of complex-shaped particles) as long as the thickness
of the homogeneous substrate is much larger than the
period of the arrays inside the covering layer, because the
effects of evanescent fields in the vicinity of the layer can
be incorporated into linear relations between the funda-
mental propagating plane-wave fields (e.g., Ref. [69]).
Furthermore, for any reciprocal layer, isotropic in the
absorber plane, the impedance or admittance matrix can
be presented in the form of an equivalent T circuit (or Π
circuit) with effective scalar impedance and (or) admittance
components. Thus, any absorber formed by a material or

composite layer on an interface with another material can
be modeled by the equivalent circuit shown in Fig. 8. The
symmetric T circuit shown in the picture corresponds to
layers without intrinsic bianisotropy (e.g., an isotropic layer
on an interface). In the most general case, the two series
impedances may be different.
For the special case when the absorbing layer is filled

with a homogeneous isotropic material (permittivity ϵ ¼
ϵrϵ0 and permeability μ ¼ μrμ0), the equivalent parameters
read [69]

Z ¼ j2η tan

�
kd
2

�
≈ jωμd ¼ jη0μrk0d; ð77Þ

Y ¼ j
η
sinðkdÞ ≈ jωϵd ¼ j

η0
ϵrk0d: ð78Þ

Here k0 ¼ ω
ffiffiffiffiffiffiffiffiffi
ϵ0μ0

p
, k ¼ ffiffiffiffiffiffiffiffi

ϵrμr
p

k0, η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
, and the

approximation refers to the case of electrically thin layers
(jkjd ≪ 1). The perfect-absorption conditions can be for-
mulated in terms of matching: The parameters of the cover
should be chosen so that the input impedance of the circuit
would be equal to the free-space wave impedance η0.
Analyzing the equivalent circuit of Fig. 8, we see that
the choice of an appropriate absorbing layer is critically
dependent on the value of the surface impedance of the
underlying half-space.
If the real part of the surface impedance Zs is smaller than

η0 and the absorbing layer is electrically thin, it is obvious
that we need a lossy magnetic layer, because the total input
resistance must be higher than the real part of Zs. This
situation is realized in the case of highly conducting
materials (such as metals at microwave frequencies) used
to form the ground plane or mirror. In this case, the absorber
behaves as a series resonant circuit, formed byZs andZ. It is
difficult to find natural magnetic materials with the desired
properties, and usually the way to realize this response is to
use artificial magnetic layers. In the rest of the review,
different ways to realize such a response are discussed. The
use of dielectric layers as perfectly absorbing layers backed

FIG. 8. Circuit model of a material layer on an arbitrary
substrate. The substrate is modeled by the surface impedance
Zs, and the T circuit models a layer of an arbitrary thickness. For
perfect absorption, the input impedance (ratio of the “input
voltage” Eþ and “input current” z0 ×Hþ) must be equal to
the free-space impedance η0.

Y

Z

X

FIG. 7. Realizing omega layers positioning a symmetric patch
array on top of a dielectric layer.
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by good conductors implies the use of layers of resonant
thickness (the Dallenbach absorber, Sec. V B 8).
If the real part of the surface impedance is larger than η0,

adding a series resistor Z will only make it larger. It is
obvious that in this case perfect absorption is possible to
achieve with a thin lossy dielectric layer, acting as a shunt
impedance with respect to Zs. In this case, the absorbing
structure forms a parallel resonant circuit, formed by Zs
and Y. This situation is typically realized in the case of
optical frequencies and metals as materials for the ground
plane, when the negative-permittivity response of metals
can provide the necessary inductive response. This internal
inductance is due to reactive magnetic-field energy stored
inside the metal substrate (sometimes called kinetic induct-
ance). The resonance is similar to the plasmonic resonance
at an interface of metal (negative real part of the permit-
tivity) and a dielectric or composite layer (positive per-
mittivity), although in this case there is no surface-wave
excitation. As discussed above, the resonance is necessary
to make the input impedance real, and the amount of losses
in the dielectric layer is chosen so that the value of the total
input impedance is equal to η0. For a detailed description of
these absorbers, see Sec. V B 9.
The internal-inductance absorbers have a clear advantage

of simplicity in design and realizations: In principle, the
absorber can be formed just by a dielectric (semiconductor)
sheet on a metal surface. It may be necessary to use some
composites to realize the needed electric response, though.
However, realizations of this type of absorbers are possible
only when two conditions on the ground-plane surface
admittance Ys are satisfied. The first condition we have just
discussed: The real part of the wave admittance of the
ground-plane material should be smaller than the free-
space wave admittance: Gs < 1=η0. The second condition
requires that the fields inside the ground plane decay fast
(the imaginary part of

ffiffiffiffi
ϵs

p
is sufficiently large). If this

condition is not met, the waves in the substrate decay
slowly, and, although matched, this structure is not working
as a thin absorber. In practice, these restrictions limit the
concept of the internal-inductance absorber to infrared and
optical frequencies.
Furthermore, if the imaginary part of the permittivity ϵs

is very large (metals at microwave frequencies, for exam-
ple), the reactive part of the input impedance (the surface
inductance Ls) is very small. In this case, the internal-
impedance absorber scenario does not allow one to ensure
practically sufficient frequency bandwidth of the absorber.
Indeed, this absorber is a parallel-type resonant structure
where the inductance is due to magnetic field energy
stored in the ground plane (positive reactance) and the
capacitance is due to the electric field energy stored in the
dielectric covering layer. As is known from the theory of
high-impedance surfaces [97], the relative bandwidth is
proportional to

ffiffiffiffiffiffiffiffiffiffiffi
Ls=C

p
, where C is the equivalent sheet

capacitance of the cover [ImðYÞ ¼ ωC]. Thus, if the

surface inductance is low (too large conductivity of the
substrate), there is no practical possibility to create an
internal-inductance absorber using a thin high-capacitance
cover (a high-permittivity dielectric layer or a capacitive
array). On the other hand, note that one can get both
required inductive and capacitive responses by using a
lossy high-permittivity material as an absorbing layer of
resonant thickness. Such absorbers can be also very thin if
the refractive index of the lossy layer is sufficiently high.
These devices are known as Dallenbach absorbers; see
Sec. V B 8.
Only in the two extreme cases of electric or magnetic

sheets, when the thickness is negligible with respect to
the free-space wavelength and small with respect to the
wavelength inside the layer, can we model the layer as a
purely electric or magnetic (capacitive or inductive) sheet.
Generally, a finite-thickness material layer or a composite
(metamaterial) layer stores both electric and magnetic
energies, and both tangential electric and magnetic fields
change across the layer, as is evident from the general
equivalent circuit model of any thin absorber, shown in
Fig. 8. In other words, both electric and magnetic responses
in the covering layer are generally present.
In the following sections, we consider various realiza-

tions of asymmetric absorbers as homogeneous or
composite layers on perfect and imperfect ground planes.
We start from perfect absorbers realized as electrically thin
layers of conventional lossy materials on top of a PEC or
PMC ground plane.

3. Thin layer of a homogeneous magnetic
material on a PEC plane

One of the classical thin microwave absorbers is a layer
of a lossy magnetic material on a PEC surface. The main
idea of this device comes from the fact that in the vicinity of
a PEC surface the tangential magnetic field is strong (right
at the PEC wall, it is twice as strong as the incident
magnetic field). Thus, it appears natural to position here a
slab of a lossy magnetic material to absorb the incident
power. To find the required value of the permeability, we
specialize the theory of Sec. V B 2 for the case when
Zs ¼ 0 (PEC ground plane) and Y ¼ 0 (magnetic material
with jϵrj ≪ jμrj) and write the input impedance in the
approximation of an electrically thin layer (thin also as
compared with the wavelength inside the slab):

Zinp ¼ jη0

ffiffiffiffiffi
μr
ϵr

r
tanðk0d

ffiffiffiffiffiffiffiffi
μrϵr

p Þ ≈ jη0μrk0d ð79Þ

(here d is the layer thickness). Equating the input imped-
ance (79) to the free-space impedance η0, we find that this
structure works as a perfect absorber if μr is imaginary and

μr ¼ − j
k0d

: ð80Þ
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This result appears, for example, in Ref. [6]. To check if
the assumption of a small electrical thickness holds
with this value of the permeability, we calculate jkjd ¼
k0dj ffiffiffiffiffiffiffiffi

μrϵr
p j ¼ ffiffiffiffiffiffiffi

k0d
p

. Thus, this analysis can be used under
the condition

ffiffiffiffiffiffiffi
k0d

p
≪ 1.

The volumetric magnetic-current density in the magnetic
layer is proportional to the magnetic field inside the layer
H: jm ¼ jωðμ − μ0ÞH. The magnetic field inside the slab
varies as cosðkdÞ, which we should approximate as a
constant, because we have kept only the first-term expan-
sion term in (79). Furthermore, since there is no reflection,
this field equals the incident magnetic field: H ¼ Hinc.
Thus, the equivalent magnetic surface-current density reads

Jm ¼ jmd ¼ jωμ0ðμr − 1ÞHincd ≈ η0Hinc: ð81Þ

Here we have substituted the value of μr from Eq. (80) and
neglected the real part inside the brackets. Actually, this is
not an approximation: For the reference plane at the
absorbing layer surface, the equivalent boundary condition
reads Jm ¼ jωμ0μrdHinc (Sec. 2.5 in Ref. [69]). As
expected, this value is as required for perfect absorption
in thin layers [Eq. (21)].
The electric current is excited on the PEC sheet, and the

exciting electric field is the sum of the incident field and the
plane-wave electric field created by the magnetic-current
sheet [Eq. (81)]:

E ¼ Einc − Jm
2

¼ Einc − η0Hinc

2
¼ 1

2
Einc: ð82Þ

This field is compensated by the field created by the electric
current on the PEC surface, to fulfill the PEC boundary
condition:

− η0
2
Je ¼ − 1

2
Einc; ð83Þ

which determines the value of the electric surface-current
density

Je ¼
1

η0
Einc: ð84Þ

This result is the same value as required by Eq. (20), and we
see that the two current sheets indeed form a Huygens pair.
As it was explained in Sec. III, all thin asymmetric

absorbers are bianisotropic omega layers. Let us calculate
the polarizabilities (per unit area) of this structure and show
that it is a bianisotropic omega layer with the parameters
required by the theory of Sec. III D. If we excite this
absorber by a tangential uniform external electric field
(while the external magnetic field is zero), the electric field
will directly excite the electric current on the PEC surface,
but then this current sheet will generate a plane wave,
whose magnetic field will induce magnetic currents in the

magnetic layer. To find the effective polarizabilities of
the structure, we will utilize the same approach as in
Appendix A, calculating the currents induced by uniform
electric and magnetic external fields. The result of the
calculations (given in Appendix B) shows that the induced
electric (px) and magnetic (my) moments per unit area
satisfy Eq. (24) with the coefficients

¯̂̄αee ¼ α̂ee
¯̄It ¼

1

η0

3

2jω
¯̄It;

¯̂̄αmm ¼ α̂mm
¯̄It ¼ η0

1

2jω
¯̄It;

ð85Þ

¯̂̄αme ¼ ¯̂̄αem ¼ jΩ̂ ¯̄Jt ¼ − 1

2jω
¯̄Jt: ð86Þ

This result fully agrees with the requirements given in
Sec. III D and with the result for high-impedance structures
in Eqs. (46)–(48) and Appendix A. This result shows that
the balance conditions between the polarizabilities hold, as
should be in any thin asymmetric perfect absorber.
The simplest equivalent circuit of this absorber is of T

type, as shown in Fig. 8, where the shunt admittance can be
neglected (an open circuit). The value of the series
impedance is equal to the sheet impedance of a thin
magnetic layer (e.g., Sec. 2.5 in Ref. [69]):

Z ¼ jωμ0μrd: ð87Þ

Obviously, with the permeability value required for the
perfect absorption operation (80), we have Z ¼ η0, and the
matching condition is satisfied. If the ground plane is not
ideally conducting, the total absorption condition reads

Zinp ¼ Z þ η0

ffiffiffiffiffi
μs
ϵs

r
≈ jωμ0μrdþ η0

1þ jffiffiffi
2

p
ffiffiffiffiffiffiffiffi
ωϵ0
σ

r
¼ η0:

ð88Þ

Here ϵs and μs are the relative parameters of the ground-
plane material. The last approximate expression is for the
case of a good conductor with ϵs ≈ −jσ=ðωϵ0Þ, where σ is
the substrate conductivity.
As any thin absorber, this is a resonant structure (the

input impedance is real in the perfect absorption regime).
For a PEC ground plane, the resonance parameters are
determined by the dependence of the permeability of the
magnetic substrate μr on the frequency. In the general case
of an arbitrary substrate, we have a series resonance of the
surface impedance of the substrate (half-space or a more
complex layered structure) and the sheet impedance of the
magnetic covering layer.
Practical implementations of this design are limited by

the properties of available materials, and there has been
considerable effort in the synthesis of magnetic materials
with high losses at microwave frequencies but with limited
success, especially above 1 GHz. As an example, by using
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nanostructured multilayers described in Refs. [98] or [99],
it appears possible to realize absorbers of the normalized
thickness k0d of the order of 1=100 at the frequencies up to
3–4 GHz. An extensive recent review of various magnetic
materials for absorber applications can be found in
Ref. [100]. Realizations of this principle at more elevated
frequencies require the use of artificial magnetic materials
(metamaterials and metasurfaces), which we consider next.
In fact, even for applications in microwave absorbers
artificial magnetics may have advantages over natural
magnetics; see a review paper [101]. However, the band-
width of absorbers [15] and material-filled small antennas
[102] is determined by the static (zero frequency) value of
the permeability. For example, for an absorber formed by
an arbitrary isotropic material slab on a PEC plane, the
fundamental limitation on the absorption bandwidth can be
formulated in terms of the minimum allowed absolute value
of the reflection coefficient R0 within an interval of
wavelengths from λmin to λmax as

j lnR0jðλmax − λminÞ ≤ 2π2μsd; ð89Þ

where d is the absorber thickness and μs is the static value
of the relative permeability of the absorbing material.
This result clearly calls for the use of natural magnetic
materials in contrast to artificial magnetics (like split-ring
composites).

4. Thin layer of an artificial magnetic at a PEC plane
(high-impedance surface absorbers)

As we have just noted, it is difficult or even not possible
to find natural magnetic materials with the properties
needed for the realization of simple absorbers described
in the previous section, especially at elevated frequencies.
This problem can be solved by using artificial magnetic
materials or structures. Usually, these layers are thin also in
terms of the number of magnetically polarizable inclusions
(“metaatoms”) across the layer thickness. Most commonly,
only a single layer of some particles is used. Because of
this, the theory of thin homogeneous magnetic layers
(Sec. V B 3) cannot be applied, because the model of an
equivalent bulk medium characterized by its effective
permeability implies volume averaging, and, thus, it cannot
be introduced for single layers of particles. The notions of
the effective grid or sheet impedance, which imply only
surface averaging, will be used instead.
One possible solution to realize artificial magnetic

response is to use a high-impedance surface. The most
common topology of high-impedance surfaces is often
called the mushroom structure [103]. In this structure, a
metal patch array is located on a thin dielectric substrate,
backed by a metal ground plane; see Fig. 9. Most of these
designs are for the microwave frequency range where the
ground plane can be assumed to be perfectly conducting
(PEC). The name “mushroom structure” comes from the

original topology [103], where each patch is connected to
the ground plane with a thin conducting via, forming a
“mushroom.” However, if this structure is excited by
normally incident plane waves, there are no currents in
thin vias, because the electric field is orthogonal to the
wires. Thus, the vias are not needed and can be removed.
The presence of vias is important for the operation at
oblique incidence, where they become useful also in
absorber applications; see, e.g., Refs. [19,21]. Different
shapes of patches can be chosen for unit cells of mushroom
arrays, but all realizations use basically the same principle.
In this absorber, the necessary resonant response (recall

that the values of the Z-matrix parameters of perfect
absorbers are purely real) is organized as a parallel-circuit
resonance of the capacitive grid impedance of the array of
disconnected metal patches and the inductive impedance of
a short-circuited transmission line between the patch array
and the PEC ground plane. At the position of the grid, the
impedance matching (perfect absorption) condition can be
written as

Yg þ
1

jη tan kd
¼ 1

η0
; ð90Þ

where Yg is the grid admittance, and k and η are the wave
number and wave impedance, respectively, of the substrate
material. Analytical formulas to design arrays with the
needed grid admittance can be found in Refs. [104,105].
The total electric currents on the PEC plane and the

averaged electric currents on the patch arrays and the
differential current on these two surfaces form a Huygens
pair thanks to bianisotropic omega coupling in the struc-
ture. This property can be shown by deriving polarizabil-
ities per unit area in incident electric and magnetic fields,
which can be assumed to be uniform over the layer
thickness. To do that, one can assume that the structure
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X d

PEC

Capacitive grid

Spacer

FIG. 9. A typical mushroom structure forming a high-
impedance surface. No vias connectors are used in view of
applications for absorbing normally incident plane waves.
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is in the field of a standing plane wave [69] and find the
induced currents satisfying the boundary conditions on
the PEC plane and on the patch array. As a result, the
polarizabilities per unit area in the regime of perfect
absorption are found to be equal to

α̂coee¼
3

j2ωη0
; α̂crme¼ jΩ̂¼ α̂crem¼− 1

j2ω
; α̂comm¼ η0

j2ω

ð91Þ

(details of the derivation are given in Appendix A). It
should be noted that the polarizabilities derived for the
thin metamaterial-based absorbers are defined in terms of
induced moments per unit area, which are related to the
polarizabilities of particles in Eq. (24) as αij → αij=S.
Considering this, one can simply see that the polarizabil-
ities satisfy the required conditions (34) and (37) for
absorbing arrays of reciprocal inclusions. For a plane-wave
excitation at normal incidence, we can write for the induced
dipole moments per unit area

p ¼ 3

j2ωη0
E0 − 1

j2ω
H0 ¼

1

jωη0
E0;

m ¼ 1

j2ω
E0 þ

η0
j2ω

H0 ¼
1

jω
E0: ð92Þ

Obviously, this is a Huygens pair which satisfies the perfect
absorption requirements (23) and (36).
Numerous particular realizations of thin absorbers of this

type have been reported, e.g., Refs. [19,21,29,30,53,63,
66,106]. The majority of the known realizations are for the
microwave frequencies, and they use metals, most com-
monly, copper, as the material for the ground plane and the
capacitive patch array. It is interesting to note that the
circuit-analogue absorber [4] has the same topology: a
patch array over a metal ground plane, but in that case the
thickness of the spacer is close to λ=4, so the circuit-
analogue absorber is a modified Salisbury screen. Here, the
reactive response of the array is used to enhance the
frequency bandwidth through double-resonance properties
of the device. The same is true for an early suggestion
(published in 1999) to position a patch array on a lossy,
metal-backed dielectric substrate [107]. As an example of
asymmetric absorbers, Fig. 10 shows the absorption spec-
trum for the mushroom absorber shown in Fig. 9 with the
design parameters given in Ref. [21].
Alternatively to the mushroom high-impedance surface

topology, an artificial magnetic layer can be realized as
an array of small magnetically polarizable particles made
of conductors or high-permittivity dielectrics. For instance,
small resonant spirals [108] or split rings (SRRs) [109] or
resonant ferroelectric inclusions [110] can be used. An
example of such absorber design, where an SRR array is
located on top of a ground plane covered by a thin lossy
dielectric, can be found in Refs. [111,112]. Actually, in this

design one can simply make the SRR array from a lossy
metal, without any need for a lossy dielectric spacer.

