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Excitability and memory in a time-delayed optoelectronic neuron
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We study the dynamics of an optoelectronic circuit composed of an excitable nanoscale resonant-
tunneling diode (RTD) driving a nanolaser diode (LD) coupled via time-delayed feedback. Using a
combination of numerical path-continuation methods and time simulations, we demonstrate that this RTD-
LD system can serve as an artificial neuron, generating pulses in the form of temporal localized states
(TLSs) that can be employed as memory for neuromorphic computing. In particular, our findings reveal
that the prototypical delayed FitzHugh-Nagumo model previously employed to model the RTD-LD resem-
bles our more realistic model only in the limit of a slow RTD. We show that the RTD time scale plays
a critical role in memory capacity as it governs a shift in pulse interaction from repulsive to attractive,
leading to a transition from stable to unstable multipulse TLSs. Our theoretical analysis uncovers fea-
tures and challenges previously unknown for the RTD-LD system, including the multistability of TLSs
and attractive interaction forces, stemming from the previously neglected intrinsic dynamics of the laser.
These effects are crucial to consider since they define the memory properties of the RTD-LD.
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I. INTRODUCTION

The human brain is arguably the most exciting mat-
ter in the universe. Consuming as little power as a light
bulb, the brain is extremely power efficient and still out-
performs artificial computers in many ways [1]. The vast
majority of modern-day computers implement the von
Neumann architecture [2]. Considering the scientific, tech-
nological, and sociocultural progress that computers have
bestowed upon us [3], the classical computing architecture
has served us well. Yet with the ever-increasing demand
for higher computing power and the advent of artificial
intelligence, major issues have become apparent. First,
classical computers encode information digitally, which
entails high energy consumption [4], primarily due to
heat dissipation. Second, the CPU processes information
sequentially, limiting bandwidth. Furthermore, the phys-
ical distance between computational units slows down
computation even further. Last, the size of transistors,
which primarily drives Moore’s law, is limited by quantum
effects [5].

The answer to these challenges might be to mimic the
brain. So-called neuromorphic computing emulates the
structure of the brain by connecting artificial neurons in
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a network, thus merging memory and processing units [6].
Neuromorphic computing is particularly suited for imple-
menting integrated machine-learning algorithms [7]. An
essential property of neurons allowing them to process and
transmit information is excitability [8]. From a dynami-
cal systems perspective [9,10], a system is excitable if a
sufficiently strong perturbation of the resting state elicits
a large-amplitude excursion in phase space that is largely
independent of the details of the perturbation and sub-
sequently returns to the resting state. For neurons, this
large-amplitude response of the membrane potential is
called an action potential, pulse, or spike. A prototypi-
cal model of excitability is the FitzHugh-Nagumo (FHN)
neuron [10–15].

Excitability is a ubiquitous concept, not only in biol-
ogy [16–18] but also in chemistry, e.g., the Belousov-
Zhabotinsky reaction [16,19], and in physics, e.g., lasers
[20,21], particles trapped in an optical torque wrench [22],
and resonant-tunneling diodes (RTDs) [23]. The combi-
nation of excitability and delay is known to give rise
to temporal localized states (TLSs) in many systems,
such as in a semiconductor laser with coherent optical
injection [24,25], the FHN neuron with delayed feedback
[26,27], and the Morris-Lecar model of biological neurons
[28–30]. Since TLSs are self-healing in the sense that
these solutions are robust to perturbations, they can encode
information and act as stable memory.
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A multitude of electronic excitable systems have been
studied as potential candidates for artificial neurons and
tested experimentally on neuromorphic chips, e.g., Neu-
rogrid [31], TrueNorth [32], as well as SpiNNaker [33]
and FACETS [34] as part of the Human Brain Project
[35,36]. Electronic artificial neurons, however, are rel-
atively slow (kHz) and suffer from heat loss due to
dissipation in electric interconnects, which makes them
energy-intensive (pJ/spike) [37]. Conversely, optical com-
puting promises high computing speeds at extremely low
energy costs [7,38,39]. Optical or optoelectronic artifi-
cial neurons have been implemented, for example, as a
semiconductor ring laser [40], graphene excitable laser
[21], time-delayed optoelectronic resonator [26,41], and
vertical-cavity surface-emitting laser (VCSEL) [15,42].
Miniaturization of the devices is another avenue to fur-
ther increase efficiency. Although smaller sizes come with
challenges associated with the diffraction limit and other
quantum effects, such as the Purcell effect [43], nanoscale
devices, e.g., semiconductor lasers, promise high speed
and require little power [44,45].

