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We derive from first principles a general circuit model for open, frequency dispersive electromagnetic
resonators in the full-wave regime. This model extends the concepts of radiation impedance to the polariza-
tion current-density modes induced in open resonators by an arbitrary external excitation. Its physics-based
elements offer physical insights into the scattering problem and enable efficient modeling of the resonance
frequency and associated bandwidth for arbitrary scattering resonances, establishing a powerful platform
for the design and optimization of nanophotonic circuits. Our findings offer compelling prospects for elec-
tromagnetic scattering and ultrafast nanophotonics, streamlining the analysis and design of nanoresonators
with enhanced operational speeds, and outlining a physics-based model of their temporal dynamics.
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I. INTRODUCTION

In the past decades, nanoscale plasmonic [1] and high-
index all-dielectric Mie resonators [2] have emerged as
fundamental elements to design nanophotonic systems. As
the complexity of arrangements of nanoparticles grows,
a modular way to describe their combined response in a
circuitlike fashion is highly desirable. Along this pursuit,
researchers have introduced circuit analogs of nanores-
onators interacting with light [3–8], and a definition of
the input impedance for nanoantennas [9,10]. While these
approaches provide a powerful model for light interac-
tions with nanoparticles at specific frequencies, they fail
at fully capturing the underlying physics, such as res-
onance frequency dispersion and associated bandwidths.
These quantities are crucial not only for providing power-
ful insights into how nanoparticles respond when excited
by light but also for addressing emerging needs in the field
of nano-optics, in the context of the temporal response of
nanophotonic devices and metamaterials.

We can identify several operating scenarios of nanores-
onators interacting with electromagnetic fields. In the first
scenario, illustrated in Fig. 1(a), the nanoresonator consists
of a metal or dielectric object with a gap region where a
feed, typically a localized optical emitter, is placed. The
input impedance can be defined similarly to a classical
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antenna [11], as long as dispersion and dissipation are cor-
rectly accounted for [12]. The nanoresonator can be tuned
by placing a nanoload near the gap or feeding region [9].
An alternative scenario, depicted in Fig. 1(b), involves
placing the emitter in proximity to a nanoresonator without
a gap region, more similar to an antenna reflector. Also, in
this case, the concept of input impedance can be introduced
[10]. In both scenarios, the bandwidth can be determined
using established techniques from antenna design [13].
The third scenario, shown in Fig. 1(c), is the most common
in the field of nanophotonics and arises when the object
interacts with an incident electromagnetic field that can-
not be attributed to a localized source. In the absence of a
feeding point, the input impedance cannot be defined using
standard antenna engineering approaches.

In this paper, we propose a circuit model for open
nanoresonators, applicable to any of the scenarios in Fig. 1
and which, unlike previous approaches [3–5,7,8], can be
rigorously defined in the full-wave regime. The proposed
model introduces the concept of “radiation impedance”
of an open resonant mode, which does not depend on
the excitation condition nor on the material dispersion,
and it can be rigorously defined for each of the three
scenarios illustrated in Fig. 1. As a result, the proposed
model allows us to transplant several classical concepts
and formulas of circuit and antenna theory to the domain
of electromagnetic scattering, enabling the efficient cal-
culation and physics-rooted modeling of the resonance
frequency, dispersion, and bandwidth of any open resonant
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(a) (b) (c)

FIG. 1. Scenarios for the excitation of an electromagnetic dispersive open resonator with susceptibility χ(ω). (a) A bow-tie nanoan-
tenna featuring a feeding point located in its gap region. (b) A nanosphere excited by a point source, where no gap region is present.
(c) A nanoresonator excited by an incident electric field coming from infinity.

electromagnetic mode. In radio-frequency and microwave
engineering, tuning the input impedance to zero-reactance
is critical to impedance match the antenna and ensure
efficient radiation at resonance. Here, we demonstrate that
the resonance condition for a resonant mode of a local-
ized open scatterer can be determined in an analogous
way by setting its reactance, as defined in our model, to
zero. Furthermore, leveraging our definition of radiation
impedance we can extend the Yaghjian-Best formula [13]
from antenna engineering to determine the bandwidth of
the open modes of a nanoresonator.

The paper is organized as follows. In Sec. II, we for-
mulate the electromagnetic scattering problem from a
homogeneous object of finite size in integral form. Here,
we also introduce the modes of the nanoresonator and
the definition of the radiation impedance of the modes.
We then introduce the circuit model together with the
definition of the constituent impedance and sources, and
find the resonance condition for the modes. In Sec. III,
we show how the Yaghjian-Best formula [13] can be
employed to calculate the bandwidth of arbitrary open res-
onant modes using the introduced radiation impedance.
Then, in Sec. IV, we derive the electroquasistatic and
magnetoquasistatic limits of the circuit model, which are
relevant for the analysis and design of plasmonic and high-
permittivity resonators, respectively. In Sec. V, we apply
our model to metal and dielectric nanospheres, deriving
the values of the corresponding circuit elements. We then
validate the calculation of the resonance frequency and
bandwidth for object dimensions comparable to the inci-
dent wavelength. In Sec. VI, we conclude with a summary
and a discussion of the main achievements.

II. MODE EXPANSION, CIRCUIT MODEL, AND
RESONANCES

Consider a linear, homogeneous, isotropic, and disper-
sive dielectric object of arbitrary shape and finite size
placed in vacuum, as sketched in Fig. 1. Initially, we sim-
plify our analysis by assuming the object is composed
of a single material characterized by susceptibility χ(ω).

We will extend our discussion to include objects made
of multiple materials in Appendix A. The object occupies
the volume V with boundary ∂V whose normal n̂ points
outward. We denote by Ve the external domain. The char-
acteristic linear dimension �c of the object is defined as the
radius of the smallest sphere that surrounds it. The object is
excited by an electric field Einc that oscillates at frequency
ω (a time-harmonic dependence eiωt is assumed).

Based on the material composing the object, we define a
“material impedance” Zm (ω), defined as

Zm (ω) = Rm (ω) + iXm (ω) = −i
ζ0

χ (ω)

1
ξ

, (1)

where ε0 and μ0 are the vacuum permittivity and perme-
ability, ζ0 = √

μ0/ε0 is the characteristic impedance of the
vacuum, ξ = k0 �c is the size parameter of the object, k0 =
ω/c0, and c0 = 1/

√
ε0μ0. For reasons that will become

clear in the following, we call Rm and Xm the “material
resistance” and “material reactance.”

We formulate the full-wave scattering problem by con-
sidering the polarization current density field J(r), induced
by the incident field Einc(r) in the region V occupied by the
object, as the unknown. The field J is related to the scat-
tered electric field Es (r) and the incident field Einc through
the following relation:

J (r) = iωε0χ (ω) [Es (r) + Einc (r)] in V. (2)

Both Es and J are solenoidal in V due to the homogene-
ity and isotropy of the material. By expressing Es (r) as
a function of J, we obtain the full-wave volume integral
equation (e.g., Ref. [14])

ζ0

iξχ
J (r) = −ζ0

iξ
∇r

∮
∂V

e−iξ|r−r′|/�c

4π |r − r′| J
(
r′) · n̂

(
r′) d2r′

+ ζ0

i
ξ

�2
c

∫
V

e−iξ|r−r′|/�c

4π |r − r′| J
(
r′) d3r′

+ Einc (r)
�c

∀ r ∈ V. (3)
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Here, the surface and volume integrals represent the con-
tributions to the induced electric field due to the scalar
and vector potentials in the Lorenz gauge, respectively.
Equation (3) can be rewritten as [15]

Zm (ω) J (r) + L {J} (r) = Einc (r)
�c

∀ r ∈ V, (4)

where Zm (ω) is the material impedance defined in Eq. (1),
and the operator L is defined as

L {J} (r) = +ζ0

iξ
∇r

∮
∂V

e−iξ|r−r′|/�c

4π |r − r′| J
(
r′) · n̂

(
r′) d2r′+

− ζ0

i
ξ

�2
c

∫
V

e−iξ|r−r′|/�c

4π |r − r′| J
(
r′) d3r′. (5)

We can now introduce the auxiliary eigenvalue problem

L {jh} = Zh jh, (6)

where the eigenvalue Zh represents the “radiation
impedance” of the current eigenmode jh. The operator L
is complex symmetric but not self-adjoint, and its spec-
trum has interesting features [16,17]. For any value of
the size parameter ξ , its eigenvalues {Zh} and the corre-
sponding current eigenmodes {jh} form infinite countable
sets. Additionally, the radiation impedances are complex
with positive real parts. We denote the real part of Zh as
“radiation resistance” Rh, and its imaginary part as “radia-
tion reactance” Xh. Two modes corresponding to different
eigenvalues are not orthogonal with respect to the standard
scalar product, defined as follows:

〈f, g〉V =
∫

V
f∗ (r) · g (r) d3r, (7)

but they are biorthogonal, namely 〈j∗h, jk〉V = 0, ∀h, k ∈ N

with h 
= k [16,17]. It is worthwhile to note that the radia-
tion impedances and the corresponding modes depend only
on the shape of the object and the size parameter ξ , not
on the material properties. The eigenvalue problem (6)
can be numerically solved for arbitrarily shaped objects
using standard computational electromagnetic techniques,
as detailed in Appendix B.

