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This paper presents a theoretical and experimental demonstration of a security analysis of a Trojan-
horse attack (THA) on a real-world quantum key distribution (QKD) system. We show that the upper
bound on the information leakage depends solely on the fidelity between the states of the adversary. We
find the lower bound for fidelity between THA states in both the polarization- and phase-coding BB84
protocols, considering both pure and mixed states. Our bounds depend only on the mean photon number
per pulse available to an adversary. We also present an experimental analysis of a QKD system, including
optical time-domain reflectometry measurements with centimeter resolution and spectral transmittance
measurements for optical defense elements ranging from 1100 to 1800 nm with a noise floor lower than
−100 dB. Finally, by considering the optimal attack, we obtain the value of the mean photon number per
pulse available to an adversary and calculate the key leakage that needs to be eliminated during the privacy
amplification procedure.
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I. INTRODUCTION

Quantum key distribution (QKD) systems are theo-
retically capable of providing absolute security in key
exchange between two parties, commonly referred to as
Alice and Bob, which is ensured by the principles of quan-
tum mechanics [1]. Security of QKD protocols is usually
achieved through the privacy amplification procedure, as
long as the information gain of an eavesdropper (Eve) is
limited by an upper bound, which can be expressed as a
function of the quantum bit error rate (QBER) estimated
by legitimate users during the session. This bound is set by
the entropic uncertainty relations [2,3]; however, there are
practical imperfections in real-world implementations of
QKD systems. The first is the employment of weak coher-
ent pulses (WCPs) instead of the single-photon radiation
for which security proofs were initially provided. They
can usually be extended to the WCP case by placing an
intensity modulator inside Alice’s setup and running the
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decoy-state method [4,5], which guarantees secrecy pro-
vided that accurate modulation takes place [6] or methods
to counter statistical fluctuations are used [7]. Other prob-
lems include the imperfections of QKD apparatus leading
to different types of fake-state attacks [8–11], vulnera-
bilities to external influences [12–16], and side channels
[17–21]. Separately or in combination, these loopholes
may be successfully exploited by an adversary to steal the
secret key. It is therefore necessary to implement robust
mitigation strategies through both protocol modifications
and additional optical elements, as well as to carry out
a comprehensive security analysis for a particular QKD
system, considering every possible loophole.

The Trojan-horse attack (THA) on a QKD system is
a well-known approach to stealing the secret key using
an optical side channel [17–19,22–29]. It consists of the
following: Eve injects a bright optical pulse through the
communication channel into Alice or Bob’s setup, where
it passes through a state-preparation device (for Alice) or
an active-basis-choice device (for Bob), which is usually
a phase modulator (PM). Inhomogeneous regions inside
optical devices or optical connections will lead to Fresnel
reflections of Eve’s pulse back to her station, where she can
measure its state and, possibly, gain the information about
the bit encoded Fig. 1. An experimental demonstration
of the Trojan-horse attack has been presented previously
using 1536 nm radiation [23] (this, however, failed due to
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FIG. 1. Schematic of a Trojan-horse attack on a phase-coding fiber-based QKD system on the Alice side. Laser, source of sig-
nal pulses; MZI, Mach-Zehnder interferometer; QRNG, quantum random number generator for state choice; PM, phase modulator;
Defense, the components used to attenuate Eve’s radiation (attenuators, optical isolators, circulators, band-pass filters, etc.).

a rise in QBER caused by Eve-induced afterpulsing) and
1924 nm [18] radiation. This emphasizes the necessity of
designing a defense layout against THAs. As we show in
Sec. II, Eve’s information gain is limited by the indistin-
guishability of vacuum terms in the states returned to Eve;
therefore, it would be preferable to minimize the intensity
of radiation returned to Eve, i.e., the mean photon number
in Eve’s pulse μEve. This can be achieved by equipping
the system with attenuators (which are usually presented
in Alice’s setup for WCP preparation) to suppress light
in both directions, optical isolators and circulators to sup-
press light in the nonlegitimate direction, and band-pass
filters and wavelength-division multiplexers to suppress
light outside the legitimate spectral region. Attenuators
appear to be impractical for Bob’s setup, which, however,
often contains a watchdog detector to limit the maximum
input radiation. Nonetheless, as an active device, it may
introduce additional loopholes [30]. An alternative solu-
tion is fully passive QKD without active devices that are
vulnerable to THA [31].

With the proper functioning of the defense, the μEve
value drops to an extremely low level, so that μEve � 1.
It is also important to estimate a certain value of μEve
to nullify the information accessible to Eve using privacy
amplification [32]. As demonstrated in Ref. [17], in case
of side-channel attacks, Eve’s information gain is associ-
ated with the Holevo quantity [33]. The remarkable result
is that it depends only on the fidelity or scalar product
between two Trojan-light states corresponding to different
bits in a known basis; however, Eve can prepare an arbi-
trary input state limited only by maximum input power. In
this paper, we extend the results given in Ref. [17] to an
arbitrary state case, either pure or mixed, and demonstrate
that the fidelity between THA states has a lower bound
both for polarization and phase coding depending only on
μEve. We also describe a complete experimental approach
to estimating the exact μEve value, even when defense ele-
ments with up to 100-dB attenuation are used. We apply
our methods to a real phase-coding QKD system and, for
the first time, present a comprehensive security analysis of
a THA.

II. THEORETICAL ANALYSIS

A. Holevo bound for THA

In this section, we describe a theoretical approach to
estimation of Eve’s information gain by bounding the
Holevo quantity for her quantum ensemble. We show that
this only depends on the fidelity between THA states. After
that, considering the BB84 protocol, we demonstrate that
the fidelity can be bounded for polarization and phase cod-
ing. We examine the cases of pure states and mixed states
and derive that the fidelity is always limited by the prob-
ability of the vacuum component which, in turn, can be
bounded with a known value of μEve, which is consistent
with the previous results [22,24,25].

General theoretical THA security analyses have been
presented in Refs. [17,25]. Both papers focused on coher-
ent states returned to Eve based on the assumption that
any state tends to exhibit Poissonian statistics under high
losses; however, this is not a common case, especially for
setups without highly attenuative elements. A more gen-
eral bound was reported in Ref. [24], yet the authors made
several model assumptions (such as particular Kraus oper-
ators and their Taylor expansion), and their Eve did not
possess knowledge of the selected basis. Here, we abandon
every model assumption except that the phase modulator
only rotates the phases of Fock components without affect-
ing their absolute values. Moreover, we suggest that Eve
can wait until the basis reconciliation procedure finishes
and eventually discriminate the states in a known basis.