In this paper, we study a system consisting of a resonant-
tunneling diode (RTD) driving a laser diode (LD) sub-
jected to time-delayed feedback. Both the RTD and the
LD can be of nanoscopic scale in our model. We derive
the stochastic delay-differential equations (DDEs) that
describe the combined RTD-LD system from Ref. [46],
where this system has been shown numerically to be
excitable and propagate pulses from one neuron to another.
While there has been a preliminary experimental imple-
mentation of the RTD-LD [41], which demonstrated the
feasibility of the device, this implementation had its limi-
tations because the device was operated at a low frequency
and was used only to analyze single-pulse dynamics with-
out time-delayed feedback. Yet an experimental setup
operating at a higher frequency—on the order of sev-
eral GHz [23]—is possible. Our present analysis paves
the way for a more sophisticated experimental implemen-
tation. Furthermore, from a theoretical perspective, the
simple FHN model with time delay, as discussed in Ref.
[26], cannot reproduce the complexity due to the compe-
tition between the time scales of the laser and the RTD.
With the more realistic RTD-LD model presented here, we
achieve a complete understanding of these features.

With this motivation, we perform a comprehensive
theoretical analysis using a combination of time simula-
tions and path-continuation methods to determine how the
RTD-LD can function as an artificial neuron. Of note,
we shall demonstrate that our model exhibits TLSs as
solutions and discuss under which conditions the paradig-
matic FHN model, which was employed in an earlier
theoretical study of the RTD-LD [26] and neglected the
laser dynamics through an adiabatic approximation and
Pyragas-type feedback [47,48], is justified. We show that
the DDE model employed here qualitatively reproduces

the delayed FHN model in a limiting case, yet exhibits dif-
ferent features and challenges—multistability of TLSs and
instability of multipulse states due to attractive interaction
forces—that arise due to the nanoscale laser.

This paper is structured as follows. First, we introduce
the DDEs that model the RTD-LD along with the numer-
ical methods in Sec. II. Subsequently, we analyze the
system by combining time simulations and path continua-
tion methods in Sec. III. This analysis consists of four main
parts: a brief overview of the RTD without feedback (as
studied in Ref. [49]) in Sec. III A, then the RTD-LD sub-
ject to feedback with a slow RTD in Sec. III B and a fast
RTD in Sec. III C as well as a discussion of the character-
istic time scale connecting these two regimes in Sec. III D.
Finally, we discuss our results, in particular, the impact of
the RTD time scale on the memory properties of the sys-
tem and hence its viability as an artificial neuron, and give
an outlook in Sec. IV.

II. MODEL SYSTEM AND METHODS

A. The RTD-LD model

The RTD-LD is an optoelectronic circuit capable of
self-oscillation, generating pulses from perturbations, and
sustaining these pulses through time-delayed feedback. In
Fig. 1(a), we illustrate the basic operating principle: here,
the RTD oscillates in the voltage v and the current i,
which drives the laser carrier number n. In turn, the car-
rier number interacts with the photon number s through
spontaneous and stimulated emission. The resulting light
pulse travels back to the RTD via, e.g., an optical fiber,
which induces a delay time τ . Such a pulse, as exempli-
fied in panel (b), is a clockwise orbit in the phase space
of the RTD in panel (c) as well as that of the laser in
panel (d). Once the delayed light pulse reaches the RTD,
it results in a photocurrent that affects the voltage v. This
time-delayed feedback renders the RTD-LD an autaptic
neuron [50,51], akin to a chain of identical neurons, which
allows us to study information propagation and memory
with much lower computational cost.

The model of the RTD-LD comprises a set of four DDEs
in time t for the voltage v(t), the current i(t), the photon
number s(t), and the carrier number n(t)

tv v̇ = i − f (v) − κs(t − τ), (1)

ti i̇ = v0 − v − ri, (2)

ts ṡ = (n − 1)s + γm

γt
(n0 + n), (3)

tn ṅ = j + ηi − n(1 + s), (4)

see Appendix B for the derivation and variable scaling.
The parameters, listed in Appendix A with typical values,
are the current-voltage characteristic f (v), the feedback
strength κ from the LD to the RTD with delay τ , the bias
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PDC I NDC PDC II
RTD LD