By applying Poynting’s theorem in the frequency
domain to the hth current mode jh in free space, we can
relate the radiation resistance Rh to the mean electromag-
netic power radiated to infinity by jh, and the radiation
reactance Xh to the difference between the mean magnetic
and electric energies stored in the whole space. We then

find [17]

Rh = 2
�c ‖jh‖2

∮
S∞

Sh · în = 1
ζ0�c ‖jh‖2

∮
S∞

|Eh|2dS,

(8a)

Xh = 4ω

�c ‖jh‖2 Wdiff, (8b)

where S∞ is a spherical surface located at infinity, ‖jh‖2 =
〈jh, jh〉, Sh is the complex Poynting vector

Sh = 1
2

Eh × H∗
h, (9)

Wdiff =
∫

R3

(
1
4
μ0 |Hh|2 − 1

4
ε0 |Eh|2

)
d3r, (10)

Eh and Hh are the electric and magnetic fields radiated by
the density current mode jh in free space.

We can use the current modes {jh} to expand the solution
of the nonhomogeneous scattering problem (3):

J (r) =
∑

h

Ih (ω)
jh (ω, r)√
�c 〈j∗h, jh〉

, (11)

where Ih, which has the dimension of an electric current, is
given by

Ih (ω) = Eh (ω)

Zm (ω) + Zh (ω)
, (12)

and Eh, which has the dimension of a voltage, is given by

Eh (ω) = 〈j∗h, Einc〉√
�c 〈j∗h, jh〉

. (13)

It follows that the current intensity Ih is the solution of the
equivalent circuit shown in Fig. 2. Unlike previous circuit
models describing scattering problems involving nanopar-
ticles, our model completely disentangles the dependencies
on the excitation condition, the geometry, and the material
of the object. This provides physical insights into the role
of the different design parameters, and facilitates their opti-
mization. The geometry is accounted for by the radiation
impedance Zh (ω), which does not depend on the mate-
rial of the object, but only on its shape and frequency.
The material is accounted for by the material impedance
Zm. The excitation condition is accounted for by the volt-
age source, as an overlap integral with the eigenmode. We
compare our circuit model with the one in Refs. [3–6] in
Appendix C. This equivalent circuit enables the determi-
nation of the resonance frequency and the bandwidth of
the modes, as we will show in the following.
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FIG. 2. Equivalent circuit modeling the response of the polar-
ization current density mode jh induced in the scatterer by the
external field Einc. Zh is the mode’s radiation impedance, Zm is
the material impedance. The voltage Eh of the source is given
in Eq. (13). The current intensity Ih enters as an expansion
coefficient in Eq. (11).

The scattering efficiency σsca [18] characterizes the
power scattered by an object when illuminated by a given
electromagnetic field. It is defined as the scattering cross
section Csca normalized by the geometrical cross-section
G. By using expansion (11), we obtain

σsca(ω) = Csca

G
= 1

G
1

2ζ0Ii

∮
S∞

|E (r)|2 d2r

= 1
G

1
2ζ0Ii

�2
c

∮
S∞

∣∣L {J}∣∣2 d2r, (14)

where Ii is the incident irradiance [18]. Assuming that, in
the frequency interval of interest, the contribution of the
hth mode to the scattering efficiency is dominant, we find

σsca ≈ 1
G

1
2ζ0Ii

∣∣∣∣ Eh (ω)

Zm (ω) + Zh (ω)

∣∣∣∣
2

× �c

〈j∗h, jh〉
∮

S∞

∣∣L {jh}
∣∣2 d2r. (15)

Since the mode jh and the coupling term Eh vary slowly
with ω, they are nonresonant terms. Therefore, the behav-
ior of σsca near the resonance peak of the hth mode is
dominated by the resonant factor 1/|Zm (ω) + Zh (ω)|. The
current mode jh is “tuned” to zero reactance at the resonant
frequency ωh when the imaginary part of the denominator
of the resonant factor vanishes

Xm (ωh) + Xh (ωh) = 0. (16)

This is the resonant condition of the circuit in Fig. 2. Under
this condition, the mean power scattered by the object
exhibits a resonance peak near ωh.

We emphasize that the presented circuit model, derived
from the full-wave solution of Maxwell’s equations, ele-
gantly captures the resonances associated with plasmonic

and dielectric nanoparticles. This model distinctly sepa-
rates the contributions of excitation conditions, material
dispersion, and nanoparticle geometry, offering power-
ful opportunities for modeling, analyzing, and optimizing
their optical resonant response. In the following section,
we utilize this model to examine the bandwidth of these
resonances, delving into how material dispersion impacts
their resonant characteristics.

III. FRACTIONAL BANDWIDTH

The resonance bandwidth is a crucial parameter for
electromagnetic devices, as it characterizes their opera-
tional speed and dynamic response. In the field of radio-
frequency antennas, the fractional bandwidth is a key
parameter for determining the data rates that can be trans-
mitted or received. The “fractional” bandwidth is the
bandwidth of a device divided by its center frequency.
It is particularly useful in telecommunications and sig-
nal processing for comparing the relative bandwidths of
different signals or systems, which are directly related to
the available data rates. A common definition is the 3-dB
fractional bandwidth, which refers to the frequency range
within which the output power is within 3 dB of its maxi-
mum value, meaning the range of frequencies over which
the signal power is at least half of its peak value. Over
the years its study has led to the introduction of several
approximate formulas that enable its determination using
experimentally accessible quantities, such as the antenna’s
input impedance [13,19]. These studies have also estab-
lished a link between the fractional bandwidth and the
quality factor of an antenna resonance, defined in terms
of “observable” or “internal” stored energies [13,19–22].
Such a connection—if applicable—is particularly useful,
since lower bounds to the quality factor of radiators have
been developed over many years [23–34]. These explo-
rations become particularly helpful in nanophotonics given
the recent interest in ultrafast modulation of nanophotonic
structures within the context of Floquet physics [35,36]
and space-time metamaterials [37–39].

Referring to Fig. 3, we consider an antenna with
input impedance Z (ω) = R (ω) + iX (ω), and a series
impedance Zs (ω) = Rs (ω) + iXs (ω). The 3-dB fractional
bandwidth of such an antenna, tuned at the resonance
frequency ω0, where Xs (ω0) + X (ω0) = 0, can be approx-
imated using the formula derived by Yaghjian and
Best [13]

FBWantenna = 2
ω0

Rs (ω0) + R (ω0)∣∣Z ′
s (ω0) + Z ′ (ω0)

∣∣ , (17)

where the prime indicates the derivative with respect to
frequency. The derivative of the input reactance X is
related to the electric and magnetic “internal” energies
[13], enabling a connection to the quality factor.
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FIG. 3. Schematic representation of a transmitting antenna,
featuring a feed line, input impedance Z = R + iX , and series
impedance Zs = Rs + iXs. The antenna’s fractional bandwidth
can be calculated using the Yaghjian-Best formula [13].

Determining the resonance bandwidth of “nanoanten-
nas” in the scenarios depicted in Figs. 1(a) and 1(b) follows
a conceptually analogous approach to the one of classical
antennas, and Eq. (17) can still be employed. However,
the determination of the bandwidth of a scatterer [scenario
shown in Fig. 1(c)] cannot rely on the present form of
Eq. (17), because the input impedance cannot be defined
without a localized feeding point. In the following, we
demonstrate how the fractional bandwidth of the scattering
resonances can still be evaluated by employing the circuit
formulation developed in the previous section.

In order to determine the fractional bandwidth FBWh
of the scattered power spectrum σsca around the resonance
frequency ωh of the mode jh, following Ref. [13], we first
find the two frequencies ω±

h = ωh + �ω±
h at which the

scattering efficiency is (1 − α) times its value at the res-
onance ωh, where α is a parameter ranging in the interval
(0, 1). By assuming that, in the frequency interval of inter-
est, the contribution of the hth mode jh is dominant, we
can apply Eq. (15). Since the coupling coefficient Eh and
the mode jh are weakly dependent on the frequency, we
find ω±

h by enforcing the condition

1∣∣Zm
(
ω±

h

)+ Zh
(
ω±

h

)∣∣2 = (1 − α)
1

|Zm (ωh) + Zh (ωh)|2
.