5. External-inductance and
internal-inductance absorbers

Up to now, we assumed that in high-impedance surface
absorbers the ground plane behaves as a PEC surface. Let
us next discuss the influence of finite conductivity (and
other finite electromagnetic parameters) of the ground
plane in these absorbers. This discussion is especially
relevant for applications at terahertz and higher frequencies.
Referring to Fig. 8, imagine a situation where the ground
plane is not ideally conductive (Zs ≠ 0). For metals, this
property means that it has a considerable inductive
surface impedance in addition to some finite resistance.
Fields penetrate into the ground-plane medium, and the
total inductive response of the absorber structure is both
due to the magnetic flux in the space between the ground
plane and the patch array and due to the flux inside the
ground plane itself. We can state that if the inductive
response due to the magnetic fields inside the ground
plane is smaller than that due to the magnetic fields in
the spacer volume (inductance is mainly external with
respect to the ground plane), the absorber can be
considered as a high-impedance-surface absorber, whose
operational principle is the same as of the microwave
mushroom absorbers. In the opposite situation when most
of the reactive magnetic field energy is stored inside the
ground-plane medium (internal inductance), we classify
these absorbers as internal-inductance absorbers. In the
case of highly conducting ground planes at microwave
frequencies, when the inductance of high-impedance
surface absorbers is mainly due to the flux between
the ground plane and the patch array (Sec. V B 4), the
name external-inductance absorber is appropriate.
To understand what the physical nature of the resonance

is and to which class a particular absorber belongs, one can
consider the generalization of the perfect absorption con-
dition (90) for the case of nonideal ground planes:
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FIG. 10. An illustration of the response of an asymmetric
absorber (mushroom absorber). Absorption at different incidence
angles θ for (a) TE- and (b) TM-polarized plane-wave incidences.
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Yg þ
1þ j Zs

η tan kd

Zs þ jη tan kd
¼ 1

η0
: ð93Þ

Here we have replaced the input admittance of a short-
circuited transmission line by that of a transmission line
loaded by impedance Zs, e.g., Ref. [88]. Assuming that
the spacer is electrically thin (that is, j tan kdj < 1), we see
that if

jZsj ≪ jη tan kdj; ð94Þ

the above equation transits to Eq. (90), and we deal with
a high-impedance surface (mushroom) absorber. The
internal-inductance regime is realized when, in contrast,
jZsj ≫ jη tan kdj and, in addition, j Zs

η tan kdj ≪ 1. In this
case, the perfect absorption condition becomes

Yg þ
1

Zs
¼ 1

η0
; ð95Þ

and we deal with an internal-inductance absorber.
Most of recently reported terahertz and infrared absorb-

ers (e.g., of Refs. [7,31,48,113,114]) are based on the
high-impedance surface principle and work as external-
impedance absorbers, meaning that the inductive reactance
of the ground plane gives only a small addition to the main
inductance due to the flux between the ground plane and
the patch array. To illustrate this fact, we can consider the
equivalent circuit in Fig. 8 and estimate the relevant values
of the reactive impedances for some typical known designs.
As examples, we compare the structures reported in two

of the papers mentioned above: Refs. [31,48]. Figures 11(a)
and 11(b) compare the inductive impedance of the ground
plane and the inductive impedance due to the magnetic
flux in the spacer. As can be seen, the inductance provided
by the metallic ground plane is considerably smaller than
the one provided by the spacer, and the condition (94) is
satisfied. This result clearly indicates that for the perfor-
mance of these absorbers the plasmonic properties of the
metal used as a ground plane are not essential, even though
the metal has negative permittivity at the working frequen-
cies and fields penetrate into the ground-plane volume.

According to the above classification, these structures
are high-impedance surface (mushroom) absorbers, as
their operation is based on the use of the parallel-circuit
resonance. The operation is defined by the same Eq. (90),
with a correction due to the final conductivity of the
substrate, which can be estimated by using Eq. (93). The
physics behind the operation of absorbers presented in
Refs. [7,113,114] is basically the same.
On the other hand, we find some examples of the

structures which are closer to the internal-inductance
absorber in its operational principle [64,115]. Figure 12
shows the relevant parameter values for the absorber
described in Ref. [115]. One can conclude that the metallic
ground plane, in the frequency region of absorption, plays
the main role in providing the required inductance in
comparison to the spacer. This conclusion means that
the structure is working as an internal-inductance absorber.
In general, the internal-inductance absorber regime is
realized for substrates with Reð ffiffiffiffi

ϵs
p Þ < 1 if the capacitive

array (artificial dielectric layer) is positioned right on the
metal surface, so that j tanðkdÞj is very small.

6. Thin resistive sheet at an artificial PMC plane

The duality of electromagnetics suggests that it is
possible to replace the PEC ground plane by a PMC
ground plane and the thin layer of a lossy magnetic material
by a thin layer of a lossy dielectric, to achieve the same
perfect-absorption performance. To the best of our knowl-
edge, the first absorber of this type was introduced by
Schelkunoff in 1934 [116]. In that paper, he explained that
to eliminate reflections from an open end of a coaxial cable
(which emulates a magnetic wall) one can put a resistive
sheet right at the open end of the cable. In the well-known
book by Ramo and Whinnery, published in 1944, a
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FIG. 11. Comparison between inductive impedances provided
by the metallic ground plane and the spacer.
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FIG. 12. Comparison between the inductive impedance
provided by the metallic ground plane and the spacer for
the structure presented in Ref. [115]. The internal-inductance
absorber regime corresponds to jZsj=jηj ≫ j tanðkdÞj and, at
the same time, jZsj=jηj ≪ j1= tanðkdÞj.
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topology to create this kind of absorber by positioning a
resistive sheet at the λ=4 distance from a PEC ground plane
is presented [75]. At this distance, the PEC ground plane is
seen as a magnetic wall. In May 1943, Salisbury filed a
patent application on this device, and a patent was granted
in 1952 [2]. Obviously, this absorber has a considerable
electrical thickness, and, since there are no naturally
available magnetic conductors, this scenario of realizing
thin absorbers is possible only with the use of artificial
magnetic conductors.
The most common compact artificial magnetic conduc-

tor for microwave applications (more generally, HIS) is
the mushroom layer: a dense array of conducting patches
positioned close to a conducting ground plane [103]. We
have already discussed its use as an effective lossy
magnetic layer in Sec. V B 4. In the absorber type which
we consider now, the mushroom layer as such is nearly
lossless and used to emulate the PMC boundary. The
necessary resonant response (recall that the values of the
Z-matrix parameters of perfect absorbers are purely real) is
organized as a parallel-circuit resonance of the capacitive
grid impedance of the array of disconnected metal patches
and the inductive impedance of a short-circuited trans-
mission line between the patch array and the PEC ground
plane (see Fig. 13). The PMC response takes place if the
following resonance condition is satisfied:

Yg þ
1

jη0 tan k0d
¼ 0; ð96Þ

where Yg is the grid admittance and for simplicity we
assume that the volume between the patch array and the
PEC plane is free space. At this frequency, the input
admittance of the lossless mushroom layer is zero, and
its input impedance is infinite. Analytical formulas to
design arrays with the needed grid admittance can be
found in Refs. [104,105].

Now, if we position a thin resistive sheet with the surface
resistance equal to η0 on the surface of this artificial
magnetic wall, the absorber is matched and the incident
power is fully absorbed in the resistive sheet. As we see, the
only difference with the previously considered lossy mush-
room structure, which emulates a lossy magnetic layer, is
that here the absorption is concentrated only in the thin
resistive sheet, while in the previous case it was distributed
over the whole substrate volume.
To the best of our knowledge, the use of artificial

magnetic conductors in thin absorbers was proposed in
2002 [27] and then experimentally verified in Ref. [11].
Various patch shapes have been proposed by many
researchers, including space-filling curves [117]. Another
topology to realize an artificial magnetic wall is to use
an array of small spirals, split rings, or high-permittivity
particles as resonant magnetic inclusions (see also the
previous section). Using the same principle, one can
position a resistive sheet close to such an array and achieve
full absorption of electromagnetic waves [28,118]. An
illustration of this topology is shown in Fig. 14.

7. Using graphene in thin absorbers

At terahertz frequencies, graphene sheets can be used as
the material for patch arrays of mushroom absorbers (arrays
of graphene nanodisks are described in Ref. [119], and
graphene nanoribbons are used in Ref. [120]). The electro-
magnetic properties of graphene are usually modeled by its
complex surface conductivity, which is the same as the
sheet or grid admittance Yg used in this review. Typical
frequency dependence of the graphene sheet impedance,
calculated by using the Kubo approximation (e.g.,
Ref. [121]), is shown in Fig. 15. In this example, the
graphene sheet parameters are the same as in Ref. [119]:
The chemical potential is 0.4 eV, the carrier lifetime is
4 × 10−13 s for both intraband and interband transitions,
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FIG. 13. A lossy sheet on top of a high-impedance surface
(lossless mushroom layer).
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FIG. 14. A lossy dielectric layer in the vicinity of an artificial
PMC surface realized as an array of resonant split rings.
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and the temperature is 300 K. We can observe that under
these conditions the graphene sheet behaves as a moder-
ately lossy conductor with the loss parameter (the real part
of the sheet impedance) quite suitable for absorber appli-
cations. However, the significant inductive impedance of
graphene needs to be compensated by some sheet capaci-
tance, which can be provided by breaking the graphene
sheets into patches [119] or strips [120] (if only one
polarization is of interest). Two scenarios are, in principle,
possible. The capacitance per unit area (due to gaps) can be
tuned to resonate with the graphene sheet inductance, so
that the total sheet impedance becomes resistive and close
to the free-space wave impedance. In this scenario, the
substrate thickness should be close to a quarter wavelength,
and the absorber is working as a Salisbury screen.
Alternatively, the total sheet reactance can be tuned to
be strongly capacitive (very small gaps between graphene
patches). In this scenario, the substrate thickness can be
significantly smaller, and the operation is similar to the
high-impedance-surface absorbers. In the example given in
Ref. [119], the thickness is 1.12 μm, which is smaller than
the quarter wavelength (1.6 μm) but not significantly
smaller. Unfortunately, in both scenarios, the large induc-
tive reactance of the graphene sheet reduces the absorber
bandwidth (because some reactive energy is stored in this
inductor; see Ref. [97]), and, thus, the use of metals in
terahertz absorbers appears to be preferable to graphene.
Graphene layers can be also used to achieve tunability

of absorbers. For example, in Ref. [122], a double layer
of graphene strips was embedded into a lossy dielectric
substrate of a high-impedance-surface terahertz-frequency
absorber (a capacitive array of golden patches on a metal-
backed lossy dielectric substrate, Sec. V B 4). Modulating
the graphene surface impedance by using voltage bias, the
resonant frequency of the device can be changed.