FIG. 1. (a) Schematic of the RTD-LD with feedback of time delay τ . The dynamic variables are the voltage v and the current i
for the RTD, as well as the photon number s and the carrier number n for the LD. (b) Time trace of an excited pulse at bias voltage
v0 = 1.4. (c) Phase space of the RTD: nonlinear current-voltage characteristic f (v) of the RTD-LD (dark blue line), local extrema of
f (v) (dark blue circles), load line v0 = v − ri (green line), and the resulting operating point (green circle), along with the excited pulse
from (b) (light blue), PDC regions (blue regions), and NDC region (green region). (d) Phase space of the LD with the excited pulse
from (b). (e) Equilibrium states of the LD depending on the bias current j for η = 0. The exact solution (solid line) approximates the
transcritical bifurcation (dotted line) for γm/γt → 0.

voltage v0, the resistance r, the spontaneous emission into
the lasing mode γm and the total decay rate γt, the trans-
parency carrier number n0, the injection efficiency η of the
RTD into the LD, and finally the bias current j . Time is
normalized to the characteristic time scale tc, and each of
the variables v, i, s, and n has its own characteristic time
scale tv , ti, ts, and tn, respectively. Typically, ts � tn and
tv � ti so that both the RTD and the LD are slow-fast
systems. This is evident from the time trace of a typical
periodic solution of period T shown in Fig. 1(b).

Note that the RTD is a slow-fast system based on
resonant-tunneling through a double-quantum well [52]:
while the voltage v changes quickly on the time scale tv ,
the current i follows slowly on the time scale ti, see
Figs. 1(b) and 1(c). From Eqs. (1) and (2), we can eas-
ily deduce that the steady state of the RTD lies at the
intersection of the nullclines i = f (v) and i = (v0 − v)/r.
Assuming a very small resistance r, the slope of the lat-
ter nullcline is nearly vertical, which guarantees that for
every bias voltage v0, there is only one intersection point
with f (v) at v ≈ v0, as shown in Fig. 1(c). The sta-
bility of this fixed point, however, varies with the bias
voltage v0, which is another parameter determining the
RTD-LD dynamics.

Without feedback, i.e., for κ = 0, the RTD Eqs. (1) and
(2) are equivalent to the classic FitzHugh-Nagumo (FHN)
model [53,54], except that the current-voltage character-
istic f (v) is not the cubic polynomial −v + v3/3 but the

function

f (v) = sign(a) log

⎛
⎝1 + exp

(
qe

kBT (b − c + n1v)
)

1 + exp
(

qe
kBT (b − c − n1v)

)
⎞
⎠

×
[
π

2
+ arctan

(
c − n1v

d

)]

+ h
|a|
[

exp
(

qe

kBT
n2v

)
− 1

]
, (5)

where a, b, c, d, h, n1, and n2 are fit parameters, qe
is the elementary charge, kB is the Boltzmann constant,
and T is the temperature. This expression is derived in
Ref. [55] by mixing first-principles calculations with a fit
of experimental data of RTDs. The slope of f (v) is the
differential conductance and, for typical parameters (see
Appendix A), the characteristic has a region of negative
differential conductance (NDC) in between two regions of
positive differential conductance (PDC I and PDC II), cf.
Fig. 1(c). The NDC region is the key property of RTDs
and precisely in this region, the steady state loses stabil-
ity, leading to self-oscillation, as we shall discuss in more
detail in Sec. III A.

The LD, being a class-B laser, is a slow-fast system
too, see Figs. 1(b) and 1(d): the photon number s is fast
on the time scale ts = τs/tc with photon lifetime τs. Once
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excited by the current i with an efficiency η, the slow car-
rier number n returns to equilibrium with an exponential
decay on the time scale tn = τn/tc, where τn = 1/γt is the
carrier lifetime. Conversely, γt = γl + γm + γnr is the total
decay rate, consisting of the spontaneous emission in the
leaky modes γl and the lasing mode γm, as well as the
nonradiative recombination γnr. The ratio γm/γt = βQE is
the product of the spontaneous coupling rate β [43] and
the quantum efficiency QE [cf. Eqs. (B31) and (B32)]. We
choose the bias parameter j ≈ −0.43 in the off-state near
an approximate transcritical bifurcation at j = 1 (which is
exactly a transcritical bifurcation for γm/γt → 0) so that
the laser turns on intermittently when driven by the RTD,
see Fig. 1(e).