(18)

Following Ref. [13], in the neighborhood of the res-
onance frequency it is also reasonable to assume that∣∣Z′

m + Zm
∣∣2 � (

R′′
m + R′′

h

)
(Rm + Rh), thus we obtain

�ω±
h ≈ ±

√
β

Rm (ωh) + Rh (ωh)∣∣Z ′
m (ωh) + Z ′

h (ωh)
∣∣ , (19)

where β = α/(1 − α). Finally, we can obtain the fractional
bandwidth

FBWh = �ω+
h −�ω−

h

ωh
≈ 2

√
β

ωh

Rm (ωh) + Rh (ωh)∣∣Z ′
m (ωh) + Z ′

h (ωh)
∣∣ .
(20)

If α = 1/2 (β = 1) we obtain the 3-dB fractional band-
width

FBWh ≈ 2
ωh

Rm (ωh) + Rh (ωh)∣∣Z ′
m (ωh) + Z ′

h (ωh)
∣∣ . (21)

This is the fractional bandwidth of the circuit in Fig. 2 at
the resonance frequency ωh. We note that this formula is
analogous to the Yaghjian-Best formula for the fractional
bandwidth of a classical antenna [13], Eq. (17). Remark-
ably, our formalism allows us to derive a closed-form
expression for a problem that does not involve a feeding
point but instead involves excitation and observation in far
field, as is common in scattering and nanophotonic prob-
lems. Here, the radiation impedance Zh plays the role of
the input impedance Z, while the material impedance Zm
plays the role of the series impedance Zs. The fractional
bandwidth does not depend on the excitation conditions,
given that we assumed an isolated and well-defined reso-
nant mode. Again, the contribution to the FBWh from the
geometry and from the material composition are neatly dis-
entangled in this formulation: the geometry is accounted
for by Zh, which does not depend on the material of the
object, but only on the scatterer shape, size, and operating
frequency. The material and its dispersion are accounted
for by the material impedance Zm (ω). This feature allows
for the design and optimization of shape and material
dispersion of plasmonic and dielectric scatterers for the
desired resonant response.

IV. CIRCUIT MODEL OF PLASMONIC AND
DIELECTRIC MODES

In this section, we first classify the modes of a res-
onator based on their behavior in the low-frequency limit.
Next, we derive the asymptotic expression of the radiation
impedances in both the low-frequency and high-frequency
limits. Finally, we establish the Kramers-Kronig relations
for radiation impedances.

Following Refs. [40], in the low-frequency limit ξ ↓ 0
the eigenvalue problem (6) disentangles into two differ-
ent eigenvalue problems: an electroquasistatic eigenvalue
problem and a magnetoquasistatic eigenvalue problem.

The electroquasistatic current modes {j‖h} are the eigen-
modes of the electrostatic integral operator Le, which
gives the electrostatic field as a function of the surface
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charge density [41,42]:

Le{j‖h} = 1

C‖
h

j‖h, (22)

where

Le{j} = 1
ε0�c

∇r

∮
∂V

1
4π |r − r′| j

(
r′) · n̂

(
r′) d2r′, (23)

C‖
h is the eigenvalue, representing the “eigencapacitance”

associated with the mode j‖h. The eigenvalues {C‖
h} are

discrete, real, and positive [42]. The mode {j‖h} and the
eigenvalues {C‖

h} depend only on the geometry of the
object. The modes {j‖h} are longitudinal: they are both
irrotational and solenoidal within the object, but have non-
vanishing normal components to the object surface [42].
They are also orthogonal, i.e., 〈j‖h, j‖k〉V = ‖j‖h‖2δh,k.

Dually, the magnetoquasistatic current density modes
{j⊥h } are the eigenmodes of the magnetostatic integral oper-
ator Lm, which gives the vector potential as a function of
the current density [43]:

Lm{j⊥h } (r) = L⊥
h j⊥h (r) (24)

with

j⊥h (r) · n̂ (r)
∣∣
∂V = 0 ∀ r ∈ ∂V, (25)

where

Lm {j} (r) = μ0

�c

∫
V

1
4π |r − r′| j

(
r′) d3r′, (26)

and L⊥
h is the eigenvalue, representing the“eigeninductance”

associated to the eigenmode j⊥h . Equation (24) holds in the
weak form in the functional space of the transverse vector
fields that are solenoidal within V and having zero normal
component to ∂V, equipped with the scalar product (7).
The eigenvalues are discrete, real, and positive. Further-
more, the magnetoquasistatic current modes are orthogonal
〈j⊥h |j⊥k 〉 = ‖j⊥h ‖2δh,k.

A. Plasmonic modes

The “plasmonic” modes correspond to the current den-
sity modes of the full-wave operator L , defined by Eq. (5),
that tend to the electroquasistatic current modes j‖h defined
by Eq. (22), in the low-frequency limit, i.e., ξ ↓ 0. In this
limit, their radiation impedance Z‖

h tends to (i ωC‖
h)

−1,
making them “capacitive.”

FIG. 4. Equivalent circuit for the plasmonic mode jh in the
low-frequency regime. The eigencapacitance C‖

h is defined by the
eigenvalue problem (22), the resistance R‖

h and the inductance L‖
h

are given by Eq. (D1).

In particular, for ξ � 1 the radiation resistance and
radiation reactance are given by

Rh = R‖
h + O

(
ω

c0
�c

)3

, (27a)

Xh = − 1

ωC‖
h

+ ωL‖
h+O

(
ω

c0
�c

)2

, (27b)

where O is the Bachmann-Landau notation indicating the
order of approximation. Interestingly, R‖

h and L‖
h can be

written in closed form for arbitrarily shaped resonators in
terms of the quasistatic modes, as shown in Appendix D.
Equation (27b) shows that the radiation reactance can be
approximated as a series connection of the capacitor C‖

h

and the inductor L‖
h. Thus, in the low-frequency regime,

the circuit of a plasmonic mode is the one shown in Fig. 4.
In the high-frequency limit, ξ ↑ ∞, it can be shown that

Zh −→ 1
iωC∞

, (28)

where C∞ = ε0�c.
In the Laplace domain, the radiation impedance associ-

ated with a plasmonic mode exhibits a pole at the origin of
the complex plane, whereas, due to causality, no poles are
present in the right semispace of the complex plane. Thus,
it satisfies the Kramers-Kronig relation

Xh (ω) = 2ω

π

∫ ∞

0

Rh (�) − Rh (ω)

ω2 − �2 d� − 1

ωC‖
h

. (29)

B. Dielectric modes

Dually, “dielectric” modes are current-density modes of
the full-wave operator L that tend to magnetoquasistatic
current modes, defined by Eq. (24), in the low-frequency
limit, i.e., ξ ↓ 0. In this limit, their radiation admittance,
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FIG. 5. Equivalent circuit for the dielectric mode jh in the
low-frequency regime. The eigeninductance L⊥

h is defined by the
eigenvalue problem (24), the conductance G⊥

h and the capaci-
tance C⊥

h are given by Eq. (D2).

i.e., the inverse of the radiation impedance Yh = 1/Zh,
tends to

(
iωL⊥

h

)−1, making them “inductive.” In particu-
lar, for ξ � 1 the radiation conductance Gh and radiation
susceptance Bh are

Gh = G⊥
h + O

(
ω

c0
�c

)3

, (30a)

Bh = − 1
ωL⊥

h
+ ωC⊥

h +O
(

ω

c0
�c

)2

, (30b)

where G⊥
h and L⊥

h have a closed form expression, provided
in Appendix D. Equation (30b) shows that the radiation
reactance of the hth mode results from the parallel of the
capacitor C⊥

h and the inductor L⊥
h . Thus, in this limit, the

circuit model of a dielectric mode becomes the one shown
in Fig. 5.

In the high-frequency limit, it can be shown that

Yh −→ iωC∞, (31)

where C∞ = ε0�c.
In the Laplace domain, the radiation admittance asso-

ciated with a dielectric mode exhibits a pole at the origin
of the complex plane, but no poles in the right semispace
of the complex plane. Thus it satisfies the Kramer-Kronig
relation

Bh (ω) = 2ω

π

∫ ∞

0

Gh (�) − Gh (ω)

ω2 − �2 d� − 1
ωL⊥

h
. (32)

V. RESULTS

In order to validate the zero-reactance condition (16) and
the fractional bandwidth expression (21) and demonstrate
the applicability of our equivalent circuit model in fully
capturing the dynamics of open resonant systems, we con-
sider spherical objects of radius a. We begin by analyzing
a metallic sphere followed by a dielectric sphere.

A. Metallic sphere

The metal response is described through a Drude sus-
ceptibility [44]

χ (ω) = − ω2
p

ω (ω − iν)
, (33)

where ωp is the plasma frequency, and ν is the damp-
ing rate of the free electrons of the metal. We obtain the
material impedance by substituting expression (33) in the
definition (1),

Zm (ω) = iωLm + Rm (34)

where

Lm = 1
aε0ω2

p
, Rm = ν

aε0ω2
p

= ζ0
ν

ωp

1
ξp

, (35)

where ξp = ωpa/c0 is the normalized plasma frequency.
This impedance is inductive, as expected. In the follow-
ing, we neglect the material losses, assuming Rm ≈ 0. This
assumption is well founded provided that the radiation
losses dominate over material absorption. One of the pow-
erful aspects of the circuit model introduced in Fig. 2 is its
modularity: a change in the material of the object affects
only the material impedance, without altering the radiation
impedance, and, conversely, a change in geometrical shape
affects only the radiation impedance. In Appendix E, we
derive the material impedance for a medium described by
a general Drude-Lorentz model.