A well-known result for the secret key rate is [17]:

� = 1 − χEve − leak, (1)

where χEve is the mutual information between Alice and
Eve, which can be expressed as the Holevo quantity [33],
and “leak” is the information spent on error correction. The
density matrix for a general attack exploiting side chan-
nels represents an equiprobable mixture of tensor products
in which each multiplier is responsible for a side channel.
Here, we examine a single side channel case related to
THA, but our results can be easily extended to a general
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case by constructing density matrices for the other side
channels (see the example in Ref. [17]).

The density matrix of the Alice-Eve system in the
presence of the THA channel is [17]

ρXE = 1
2
|0〉X 〈0|

⊗ [
(1 − Q) |�0〉Q 〈�0| + Q|�0〉Q〈�0|

] ⊗ ρ0
THA

+ 1
2
|1〉X〈1|

⊗ [
(1 − Q) |�1〉Q〈�1| + Q|�1〉Q〈�1|

] ⊗ ρ1
THA,

(2)

where |0〉X and |1〉X are the signal states in a chosen basis
(for instance, the Z basis),

∣∣�0,1
〉
Q and

∣∣�0,1
〉
Q are the per-

turbed states of Eve’s auxiliary subsystem (see details in
Ref. [17]), ρ

0,1
THA are the states of the THA channel, and Q

is the QBER between Alice and Bob. It can be shown [17]
that for optimal attack:

〈�0 | �1〉Q = 〈�0|�1〉Q = ε,
〈
�0,1 | �0,1

〉
Q = 0,

(3)

where ε = 1 − 2Q.
The density matrix of the Eve system is given by the

partial trace over all Alice’s states:

ρE = 1
2

[
(1 − Q) |�0〉Q〈�0| + Q|�0〉Q〈�0|

] ⊗ ρ0
THA

+ 1
2

[
(1 − Q) |�1〉Q〈�1| + Q|�1〉Q〈�1|

] ⊗ ρ1
THA

≡ 1
2
ρ0

Q ⊗ ρ0
THA + 1

2
ρ1

Q ⊗ ρ1
THA. (4)

One can calculate Eve’s information gain via the Holevo
quantity of the resulting quantum ensemble, but this seems
challenging without knowing the structure of the THA
channel states. Nonetheless, as we will show, it is suffi-
cient to know only the Uhlmann fidelity [34] between ρ0

THA
and ρ1

THA, which is connected to the probability of the vac-
uum component and Eve’s mean photon number per THA
pulse.

Let us make use of the result obtained in Ref. [35]. For
the quantum ensemble with two density matrices ρ1 and ρ2
occurring with probabilities 1/2, the Holevo quantity has
an upper limit:

χEve ≤ χEve ≡ h

(
1 − √F

2

)

≡ −1 + √F
2

log2
1 + √F

2

− 1 − √F
2

log2
1 − √F

2
, (5)

where
√F = tr

√√
ρ1ρ2

√
ρ1 is the square root of the

Uhlmann fidelity. In our case, the density matrices are
ρ0

Q ⊗ ρ0
THA and ρ1

Q ⊗ ρ1
THA. It is convenient to use the

multiplicativity property of fidelity [36]:

F (
ρ0

Q ⊗ ρ0
THA, ρ1

Q ⊗ ρ1
THA

)

= F (
ρ0

Q, ρ1
Q

) · F (
ρ0

THA, ρ1
THA

)
. (6)

Thus, fidelities can be calculated separately. The fidelity
square root for Eve’s auxiliary subsystem can be calculated
directly (see Appendix A):

√

F
(
ρ0

Q, ρ1
Q

)
= ε. (7)

This result is in good agreement with a standard BB84 case
without side channels (i.e., when the THA fidelity equals
1), as

χEve = h
(

1 − ε

2

)
= h

(
1 − 1 + 2Q

2

)
= h (Q) , (8)

which corresponds perfectly to the entropic uncertainty
relations [3].

Let us now explore the η =
√
F (

ρ0
THA, ρ1

THA

)
value. For

pure states, the fidelity square root is reduced to the scalar
product of the state vectors, and the result matches the def-
inite solution in Ref. [17]. In our general case, χEve acts
as an upper bound, which can be estimated regardless of
particular pure or mixed THA states, as shown below.

B. Vacuum probability estimation

As a first step, let us examine the connection between the
mean photon number μ and the probability of the vacuum
component:

μ =
∞∑

n=0

pnn =
∞∑

n=1

pnn ≥
∞∑

n=1

pn = 1 − p0, (9)

where pn is the probability of the n-photon component.
Thus, we express the lower bound for the probability of
the vacuum component, which is state-independent (both
for pure and mixed states):

p0 ≥ 1 − μ. (10)

This estimate only makes sense for μ < 1, which, how-
ever, corresponds to our case, as we imply the proper
functioning of the THA defense.

It can be shown (see Appendices B, C, E, and F) that the
η value for both polarization and phase-coded states can
be bounded when p0 is known, which can be intuitively
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TABLE I. Lower bounds for fidelity square roots for the
polarization and phase-coding cases.

Polarization coding Phase coding

Pure states η = p0 ≥ 1 − μEve η ≥ 2p0 − 1 ≥ 1 − 2μEve

Mixed states η ≥ p0 ≥ 1 − μEve η ≥
√

2p2
0 − 1

≥
√

2 (1−μEve)
2 −1

interpreted as the distinguishability of different states being
determined by the indistinguishable vacuum component
fraction.

In real QKD systems, it is mandatory to consider the
worst-case scenario, that is, the mixed-states case. How-
ever, a question arises: is it beneficial for Eve to use
nonpure states? To answer this question, we constructed
the bounds for both pure and mixed states. The particular
results are presented in Table I.

We found that using mixed polarization states instead
of pure states gives no advantage to Eve; i.e., the pure
states are optimal, as implied in Refs. [17,22,25] based
on an intuitive understanding of quantum coherence. The
same hypothesis was neither proved nor disproved for
phase encoding, as we obtained different bounds for the
pure and mixed states. The states reported in Ref. [24]
as optimal are also intrinsically mixed, although some
special assumptions were made. We can conclude that
there is room for further research to find the optimal
THA states for phase encoding and tighten the bound.
Until then, our conservative mixed-states bound can be
used.