8. Dallenbach absorbers

As we saw from the general considerations of absorbing
layers on PEC ground planes (Sec. V B 2), to realize a thin
absorber we need to use magnetic layers (natural or
artificial). An absorbing layer made of a purely dielectric
material must have a considerable (in fact, resonant)
electrical thickness. However, if the permittivity of the
material is high, the layer thickness can be still small as
compared with the free-space wavelength. This absorber is
one of the classical designs (see Fig. 16), and it is called the
Dallenbach absorber [1,5,123]. The requirements on the
material parameters and thickness can be found by equating
the input impedance of the layer (thickness d and relative
permittivity ϵr) on a PEC ground plane to the free-space
wave impedance:

ZD ¼ jη0
1ffiffiffiffi
ϵr

p tanðk0d
ffiffiffiffi
ϵr

p Þ ¼ η0: ð97Þ

The input impedance takes real values at the thickness
resonances (the lowest one, at the quarter-wave thickness).
The loss parameter should be chosen so as to ensure
matching with free space. In terms of the refractive index of
the dielectric material n ¼ n0 − jn00, the conditions read

n0 ≈
π

2k0d
; n00 ≈

2

π
ð98Þ

(e.g., Sec. 12.3 in Ref. [5]).
A detailed analysis of the physical mechanism behind

the operation of the Dallenbach absorber is presented in
Appendix C, where it is shown that close to the resonant
frequency the expressions for the input impedance of a
Dallenbach absorber have the same form as those for a
lossy high-impedance (mushroom) layer. Furthermore, in
the same Appendix, it is shown that the induced electric and
magnetic moments in the Dallenbach type absorbers read

px ¼
2jE0

ξωη0

½Fð2 − jk0dÞ − 1þ jk0d
2
�

ð1 − jk0dÞ
;

my ¼
2jE0

ξω

½Fð2 − jk0dÞ − 1þ jk0d
2
�

ð1 − jk0dÞ
ð99Þ

(the notations are defined in the Appendix). These equa-
tions show that the condition of the Huygens layer
my ¼ η0px is fulfilled. The induced electric and magnetic
moments are balanced, as is required by the general theory
of thin absorbers presented above. In practice, the main
challenge is to find (or realize as a metamaterial) a dielectric
with the refraction index approximately satisfying Eq. (98)
at the design frequency and in as wide a frequency range as
possible.
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FIG. 15. Typical dependence of the graphene sheet surface
impedance on the frequency in the terahertz frequency band. The
MATLAB code implementing the Kubo model is used courtesy of
Dr. I. Nefedov.
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9. Thin layers on imperfectly conducting surfaces:
Internal-inductance perfect absorber

Let us next apply the general theory of absorbing layers
on imperfect ground planes (Sec. V B 2) to the case when
the ground-plane material is a plasmonic metal (thin
absorbers for infrared and visible frequencies). The equiv-
alent circuits of these structures can be considered as dual
with respect to the equivalent circuit of thin magnetic-layer
absorbers on good conductors: Instead of a series reso-
nance, here we will have a parallel-circuit resonance.
Indeed, the surface impedance of a conducting half-space
is inductive [the imaginary part of the surface admittance
Ys is negative (76)]. Thus, it appears to be possible to
cancel its reactance by capacitive reactance of a thin
dielectric layer positioned on the conductor surface. The
equivalent sheet admittance of a thin dielectric layer reads
(Sec. 2.5 in Ref. [69])

Yg ¼
j
η0

ðϵr − 1Þk0d: ð100Þ

The appropriate equivalent circuit of this absorber is like
shown in Fig. 8, where the series impedance Z can be
neglected (approximated by zero). The total admittance of
the parallel connection is

Y inp ¼ Ys þ Yg; ð101Þ

and the perfect-absorption condition reads

ffiffiffiffi
ϵs

p þ jðϵr − 1Þk0d ¼ 1 ð102Þ

[the branch of the square root is defined by Reð ffiffi
·

p Þ ≥ 0].
Unfortunately, from here we see that for microwave

absorbers this scenario requires active covering layers.
For good conductors and microwave frequencies ϵs≈−jσ=ðωϵ0Þ, where σ is the metal conductivity. Because
in this case σ ≫ ωϵ0, the real part of

ffiffiffiffi
ϵs

p ≫ 1, and, thus, it
is not possible to reduce it to the free-space level by adding
some positive equivalent resistance of the covering layer.
However, this scenario is realizable in the visible range,

where metals no longer behave as nearly perfect conduc-
tors. Assuming the Drude model of plasmonic metals

ϵs ¼ 1 − ω2
p

ωðω − jΓÞ ; ð103Þ

the perfect-absorption condition Eq. (102) can be
expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

p − jωΓ
ω2 − jωΓ

s
þ jðϵr − 1Þk0d ¼ 1: ð104Þ

It appears that if jω2 − ω2
pj < ω2, the real part of

ffiffiffiffi
ϵs

p
is

smaller than unity, and it is possible to realize a perfect
absorber as a thin dielectric (semiconductor) cover. A
similar design is presented in Ref. [124] without realizing
the possibility of perfect absorption using this design, and
an experimental demonstration of nearly perfect absorp-
tion according to this scenario was recently published in
Ref. [125].
Using the experimental data on the permittivity of metals

found in Ref. [126], one can see that for silver ground
planes Reð ffiffiffiffi

ϵs
p Þ < 1 holds in the frequency range from 113

to 945 THz and for gold from 130 to 612 THz. As an
example, Fig. 17 illustrates theoretical performance of
perfect internal-inductance absorbers realized by position-
ing dielectric layers with the thickness equal to λ0=20 on a
gold substrate. The design was made for a number of
frequencies within the allowed range by selecting the
dielectric layer permittivity in accord with Eq. (102). To
model gold properties, the data from Ref. [126] are used.
Notice that the bandwidth of these absorbers becomes

smaller at lower frequencies, as expected (surface induct-
ance decreases, which leads to a smaller bandwidth of the
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FIG. 16. (a) Geometry of a dielectric Dallenbach absorber.
(b) An equivalent model as a lossy capacitive grid over the same
ground plane.
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parallel-circuit resonance). Note also that, while the elec-
trical thickness of the dielectric cover is small with respect
to the free-space wavelength, it is not necessarily small
compared to the wavelength inside the dielectric. In fact, for
the designs at the lower end of the allowed frequency range,
the optical thickness of the layer is close to the quarter-wave
resonance (for design A the thickness is approximately
0.21λ), which means that the operation mechanism in this
case is closer to that of the Dallenbach absorber than to the
internal-inductance one. Furthermore, internal-inductance
absorbers can be classified as thin absorbers only if the skin
depth of the metal ground plane is small enough, so that the
fields in the substrate decay at a subwavelength depth.
Finally, since it is difficult or even not possible to find
dielectric materials with the required permittivities (the
above illustrative designs assume dispersion-free dielectric
properties), some artificial dielectrics, usually in the form of
arrays of electrically polarizable inclusions, need to be
designed. Note that large values of the permittivity in our
examples correspond to semiconductors, but real semi-
conductors are dispersive media and their dispersion may
be not favorable for satisfying Eq. (102) with so small a
thickness as d ¼ λ0=20.

10. Plasmonic absorbers

Perfect absorption at infrared and possibly optical range
can be realized also by using arrays of resonant plasmonic
nanoparticles, separated by a thin dielectric substrate from a
metal ground plane. As discussed above, if the real part of
the refractive index of the ground-plane metal is larger than
unity (which is the case of most metals up to the infrared
range), the structure which is put on top of a metal surface
must possess some effective magnetic response (referring
to Fig. 8, the series resistance Z is significant for absorber
operation). Because the surface impedance of the ground
plane Zs is inductive, this structure should also provide
some electric-polarization (capacitive) response in order to
compensate the inductive reactance of the interface with the
ground plane. Two distinct regimes are possible: The spacer
and the plasmonic-particle array are far from the resonance,
so that the reactive energy stored inside and in the near
vicinity of plasmonic nanoparticles is predominantly elec-
tric. In this regime (realized in Refs. [7,37,113]), most of
the inductance is due to the magnetic flux in the dielectric
spacer, and the absorber’s operation principle is similar to
that of a high-impedance (mushroom-type) absorber. In the
other possible regime, the array of plasmonic particles is
close to the resonance, in which case the reactive magnetic
energy is mainly in the particle array. In these structures,
most of the power is lost in the resonating nanoparticles,
and the operational principle is more similar to the
Dallenbach absorber. This similarity means that the struc-
ture on top of a reflecting ground plane provides the phase
shift equivalent to a quarter-wave gap between the interface
and the ground plane. Depending on the operational

frequency and used materials, intermediate mixed regimes
are possible. As discussed in the previous subsection, some
metals in the visible range have the real part of the surface
admittance smaller than the inverse of free-space imped-
ance. In this case, the needed dielectric-sheet response of
the absorbing cover given by Eq. (102) corresponds to a
semitransparent material with realistic complex permittiv-
ity. If a natural material with the needed properties cannot
be found, this response can be achieved for a dielectric-
semiconductor composite or even emulated by a planar
array of metal particles. The topology of such absorbers
(realized in Refs. [114,115,127]) is the same as for the case
of resonant plasmonic arrays.