For a metallic sphere, characterized by an inductive
material impedance, our focus is on plasmonic modes that
exhibit a capacitive radiation impedance, as we will see

E
D

ED

ED

FIG. 6. Radiation resistance RED (blue curve) and radiation
reactance XED (red curve) of the electric dipole mode jED of a
sphere of radius a as a function of the size parameter ξ = k0a.
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(a)

(b)

(c)

sc
a

sc
a

sc
a

FIG. 7. Scattering efficiency σsca versus the normalized fre-
quency ω/ωp of a Drude metal sphere with plasma frequency ωp ,
negligible material losses ν ≈ 0, and radius a, excited by a lin-
early polarized plane wave. This analysis considers three distinct
values of the normalized plasma frequency ξp = ωp a/c0, specifi-
cally 1 (a), 2 (b), and 3 (c). The peak corresponding to the electric
dipole mode is marked with a red circle. Where applicable, 3-dB
frequencies ω±

h , are shown with the symbol ×.

later. They include the electric dipole mode, quadrupole
mode, octupole mode, etc. We begin our examination with
the electric dipole mode, followed by an exploration of
higher-order modes later in this section.

The dominant resonance of a metallic nanoparticle orig-
inates from the electric dipole mode jED [1]. The polar-
ization current-density field of this mode is shown, in the
limit ξ ↓ 0, in the top portion of Fig. 6. We compute its
radiation impedance ZED = RED + iXED as a function of
ξ = k0a by solving the eigenvalue problem (6). Due to
the spherical symmetry, this task can be accomplished by
finding the zeros of a nonlinear characteristic equation
[17]. In Fig. 6, we show with a blue curve the radiation
resistance RED versus the size parameter ξ of the par-
ticle. For ξ ↓ 0, the radiation resistance RED vanishes.
Then, as the size of the particle increases, the radiation
resistance quadratically increases as RED ∝ 2

9ζ0ξ
2 (see

the asymptotic analysis carried out in Ref. [40]), until it
reaches a maximum for ξ = 2.15, and eventually it goes
to zero for ξ → ∞. In Fig. 6, we also show with a red

curve the radiation reactance XED. For ξ ↓ 0 it diverges as
−(ζ0/3)(1/ξ). As ξ increases, XED reaches a maximum for
ξ = 1.45, then XED decreases to a minimum at ξ = 3.44.
Eventually, it increases again, approaching asymptotically
zero for ξ → ∞ as −1/(ωC∞) = −ζ0/ξ . The radiation
reactance is always negative, so the radiation impedance
of the electric dipole mode is always capacitive, regardless
of the operating frequency.

The resonance frequency ωED can be derived through
our circuit model, corresponding to the frequency for
which the tuning condition (16) is met, corresponding
to the size parameter ξED = ωED a/c0. Analogously, the
fractional bandwidth can be derived from Eq. (21). To val-
idate these expressions we analyze the scattering efficiency
spectrum.

In Fig. 7, we show the spectrum of the scattering effi-
ciency σsca for several values of the normalized plasma
frequency ξp = ωpa/c0. The low-frequency peak, labeled
with a red dot, corresponds to the electric dipole reso-
nance. It is followed, at higher frequencies, by the res-
onance peaks of the electric quadrupole, octupole, and
higher-order resonances. For ξp ↓ 0, the resonance of the
electric dipole mode occurs at ξED/ξp ≈ 1/

√
3 ≈ 0.57. An

increase of ξp causes a redshift of the resonance position
and a broadening of the peak, thus an increase in band-
width. At ξp = 2 and ξp = 3, as illustrated in Figs. 7(b)
and 7(c), respectively, the electric dipole and quadrupole
partially overlap. For this reason, we compute the “exact”
fractional bandwidth by finding the peak frequency ωpeak
on the σsca curve, and the frequency ω− at which the
scattered power is one half its (first) peak value, and
FBWh(exact) = 2(ωpeak − ω−)/ωpeak.

In Fig. 8, the position of the first peak of σsca is
compared against the resonance position obtained by
enforcing the zero-reactance condition [Eq. (16)] as a

E
D

FIG. 8. Normalized frequency position of the lowest fre-
quency peak (labeled as “exact”) of the scattering efficiency
spectrum of a sphere (see Fig. 7) versus the normalized plasma
frequency ξp . This position is compared with the normalized
resonance frequency (labeled as “approximate”) of the electric
dipole mode, determined by applying the zero-reactance con-
dition. The green dots highlight the scenarios for ξp = 1, 2, 3
corresponding to panels (a)–(c) of Fig. 7.
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ED ED

FIG. 9. Inverse value of the “exact” fractional bandwidth eval-
uated from the scattering efficiency spectrum of a metallic sphere
(see Fig. 7), as explained in the text, versus the size parameter
at the resonance aωED/c0 (bottom axis) and normalized plasma
frequency aωp/c0 (top axis). The inverse of the exact fractional
bandwidth is compared against the inverse of the “approxi-
mate” fractional bandwidth of the electric dipole mode given by
Eq. (21). The green dots highlight the scenarios for ξp = 1, 2, 3
corresponding to panels (a)–(c) of Fig. 7.

function of the normalized plasma frequency ξp = ωpa/c0.
A very good agreement is generally observed, with a
slight disagreement beginning to emerge when the nor-
malized plasma frequency ξp exceeds 2. This is attributed
to the increasing weight of the radiation resistance RED,
whose contribution is neglected by the zero-reactance
condition. In the low-frequency regime, RED quadrati-
cally increases with frequency, causing a low-frequency
shift in the position of the actual scattering peak rel-
ative to the prediction made under the zero-reactance
condition.

The “exact” fractional bandwidth and the
“approximated” fractional bandwidth, given by Eq. (21),
are compared in Fig. 9 as a function of the resonance size
parameter ξED (bottom axis). Each value of ξED is associ-
ated with a different value of normalized plasma frequency
ξp (top axis). We observe very good agreement, with a
small deviation emerging when the normalized plasma fre-
quency ξp exceeds 2, attributable to the slight discrepancy
in identifying the resonance frequency.

The analysis carried out so far refers to the full-wave
regime. Nevertheless, the low-frequency regime, achieved
when ξ � 1, is the most relevant for plasmonic reso-
nances. In this regime, the circuit model for the electric
dipole mode is shown in Fig. 10. The material impedance,
enclosed in the yellow box, is given by the series of the
kinetic material inductance and the material resistance,
as specified by Eq. (34). The radiation impedance of the
mode, enclosed in the green box, is the series of the
eigencapacitance C‖

ED, eigenvalue of the problem (22), the
radiation resistance R‖

ED, and the inductance L‖
ED, given

ED

FIG. 10. Equivalent circuit describing the response of the elec-
tric dipole mode jED in a Drude metal sphere (with plasma
frequency ωp , damping rate ν, and radius a), in the low-
frequency limit. Zm is the material impedance. ZED is the
radiation impedance of the electric dipole mode.

by Eq. (D1) in Appendix D. For a sphere, these quantities
have analytical expressions

C‖
ED=3ε0a, R‖

ED (ξ) = 2
9
ζ0

(
aω

c0

)2

, L‖
ED= 4

15
μ0a.

(36)

The resonance frequency of the LC circuit in Fig. 10 is
given by

ωED = 1√
(Lm + L‖

ED)C‖
ED

. (37)

which in the limit ξp � 1 returns

ωED ≈ ωp√
3

[
1 − 2

15

(
aωp

c0

)2
]

≈ ωp√
3

. (38)

This is a well-known result in the field of plasmonics
[1,45], and can also be obtained using the circuit model
introduced by Engheta and coworkers [3]. In Appendix C,
we compare both models. The approximate 3-dB fractional
bandwidth is obtained from Eq. (21),

FBWED ≈ 2
ωED

Rm (ωED) + RED (ωED)∣∣Z ′
m (ωED) + Z ′

h (ωED)
∣∣ = 2

3

(
aωED

c0

)3

,

(39)

which equates the inverse of the minimum Q factor of
a small radiator of the electric-type [23,28,34,46]. This
equation succinctly illustrates the well-known trade-off
between bandwidth and the size of the resonator, demon-
strating that a reduction in size will correspondingly
decrease the resonance bandwidth. Formula (21) is also
applicable in scenarios where material losses are com-
parable to radiation losses. In such instances, a closer
examination of its numerator reveals that the total frac-
tional bandwidth can be approximated by summing the
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(a)

(b)

FIG. 11. (a) Radiation resistance Rn and (b) radiation reac-
tance Xn of selected plasmonic modes of a sphere of radius a as
a function of the size parameter ξ = k0a: electric dipole mode
(n = 1), electric quadrupole mode (n = 2), and electric octupole
mode (n = 3).

fractional bandwidths attributed to material resistance and
radiation resistance, respectively. In Appendix E, the anal-
ogous circuit for a Drude-Lorentz sphere is shown and
investigated.