B. Slow-RTD approximation

Our analysis of the RTD-LD system, Eqs. (1)–(4),
focuses on the impact of the laser nonlinearity and the RTD
time scale on the behavior of TLSs. When the RTD is very
slow, i.e., min(tv , ti) � max(ts, tn), the laser equilibrates
almost instantly relative to the characteristic time scale of
the RTD. In this case, we can adiabatically reduce the four-
dimensional system state (v, i, s, n) to the two-dimensional
state (v, i) by setting ṡ = 0 and ṅ = 0. With Eqs. (3) and
(4), this leads to

0 = (n − 1)s + γm

γt
(n0 + n), (6)

0 = ĵ − n(1 + s), (7)

where we define the effective bias current ĵ (t) = j + ηi(t)
for brevity. Solving this system of equations, we arrive
at an approximation of the delayed term s(t − τ) by the
nonlinear function

s(t) = 1
2

(
ν − 1 + ĵ (t)

(8)

+
√

(1 + ν)2 + 2
(

γm

γt
(n0 + 2) − 1

)
ĵ (t) + ĵ (t)2

)
,

with the shorthand ν = (γm/γt)n0. The system equations
are thus

tvv̇ = i − f (v) − κs(t − τ), (9)

tii̇ = v0 − v − ri. (10)

Of note, the simplified system, Eqs. (9) and (10), is closely
related to the prototypical delayed FitzHugh-Nagumo
model of the RTD in Ref. [26] except for the more realis-
tic current-voltage characteristic f (v) and the non-Pyragas
feedback term [47,48].

C. Numerical methods

In the theoretical analysis of the RTD-LD system, we
employ both time simulations and path-continuation meth-
ods. For the former, a semi-implicit numerical scheme
is employed to solve DDEs (1)–(4), see Appendix C for
details.

The path continuation for the bifurcation analysis of the
DDE system, Eqs. (1)–(4), relies on the MATLAB package
DDE-BIFTOOL [56]. The code for the bifurcation analysis
and corresponding visualizations of the bifurcation dia-
grams are freely available [57]. In the following, we use
the intensity integrated over one period T,

〈x〉 = 1
T

∫ T

0
dt x(t), (11)

as measure for periodic solutions.
The specific parameter values we fixed in the following

for concreteness of the model are listed in Appendix A.
Unless mentioned otherwise, the delay time is fixed at
τ = 20, corresponding to different physical delays τ tc,
depending on the characteristic time scale tc. Further-
more, we classify the characteristic time scale, defined
as the RTD self-oscillation (tank) frequency tc = √

LC
in Eq. (B35), into two regimes. For the fast RTD, we
select tc,fast ≈ 15.9 ps with capacitance C = 2 fF and
inductance L = 126 nH. In contrast, for the slow RTD,
we set tc,slow ≈ 15.9 ns with C = 2 pF and inductance
L = 126 µH. The slow RTD thus operates a thousand
times slower than the fast RTD so that the slow-RTD
approximation applies.

III. RESULTS AND DISCUSSION

A. No feedback

To understand the influence of the delayed feedback on
the system in question, let us first review how the RTD
system, Eqs. (1) and (2), operates without feedback by set-
ting κ = 0. A comprehensive bifurcation analysis of this
case has been performed in Ref. [49]. The bifurcation dia-
gram in Fig. 2 shows that the steady state (black) indeed
resembles f (v) closely. On either side of the NDC region,
the steady state loses its stability in a subcritical Andronov-
Hopf (AH) bifurcation (white circles), so that the emerging
periodic solution (green) coexists with the steady state in
a small region of bistability within PDC II. The sudden
increase in the amplitude of the limit cycle around the
bifurcation points indicates a canard explosion. First dis-
covered in 1981 [58], the canard is a rapid transition from
small-amplitude to large-amplitude limit cycles by varying
a control parameter in an exponentially narrow range [10].
Canards are associated with excitable systems such as neu-
rons [23,49,59–61] but also orgasms [62], where they can
induce quasithresholds.
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PDC I NDC PDC II

FIG. 2. Bifurcation diagram of the RTD system, Eqs. (1) and
(2), in the bias voltage v0 without feedback (κ = 0). The thick
lines represent stable solutions, the thin lines unstable solu-
tions. The self-oscillation branch (green) attaches to the steady
state (black) through two subcritical Andronov-Hopf bifurcations
(white circles). Note that the slope of the canard explosions near
the two AH bifurcations is almost vertical. In the inset, the period
T of the self-oscillation branch is shown.