11. Metamaterial absorber based on the effect of
substrate-induced bianisotropy

We see that the presence of magnetic polarization in
thin layers is a necessary condition for perfect absorption.
In the examples above, we see a number of techniques used to
ensure the required magnetic response: the use of natural
magneticmaterials, artificial magnetic conductors in the form
of mushroom layers, resonant split rings, small spirals, and
dielectric nanospheres in the magnetic Mie resonance. Here
we discuss another possibility, offered by the bianisotropic
response of arrays of small particles on a transparent
substrate (see Fig. 18). Clearly, bianisotropy results in
effective magnetic surface polarization generated by the
incident electric fields. The physical mechanism under-
lying this effect is called substrate-induced bianisotropy
(SIB) [128].
Consider a regular planar array of plasmonic nano-

particles located at a small distance d over a transparent
substrate with the relative permittivity ϵr [128]. Let the
bottom parts of these particles be curved (e.g., as spheres or
spheroids). In the plasmon resonance band, the electric
field is concentrated within a hot spot which is partially
located inside the nanoparticle but partially in the substrate.
Local polarization currents in these two parts of the hot
spot have opposite directions, because the real part of the
complex permittivity of plasmonic metals is negative and
that of the substrate is positive. If the absolute values of
these permittivities are comparable to each other, the
polarization of the hot spot (which is locally dominating
over the polarization of the remainder of a unit cell) can be
adequately presented as a pair of electric dipoles with
comparable amplitudes and opposite directions. The effec-
tive distance between these two dipoles is close to the hot
spot size. This phenomenon is nothing but generation of a
local magnetic moment linked to the hot spot. In other
words, the array acquires bianisotropic omega coupling.
In the presence of SIB the array of plasmonic nanoparticles
is fully equivalent to an array of omega particles [129].
In Ref. [130], it was shown that the SIB effect may allow
satisfaction of the zero reflection condition (36), together
with the zero transmission condition (37). Since the
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magnetic polarizability of nanoparticles is negligible, for
metamaterial absorbers operating due to the SIB effect
one should assume α̂comm ¼ 0 in both Eqs. (36) and (37).
These conditions can be satisfied simultaneously within the
plasmon resonance band of the original nanosphere array if
ϵr ≫ ϵu (where ϵu ≥ 1 is the relative permittivity of the
upper half-space) and 0 < d ≪ D, and the array period p
satisfies p ≪ λ. Practically, the structure from Ref. [130]
may be realized of silver or gold nanospheres floating in a
liquid over the surface of a semiconductor.

VI. SUMMARY AND OUTLOOK

Based on the analysis of the possible physical mecha-
nisms of perfect absorption in optically thin structures,
we can classify all known perfect and nearly perfect thin
absorbers into the following categories:
(1) Symmetric absorbers (electric and magnetic resistive

sheets at the same plane)
(a) A lossy layer of a material with ϵr ¼ μr
(b) Arrays of resonant electric and magnetic dipoles

(spirals, dipoles and split rings, etc.)
(2) Asymmetric absorbers (bianisotropic omega layers)

(a) Arrays of resonant omega particles
(b) Lossy layers on ideal boundaries
(i) Thin lossy magnetic layer (natural or artificial

magnetic, commonly in the form of a mush-
room structure) on a PEC ground plane

(ii) Resistive sheet on an artificial magnetic con-
ductor surface (e.g., lossless high-impedance
structure)

(iii) Resonant lossy dielectric layer on a PEC
ground plane (the Dallenbach absorber)

(c) Layers on imperfect boundaries
(i) Thin lossy dielectric layer (natural or artificial

dielectric) on a conductor surface (internal-
impedance absorber)

(ii) Lossy artificial magnetic conductor (e.g.,
mushroom structure with a lossy dielectric
substrate)

Symmetric absorbers as lossy layers of materials with
equal relative permittivity and permeability (Sec. VA 1),
being conceptually very simple, are problematic due to very
strict requirements on the material parameters. Although
considerable progress has been achieved in synthesizing
lossy magnetic materials (e.g., Ref. [100]), there are only
limited options and mainly at microwave frequencies.
Symmetric perfect absorbers in the form of arrays of
resonant particles (Sec. VA 2) appeared only recently,
and the only known experimental realization [91] is in
the microwave frequency range. Realizations in the optical
range need electrically small resonant particles with bal-
anced resonant electric and magnetic moments. Similar
requirements hold for particles (metaatoms) needed for
realizations of double-negative metamaterials, and consid-
erable experience of many groups working in that field
can be useful in designing perfect absorbers of this class.
Various topologies, such as core-shell nanoparticles or
double patches of various shapes, have been proposed
and studied in the regime of as low a dissipation loss as
possible. To approach the problem of perfect absorption
realization, dissipation losses should be significant and
controllable in the design and manufacturing.
Interestingly, while there is a huge literature on high-

impedance surface (mushroom-type, Sec. V B 4) absorbers
in the form of various periodical structures on top of a
conducting surface, some of the simplest possible realiza-
tions of perfect absorbers have not yet been sufficiently
studied. In particular, we mean internal-impedance perfect
absorbers: thin lossy dielectric or artificial-dielectric sheets
on a plasmonic metal or another conductor with low
conductivity and high surface inductance, and we expect
interesting new developments in these areas.
In the design of thin broadband absorbers, the funda-

mental limitation Eq. (89) suggests the use of natural
magnetic materials with high static values of permeability.
However, such materials are not practical in terahertz
and optical devices. In this respect, a largely unexplored
possibility is making use of active and parametrically
pumped layers, as a route to overcome the fundamental
limitations on the performance of passive absorbers.
Reference [131] discusses the general conditions of zero
backscattering from small particles, showing interesting
new possibilities offered by active inclusions. The active
route is especially promising in view of a possibility to
overcome the frequency bandwidth limitations for all
passive absorbers. Some initial work on active non-Foster
absorbers can be found inRefs. [18,132–134]. Alternatively,
frequency-bandwidth limitations can be overcome by mak-
ing the absorber’s parameters tunable by some external
fields (most commonly, electric bias or light illumination).
This route is being actively explored especially for micro-
wave absorbers; see the review paper Ref. [135].
In this review, we discuss only perfect absorption of

normally incident waves. The angular stability of thin

(a) (b)

FIG. 18. (a) Horizontally isotropic grid of silver nanospheres
located at a very small distance d from a semiconductor substrate.
(b) An equivalent array of scatterers with both electric and
magnetic responses which are balanced at a certain frequency.
The action of the substrate at this frequency is modeled by the
magnetic polarizability.
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absorbers presents another challenge which needs further
studies. Here, we expect that the key to success will be
learning how to engineer spatial dispersion in metasurfaces.
The use of active elements can offer an alternative route.
It is important that for perfect absorption at a fixed but
oblique incidence angle there are more open possibilities
than for the normal-incidence case. An interesting example
can be found in Ref. [136], where in the extremely thin
absorbing layer the equivalent surface electric and magnetic
currents are not balanced, and the necessary asymmetry in
radiation of the induced currents is ensured by an infini-
tesimally thin layer of induced electric polarization which is
directed normally to the absorbing surface.
Another possibility to improve performance of thin

absorbers is to make use of amorphous arrangements of
absorbing elements. Nearly all known approaches exploit
periodical arrays of various topologies (possible deviations
from periodicity are commonly considered as unavoidable
imperfections in manufacturing). However, it appears that
properly engineered randomness of metasurfaces may offer
possibilities to control and potentially improve absorption
efficiency. Recently, some initial studies of absorption in
resonant amorphous metasurfaces were published, e.g.,
Refs. [64,127,137,138], but more studies and a better
understanding of such structures is needed to enable optimal
use of randomness in absorber design. Research in this area
is motivated also by technological advantages, since amor-
phous metasurfaces can be manufactured by using effective
and cheap bottom-up methods [138]. On the other hand, we
should note that, while the use of random structures may
help in controlling the absorption level and increasing
absorption bandwidth, this way it is not possible to realize
perfectly nonreflecting absorbers. Amorphous absorbers
inevitably create some diffuse scattering in all directions,
which cannot be eliminated by any matching structures.

VII. CONCLUSIONS

The general consideration of physical mechanisms of
perfect absorption brings us to a number of important
conclusions. First, all optically thin absorbers are based on
the same principle of an absorbing Huygens sheet formed
by induced electric and magnetic surface currents. Second,
absorbers which equally absorb waves coming from the
two sides of the sheet are simple combinations of an electric
resistive sheet and a magnetic resistive sheet (no bianiso-
tropic coupling in the layer). Third, reciprocal absorbers
which absorb waves only from one side of the sheet (e.g.,
absorbers on a perfectly conducting ground plane) are lossy
and resonant bianisotropic omega layers. As is clear from
the above wide overview of different topologies which can
be used to create a thin absorber, all of these absorbers are
basically following the same physical concept.
Knowing the required response of thin absorbing sheets

allows the use of metamaterial and metasurface synthesis
methods to design particular devices. In order to realize a

thin perfect absorber, one must ensure that the structure
responds both electrically and magnetically and the strength
of these responses is balanced at the working frequency to
have zero reflection. At the same time, these induced
currents should be strong enough to cancel the incident
wave in the forward direction and ensure zero transmission.
Having a magnetic response for an absorber structure is a
necessary condition for perfect absorption. All passive thin
perfect absorbers are resonant structures, which fundamen-
tally limits their operational frequency band.
Themajority of the knowndesigns of perfect absorbers are

based on only numerical simulations and optimizations. We
hope that the general framework theory and the wide over-
view of known approaches to realizing perfect absorption in
thin layers which we present here will be useful for future
research in this field and for practical device development.
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APPENDIX A: POLARIZABILITIES OF
HIGH-IMPEDANCE SURFACE

PERFECT ABSORBERS

Here we provide detailed derivations of polarizabilities
for a typical thin absorber made of a capacitive grid
mounted close to a metal sheet. Deriving induced electric
and magnetic moments, it is shown that these layers act as
the Huygens’ layer. To find the polarizabilities, we need to
excite the absorber layer by the electric field and magnetic
field which are approximately constant inside the layer
[69]. We choose the exciting field in the form of a standing
wave as

E ¼ ½E0e−jk0z − E0eþjk0z�x0 ¼ −j2E0 sinðk0zÞx0;