III. EXPERIMENTAL ANALYSIS

This experimental analysis of a THA in the context of
a QKD system seeks to determine the maximum value
of μEve. The optimal strategy for Eve is to apply opti-
cal pulses that coincide with electrical gates on the PM
under attack [25]. Therefore, she adjusts the time delay
of her pulses to maximize their reflection and reach the
PM at the optimal moment. It is consistent for Eve to set
the pulse repetition frequency fEve to be equal to the legit-
imate pulse repetition rate f . In this case, her maximum
information gain corresponds to the uniform distribution
of the mean photon number per pulse due to the concav-
ity of the χEve (μEve) function [even for convex η (μEve)

dependence (F7)]; hence, the mean photon number in each
pulse is the same and equals μEve. More effectively, she can
decrease the attacking frequency and block the legitimate
pulses that are not affected by the THA. Finally, Eve can
tune the attacking wavelength λ to maximize μEve. Thus,
Eve’s mean photon number per pulse can be calculated as

follows:

μEve (λ) = PEve (λ) · λ

fEvehc
, (11)

where PEve is the average power of Eve’s radiation, λ is
the attacking wavelength, fEve is the attack repetition fre-
quency, h ≈ 6.63 × 10−34 J Hz−1 is the Planck constant,
and c ≈ 3 × 108 m/s is the speed of light in vacuum.

We now consider some realistic boundaries for expres-
sion (11). First, there might be a lower limit for fEve,
despite the fact that the BB84 protocol implies only QBER
estimation and does not call for monitoring of the detection
frequency. In realistic QKD devices, a low key-generation
rate will induce a timeout error, and the QKD session will
fail. The specific value of the maximum allowable QKD
session period depends on a particular system realization,
but it is reasonable to set it no more than 10–100 times
higher than the regular one; however, Eve can replace the
lossy communication channel with an ideal one, result-
ing in a key-generation frequency boost. For a conven-
tional SMF-28 optical fiber with approximately 0.2-dB/km
losses and 100-km communication length, Eve can gain
an additional 20 dB. Therefore, the effective attack repe-
tition frequency is fEve = αf , where α is typically no less
than 10−4.

A straightforward THA implies the use of a wave-
length equal to the legitimate one, which usually lies in
the telecommunications region (1260–1625 nm) for fiber
QKD and near-infrared for free space; however, it has
been shown that THAs can be effective both in the visible
[26] and mid-infrared regions [18,19,27–29]. In practice,
only two spectral regions are feasible for security analysis:
200–1100 nm (Si detector sensitivity) and 1100–2600 nm
(InGaAs detector sensitivity). They can nonetheless be
extended by the employment of superconducting nanowire
single-photon detectors, although this is still challenging
and has not yet been demonstrated in the THA analysis
context.

Finally, the existence of the upper bound for Eve’s radia-
tion power is the primary limiting factor for μEve. It can be
set up either by the sensitivity level of a watchdog detector
or, more generally, by the laser-induced damage thresh-
old (LIDT) of an optical component inside the device
under attack [25]. Exceeding the LIDT during the QKD
session will disrupt the link between Alice and Bob, lead-
ing to failure of both the communication and the attack.
The LIDT for a realistic QKD setup is considered to be
approximately 10 W (40 dBm), with insignificant varia-
tions inside the attainable spectral region; however, it is
important to note that the influence of high-power radiation
can be substantially different for various optical elements,
and a laser damage attack (LDA) is possible [12–15].
Hence, the susceptibility to LDA of every optical com-
ponent should be verified. The actual LIDT value for a
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FIG. 2. The QKD system under test (Alice’s side). Laser, the source of signal pulses; VOA, variable optical attenuator; MZI, Mach-
Zehnder interferometer; ILP, inline polarizer; PM, phase modulator; Circ, circulator with the mirror connected to port 2; Iso, isolator;
ATT+WDM, wavelength division multiplexer combined with the fixed attenuator; Synchro laser, source of synchronization pulses.

particular QKD system should also be measured during
LDA security analysis.

The power of Eve’s radiation can be expressed as a sum
of three terms that can be revealed experimentally:

PEve [dBm] = Pmax [dBm] + T [dB] + R [dB] , (12)

where Pmax is the maximum power of input Eve’s radia-
tion, T is the transmittance of all passive optical defense
components inside the setup under test, and R is the maxi-
mum reflectivity inside the setup under test in the absence
of defense components. Here, Pmax is either the sensitivity
of the watchdog detector or the LIDT value for the sys-
tem under test, which can be obtained by LDA security
analysis [13–15]. Next, we will describe the methods for
experimental estimation of T and R and present the results
for Alice’s side of a real phase-coding QKD system [37]
with a THA defense layer (Fig. 2).

A. OTDR

The primary physical principle underlying the THA is
the Fresnel reflection of light from the optical interfaces.
QKD systems consist of a set of interconnected fiber-optic
elements. Typically, the connection is made using opti-
cal connectors, such as FC-type connectors. Due to the
presence of an air gap between the ferrules of optical con-
nectors, an interface arises, leading to reflection with a
magnitude varying from −60 dB to −20 dB depending on
the type of connector [22,23,25,38]. The best performance
is provided by angled physical contact connectors with
angled polishing, so their use in QKD represents a simple
but quite effective measure against THA. Reflection from
the connections can be suppressed to a minimum using
fusion splicing of the pigtails of various optical elements;
this, however, complicates the assembly, debugging, and
maintenance of the setup.

The connections of various optical elements are not the
only source of parasitic reflections. Usually, QKD systems
contain a number of optical elements with a complex and
heterogeneous internal structures. Significant return losses
(of the order of 30–60 dB) are often observed from phase
modulators, detector surfaces, and lasers. Moreover, many

QKD systems contain mirrors, leading to almost 100%
reflection. This is the case for two-pass [39] and single-
pass [37] plug-and-play QKD systems, which contain
Faraday mirrors at Alice’s and Bob’s sides, respectively,
to correct polarization distortion. Some implementations of
optical modulators in QKD (i.e., polarization and intensity
modulators) contain Faraday mirrors to prevent polariza-
tion mode dispersion [40,41]. Therefore, it is necessary to
measure the reflection picture along the entire optical path
of the scheme after the state preparation device (the PM
in our case). This procedure is well known in classical
optics and is called optical reflectometry [42]. So-called
optical time-domain reflectometry (OTDR) is carried out
using a setup consisting of a laser and a synchronized pho-
todetector. A laser pulse is sent into the optical channel to
reflect and arrive at the detector inside the OTDR setup.
The distance from where the pulse was reflected is calcu-
lated by the time of its arrival. This method is often used to
find breaks and damage in fiber-optic links, which are usu-
ally tens of kilometers long. In the case of QKD systems,
the OTDR setup should meet the following requirements:
first, its spatial resolution should be no more than a few
tens of centimeters, which is provided by the picosecond
durations of the laser pulses; second, it should guaran-
tee precision measurements in a sufficiently large dynamic
range, which is provided by the use of sensitive single-
photon detectors (the so-called ν-OTDR method [43]).
Such OTDR devices operating at a wavelength of 1550 nm
with ultrahigh resolution are commercially available today.