The subcriticality of the two AH bifurcations differs
from the FHN model, where the AH bifurcations are super-
critical. Since the slope of the canard explosion near the
two AH bifurcations is almost vertical, in particular, at the
border of the PDC I region, the region of bistability cannot
be visualized because it is smaller than the numerical accu-
racy of the branch points. As pointed out in Refs. [49,63],
the reason for the subcriticality lies in the current-voltage
characteristic f (v) in Eq. (5). Our system exhibits richer
dynamics than the FHN model in part due to this more
intricate current-voltage characteristic. Typical canard tra-
jectories along the slow manifold can indeed be observed,
albeit unstable due to the subcriticality of the AH bifur-
cations, in the video of solutions along the self-oscillation
branch from Fig. 2 in the Supplemental Material [64].

Given that the periodic solution does not rely on exter-
nal perturbations and maintains a characteristic period T
(cf. the inset in Fig. 2) that is largely independent of the
delay τ , this solution is called self-oscillation. Figure 2
shall serve as a reference point for our subsequent anal-
ysis to comprehend how time-delayed feedback alters this
picture.

B. Regime of the slow RTD

Let us now turn to the effect of time-delayed feedback
on the RTD-LD dynamics in the slow-RTD approxima-
tion described in Sec. II B by setting the characteristic time
scale to tc,slow. Interestingly, a continuation of the corre-
sponding DDE system, Eqs. (9) and (10), in the feedback
strength κ for different values of v0, as shown in Fig. 3,

FIG. 3. Bifurcation diagram of the the slow-RTD regime as
given by Eqs. (9)–(10) in the feedback strength κ for four
different values of v0. The inset shows a typical solution profile.

reveals that another kind of solution emerges, see the inset
for a typical time trace. This solution exists for a range
of bias voltages v0 in the PDC II region if the feedback
is sufficiently strong. Note that the stable parts of all four
branches diverge to infinity at κ ≈ 1.5. The reason for this
divergence is a feedback catastrophe, similar to that of a
microphone held too close to a coupled loudspeaker: if the
feedback is strong enough, each round trip in the circuit
injects more and more energy into the circuit.

To understand this particular solution, we now fix the
feedback strength at κ = 1 and follow the solutions of
system, Eqs. (9) and (10), in the bias voltage v0, see
Fig. 4(a). First, we observe that the steady-state branch
(black) has shifted relative to the case κ = 0 (cf. Fig. 2)
because the non-Pyragas feedback term, κs(t − τ), injects
energy and thus raises the steady state to a higher average
current 〈i〉, in contrast to the noninvasive Pyragas feed-
back, κ (s(t − τ) − s(t)), used in Ref. [26]. Second, the
self-oscillation branch (green) has twisted into a loop and
extends from the NDC into the PDC II region, separated by
dashed vertical lines. However, the interesting difference to
the case κ = 0 is another solution type presented in Fig. 3:
the red and the blue branch, labeled TLS1 and TLS2, which
are one- and two-pulse temporal localized states (TLSs),
respectively. They emerge from the steady state in an AH
bifurcation and remain stable within the NDC and parts of
the PDC I and II regions, see panel (c) for typical profiles.
Note that we chose the measure in the bifurcation diagram
such that the two branches TLS1 at τ = 20 and TLS2 at
τ = 40 have a similar shape. A two-pulse state TLS2 does
not exist for τ = 20 because the domain is too small, yet
there is a one-pulse state TLS1 for τ = 40. For any delay τ ,
there coexist as many TLSn solutions as pulses can fit into
the temporal domain. In fact, self-oscillation is the limit
of the TLSn where the entire domain is filled with tightly
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FIG. 4. (a) Continuation in the bias voltage v0 at κ = 1 in the slow-RTD regime. The steady state (black) loses its stability through
two Andronov-Hopf bifurcations (white circles). (b) Period T of the corresponding periodic branches. (c) Time traces at v0 = 1.2 for
self-oscillation (green) and v0 = 1.5 for the TLS1 (red) and TLS2 (blue). The position of the time traces in (a) and (b) is indicated by
black circles. Vertical dashed lines separate the differential conductance regions.

packed single-pulse TLSs, cf. Ref. [26]. We chose to dou-
ble τ for TLS2 because τ = 20 would be too small to fit
two pulses. The fact that TLS1 and TLS2 connect to the
left AH bifurcation at the boundary of the PDC I region is
actually a finite-size effect of the relatively small temporal
domains τ = 20 and τ = 40, which fit one and two pulses,
respectively.