H ¼ ½H0e−jk0z þH0eþjk0z�y0 ¼ 2H0 cosðk0zÞy0: ðA1Þ

To study the excitation by external electric fields, we
position the layer so that the maximum of the electric
field distribution of the standing wave is located at the
middle point between the grid and the ground plane
(Fig. 19), where sinðk0zÞ ¼ −1, for example, assuming
k0z ¼ −π=2 (the normalized distance between the grid
and the ground plane is k0d ≪ 1). Next, we write the
relations between the averaged surface-current density on
the ground plane Jmet and on the array of patches Jg and
the total surface-averaged electric fields at the respective
two planes:

j2E0 cos

�
k0d
2

�
− η0

2
Jg − η0

2
Jmete−jk0d ¼ ZgJg;

j2E0 cos

�
k0d
2

�
− η0

2
Jge−jk0d − η0

2
Jmet ¼ 0: ðA2Þ
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Here Zg is the grid impedance of the patch array. The value
of the grid impedance we choose so that the absorber
matches to the free space. Using the perfect-absorption
condition (90), we find the required grid impedance

Zg ¼ jη0

�
sin k0d

j sin k0d − cos k0d

�
: ðA3Þ

Using Eq. (A2), the currents on the patch grid and on the
metal surface can be found:

Jmet ¼ j
4

η0
E0 cos

k0d
2

− Jge−jk0d;

Jg ¼
−2E0e−jðk0d=2Þ sin k0d
jη0e−jk0d sin k0dþ Zg

: ðA4Þ

Substituting Zg from (A3), we can write the surface-current
density at the patch array as

Jg ¼
−2E0e−jðk0d=2Þ
jη0ð−j2 sin k0dÞ ¼

−E0e−jðk0d=2Þ
η0 sin k0d

: ðA5Þ

The induced electric moment per unit area of the structure,
by definition [139], reads

px ¼
1

jω
ðJmet þ JgÞ: ðA6Þ

Substituting Eqs. (A4)–(A6), we find

px ¼
1

jω

�
j
4

η0
E0 − E0e−jðk0d=2Þð1 − e−jk0dÞ

η0 sin k0d

�
: ðA7Þ

Assuming that the layer is optically thin (k0d ≪ 1), the
above result simplifies to

px ¼
3

ωη0
E0: ðA8Þ

Dividing the induced electric moment by the amplitude
of the external electric field j2E0 in Eq. (A1), we find the
effective electric polarizability per unit area:

α̂coee ¼
px

j2E0

¼ 3

j2ωη0
: ðA9Þ

By definition [139], the induced magnetic moment per
unit area can also be written as

my ¼ − dμ0
2

ðJmet − JgÞ: ðA10Þ

Using Eqs. (A4), (A5), and (A10), we find the induced
magnetic moment as

my ¼ −dμ0
2

�
j
4

η0
E0 þ

E0ejðk0d=2Þð1þ e−jk0dÞ
η0 sin k0d

�
: ðA11Þ

The assumption of an optically thin layer simplifies this
relation to

my ¼ −E0

ω
: ðA12Þ

Next, dividing the magnetic moment by the amplitude
of the exciting electric field in Eq. (A1), we can
calculate the magnetoelectric polarizability (omega
coupling coefficient):

α̂crme ¼
my

j2E0

¼ −1
j2ω

: ðA13Þ

In the second step, we derive the effective magnetic and
electromagnetic polarizabilities by considering excitation
of the same layer by external magnetic fields. To do that, we
position the layer inside the standing wave Eq. (A1) so that
the maximum of the magnetic field is in between the array
of patches and the ground plane, as shown in Fig. 19 (e.g.,
at k0z ¼ 0). Similarly to the above, writing the relations
between the induced averaged surface currents and the
electric fields in the plane of the patches and the ground
plane, we get

−j2E0 sin

�
k0d
2

�
− η0

2
Jg − η0

2
Jmete−jk0d ¼ ZgJg;

j2E0 sin

�
k0d
2

�
− η0

2
Jge−jk0d − η0

2
Jmet ¼ 0: ðA14Þ

From these equations we find the induced current densities
on the metal surface and on the grid array:

Electric field 

Magnetic field 

Second case 

First case 

FIG. 19. Geometry of the problem. The gray plates show two test
positions of the absorbing structure in the field of a standing wave.
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Jmet ¼ j
4

η0
E0 sin

k0d
2

− Jge−jk0d;

Jg ¼
−j2E0e−jðk0d=2Þ sin k0d
jη0e−jk0d sin k0dþ Zg

: ðA15Þ

By using Eqs. (A3) and (A15), the patch-array current can
be written as

Jg ¼
−j2E0e−jðk0d=2Þ sin k0d

jη0e−jk0d sin k0dþ jη0ð sin k0d
j sin k0d−cos k0dÞ

; ðA16Þ

which for thin layers simplify to the following expression:

Jg ¼
−jE0e−jðk0d=2Þ
η0 sin k0d

: ðA17Þ

The electric moment per unit area is calculated by using
Eq. (A6):

px ¼
1

jω

�
j
4

η0
E0 sin

k0d
2

− jE0e−jðk0d=2Þð1 − e−jk0dÞ
η0 sin k0d

�
:

ðA18Þ
Assuming an optically small thickness for the structure,
we get

px ¼
H0

jω
: ðA19Þ

The coupling coefficient can be found by dividing the
induced electric moment by the amplitude of the external
magnetic field in Eq. (A1):

α̂crem ¼ px

−2H0

¼ −1
j2ω

: ðA20Þ

By using Eqs. (A4), (A5), and (A10), the magnetic moment
can be written as

my ¼ − dμ0
2

�
j
4

η0
E0 sin

k0d
2

þ jE0e−jðk0d=2Þð1þ e−jk0dÞ
η0 sin k0d

�
;

ðA21Þ

and within the same assumption of optically small
thickness,

my ¼
η0H0

jω
: ðA22Þ

The magnetic polarizability can be determined by dividing
the induced magnetic moment by the external magnetic
field in Eq. (A1):

α̂comm ¼ my

2H0

¼ η0
j2ω

: ðA23Þ

Finally, the collective polarizabilities per unit area of thin
high-impedance surface absorbers can be written as

α̂coee¼
3

j2ωη0
; α̂crme¼ jΩ̂¼ α̂crem¼− 1

j2ω
; α̂comm¼ η0

j2ω
:

ðA24Þ

These expressions show that there is bianisotropic omega
coupling in thin metasurface-based absorbers. It should be
noted that the above polarizabilities are defined in
terms of induced moments per unit area, which are related
to the polarizabilities of particles in Eq. (24) as αij → αij=S.
Considering this, one can simply see that these polar-
izabilities satisfy the required perfect-absorption conditions
(34) and (37) written for absorbing using an array of
individual reciprocal inclusions.
This equivalence can be expressed also in terms of

induced electric and magnetic surface currents. Assuming a
plane wave traveling in the z0 direction, the induced electric
and magnetic moments in thin-layer absorbers can be
written as

px ¼ α̂coeeEx − α̂crmeHy;

my ¼ α̂crmeEx þ α̂commHy; ðA25Þ

where Ex ¼ E0 and Hy ¼ E0=η0. Finally, substituting the
polarizabilities, we find

px ¼
3

j2ωη0
E0 − 1

j2ω
H0 ¼

1

jωη0
E0;

my ¼
1

j2ω
E0 þ

η0
j2ω

H0 ¼
1

jω
E0: ðA26Þ

We can conclude that these form a Huygens’s pair and satisfy
the required perfect-absorption conditions (23) and (36).

APPENDIX B: POLARIZABILITIES OF A THIN
MAGNETIC LAYER AT A PEC PLANE

Here we give details of derivations of polarizabilities
(per unit area) of an asymmetric perfect absorber formed by
a lossy magnetic-material layer at an ideally conducting
mirror (Sec. V B 3). The geometry of the structure is
illustrated by Fig. 20, and the configuration of the probe
fields is the same as shown in Fig. 19.
Let us suppose that we excite this structure only by a

uniform electric field E ¼ E0x. In this scenario, the
induced electric (px) and magnetic (my) moments per unit
area can be written as

px ¼ α̂eeE0; my ¼ α̂meE0: ðB1Þ

The boundary condition on the PEC surface reads
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η0
2
Jex þ

1

2
Jmy ¼ E0: ðB2Þ

The magnetic surface-current density is related to the total
magnetic field induced in the magnetic sheet as in Eq. (81).
The total magnetic field is created by the induced currents
only (the external magnetic field is zero), which allows us
to write

Jmy ¼ η0Htot ¼ η0

�
− 1

2
Jex − 1

2η0
Jmy

�
: ðB3Þ

This result defines the relation between the induced electric
and magnetic surface-current densities:

Jmy ¼ − η0
3
Jex: ðB4Þ

Next, by using Eqs. (B2) and (B4), the induced averaged
electric- and magnetic-current densities per unit area of the
structure can be found:

Jex ¼
3

2η0
E0; Jmy ¼ − 1

2
E0; ðB5Þ

and the respective induced surface-averaged electric and
magnetic moments read

px¼
Jex
jω

¼ 3

j2ωη0
E0; my¼

Jmy
jω

¼− 1

j2ω
E0: ðB6Þ

Now we can find the electric and magnetic polarizabilities
simply by dividing the moments by the amplitude of the
incident field:

η0α̂ee ¼
3

j2ω
; α̂me ¼ − 1

j2ω
: ðB7Þ

Similarly, we can excite the structure with a uniform
magnetic field while the external electric field is set to be
zero at the position of the structure and find the respective
polarizabilities, writing

px ¼ −α̂emH0; my ¼ α̂mmH0: ðB8Þ

To satisfy the boundary condition at the PEC surface, the
fields created by the two induced current sheets must cancel
each other:

Jmy ¼ η0Jex: ðB9Þ
Instead of Eq. (B3), we have (the external magnetic field is
not zero in this excitation scenario)

Jmy ¼ η0Htot ¼ η0

�
− 1

2
Jex − 1

2η0
Jmy þH0

�
: ðB10Þ

By using Eqs. (B9) and (B10), the induced electric and
magnetic currents and the respective polarizabilities are
found:

Jex ¼
1

2
H0; Jmy ¼ η0

2
H0; ðB11Þ

α̂em ¼ − 1

j2ω
;

1

η0
α̂mm ¼ 1

j2ω
: ðB12Þ

Thus, the effective polarizabilities per unit area of the
structure read

η0α̂ee¼
3

j2ω
; α̂me¼ α̂em¼− 1

j2ω
;

1

η0
α̂mm¼ 1

j2ω
;

ðB13Þ
which are the required polarizabilities for perfect absorp-
tion in all thin asymmetric absorbers with a reflector at the
back [Eqs. (46)–(48)].