The OTDR setup for reflectivity measurement in a QKD
system is depicted in Fig. 3. A polarization controller
(PC) was connected to the OTDR setup, as the QKD sys-
tem under test contained polarization-sensitive elements
(a PM). The defense elements were extracted from the
DUT to be characterized separately. This is dictated by the
high attenuation level of the defense components, which
significantly raises the noise floor. The PC was set to max-
imum forward transmittance, which was determined by an
optical power meter connected to the free output of the
Mach-Zehnder interferometer (MZI).

The accumulated photon counts N over the distance
l within the measurement time t (5–10 min) were
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Sync out
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Output Reflected pulse

Det out

Sync in
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pulse

FIG. 3. OTDR setup: Laser, picosecond pulsed laser; VOA, variable optical attenuator; PC, polarization controller; Clocking, time
controller; SPAD, single-photon avalanche photodiode; Circ, optical circulator; DUT, device under test.

recalculated into optical power in Watts using the follow-
ing expression:

P (l) = N (l) hc
tηrλ

, (13)

where h ≈ 6.63 × 10−34 J Hz−1 is the Planck constant, c ≈
3 × 108 m/s is the speed of light in vacuum, ηr ≈ 10%
is the quantum efficiency of the single-photon avalanche
diode (SPAD) inside the OTDR setup, and λ = 1550 nm
is the wavelength under test. Finally, the R value over the
distance was calculated:

R (l) = 10 log10
P (l)
Pin

, (14)

where Pin is the input radiation power, which was mea-
sured preliminarily.

The OTDR results are depicted in Fig. 4. The reflections
from each element of the optical scheme before the vari-
able optical attenuator (VOA) can be clearly distinguished.
Further peaks are negligibly small, as the radiation is sup-
pressed by the VOA. The set of peaks around 7–10 m
correspond to reflection from the optical connector and the
VOA being tripled by the MZI.

0 1 2 3 4 5 6 7 8 9 10
Distance (m)

−95
−90
−85
−80
−75
−70
−65

−60

Re
fle

ct
iv

ity
 (d

B)
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φ
A

ILP VOA

MZIMaximum
reflectivity

FIG. 4. The OTDR picture of the QKD system under test
(Alice). The peak interpretations are as follows: PM, phase mod-
ulator; ILP, inline polarizer; MZI, Mach-Zehnder interferometer;
VOA, variable optical attenuator. The reference point is set to the
input optical connector.

It was revealed empirically that the OTDR precision
corresponds to 1–3 dB. The flaws lower than 10 dB are,
however, not crucial for the THA security analysis when
sufficient protection measures are applied, as shown in
Sec. IV. The maximum reflectivity corresponds to the opti-
cal connector between the inline polarizer (ILP) and the
MZI. The peak value R = −63 dB.

B. Spectral measurements

To characterize the transmittance of the defense com-
ponents, such as optical isolators, circulators, attenuators,
spectral filters, etc. (hereinafter each referred to as the
device under test, or DUT), measurements across the
widest possible spectral range are required. The radiation
passes through the DUT and goes to the receiver. Typ-
ically, one should expect ultralow transmittance in the
vicinity of the legitimate wavelength, reaching −100 dB
and below. Moreover, their behavior can be unpredictable
outside this spectral region; the transmittance can drop or
increase to values close to 0 dB [19,26–29]. This behav-
ior imposes quite stringent requirements for the dynamic
range of measurements, i.e., the noise floor of the receiver.
On the other hand, measurements across a wide spec-
tral range require a broadband or widely tunable radiation
source and a receiver (or a set of receivers) with wide spec-
tral sensitivity. Thus, a high-power white-light source is
required to ensure a wide dynamic range inside a broad
spectral region.

The supercontinuum laser (SCL) stands out for its
extended spectral range, which surpasses that of standard
lasers, and for its superior beam quality compared to inco-
herent white-light sources. A set of tunable filters (for
example, acousto-optic filters) should be added for spec-
tral selection. SPADs are preferable as receivers due to
their high sensitivity, especially when compared to tradi-
tional optical power meters and spectrum analyzers, which
are constrained by electrical noise, limiting their sensitiv-
ity threshold to around −80 dBm or higher. In contrast,
SPADs operating in gated mode with sufficiently narrow
electrical gates and adequate dead time exhibit very low
dark count rates (around 10 counts per second at a gate fre-
quency of 10 MHz). This ensures precision transmittance
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Sync out

Input

Output

Det out

Sync in

FIG. 5. Spectral measurement setup: SCL, supercontinuum
laser; TF, tunable filter; VOA, variable optical attenuator; DUT,
device under test; SPAD, single-photon avalanche photodiode;
Clocking, time controller; PC, personal computer.

measurements across a wide dynamic range up to levels
around −120 dB. For the near-infrared spectral region, an
InGaAs-based SPAD is suitable, while for wavelengths of
400–1100 nm, a silicon SPAD should be used.

For the SPAD to run in photon-counting mode, it is nec-
essary for the mean photon number per pulse μ to be much
less than 1, and this is ensured by means of a variable
attenuator. Otherwise, the probability of a multiple-photon
count will not be negligible. This is dictated by the Pois-
sonian statistics of the number of photons in a coherent
state:

Pμ (n = 1) = μe−μ ≈ μ, (15)

Pμ (n > 1) = 1 − Pμ (n = 0) − Pμ (n = 1)

≈ 3μ2

2
� Pμ (n = 1) , (16)

where we have considered μ � 1 to neglect the higher
terms of series expansion. The experimental setup is
depicted in Fig. 5.

The forward and reverse transmittance of several
defense components were measured. We also recorded
the reference spectrum without a DUT and the level of
dark counts to express the transmittance value for each
wavelength as follows:

T [dB] = 10 log10
N − Ndark

Nref − Ndark
+ Aref [dB] − A [dB] ,

(17)

where N is the photon count for DUT spectrum measure-
ments, Nref is the reference photon count, Ndark is the dark
count, Aref is the attenuation value of the VOA for the
reference spectrum, and A is the VOA attenuation value
for the DUT spectrum measurements. Notably, expression
(17) automatically takes spectral nonuniformity of the SCL
into account, as well as the fiber transmittance and the
spectral dependence of the SPAD’s quantum efficiency,
since their contributions to photon counts are linear and
identical for both DUT and reference spectrum measure-
ments. We applied the setup to measure the transmittance
spectra of the isolator (forward and reversed), the circu-
lator with a mirror connected to port 2 (port 3 to port
1 and port 1 to port 3), the variable attenuator, and the
wavelength division multiplexer (WDM) combined with
the fixed attenuator. The spectra spanned from 1100 to
1800 nm with a 1-nm step, which resulted in moving aver-
aging of the data, as the bandwidth of the tunable filter
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FIG. 6. Measured transmittance spectra of various optical defense components: optical isolator (forward and reverse transmittance),
optical circulator with mirror on port 2 (port 1 to port 3 and port 3 to port 1 transmittance), variable attenuator, and WDM with fixed
attenuator.
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FIG. 7. Overall transmittance spectrum of the defense compo-
nents inside Alice’s setup.