The circuit model of Fig. 2 also applies to higher-order
plasmonic resonances. In Figs. 11(a) and 11(b), we show,
as a function of the size parameter ξ = k0a, the radiation
resistance Rn and the radiation reactance Xn of plasmonic
modes of different multipolar order n, namely the elec-
tric dipole mode (n = 1), the electric quadrupole mode
(n = 2), and the electric octupole mode (n = 3). The polar-
ization current-density field of these modes is shown on
the right side of Fig. 11. The eigenspace corresponding to
the eigenvalue Zn of the problem (6) is spanned by the
polarization current-density modes

je
onm = N(1)

e
omn

(
ξ

r
a

√
1 + i

ζ0

Znξ

)
, (40)

where the functions N(1)
e
omn

are the vector spherical wave
functions regular at the origin (we follow the definition
of Ref. [18]), the subscripts e and o denote even and
odd azimuthal dependence, and m = 0, · · ·, n. The func-
tions N(1)

e
omn

exhibit zero radial magnetic field. Overall,
the behavior of the radiation resistance and reactance of
the electric quadrupole and the octupole looks similar to
the ones of the electric dipole mode, investigated in the
previous section. Nevertheless, the maxima and minima of
the curves shift at higher values of the size parameter as
the multipolar order n of the mode increases.

In the low-frequency regime, the radiation resistance
and reactance of plasmonic modes can be written accord-
ingly to Eq. (27), where

R‖
n = ζ0

(n + 1)

[(2n + 1)!!]2

(
aω

c0

)2n

, (41a)

C‖
n = 2n + 1

n
ε0a, (41b)

L‖
n = 2(n + 1)

(3 + 2n)(4n2 − 1)
μ0a. (41c)

The above parameters specify the circuit model of plas-
mon modes in the low-frequency regime, shown in Fig. 4.
The approximate 3-dB fractional bandwidth, in the low-
frequency regime, is obtained by substituting the expres-
sions (41) and (35) into Eq. (21):

FWBn = (n + 1) (2n + 1)

n [(2n + 1)!!]2

(
aωn

c0

)2n+1

. (42)

For instance, for electric quadrupole and octupole modes,
we have, respectively,

FWB2 = 1
30

(
aω2

c0

)5

; FWB3 = 4
4725

(
aω3

c0

)7

.

(43)

These results align with those found in previous works
[47–49]. Our circuit model offers a robust framework for
separately analyzing the influence of radiation and mate-
rial losses on the characteristics of plasmonic resonances.
Specifically, we can examine the ratio of radiation to
material resistance, expressed as

R‖
n

Rm
= (n + 1)

[(2n + 1)!!]2

ξp(
ν/ωp

) ξ 2n, (44)

where we employ Eqs. (35) and (41a). The above for-
mula highlights that, in the low-frequency regime, as the
multipolar order, n, of the plasmonic mode increases, the
radiation resistance diminishes relative to the material
resistance, given specific values of ξ , ξp , and ν/ωp .

B. Dielectric sphere

A second significant scenario for nanophotonics is the
case of all-dielectric scatterers [50–52], which exhibit even
richer behavior due to the ease of exciting multipolar res-
onances and engineering interference effects. Specifically,
we apply our formulation and circuit model to a dielectric
sphere described by the Debye susceptibility [53,54]:

χ (ω) = χ0

1 + iω/γ
, (45)

where χ0 is the zero-frequency susceptibility and γ is the
relaxation frequency. By the definition (1), the material
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impedance is

Zm = 1
iωCm

+ Rm, (46)

where Cm is the material capacity

Cm = ε0χ0a, (47)

and

Rm = ζ0
1
χ0

(
c0

aγ

)
= 1

Cm γ
, (48)

In the low-dissipation limit, ω � γ , the material admit-
tance, Ym, reciprocal of material impedance Zm, can be
approximated as

Ym (ω) ≈ Gm + iωCm, (49)

where Gm is the material conductance

Gm =
(

ω

γ

)2 1
Rm

= 1
ζ0

χ0

(
c0

γ a

)
ξ 2. (50)

In the following, we neglect material losses, assuming
Rm ≈ 0. Since the material impedance is capacitive, a
dielectric sphere cannot support the resonance of plas-
monic modes, whose radiation reactance, as shown in
Figs. 6 and 11, is always capacitive, and therefore, the
zero-reactance condition would never be satisfied.

For a dielectric sphere, characterized by a capacitive
material impedance, our focus is on dielectric modes that
exhibit an inductive radiation impedance at low frequen-
cies. We begin our examination with the magnetic dipole
mode, while higher-order modes will be explored later in
this section.

The polarization current-density field of the magnetic
dipole mode jMD is shown in the top portion of Fig. 12 for
ξ ↓ 0. The radiation impedance ZMD = RMD + iXMD of
the magnetic dipole mode is computed as a function of the
size parameter ξ = k0a by solving the eigenvalue problem
(6). Figure 12 shows the radiation resistance RMD and the
radiation reactance XMD as a function of the size parame-
ter. For ξ ↓ 0, RMD vanishes, then it grows as (2ζ0/π

4)ξ 4

reaching a maximum for ξ = 3.5; eventually it decreases
and goes to zero as ξ → ∞. For ξ ↓ 0, XMD vanishes, then
it linearly grows as (ζ0/π

2)ξ . The radiation reactance is
inductive for ξ < 3.4, while for larger size parameters it
becomes capacitive. This implies that the magnetic dipole
mode can be tuned to resonance in dielectric particles
for values of a, which are not too large compared to the
wavelength.

We validate our circuit model by predicting the reso-
nance position of the magnetic dipole mode, its dispersion,

M
D

MD

MD

FIG. 12. Radiation resistance RMD (blue curve) and reactance
XMD (red curve) of the magnetic dipole mode jMD of a sphere of
radius a as a function of the size parameter ξ = k0a.

and its bandwidth. We indicate with ωMD the value of the
frequency for which the tuning condition (16) is verified
and with ξMD = ωMD a/c0 the corresponding size param-
eter. In Fig. 13, we show the spectrum of the scattering
efficiency σsca as a function of ξ

√
χ0 = k0a

√
χ0 for sev-

eral values of the susceptibility χ0. The low-frequency
peak, labeled with a red dot, corresponds to the resonance
of the magnetic dipole. It is followed, at higher frequen-
cies, by the resonance peaks of the higher-order modes.
For χ0 ↑ ∞, the resonance of the magnetic dipole mode
occurs at ξMD

√
χ0 ≈ π . A decrease of χ0 causes a redshift

of the resonance position and a broadening of the peak,
thus an increase in the bandwidth. In Fig. 14, the peak
position of σsca is compared against the resonance position
obtained by enforcing the zero-reactance condition [Eq.
(16)] as a function of the susceptibility of the sphere χ0.
Excellent agreement is found. The “exact” fractional band-
width and the “approximated” fractional bandwidth, given
by Eq. (21), are compared in Fig. 15 as a function of the
size parameter ξMD at the magnetic dipole resonance (bot-
tom x axis). Each value of ξMD corresponds to a different
susceptibility, χ0, of the sphere (indicated on the top axis).
Remarkably, we observe very good agreement even when
the particle size is comparable to the resonance wavelength
of the magnetic dipole mode.

It is interesting to evaluate the expression of the res-
onance frequency and the fractional bandwidth of the
magnetic dipole mode in the low-frequency limit. In the
limit ξ ↓ 0, the radiation resistance RMD and radiation
reactance XMD have the asymptotic expression (30) where

G⊥
MD = 2

ζ0
ξ 2, L⊥

MD= 1
π2 μ0a, C⊥

MD=3ε0a. (51)
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(a)

(b)

(c)

sc
a

sc
a

sc
a

FIG. 13. Scattering efficiency σsca plotted against the normal-
ized size parameter ξ

√
χ0 for a Debye dielectric sphere with

zero-frequency susceptibility χ0, in the low-dissipation limit, and
having radius a, when excited by a linearly polarized plane wave.
This analysis considers three distinct values of χ0: 50 (a), 10 (b),
and 3 (c). The peak corresponding to the magnetic dipole mode is
labeled with a red circle. Where applicable, the 3-dB frequencies
ω±

MD are shown with the symbol ×.

The resonant frequency ωMD can be calculated directly
from the circuit model

ωMD = 1√
L⊥

MD(Cm + C⊥
MD)

≈ c0

a
π√
χ0

(
1 − 3

2
1
χ0

)
.