APPENDIX C: DALLENBACH ABSORBERS AS
BIANISOTROPIC HUYGENS LAYERS

Here we show that close to its operational frequency a
thin Dallenbach absorber response is equivalent to that of a
lossy capacitive grid separated by a free-space gap from
the ground plane (high-impedance surface absorber). This
equivalence is illustrated by Fig. 16. For the proof, it is
important that the gap in Fig. 16(b) is optically thin,
whereas the dielectric in Fig. 16(a) has the relative
permittivity ϵr of a large absolute value which makes the
gap rather optically substantial in terms of the wavelength
in the dielectric medium (quarter-wavelength thickness
corresponds to the thinnest Dallenbach absorber). We show
that the effect of the high complex permittivity slab can
be replaced by the action of a lossy grid whose reactance in
the vicinity of the operation frequency is capacitive. In
other words, we show the equivalence of the fundamental
operation principles of the Dallenbach and the mushroom-
type absorbers.
First, let us show the equivalence of their surface

impedances (admittances). The surface impedance of the
dielectric Dallenbach absorber is equal to (see, e.g., Ref. [4])

Y

Z

X

d Magnetic layer

PEC

FIG. 20. Magnetic layer on a PEC ground plane.
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ZD ¼ jη0
tan kdffiffiffiffi

ϵr
p ; ðC1Þ

where d is the dielectric layer thickness and k is the wave
number in the dielectric k ¼ k0 − jα ¼ k0

ffiffiffiffi
ϵr

p
. The com-

plex permittivity of the layer can be expressed through
the loss tangent ϵr ¼ ϵ0r − jϵ00r ¼ ϵ0rð1 − j tan δÞ. The thin-
nest Dallenbach absorber is described by the following
equations [123]:

ϵ0r ¼ cos δ
coshðΘsÞ − coshðΘÞ
coshðΘsÞ þ coshðΘÞ ; Θ ¼ π

1 − s2
; ðC2Þ

where it is denoted Θ ¼ 2k0d and s ¼ tan ðδ=2Þ. These
equations in the absence of magnetic properties of the
dielectric have a solution within the region s < 0.25, when
the second equation (C2) practically results in the well-
known condition of the quarter-wavelength thickness
2k0d ≈ π. Since jϵrj ≫ 1, the smallness of dielectric losses
and the quarter-wavelength restriction for d imply the
inequality αd ≪ 1. By using the standard formula

tanðx − jyÞ ¼ sinð2xÞ − j sinhð2yÞ
cosð2xÞ þ coshð2yÞ ðC3Þ

and the quarter-wavelength condition for d, the surface
admittance of a thin dielectric Dallenbach absorber
[Eq. (C1)] can be approximately written in the form:

YD ≡ 1

ZD
≈
½ðπ=2 − jαdÞðcoshð2αdÞ − 1�

η0k0d sinhð2αdÞ
: ðC4Þ

Using the condition αd ≪ 1, we can write coshð2αdÞ −
1 ≈ 2ðαdÞ2 and sinhð2αdÞ ≈ 2αd, reducing Eq. (C4) to

YD ≈
πα

2k0η0
− j

α2d
k0η0

: ðC5Þ

Under the condition α ≈ ð2k0=πÞ, which can be written
also as ϵ00r ≈ ð4=πÞ or as δ ≈ ð4=πϵ0rÞ, we obtain the equation
of the approximate impedance matching on top of the
absorbing surface:

YD ¼ 1

ZD
≈

1

η0
ð1 − jξÞ; ðC6Þ

where it is denoted ξ ¼ ð4k0d=πÞ < 1. This known result
corresponds to the thinnest Dallenbach absorber and
practically requires ϵ0r > 15–16 so that the absorption
coefficient may exceed 0.9 [123]. From Eq. (C6), it follows
that the frequency of the maximal absorption is redshifted
with respect to the resonance of the surface impedance
[at this resonance ZD ¼ ReðZDÞ ≫ η0].
The surface admittance Yma of the effective mushroom

absorber depicted in Fig. 16(b) is the sum of the grid

admittance Yg of a presumably capacitive grid and the input
admittance of the metal-backed gap:

Yma ¼ Yg þ
1

jη0 tanðk0dÞ
≈ Yg þ

1

jη0k0d
: ðC7Þ

Equating admittances (C6) and (C7), we obtain

Yg ≈
1

η0

�
1þ j

k0d
− jξ

�
: ðC8Þ

In the reactive part of the grid admittance, one can neglect
the small term ξ and present Eq. (C8) in the form

Yg ¼ Gþ jωC; G ≈
1

η0
; C ≈

2

ωη0π
: ðC9Þ

The frequency dispersion of the effective capacitance C in
the vicinity of the absorption frequency does not violate
any physical requirements. What is really important is the
positive sign of the imaginary part of Yg that indicates
the capacitive response of the equivalent grid, whereas the
positive sign of G corresponds to absorption.
We see that the surface impedance of the Dallenbach

absorber is indeed equivalent to that of a mushroom
absorber with lossy and dispersive patches. The scheme
of a mushroom absorber with lossy (and consequently more
or less dispersive) patches was first published probably in
Ref. [27] and later theoretically and experimentally devel-
oped in Refs. [11,19,106,140], and many others. For the
equivalent scheme of the Dallenbach absorber it is not
essential that the gap in Fig. 16(b) is filled with free space
and that it has the same thickness d as the actual absorber.
In our model, we can fill the gap of the equivalent absorber
with a low-permittivity dielectric layer and simultaneously
reduce its equivalent height that will slightly change the
effective grid capacitance compared to expressions (C9).
However, the equivalence of the surface impedances

even within a nonzero range of frequencies around that of
the maximal absorption does not guarantee the equivalence
of the electromagnetic responses of the Dallenbach and
mushroom absorbers. To prove that the Dallenbach
absorber is fully within our general scheme of electromag-
netic absorption in thin structures, we will derive the
condition of the total absorbance in terms of balanced
electric p and magnetic m moments per unit area, like it
was done in Appendixes A and B for other thin absorbers.
To do that, we locate the coordinate origin at the central

plane of the absorber as is shown in Fig. 16(a). Then the
ground plane is at z ¼ −d=2 and the upper surface is at
z ¼ d=2, and the effective moments p and m refer to the
plane z ¼ 0. Let the electric field be polarized along the
x axis and the magnetic field along y. Let us show that
the Huygens’ scatterer condition is satisfied in the regime
of full absorption, i.e., that for the normal plane-wave
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incidence we have my ¼ η0px. Also, as was done in
Appendix A, we combine this proof with the demonstration
of the effective bianisotropy of the absorber. In other words,
we show that both mushroom and Dallenbach absorbers
turn out to be equivalent to an array of omega particles,
which means the equivalence of their electromagnetic
response to a plane wave.
For this proof, we derive the effective polarizabilities

defined with respect to the local fields: αee ¼ px=Eloc
x ,

αmm ¼ my=Hloc
y , αem ¼ px=Hloc

y ¼ −jΩ, and αme ¼
my=Eloc

x ¼ jΩ. Here Ω is the magnetoelectric coefficient
of an effective omega particle modeling the unit area of the
Dallenbach absorber. To model the local fields, we again
use the standing-wave approach of Appendix A, Fig. 19.
For the electric excitation of the Dallenbach absorber
shown in Fig. 16(a), the external fields in our model are
equal to

Eext
x ðzÞ ¼ 2E0 cosðk0zÞ; Hext

y ðzÞ ¼ 2E0 sinðk0zÞ=η0;
ðC10Þ

i.e., the local fields are as follows:

Eloc
x ≡ Eext

x ð0Þ ¼ 2E0; Hloc
y ≡Hext

y ð0Þ ¼ 0: ðC11Þ

For the magnetic excitation, the external fields are equal to

Hext
y ðzÞ ¼ 2E0 cosðk0zÞ=η0; Eext

x ðzÞ ¼ 2E0 sinðk0zÞ;
ðC12Þ

whereas the local fields are as follows:

Hloc
y ≡Hext

y ð0Þ ¼ 2E0=η0; Eloc
x ≡ Eext

x ð0Þ ¼ 0:

ðC13Þ

First, consider the electric excitation described by
Eq. (C10). Let EPðzÞ ¼ EPðzÞx0 and HPðzÞ ¼ HPðzÞy0,
respectively, denote the electric and magnetic fields pro-
duced by the bulk polarization PðzÞ ¼ PðzÞx0 of the
dielectric layer. Denoting Jmet ¼ Jmety0 the amplitude of
the surface current induced on the metal plane, we can
write the boundary condition at the upper interface of the
absorber:

2E0 cos

�
k0d
2

�
þ EP

�
d
2

�
− η0Jmet

2
e−jk0d

¼ ZD
2E0 sinðk0d2 Þ þHPðd2Þ − Jmet

2
e−jk0d

η0
: ðC14Þ

Here the left-hand part of Eq. (C14) is the total electric field
E ¼ Ex0 on top of the structure, at z ¼ d=2. The right-
hand side is the product of the surface impedance of the
Dallenbach absorber by the total magnetic field H ¼ Hy0

on top of it. The total electric field comprises even and odd
parts and inside the structure can be searched in the form

EðzÞ ¼ A sin kzþ B cos kz: ðC15Þ

Coefficients A and B are related by the PEC boundary
condition at z ¼ −d=2:

−A sin

�
kd
2

�
þ B cos

�
kd
2

�
¼ 0: ðC16Þ

In the absorption regime kd ¼ π=2 − jαd, where αd ≪ 1.
In these derivations we adopt an approximation kd ≈ π=2.
Then Eq. (C16) results in B ¼ A.
In Eq. (C14), the magnetic field HP is equal

HP ¼ EP=η0, and it is possible to express EPðd=2Þ through
the unknown constant A. To do that, we split the dielectric
layer d to elementary layers dz and present the field EP as
the integral of partial fields created by elementary current
sheets dJPðzÞ ¼ jωPðzÞdz, where PðzÞ ¼ ϵ0ðϵr − 1ÞEðzÞ:

EP

�
� d
2

�
¼ jk0ðϵr − 1Þ

2

Z
d=2

−d=2
EðzÞe−jk0½ðd=2Þ∓z�dz:

ðC17Þ

Substitution of Eq. (C15) with B ¼ A yields Eq. (C17) to

EP

�
� d
2

�
¼ jk0Aðϵr − 1Þ

2

×
Z

d=2

−d=2
e−jk0½ðd=2Þ∓z�ðsin kzþ cos kzÞdz:

ðC18Þ

The value EPð�d=2Þ after integration of Eq. (C18) should
be substituted into Eq. (C14). This substitution gives us the
first equation relating constants A and Jmet. The second
equation is the equivalence of Eðd=2Þ corresponding to the
left-hand side of Eq. (C14) and Eðd=2Þ corresponding to
the right-hand side of Eq. (C15):

2E0 cos

�
k0d
2

�
þ EP

�
d
2

�
− η0Jmet

2
e−jk0d

¼ A

�
sin

�
kd
2

�
þ cos

�
kd
2

��
: ðC19Þ

To calculate the integral in Eq. (C18), we used the
condition of the optically thin layer k0d ≪ 1:

e−jk0½ðd=2Þ∓z� ≈ 1 − jk0

�
d
2
∓ z

�
; if jzj ≤ d

2
:

Then Eq. (C18) can be reduced to the following known
integrals:
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Z �
sin x

cos x

�
dx ¼

�− cos x

sin x
;

Z
x

�
sin x

cos x

�
dx ¼

�
sin x

cos x

�
∓ x ×

�
cos x

sin x
: ðC20Þ

Finally, we obtain for the integral in Eq. (C18):

Z
d=2

−d=2
e−jk0½ðd=2Þ∓z�ðsin kzþ cos kzÞdz

≈
2jk0d
k

cos

�
kd
2

�
þ 2ð1 ∓ jk0dÞ

k
sin

�
kd
2

�
: ðC21Þ

Substituting Eqs. (C18) and (C21) into the left-hand
side of Eq. (C14) and using approximations expð−jk0dÞ ≈
1 − jk0d and cosðk0d=2Þ ≈ 1, we obtain

E

�
d
2

�
¼ 2E0 þ

jk0Aðϵr − 1Þ
k

×

�
jk0d sin

kd
2
þ ð1 − jk0dÞ cos

kd
2

�

− Jmetη0
2

ð1 − jk0dÞ: ðC22Þ

The expression for Hðd=2Þ in the right-hand side of
Eq. (C14) being multiplied by η0 differs from Eq. (C22)
only by the first term, expressing the external magnetic
field:

η0H

�
d
2

�
¼ k0dE0 þ

jk0Aðϵr − 1Þ
k

×

�
jk0d sin

kd
2
þ ð1 − jk0dÞ cos

kd
2

�

þ Jmetη0
2

ð1 − jk0dÞ: ðC23Þ

Using Eqs. (C22) and (C23) and taking into account that in
the absorption regime cosðkd=2Þ ≈ sinðkd=2Þ ≈ 1=

ffiffiffi
2

p
, we

can rewrite Eq. (C14) after simple algebra in the form

Jmetη0
2

ð1 − jk0dÞ þ
ffiffiffi
2

p
k0dðϵr − 1Þ

π
A

¼
�
1 − k0dZD

η0

�
2E0

1 − ZD
η0

: ðC24Þ

The second condition—Eq. (C19)—after the same
substitutions takes the form

2E0 − Jmetη0
2

ð1 − jk0dÞ

−
ffiffiffi
2

p
k0dðϵr − 1Þ

π
A½k0d − jð1 − jk0dÞ� ¼

ffiffiffi
2

p
A:

ðC25Þ

The solution for Jmet can be written in the form

Jmet ¼ΨA; Ψ¼ 2
ffiffiffi
2

p ðF− 1Þ
η0ð1− jk0dÞ

; F ¼ k0dðϵr − 1Þ
π

;

ðC26Þ

and for A we obtain

A ¼ ΦE0; Φ ¼
ffiffiffi
2

p ð1 − k0dZD
η0

Þ
ð1 − ZD

η0
Þ : ðC27Þ

Following to Eq. (C6), in the vicinity of the frequency
of total absorption 1 − ðZD=η0Þ ≈ −jξ, where ξ ≪ 1.
Therefore,

Φ ≈
ffiffiffi
2

p
j½1 − k0dð1 − jξÞ�

ξ
: ðC28Þ

Notice that the calculation of EPð−d=2Þ using Eq. (C18)
allowed a useful check of our derivations. We have checked
that the equation

2E0 cos

�
k0d
2

�
þ EP

�
− d
2

�
− Jmet

η0
2
¼ 0 ðC29Þ

is identically satisfied with Eqs. (C26) and (C28).
After finding the two relevant constants A and Jmet, we

can determine the effective polarizabilities referring to the
unit surface area. From the general definitions of electric
and magnetic dipole moments, it follows that

px ¼
Z

d=2

−d=2
PðzÞdzþ Jmet

jω
;

my ¼
jωμ0
2

Z
d=2

−d=2
zPðzÞdz − μ0dJmet

2
: ðC30Þ

Substituting formula PðzÞ ¼ ϵ0ðϵr − 1ÞAðsin kzþ cos kzÞ
into Eq. (C30), we again come to known integrals (C20)
and using the quarter-wavelength condition kd ≈ π=2
obtain

px ≈
2

ffiffiffi
2

p
E0A

ωη0

�
F − 1 − F

1 − jk0d

�
ðC31Þ

and
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my ≈
−jk0d

ffiffiffi
2

p
E0A

ω

�
F þ 1 − F

1 − jk0d

�
: ðC32Þ

In accordance to the definitions of the effective polar-
izabilities and using Eqs. (C11) and (C13), we can rewrite
Eqs. (C31) and (C32) as follows:

αee ≈
2j½1 − k0dð1 − jξÞ�

ξωη0

�
F − 1 − F

1 − jk0d

�
; ðC33Þ

αme ≈
k0d½1 − k0dð1 − jξÞ�

ξω

�
F þ 1 − F

1 − jk0d

�
: ðC34Þ

Since in our derivations we neglected the terms of the order
of ðk0dÞ2, Eqs. (C33) and (C34) should be simplified
neglecting quadratic terms in them:

αee ≈
2j

ξωη0

½Fð2 − jk0dÞ − 1�
1 − jk0d

; αme ≈
k0d

ξωð1 − jk0dÞ
:

ðC35Þ

Formulas (C35) are self-consistent within our first-order
model.
Next, let us consider the magnetic excitation given by

Eq. (C12). On the top surface of the absorber, we have the
boundary condition:

2E0 sin

�
k0d
2

�
þ EP

�
d
2

�
− η0Jmet

2
e−jk0d

¼ ZD
2E0 cosðk0d2 Þ þHPðd2Þ − Jmet

2
e−jk0d

η0
: ðC36Þ

Again, the dielectric layer d is polarized electrically and
its bulk polarization PðzÞ is still equal to ϵ0ðϵr − 1ÞEðzÞ,
where the total electric field inside the layer has the form
EðzÞ ¼ A0 sin kzþ B0 cos kz. The field produced by the
polarized dielectric layer is still expressed by Eq. (C17).
Again, the PEC boundary condition at z ¼ −ðd=2Þ together
with the absorption condition kd ≈ π=2 results in the
equivalence B0 ¼ A0. An interesting fact that the electric
excitation and magnetic excitation result in the same
distribution of the total field across the absorber is the
peculiarity of the thinnest Dallenbach absorption: For
any distribution of the external electromagnetic field
across it, the electric and magnetic fields are distributed
in it in the same form: EðzÞ ∼ cos kzþ sin kz and HðzÞ∼
coskz−sinkz.
Further derivations practically repeat the same steps

as above, and we obtain for the magnetic excitation of
the absorber the following formulas for the effective
polarizabilities:

αmm≈
2jη0½1−k0dð1−jξÞ�

ξω

�
F

1−jk0d
−ð1−FÞ

�
; ðC37Þ

αem ≈ − k0d½1 − k0dð1 − jξÞ�
ξω

�
F

1 − jk0d
þ ð1 − FÞ

�
:

ðC38Þ
For self-consistency of the model, we should neglect the
second-order terms in these relations, which gives

αmm ¼ 2jη0½Fð2 − jk0dÞ − 1þ jk0d�
ξωð1 − jk0dÞ

;

αem ¼ −ame ¼ − k0d
ξωð1 − jk0dÞ

: ðC39Þ

Now let a plane wave be normally incident on a
Dallenbach absorber. Then we have for the induced
magnetic and electric dipole moments per unit area

px ¼ αeeE0 þ αemH0 ¼ E0

�
αee þ

αem
η0

�
; ðC40Þ

my ¼ αemE0 þ αmmH0 ¼ E0

�
−αem þ αmm

η0

�
: ðC41Þ

These equations after substitutions of Eqs. (C35) and (C39)
become

px ¼
2jE0

ξωη0

½Fð2 − jk0dÞ − 1þ jk0d
2
�

ð1 − jk0dÞ
;

my ¼
2jE0

ξω

½− jk0d
2

þ Fð2 − jk0dÞ − 1þ jk0d�
ð1 − jk0dÞ

: ðC42Þ

Equations (C42) show that the condition of the Huygens
scatterer my ¼ η0px is fulfilled. The thin Dallenbach
absorber is fully within our general scheme.
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