(TF) was approximately 10 nm. The measurement results
are shown in Fig. 6.

The obtained results confirm the unpredictability of the
behavior of fiber-optic elements over a broad spectral
range. As seen in Fig. 6, the transmission variations can
reach 60 dB. It was found that the transmission spectra
of the attenuators and the WDM are not dependent on
the direction of radiation propagation; hence, only results
from direct transmission measurements are presented here.
The circulator and isolator significantly alter the transmit-
tance level when deviating from the 1550-nm legitimate
wavelength, similarly to in previously published results
[27,28]. It is worth noting that low-transmittance regions in
these studies were not accurately measured due to a limited
dynamic range; in our research, however, the transmittance
spectra of elements with losses reaching up to 100 dB were
properly measured.

During OTDR measurements, we revealed that the max-
imum reflectivity corresponds to the connection between
the ILP and the MZI; therefore, the VOA is not involved in
THA mitigation. The overall transmittance spectrum is the
sum of the forward and reverse isolator, circulator, fixed
attenuator, and WDM transmittance spectra from Fig. 6.
The result is depicted in Fig. 7.

IV. RESULTS

To estimate the value of μEve, one needs to combine the
data from Sec. III with the maximum input radiation power
Pmax. We will assume this value to be equal to the real-
istic LIDT value of 10 W (40 dBm), which agrees with
the experimental data collected during LDA security anal-
ysis [13,14]. Applying consideration from Sec. III, we also
set the attacking repetition rate fEve = 1 kHz, which is 4
orders of magnitude less than the communication repeti-
tion frequency f = 10 MHz. Thus, using (11) and (12),
we obtain μEve ≈ 4 × 10−16 for the legitimate wavelength

λ = 1550 nm. For such a small value, the fidelity root
η ≈ 1 with an accuracy of 15 decimal places, as any η

bound is asymptotically linear (C5). In turn, the Holevo
bound (5) is strongly dependent only on the QBER value.

However, it is not optimal for Eve to use the legitimate
wavelength. As seen in Fig. 7, there are two windows of
maximum transmittance near 1400 and 1800 nm, where
T ≈ −200 dB. According to (11), red-shifted light—i.e.,
less energetic photons—is more favorable for Eve; hence,
Eve might prefer λ = 1800 nm. As we only revealed the
reflectivity value for 1550 nm, we should make an assump-
tion in favor of Eve and set R = 0 dB, which corresponds
to total reflectance and in fact is unrealistic. As a result,
we obtain μEve ≈ 9 × 10−4. This is much more significant
leakage than that seen at 1550 nm. For illustration, let us
consider the zero-QBER case, using (5):

χEve ≈ h
(

1 − η

2

)
≈ h (μEve) ≈ 1%. (18)

This indicates that the impact of the THA on the key
length should not be ignored; rather, one should eliminate
the corresponding leakage during the privacy amplification
stage. Alternatively, it is possible to add extra THA defense
elements to suppress μEve to a negligibly small level or
to experimentally characterize the reflectivity outside the
legitimate spectral region. The latter requires OTDR with
ultrahigh resolution across a wide spectral range, which
has not yet been demonstrated.

V. CONCLUSIONS

In this work, we have presented a comprehensive secu-
rity analysis of Trojan-horse attacks on a real QKD system.
We obtained the theoretical bounds on the information
available to an adversary for both polarization- and phase-
coded states. We also described the experimental setups for
practical security analysis and applied them to a real QKD
system. We obtained an OTDR picture for a legitimate
wavelength λ = 1550 nm with centimeter resolution and
an ultralow noise floor by using a single-photon avalanche
photodiode as the receiver. Using a supercontinuum laser
and single-photon detectors, we also measured the trans-
mittance spectra for the THA defense elements with a
record dynamic range of over 100 dB in the near-infrared
spectral region. Combining our results with consideration
of the maximum input power radiation, we obtained the
values of the mean photon number available to Eve for
the legitimate wavelength and the optimal attacking wave-
length, which in our case appeared to be λ = 1800 nm.
We calculated the leakage through the corresponding side
channel that needs to be mitigated during the privacy
amplification procedure. However, the results presented lie
in the spectral region 1100–1800 nm, which is dictated by
the sensitivity of our detector. Moreover, the OTDR was
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carried out on the legitimate wavelength λ = 1550 nm.
Unlike us, Eve is not limited in her wavelength choice.
This opens up a wide area for further investigation, extend-
ing the spectral region until some physical constraints
occur.

In addition, examining the side channel under vary-
ing conditions—such as thermal, magnetic, and acoustic
influences on the system—could provide valuable insights.
Finally, a comprehensive analysis should be conducted for
other side channels, such as those associated with back-
flash radiation from the detectors or radio-frequency emis-
sions from the electronics inside the system. A complete
evaluation of all side-channel information leaks, among
others, will ensure the secrecy of quantum key distribu-
tion, reaffirming its status as the most secure and reliable
method for transmitting confidential information.
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APPENDIX A: EVE’S FIDELITY CALCULATION

The fidelity for Eve’s auxiliary subsystem states can be
determined as follows:

F (
ρ0

Q, ρ1
Q

) =
(

tr
√

ρ0
Qρ1

Q

)
. (A1)

Here, we used an equivalent definition of the Uhlmann
fidelity [36] for commuting the density matrices. The
product of the density matrices is

ρ0
Qρ1

Q = [(1 − Q) |�0〉〈�0| + Q|�0〉〈�0|]
× [(1 − Q) |�1〉〈�1| + Q|�1〉〈�1|]

= ε (1 − Q)2 |�0〉〈�1| + εQ2|�0〉〈�1|. (A2)

It is readily apparent that |�0〉 and |�0〉 are the eigen-
vectors of ρ0

Qρ1
Q:

ρ0
Qρ1

Q|�0〉 = ε (1 − Q)2 |�0〉〈�1 | �0〉
= ε2 (1 − Q)2 |�0〉, (A3)

ρ0
Qρ1

Q|�0〉 = εQ2|�0〉〈�1 | �0〉 = ε2Q2|�0〉. (A4)