(52)

The approximate 3-dB fractional bandwidth is given by
Eq. (21),

FBWapprox = 2
ωMD

Rm (ωMD) + RMD (ωMD)∣∣Z ′
m (ωMD) + Z ′

MD (ωMD)
∣∣

= 2
π2

(
ωMDa

c0

)3

, (53)

which agrees with previous derivations [40]. This formula
reveals a trade-off between the bandwidth and the size of
the resonator, showing that a reduction in size will corre-
spondingly decrease the resonance bandwidth. Unlike the

M
D

FIG. 14. Normalized frequency position of the lowest fre-
quency peak (labeled as “exact”) of the scattering efficiency
spectrum of a Debye dielectric sphere with zero-frequency sus-
ceptibility χ0, in the low-dissipation limit, and with radius a
(see Fig. 13) versus χ0. This peak position is compared with
the normalized resonance frequency of the magnetic dipole
mode (labeled as “approximate”) obtained by enforcing the
zero-reactance condition.

case of a metallic sphere, this bandwidth does not equate
to the inverse of the minimum Q factor for resonators
of the magnetic type [23,28,34,46]. This limit scales as
1
3 (ωMDa/c0)

3 and is attained with a spherical shell induc-
tor, as explored in the works of Thal [27] and subsequent
authors [28,34,46].

Now, we consider high-order dielectric modes of the
sphere. Due to symmetry, the dielectric modes of a sphere
are divided into two complementary subsets: the ones of
“E-type,” and the ones of “H -type.”

The radiation impedances ZH -type
n� of the H-type

dielectric modes of a sphere are indexed by the two

1.0
MD

FIG. 15. Inverse value of the “exact” fractional bandwidth
evaluated from the scattering efficiency spectrum of a Debye
dielectric sphere (see Fig. 13), as explained in the text, ver-
sus its susceptibility χ0 (top x axis), and of the corresponding
size parameter ξMD at the resonance position of the magnetic
dipole (bottom x axis). The inverse of the exact fractional band-
width is compared against the inverse of the “approximate”
fractional bandwidth of the magnetic dipole mode given by Eq.
(21). The green dots highlight the scenarios for χ0 = 50, 10, 3
corresponding to panels (a)–(c) of Fig. 13.
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(a)

(b)

(c) (e)

(f)(d)

FIG. 16. Radiation resistance RH -type
n� and reactance X H -type

n� of the H -type dielectric modes of a sphere of radius a as a function of
the size parameter ξ = k0a for multipolar orders n = 1 (a)–(b), n = 2 (c)–(d), n = 3 (e)–(f), and for several values of the index �.

integers n = 1, 2, 3, . . . and � = 1, 2, 3, . . .. The eigenspace
corresponding to the eigenvalue ZH -type

n� is spanned by the
current density modes:

jH -type
e
onm�

= M(1)
e
omn

(
ξ

r
a

√
1 + i

ζ0

ZH -type
n� ξ

)
. (54)

Each mode jH -type
e
onm�

exhibits a zero radial electric field,
which is why we denote them as H -type dielectric modes.
These include magnetic dipole modes (n = 1), magnetic
quadrupole modes (n = 2), magnetic octupole modes
(n = 3), and so on.

The radiation impedances ZE-type
n� of the E-type dielec-

tric modes of a sphere can be indexed by the two integers
n = 1, 2, 3, . . . and � = 1, 2, 3, . . .. The eigenspace cor-
responding to the eigenvalue ZE-type

n� is spanned by the
current-density modes

jE-type
e
onm�

= N(1)
e
omn

(
ξ

r
a

√
1 + i

ζ0

ZE-type
n� ξ

)
. (55)

Each mode jE-type
e
onm�

exhibits zero radial magnetic field, which
is why we denote them as E-type dielectric modes. These
include electric toroidal dipole modes (n = 1), electric
toroidal quadrupole modes (n = 2), and so on.

In Eqs. (54) and (55), the functions M(1)
e
omn

and N(1)
e
omn

are
the vector spherical wave functions regular at the origin
(we follow the definition of Ref. [18]); the radial number
� gives the number of maxima of the magnitude of these
modes along r̂ inside the sphere; the subscripts e and o
denote even and odd azimuthal dependence; n = 1, 2, 3, . . .
is the multipolar order of the mode; and m = 0, . . . , n,
which are shown on the right.

In Fig. 16, we show the radiation resistance RH -type
n� and

the radiation reactance X H -type
n� versus the size parameter ξ

for dielectric modes of the H -type with multipolar order
n = 1 (a)–(b), n = 2 (c)–(d), n = 3 (e)–(f). The polariza-
tion current-density field of these modes is shown on the
right of the corresponding panels. Overall, the behavior of
RH -type

n� and X H -type
n� resembles that of the magnetic dipole

mode, with a shift at higher frequencies as the indices n
and � increase. In the low-frequency limit, the radiation
conductance and radiation susceptance of H -type dielec-
tric modes can be expressed accordingly to Eq. (30), where
the conductance, inductance, and capacitance are given by

GH -type
n� = 1

ζ0

2
[(2n − 1)!!]2

(
aω

c0

)2n

, (56a)

LH -type
n� = 1

(zn−1,�)2 μ0a, (56b)

CH -type
n� = 2n + 1

2n − 1
ε0a, (56c)

and zn� is the �th zero of the spherical Bessel function
jn. The parameters given by Eqs. (56) completely specify
the radiation impedance enclosed in the green box of the
circuit model shown in Fig. 5. The approximate 3-dB frac-
tional bandwidth of an H -type dielectric mode resonating
at the frequency ω

H -type
n� is obtained, in the low frequency

limit, by substituting the expressions (56) and (49) in Eq.
(21):

FBWH -type
n� = 2[

zn−1,� (2n − 1)!!
]2

(
aω

H -type
n�

c0

)2n+1

. (57)

For example, for the magnetic dipole mode (n = 1) with
� = 2 and for the magnetic quadrupole mode (n = 2) with
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� = 1, the calculations yield

FBWH -type
1,2 = 2

z2
0,2

(
aω

H -type
1,1

c0

)3

≈ 1
19.74

(
aω

H -type
1,1

c0

)3

,

FBWH -type
2,1 = 2

9z2
1,1

(
aω

H -type
2,1

c0

)5

≈ 1
90.8

(
aω

H -type
2,1

c0

)5

.

(58)

These fractional bandwidths exhibit the same dependence
on the resonant frequency as the plasmonic electric dipole
and quadrupole modes, respectively, albeit with smaller
coefficients. Moreover, it is crucial to understand that the
radial index � does not affect the power dependence of
the fractional bandwidth, which is determined solely by
the multipolar order, but influences only the multiplicative
prefactor.

In this dielectric scenario, our circuit model provides a
robust framework for effectively comparing radiation and
material losses. In the low-frequency limit, this compar-
ison is quantified by evaluating the ratio of the radiation
conductance associated with H -type dielectric modes to
the conductance of the material:

GH -type
n�

Gm
= 2

[(2n − 1)!!]2

(
aγ

c0

)
1
χ0

ξ 2n−2. (59)

A ratio less than one indicates that radiation losses dom-
inate, while a ratio greater than one suggests that mate-
rial losses are more significant. This ratio is influenced
by the (2n − 2)th power of the size parameter, ξ , and
the prefactor, which diminishes as the multipolar order n
increases.

In Fig. 17, we plot the radiation resistance RE-type
n� and

the radiation reactance X E-type
n� versus the size parameter

ξ for the E-type dielectric modes with multipolar order
n = 1 (a)–(b), n = 2 (c)–(d), and n = 3 (e)–(f). The polar-
ization current-density field of these modes is shown on the
right side of the corresponding panels. Overall, the behav-
ior of RE-type

n� and X E-type
n� qualitatively resembles that of the

magnetic dipole mode. However, the curves shift at higher
frequencies as the indices n and � increase.

In the low-frequency regime, the radiation conductance
and radiation susceptance of E-type dielectric modes can
be expressed accordingly to Eq. (30), where the conduc-
tance, inductance, and capacitance are given by

GE-type
n� = 1

ζ0

n2

[(2n − 1)!!]2

(
aω

c0

)2n+2

, (60a)

LE-type
n� = 1

(zn,�)2 μ0a, (60b)

CE-type
n� = n + 2

n
ε0a. (60c)

The parameters given by Eqs. (60) completely specify
the radiation impedance enclosed in the green box of the
circuit model shown in Fig. 5 for any E-type dielectric
mode. The 3-dB approximate fractional bandwidth of the
E-type dielectric mode resonating at the frequency ω

E-type
n�

is obtained by substituting the expressions (60) and (49) in
Eq. (21):

FBWE-type
n� = 2[

n zn,� (2n − 1)!!
]2

(
aω

E-type
n�

c0

)2n+3

. (61)

For the dielectric toroidal electric dipole mode (n = 1)
with � = 1 and for the toroidal electric quadrupole mode
(n = 2) with � = 1, we have

FBWE-type
1,1 = 2

z2
1,1

(
aω

E-type
1,1

c0

)5

≈ 1
10.1

(
aω

E-type
1,1

c0

)5

,

FBWE-type
2,1 = 1

18 z2
2,1

(
aω

E-type
2,1

c0

)7

≈ 1
598

(
aω

E-type
2,1

c0

)7

.