The eigenvalues are ε2 (1 − Q)2 and ε2Q2. The trace of√
ρ0

Qρ1
Q can be calculated as the sum of the square roots of

these eigenvalues (the square root in the fidelity definition
is assumed to be positive semidefinite, so the square roots
of the eigenvalues are non-negative):

√
F = tr

√
ρ0

Qρ1
Q =

√
ε2 (1 − Q)2 +

√
ε2Q2

= ε (1 − Q) + εQ = ε. (A5)

APPENDIX B: DISTINGUISHABILITY OF PURE
POLARIZATION-CODED STATES

Let us construct the THA state vectors corresponding
to different encoded bits in a fixed basis (we will use the Z
basis, which consists of horizontal and vertical polarization
states, but the calculations are equivalent for any choice of
basis), considering perfect state preparation, which is the
worst-case scenario for legitimate users:

|ξH 〉 = (c0|0〉H + c10|1〉H + c20|2〉H + . . .) ⊗ |0〉V

= c0|vac〉 + c10|10〉 + c20|20〉 + . . ., (B1)

|ξV〉 = |0〉H ⊗ (c0|0〉V + c10|1〉V + c20|2〉V + . . .)

= c0|vac〉 + c10|01〉 + c20|02〉 + . . . , (B2)

where the vectors |n〉H(V) denote the horizontally (verti-
cally) polarized state with n photons in a mode and |vac〉
stands for the vacuum state; c0k, ck0, and c0 are the prob-
ability amplitudes for the corresponding Fock states. The
scalar product between |ξH 〉 and |ξV〉 can be expressed as
follows:

η = 〈ξH | ξV〉 = |c0|2 = p0, (B3)

where p0 is the probability of the vacuum component,
which is equal for both states as we propose the same
losses for different polarization states (without the loss of
generality, as one may use μEve as the maximum estima-
tion for different polarization cases). This result highlights
the fact that the vacuum component limits the scalar prod-
uct (i.e., the indistinguishability of the states) as it does
not correspond to any polarization. Using the results of the
estimation of μEve and (10), we get the lower bound for η:

η ≥ 1 − μEve. (B4)

The example of optimal pure states that achieve the bound
can be constructed as follows:

|ξH 〉 =
√

1 − μEve|vac〉 + √
μEve|10〉, (B5)

|ξV〉 =
√

1 − μEve|vac〉 + √
μEve|01〉. (B6)

APPENDIX C: DISTINGUISHABILITY OF PURE
PHASE-CODED STATES

Let us construct the THA state vectors corresponding to
the phase-coding case. In this scenario, the phase modula-
tor only twists the phases of the probability amplitudes in
the Fock basis of the light state. The state vectors, in turn,
are:

|ξ0〉 = c0|vac〉 + c1|1〉 + c2|2〉 + . . . , (C1)

|ξ1〉 = c0|vac〉 + c1eiϕ1 |1〉 + c2eiϕ2 |2〉 + . . . , (C2)

where ck and ckeiϕk are the probability amplitudes of a Fock
state |k〉 for the THA states corresponding to different bits.
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Without loss of generality, we consider the phase of the
vacuum component to be equal in both cases. For η, we
have:

η = 〈ξ0 | ξ1〉 = |c0|2 + |c1|2 eiϕ1 + |c2|2 eiϕ2 + . . . , (C3)

which shows that η is a complex value. Once more with-
out loss of generality, we will consider it as a real number,
since it is the absolute value of the scalar product that
affects distinguishability. The lower bound for η is then as
follows:

η ≥ |c0|2 − |c1|2 − |c2|2 − . . . = p0 − (1 − p0)

= 2p0 − 1. (C4)

The lower bound is reached when ϕn = π ; as for the
polarization case, it only depends on the probability of the
vacuum component. Using (10), we obtain:

η ≥ 1 − 2μEve. (C5)

This result makes sense for μEve < 0.5, which is suitable
for our case.

For μEve�1, our bound matches with the WCP case
when |α〉 and |−α〉 are applied:

ηα = 〈α | α〉 = e−2μEve ≈ 1 − 2μEve + . . . , (C6)

where |α|2 = μEve. Here, we used the famous result for
the scalar product of coherent states and the Taylor-series
expansion. Note that for any value of μEve > 0, our bound
lies lower than ηα (see Fig. 9).

The example of optimal pure states reaching the bound
can be constructed as follows:

|ξ0〉 =
√

1 − μEve|vac〉 + √
μEve|1〉, (C7)

|ξ1〉 =
√

1 − μEve|vac〉 − √
μEve|1〉. (C8)

APPENDIX D: DISTINGUISHABILITY OF MIXED
STATES

To extend the results to a mixed-states case, one needs
to calculate the fidelity between general THA states. This
implies the calculation of Uhlmann fidelity, which seems
challenging as it generally requires finding the eigenvalues
in the Fock space, which is infinite-dimensional. However,
the fidelity between the density matrices ρ and σ can be
bounded by a simpler expression [44]:

F (ρ, σ) ≡
(

tr
√√

σρ
√

σ

)2

≥ tr (ρσ). (D1)

We next estimate this bound for polarization and phase
coding.

APPENDIX E: DISTINGUISHABILITY OF MIXED
POLARIZATION-CODED STATES

The THA density matrices are constructed in a similar
way to the pure-states case:

ρH =
∞∑

m,n=0

ρH
mn|m〉H 〈n| ⊗ |0〉V〈0|, (E1)

ρV =
∞∑

m,n=0

ρV
mn|0〉H 〈0| ⊗ |m〉V〈n|. (E2)

The matrix product is then

ρHρV =
∞∑

m,n=0

ρH
m0ρ

V
0n|m〉H 〈0| ⊗ |0〉V〈n|. (E3)

Calculating the trace, we get

tr
(
ρHρV) =

∞∑

i,j =0

〈ij |ρHρV|ij 〉

=
∞∑

m,n,i,j =0

ρH
m0ρ

V
0n〈i | m〉〈0 | i〉〈j | 0〉〈n | j 〉

= ρH
00ρ

V
00 = p2

0 . (E4)

Here, we implement the fact that the probability of the vac-
uum component is identical for both states, as noted in this
section. Finally, we obtain a lower bound on the fidelity:

F (
ρH , ρV) ≥ p2

0 . (E5)

Thus, we can express the lower bound for η using μEve:

η ≥ p0 ≥ 1 − μEve. (E6)

FIG. 8. Pure- and mixed-states lower bound (red) and
coherent-states case (blue) for square root of fidelity between
different bit polarization-coded states.
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The bound is identical to the pure-states case, which is a
feature of polarization coding. The dependencies for our
case and the WCP case are depicted in Fig. 8.

APPENDIX F: DISTINGUISHABILITY OF MIXED
PHASE-CODED STATES

For the phase coding, we have

ρ0 =
∞∑

m,n=0

ρmn|m〉〈n|, (F1)

ρ1 =
∞∑

m,n=0

ρmnei(ϕm−ϕn)|m〉〈n|

=
∞∑

m,n=0

ρmnei�ϕmn |m〉〈n|, (F2)

where �ϕmn = ϕm − ϕn. The matrix product is then

ρ0ρ1 =
∞∑

k,m,n=0

ρmkρknei�ϕkn |m〉〈n|

=
∞∑

k,m,n=0

ρmkρ
∗
nke−i�ϕnk |m〉〈n|. (F3)

Calculating the trace, we get

tr
(
ρ0ρ1) =

∞∑

j =0

〈j |ρ0ρ1|j 〉 =
∞∑

j,k=0

ρjkρ
∗
jke−i�ϕjk

= 1
2

∞∑

j,k=0

∣∣ρjk
∣∣2 e−i�ϕjk + 1

2

∞∑

j,k=0

∣∣ρjk
∣∣2 ei�ϕjk

=
∞∑

j,k=0

∣∣ρjk
∣∣2 cos �ϕjk

=
∞∑

k=0

|ρkk|2 +
∞∑

j =k

∣∣ρjk
∣∣2 cos �ϕjk

≥
∞∑

k=0

|ρkk|2 −
∞∑

j =k

∣∣ρjk
∣∣2 , (F4)

where we set �ϕmn = π for nondiagonal elements in the
bounding expression. The values of nondiagonal elements
cannot be estimated by means of μEve, as they contribute
to the coherence of the radiation rather than its inten-
sity; however, they appear in the purity value P , which

characterizes how much a quantum state is mixed:

P ≡ trρ2 =
∞∑

j,k=0

∣∣ρjk
∣∣2 =

∞∑

k=0

|ρkk|2 +
∞∑

j =k

∣∣ρjk
∣∣2. (F5)

The value of the purity satisfies 0 ≤ P ≤ 1 [36].
Expressing the sum containing nondiagonal elements via
P , we obtain

F (
ρH , ρV) ≥ tr

(
ρ0ρ1) ≥ 2

∞∑

k=0

|ρkk|2 −

≥ 2ρ2
00 − P ≥ 2p2

o − 1. (F6)

We set P = 1 for the bounding, which corresponds to
the pure-states case. The bound, however, is strictly lower
than that obtained for pure states when μEve > 0. This indi-
cates that this bound seems to be unreachable, unlike the
previous ones, for which the particular states were con-
structed. Finally, we can express the lower bound for η

using μEve:

η ≥
√

2p2
0 − 1 =

√
2 (1 − μEve)

2 − 1. (F7)

The bound (F7) also asymptotically coincides with the
pure-state linear case (C5) when μEve � 1 (see Fig. 9).
However, the difference is visible when μEve approaches
0.3 photons per pulse.

Our bounds are conservative, unlike those presented in
[24], as we consider the worst-case scenario when the
bases are known to Eve and our only assumption regarding
the state evolution is that the phase modulation preserves
the absolute values of the probability amplitudes in the
Fock basis.

FIG. 9. Pure-states (red) and mixed-states (purple) lower
bounds and coherent states case (blue) for square root of fidelity
between different bit phase-coded states.

034032-11



IVAN S. SUSHCHEV et al. PHYS. REV. APPLIED 22, 034032 (2024)

[1] C. H. Bennett and G. Brassard, in International Confer-
ence on Computers, Systems & Signal Processing (IEEE,
Bangalore, 1984), Vol. 175.

[2] M. Tomamichel and R. Renner, Uncertainty relation for
smooth entropies, Phys. Rev. Lett. 106, 110506 (2011).

[3] S. N. Molotkov, Entropic uncertainty relations and the
extremely allowable critical error in quantum cryptography,
JETP Lett. 94, 820 (2012).

[4] W.-Y. Hwang, Quantum key distribution with high loss:
Toward global secure communication, Phys. Rev. Lett. 91,
057901 (2003).

[5] S. P. Kulik and S. N. Molotkov, Decoy state method for
quantum cryptography based on phase coding into faint
laser pulses, Laser Phys. Lett. 14, 125205 (2017).

[6] F.-Y. Lu, P. Ye, Z.-H. Wang, S. Wang, Z.-Q. Yin, R.
Wang, X.-J. Huang, W. Chen, D.-Y. He, G.-J. Fan-Yuan,
et al., Hacking measurement-device-independent quantum
key distribution, Optica 10, 520 (2023).

[7] F.-Y. Lu, Z.-H. Wang, Z.-Q. Yin, S. Wang, R. Wang,
G.-J. Fan-Yuan, X.-J. Huang, D.-Y. He, W. Chen,
Z. Zhou, et al., Unbalanced-basis-misalignment-tolerant
measurement-device-independent quantum key distribu-
tion, Optica 9, 886 (2022).

[8] S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V.
Makarov, Controlling an actively-quenched single photon
detector with bright light, Opt. Express 19, 23590 (2011).

[9] D. S. Bulavkin, I. S. Sushchev, K. E. Bugai, S. A. Bog-
danov, and D. A. Dvoretsky, in Quantum and Nonlinear
Optics IX, edited by Q. He, C.-F. Li, and D.-S. Kim (SPIE,
Beijing, 2023), p. 34.

[10] C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar,
C. Marquardt, V. Makarov, and G. Leuchs, After-gate attack
on a quantum cryptosystem, New J. Phys. 13, 013043
(2011).

[11] V. Makarov, A. Anisimov, and J. Skaar, Effects of detector
efficiency mismatch on security of quantum cryptosystems,
Phys. Rev. A (College Park) 74, 022313 (2006).

[12] A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L.
Lydersen, and V. Makarov, Laser damage helps the eaves-
dropper in quantum cryptography, Phys. Rev. Lett. 112,
070503 (2014).

[13] S. V. Alferov, K. E. Bugai, and I. A. Pargachev, Study of
the vulnerability of neutral optical filters used in quantum
key distribution systems against laser damage attack, JETP
Lett. 116, 123 (2022).

[14] K. E. Bugai K, A. P. Zyzykin A, D. S. Bulavkin, S. A. Bog-
danov, I. S. Sushchev, and D. A. Dvoretskiy, in 2022 Inter-
national Conference Laser Optics (ICLO) (IEEE, Saint
Petersburg, 2022), p. 1.

[15] S. V. Alferov, K. E. Bugai, I. A. Pargachev, and
Yu. V. Ivanova, Studying vulnerability in quantum-key-
distribution systems to attacks with laser damage to optical
components based on a collapsing mirror device, Tech.
Phys. Lett. 49, 11 (2023).