(62)

Significantly, the fractional bandwidths of the toroidal
electric dipole and toroidal electric quadrupole scale with
the resonant size parameter to the fifth and seventh pow-
ers, respectively. In contrast, the fractional bandwidths of
plasmonic electric dipoles and quadrupoles scale to lower
powers of the size parameter, specifically the third and fifth
powers, respectively. The radial index � does not affect the
power dependence of the fractional bandwidth, which is
determined solely by the multipolar order n; it influences
only the multiplicative prefactor.

In this case as well, the comparison between radiation
and material losses can be carried out in the low-frequency
regime by examining the ratio of the radiation conductance
associated with E-type dielectric modes to the conductance
of the material in question. The formula for this ratio is
given by

GE-type
n�

Gm
= n2

[(2n − 1)!!]2

(
aγ

c0

)
1
χ0

ξ 2n. (63)

The difference with dielectric modes of the magnetic type
is that this ratio scales with an even higher power, i.e., 2n,
of the size parameter.

VI. DISCUSSION

In this work, we derived from first principles a circuit
model for open electromagnetic resonators in the full-wave
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 17. Radiation resistance RE-type
n� and reactance X E-type

n� of the E-type dielectric modes of a sphere of radius a as a function of
the size parameter ξ = k0a for multipolar orders n = 1 (a)–(b), n = 2 (c)–(d), n = 3 (e)–(f) and several values of the index �.

regime. This model allows us to associate an effective
“material impedance” Zm (ω) = Rm (ω) + iXm (ω) with the
susceptibility of the material composing the scatterer. The
polarization current density J induced in the object by
an arbitrary external field Einc is expanded in terms of a
discrete set of polarization current density modes {jh}h∈N

as

J (r) =
∑

h

Eh (ω)

Zm (ω) + Zh (ω)

jh (ω, r)√
�c 〈j∗h, jh〉

,

where �c is a characteristic linear dimension of the
object, Eh (ω) = 〈j∗h, Einc〉/

√
�c 〈j∗h, jh〉 is the overlap inte-

gral between the hth mode jh and the incident electric
field Einc, and Zh (ω) = Rh (ω) + iXh (ω) is the “radiation
impedance” associated with jh. The radiation impedances
and the modes {jh} are the eigenvalues and eigenvectors
of a volume integral operator, and they do not depend on
the material of the object but only on the object shape
and size parameter ξ = ω �c/c0. Poynting’s theorem in the
frequency domain, applied to the mode jh in free space,
relates the radiation resistance Rh to the average electro-
magnetic power radiated to infinity by the mode jh and
the radiation reactance Xh to the difference between the
(time-averaged) magnetic and electric energies stored in
the whole space. The radiation impedance, due to causality,
satisfies the Kramers-Kronig relations.

At the frequency ωh, when the zero-reactance condition

Xm (ωh) + Xh (ωh) = 0

is met, the imaginary part of the denominator of the mode
expansion of the polarization current density vanishes.
Thus, the mean power scattered by the object exhibits a
resonance peak near ωh, provided that the mode jh is iso-
lated, i.e., sufficiently far in frequency from the remaining
modes, and coupled with Einc. This resonance peak can
then be characterized by its fractional bandwidth, namely
its bandwidth divided by its center frequency. We showed

that the fractional bandwidth can be determined by a for-
mula that has the same structure as the Yaghjian-Best
formula for antennas [13], but here it is associated with
the material and geometrical properties of the scatterer

FBWh = 2
ωh

Rm (ωh) + Rh (ωh)∣∣Z ′
m (ωh) + Z ′

h (ωh)
∣∣ .

We validated the calculation of the resonance frequencies
and corresponding bandwidths against the peak positions
and exact bandwidths directly evaluated on the scattered
power spectrum for metallic and dielectric spheres of size
comparable to the resonance wavelength, finding excellent
agreement.

This circuit model can be directly applied to arbitrar-
ily shaped objects, where the radiation impedance may
be evaluated by a numerical solution of the eigenvalue
problem (6), as illustrated in Appendix B. It can also be
extended to multiple objects made of different materials,
leading to a multiport circuit model that can be investi-
gated by using techniques borrowed from circuit theory, as
shown in Appendix A.

In conclusion, the introduced circuit model rigorously
captures the physics of scattering from plasmonic and
dielectric nanoparticles. It can be used to directly calculate,
in the full-wave regime, the resonant frequency and band-
width of any mode supported by open resonators, inde-
pendently of the excitation condition. By separating the
dependencies on material characteristics from geometry,
this approach allows for efficient engineering of material
properties. Once the radiation impedances of the modes
are determined, changes in material properties alter only
the material impedance, not the radiation impedance. This
characteristic makes the method particularly valuable for
material dispersion engineering aimed at designing the
material properties to optimize the fractional bandwidth.
Furthermore, it also allows us to easily identify the scat-
tering regimes in which radiation losses dominate over the
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material losses and vice versa, by comparing the resistance
associated to the material impedance and the radiation
resistance.

Our results facilitate the analysis, design, and optimiza-
tion of nanoresonators, enabling dispersion engineering
of the materials involved as a powerful tool to optimize
nanophotonic circuits and passive scatterers and control
their temporal dynamics, with relevant implications for the
growing fields of Floquet photonics [35,36] and space-time
metamaterials [37–39].

APPENDIX A: EXTENSION TO MULTIPLE
MATERIALS

The proposed approach can also be extended to encom-
pass interacting multiple objects of different materials. As
an example, consider two objects, characterized by lin-
ear dimensions �(1)

c and �(2)
c , with distinct but uniform

susceptibilities, χ1 and χ2, corresponding to two mate-
rial impedances Z(1)

m and Z(2)
m . It is possible to define two

separated auxiliary eigenvalue problems of the kind (6)
for each particles, assumed to be isolated. This approach
yields two sets of modes {j(i)h } and corresponding radia-
tion impedances {Z (i)

h }, where the index i = 1, 2 labels the
particle. When the two objects are coupled and excited
by an external electric field Einc, the current-density field
within each particle can then be approximated using N1
modes from the first set and N2 modes from the second
set. This leads to a circuit model consisting of a (N1 + N2)
ports: N1 of these ports are driven by a “real” voltage
source, consisting of the impedance Z(1)

m in series with the

ideal voltage source E (1)

h = 〈j(1)∗
h , Einc〉/

√
�

(1)
c 〈j(1) ∗

h , j(1)

h 〉,
and the remaining N2 ports by the series of Z(2)

m

and E (2)

h = 〈j(2)∗
h , Einc〉/

√
�

(2)
c 〈j(2) ∗

h , j(2)

h 〉. The impedance
matrix, Z, of the multiport system is structured as a four-
block matrix, with the two diagonal blocks represented
by diag{Z (1)

1 ,Z (1)

2 , . . .Z (1)
N } and diag{Z (2)

1 ,Z (2)

2 , . . .Z (2)
N },

and the antidiagonal blocks proportional to 〈j(i) ∗
h , L {j(j )k }〉

with i 
= j . The resonance frequencies and the corre-
sponding fractional bandwidth are then determined using
techniques borrowed from circuit theory.

APPENDIX B: NUMERICAL SOLUTION

The introduced circuit model can be applied to arbitrar-
ily shaped objects by numerically solving the eigenvalue
problem as defined in Eq. (6). The numerical solution
requires the introduction of a volume mesh discretization
of the volume V, using for instance tetrahedra or hexa-
hedra. Following Ref. [15], we decompose the unknown
current density J in V into its loop and star components,
denoted as JL and JS, respectively, namely J = JL + JS,

where the properties of these components are specified as

∇ · JL = 0 within
◦

V, JL · n̂ = 0 on ∂V,

∇ · JS = 0 within
◦

V, JS · n̂ 
= 0 on ∂V,

where
◦

V denotes the interior of the domain V. To approx-
imate the currents JL and JS, we use linear combina-
tions of loop-shape functions wL

k and star-shape functions
wS

k , respectively. The loop-shape function wL
k for the k-

th edge is defined by the curl of the kth edge-element
shape function [55]. The star-shape functions wS

k , which
address effects due to surface charges on the boundary ∂V,
are derived similarly by taking the curl of edge-element
shape functions for boundary edges. The current-density
distribution is then discretized as

J =
NL∑

k=1

I L
k wL

k +
NS∑

k=1

I S
k wS

k , (B1)

where I L
k and I S

k are the degrees of freedom for the loop
and star components, respectively. To derive the discrete
model, we substitute the current representation from Eq.
(B1) into the integral equation presented in Eq. (6). We
then apply the Galerkin method, projecting the resultant
expressions along both loop- and star-shape functions to
ensure accurate discretization and solution approximation.