[16] A. Huang, Á. Navarrete, S.-H. Sun, P. Chaiwongkhot, M.
Curty, and V. Makarov, Laser-seeding attack in quantum
key distribution, Phys. Rev. Appl. 12, 064043 (2019).

[17] S. N. Molotkov, Trojan horse attacks, decoy state method,
and side channels of information leakage in quantum cryp-
tography, J. Exp. Theor. Phys. 130, 809 (2020).

[18] S. Sajeed, C. Minshull, N. Jain, and V. Makarov, Invisible
trojan-horse attack, Sci. Rep. 7, 8403 (2017).

[19] I. S. Sushchev, D. M. Guzairova, A. N. Klimov, D. A.
Dvoretskiy, S. A. Bogdanov, K. D. Bondar, and A. P. Nau-
menko, in Emerging Imaging and Sensing Technologies
for Security and Defence VI, edited by R. C. Hollins, G.
S. Buller, R. A. Lamb, and M. Laurenzis (SPIE, Madrid,
2021), p. 15.

[20] S. A. Bogdanov, I. S. Sushchev, A. N. Klimov, K. E. Bugay,
D. S. Bulavkin, and D. A. Dvoretsky, in Quantum Tech-
nologies 2022, edited by S. Ducci, E. Diamanti, N. Treps,
and S. Whitlock (SPIE, Strasbourg, 2022), p. 57.

[21] A. Lamas-Linares and C. Kurtsiefer, Breaking a quantum
key distribution system through a timing side channel, Opt.
Express 15, 9388 (2007).

[22] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy,
Trojan-horse attacks on quantum-key-distribution systems,
Phys. Rev. A (College Park) 73, 022320 (2006).

[23] N. Jain, E. Anisimova, I. Khan, V. Makarov, C. Marquardt,
and G. Leuchs, Trojan-horse attacks threaten the security of
practical quantum cryptography, New J. Phys. 16, 123030
(2014).

[24] S. E. Vinay and P. Kok, Extended analysis of the trojan-
horse attack in quantum key distribution, Phys. Rev. A
(College Park) 97, 042335 (2018).

[25] M. Lucamarini, I. Choi, M. B. Ward, J. F. Dynes, Z. L.
Yuan, and A. J. Shields, Practical security bounds against
the trojan-horse attack in quantum key distribution, Phys.
Rev. X 5, 031030 (2015).

[26] B. A. Nasedkin, I. M. Filipov, A. O. Ismagilov, V. V. Chis-
tiakov, F. D. Kiselev, A. N. Tsypkin, and V. I. Egorov,
Analyzing transmission spectra of fiber-optic elements in
the near IR range to improve the security of quantum key
distribution systems, Bull. Russ. Acad. Sci.: Phys. 86, 1164
(2022).

[27] N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and
G. Leuchs, Risk analysis of trojan-horse attacks on prac-
tical quantum key distribution systems, IEEE J. Sel. Top.
Quantum Electron. 21, 168 (2015).

[28] A. V. Borisova, B. D. Garmaev, I. B. Bobrov, S. S.
Negodyaev, and I. V. Sinil’shchikov, Risk analysis of coun-
termeasures against the trojan-horse attacks on quantum
key distribution systems in 1260–1650 nm spectral range,
Opt. Spectrosc. 128, 1892 (2020).

[29] B. Nasedkin, F. Kiselev, I. Filipov, D. Tolochko, A. Ismag-
ilov, V. Chistiakov, A. Gaidash, A. Tcypkin, A. Kozubov,
and V. Egorov, Loopholes in the 1500–2100-nm range
for quantum-key-distribution components: Prospects for
trojan-horse attacks, Phys. Rev. Appl. 20, 014038 (2023).

[30] S. Sajeed, I. Radchenko, S. Kaiser, J.-P. Bourgoin, L.
Monat, M. Legré, and V. Makarov, Securing two-way
quantum communication: The monitoring detector and its
flaws, in 4th International Conference on Quantum Cryp-
tography (QCrypt), Paris, France, 2014 (unpublished),
http: / /www.vad1.com/publications/sajeed2014.QCrypt20
14.pdf

[31] F.-Y. Lu, Z.-H. Wang, V. Zapatero, J.-L. Chen, S. Wang,
Z.-Q. Yin, M. Curty, D.-Y. He, R. Wang, W. Chen, et al.,
Experimental demonstration of fully passive quantum key
distribution, Phys. Rev. Lett. 131, 110802 (2023).

034032-12

https://doi.org/10.1103/PhysRevLett.106.110506
https://doi.org/10.1134/S0021364011230093
https://doi.org/10.1103/PhysRevLett.91.057901
https://doi.org/10.1088/1612-202X/aa8ecc
https://doi.org/10.1364/OPTICA.485389
https://doi.org/10.1364/OPTICA.454228
https://doi.org/10.1364/OE.19.023590
https://doi.org/10.1088/1367-2630/13/1/013043
https://doi.org/10.1103/PhysRevA.74.022313
https://doi.org/10.1103/PhysRevLett.112.070503
https://doi.org/10.1134/S0021364022601117
https://doi.org/10.1134/S1063785023010017
https://doi.org/10.1103/PhysRevApplied.12.064043
https://doi.org/10.1134/S1063776120050064
https://doi.org/10.1038/s41598-017-08279-1
https://doi.org/10.1364/OE.15.009388
https://doi.org/10.1103/PhysRevA.73.022320
https://doi.org/10.1088/1367-2630/16/12/123030
https://doi.org/10.1103/PhysRevA.97.042335
https://doi.org/10.3103/S1062873822100148
https://doi.org/10.1109/JSTQE.2014.2365585
https://doi.org/10.1134/S0030400X20110077
https://doi.org/10.1103/PhysRevApplied.20.014038
http://www.vad1.com/publications/sajeed2014.QCrypt2014.pdf
https://doi.org/10.1103/PhysRevLett.131.110802


TROJAN-HORSE ATTACK ON A REAL-WORLD QUANTUM. . . PHYS. REV. APPLIED 22, 034032 (2024)

[32] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer,
Generalized privacy amplification, IEEE Trans. Inf. Theory
41, 1915 (1995).

[33] A. S. Holevo, Bounds for the quantity of information
transmitted by a quantum communication channel, Probl.
Peredachi Inf. 9, 3 (1973).

[34] A. Uhlmann, The “transition probability” in the state space
of a ∗-algebra, Rep. Math. Phys. 9, 273 (1976).

[35] W. Roga, M. Fannes, and K. Życzkowski, Universal bounds
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