Computationally, this method is generally slower than
general-purpose direct electromagnetic solvers such as the
method of moments or finite difference method when cal-
culating electromagnetic scattering for a particle or an
array of particles with a specific shape and material. This
is due to the computational intensity required to calcu-
late the eigenmodes of an integral operator, as opposed
to simply calculating the inverse of a matrix. Despite
this, the method excels in specific scenarios. First, it pro-
vides direct insight into the positions of resonance modes
and their bandwidth, which are capabilities not inher-
ently available in direct solvers. Direct solvers require an
analysis of the scattering cross-section spectra to identify
peaks and associate them with modes, a process that can
overlook modes unexcitable by the incident field, misin-
terpret peaks caused by mode interplay, and fail to clarify
underlying interference phenomena. Second, this method
offers significant computational advantages when address-
ing varying material compositions in objects of constant
size and shape. Distinctly separating material properties
from geometric properties, this method enables more effi-
cient analysis. Once the radiation impedances of the modes
are determined, any changes in material properties affect
only the material impedance, not the radiation impedance,
enhancing the method’s utility in material dispersion
engineering.
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APPENDIX C: COMPARISON WITH PREVIOUS
CIRCUIT MODELS

In this Appendix, we compare the circuit model pre-
sented in this work with the existing circuit model devel-
oped by Engheta, Salandrino, and Alù [3–5,7,8]. Their
circuit model describes objects that are much smaller than
the operating wavelength, and is inherently defined in
the domain of electroquasistatic theory. The definition of
impedances is based on real voltages, which are deter-
mined from an average potential difference, and on polar-
ization current intensities. In contrast, our circuit model
relies on a mathematical analogy rooted in the full-wave
scattering theory, similar to circuit models commonly
found in microwave theory. Due to these differences, as
demonstrated below, our model does not return Engheta,
Salandrino, and Alù’s model in the low-frequency limit.

For the electric dipole mode, we compare the low-
frequency limit of our circuit model, shown in Fig. 18(a),
with Engheta and coworkers’ circuit model, shown in Fig.
18(b). The values of the lumped elements differ between
the two models. Specifically, in our model, both capac-
itance and inductance values are frequency independent,
while in Engheta et al.’s model the inductance is fre-
quency dependent. Nevertheless, both models yield the
same resonance frequency. In our model the resonance

frequency is

ωED = 1√
LmC‖

ED

= ωp√
3

. (C1)

In Engheta et al.’s model, the resonance frequency is the
solution of a second-order equation:

ω2
ED = 1

LsphCfringe
= πaε0(ω

2
p − ω2

ED)

2πaε0
→ ωED = ωp√

3
.

(C2)

It is useful to note that the circuit model of Ref. [3] does not
allow for the calculation of the fractional bandwidth and
the resonance frequency shift due to the radiation, which is
possible in our model for any particle size.

APPENDIX D: LOW-FREQUENCY LIMIT
PARAMETERS

First, we provide closed-form expressions for the resis-
tance R‖

h and the inductance L‖
h of the equivalent circuit

shown in Fig. 4, which describes the response of the hth
plasmonic mode jh in the low-frequency limit:

R‖
h = ζ0

1
6π�3

c

1

‖j‖h‖2

∣∣∣∣
∫

V
j‖h (r) d3r

∣∣∣∣
2 (

�c ω

c0

)2

, (D1a)

L‖
h = − (μ0�c)

1
4π�2

c

1

‖j‖h‖2

[∮
∂V

j‖h (r) · n̂ (r)
∮

∂V

∣∣r − r′∣∣
2

j‖h
(
r′) · n̂

(
r′) d2r′d2r +

∫
V

j‖h (r) ·
∫

V

j‖h
(
r′)

|r − r′| d3r′d3r

]
,

(D1b)

where j‖h is the electroquasistatic current modes to which the plasmonic mode jh converges in the low-frequency
limit, defined by the eigenvalue problem (22). These values have been obtained through the perturbative solution
of the eigenvalue problem (6), following Ref. [40]. The value of R‖

h given in Eq. (D1a) vanishes when the electric
dipole moment of the polarization current-density mode j‖h is zero in norm. In this case, to obtain a correct esti-
mation of R‖

h, we must consider higher-order perturbation terms in the asymptotic low-frequency limit, as shown
in Ref. [40].

Next, we provide close-form expressions for the conductance G⊥
h and the capacitance C⊥

h of the equivalent circuit
shown in Fig. 5, which describes the response of the hth dielectric mode jh in the low-frequency limit:

G⊥
h = 1

ζ0

(
μ0�c

L⊥
h

)2 1
6π�5

c

1
‖j⊥h ‖2

∣∣∣∣12
∫

V
r × j⊥h d3r

∣∣∣∣
2 (

�c ω

c0

)2

, (D2a)

C⊥
h = (ε0�c)

(
μ0�c

L⊥
h

)2 1
4π�4

c

1

‖j‖h‖2

×
⎡
⎣−

∫
V

j⊥h (r) ·
∫

V

∣∣r − r′∣∣
2

j⊥h
(
r′) d3r′d3r +

∞∑
k=1

1
4π

C‖
k

ε0�c

1

‖j‖k‖2

∣∣∣∣∣
∫

V
j‖k (r) ·

∫
V

j⊥h
(
r′)

|r − r′|d3r′d3r

∣∣∣∣∣
2
⎤
⎦ , (D2b)
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imp

ED ED

FIG. 18. Circuit models describing the response of the electric
dipole mode of a Drude metal sphere (plasma frequency ωp and
damping rate ν) of radius a. (a) Electrostatic limit of the equiva-
lent circuit model presented in this paper. (b) Equivalent circuit
model introduced by Engheta, Salandrino, and Alù [3].

where j⊥h is the magnetoquasistatic current modes to which
the dielectric mode jh converges in the low-frequency
limit, defined by the eigenvalue problem (24). In Eq. (D2b)
the modes {j‖h} are the electroquasistatic current modes
associated with the volume V occupied by the object. The
value of G⊥

h given in Eq. (D2a) vanishes when the mag-
netic dipole moment of the polarization current-density
mode j⊥h is zero in norm. In this case, to obtain a correct
estimation of G⊥

h , we must consider higher-order perturba-
tion terms in the asymptotic low-frequency limit, as shown
in Ref. [40].

APPENDIX E: DRUDE-LORENTZ METAL

In this section, we consider a Drude-Lorentz sphere of
radius a. The Drude-Lorentz susceptibility is given by [1]

χ (ω) = −
[

ω2

ω2
p

− i
ων

ω2
p

− ω2
0

ω2
p

]−1

,

with plasma frequency ωp , natural frequency ω0, damping
rate ν. The material impedance, defined by Eq. (1), is

Zm (ω) = iωLm + 1
iωCm

+ Rm (E1)

where

Lm = 1
aε0ω2

p
, Cm = ε0a

1
η2 , Rm = ν

aε0ω2
p

, (E2)

ED

ED

FIG. 19. Circuit model describing the low-frequency response
of the electric dipole mode jED of a Drude-Lorentz metal sphere
of radius a, plasma frequency ωp , natural frequency ω0, and
damping rate ν. Zm is the material impedance. ZED is the radi-
ation impedance of the electric dipole mode. The voltage Eh of
the source is given in Eq. (13).

and

η = ω0

ωp
. (E3)

The circuit model of the electric dipole mode in the low-
frequency limit is shown in Fig. 19. It is instructive to
compare it with the corresponding circuit of a Drude
metal sphere, shown in Fig. 10. As expected, the radia-
tion impedance of the mode is unchanged since it does
not depend on the material, while the material impedance
exhibits an additional series capacitance. In the follow-
ing, we neglect the material losses assuming Rm ≈ 0. The
resonant frequency ωED can be directly obtained from the
equivalent RLC circuit:

ωED = 1√
Lm (Cm ‖ CED)

≈ ωp√
3

√
1 + 3η2, (E4)

where

Cm ‖ CED = 3ε0a
1 + 3η2 . (E5)

The 3-dB fractional bandwidth is given by Eq. (21):

FBWED = 2
ωED

(Rm (ωED) + RED (ωED))∣∣Z ′
m (ωED) + Z ′

ED (ωED)
∣∣

= 2
3

1(
1 + 3η2

)
(

ωED

c0
�c

)3

. (E6)

As expected, for ω0 = 0 we obtain, as a limit case, the
value of FBWED already obtained in Eq. (39), for a Drude
sphere. For ω0 
= 0, i.e., η > 0, the bandwidth decreases as
η increases.
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