The nature of the TLSs becomes clearer when consider-
ing the period T in Fig. 4(b) and corresponding time traces
of one period at exemplary bias voltages (black circles)
in panel (c). The stable part of the self-oscillation solu-
tion has a period of T ≈ 11 and fills the entire domain
with oscillations, as seen in the bottom plot of panel
(c). In contrast, the period of the TLS1, which is stable
around T ≈ 22, depends on the delay. In fact, its period
T = τ + δ, is slightly larger by a drift δ than the delay τ

due to causality [65]. In the context of excitability, this
drift corresponds to the latency between when a pertur-
bation triggers the system and the ensuing excited orbit.
Similarly, TLS2 has double the period, T = 2τ + δ2 ≈ 42,
with some other drift δ2, as we can see from panel (b), cf.
Ref. [27].

Let us emphasize that there are two significant features
of the TLSs presented in Fig. 4 with respect to memory.
First, the TLSs coexist with the steady state. In conjunc-
tion with the excitability of the RTD, this bistability means
that the stable steady state can be perturbed in the PDC II
region, triggering a pulse. The TLSs are stabilized by the
feedback, without which the pulse would be a single excur-
sion through the phase space and back to the steady state.
However, the feedback is strong enough to sustain the
pulse on its next round trip, emulating a series of neurons
propagating the pulse.

Second, the TLS2 solution in which the two TLSs are
equidistant is stable. To explain this stability, the ques-
tion is how two pulses racing around the RTD-LD circuit
affect each other. An extremely useful method for answer-
ing this question is the two-time representation [65–67].
The motivation for the two-time representation is to high-
light dynamics on vastly different time scales, the period
T = τ + δ, on the one hand, and the dynamics over many
round trips of the pulses within the circuit, on the other.
This representation is achieved by parameterizing time
as t = (θ + σ)T via the number of round trips θ = 	t/T

and the local time σ = t/T mod 1 within the most recent
round trip, and then plotting the time trace in the (θ , σ)

FIG. 5. Two-time diagram of a TLS2 in the slow-RTD regime.
The pulses repel each other from an initial distance d0 = 0.17τ ≈
0.166T in local time σ with feedback strength κ = 1 and delay
τ = 80 at bias voltage v0 = 1.5. The local time σ is relative to
the period T = τ + δ ≈ 81.8 with the drift δ.
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plane. The current i of the time trace is best suited to rep-
resent the pulse dynamics, as it is a slow variable. Figure 5
presents a two-time representation of a time simulation,
initialized with two nonequidistant pulses (initial distance
d0 = 0.17τ ) within the temporal domain [−τ , 0). Note that
if the pulses are initiated even closer to each other, time
simulations show that both pulses die immediately and the
system jumps to the steady state. The key observation here
is that, while a single pulse would move horizontally in
the two-time diagram (since the drift δ has been accounted
for in the definition of σ and θ ), the two pulses repel each
other. The nonreciprocal repulsive interaction is most pro-
nounced for the second pulse starting at about σ = 0.6, but
since the two-time parameterization transforms the time t
into helical boundary conditions, the second pulse also
interacts with the first.

It is well known that TLSs interact via tail overlap
[68,69], and in our case, as we operate in the slow-RTD
regime, the dynamics are essentially controlled by the cur-
rent i, which is the slowest variable. An interaction law
between TLSs could be derived following, e.g., Ref. [25].
However, intuition about the excitability mechanism is suf-
ficient to understand the nature of the repulsive forces.
When the feedback arrives at the RTD to trigger the sec-
ond TLS, the system has not quite reached the steady
state yet since the memory of the first TLS is preserved
in its tail. In particular, the value of the current i has not
fully recovered. Therefore, the excitability threshold for
the second pulse is slightly higher and, although the feed-
back is strong enough to cross this threshold, the pulse is
slightly delayed. Thus, the distance between the two TLSs

increases, resulting in an effectively repulsive interaction.
We note that since the interaction is mediated by a slow
variable recovery, the pulses interact almost exclusively
forward in time. Such nonreciprocal interactions are typ-
ical for time-delayed systems, e.g., Ref. [25], where non-
reciprocal interaction between TLSs in a type-I excitable
system based on the delayed Adler model is discussed.

The results of this subsection assuming a slow
RTD—the stable TLS branch coexisting with the
excitable, stable steady state, repulsive TLS interactions,
and even the winged shape of the TLS branches—are
qualitatively strikingly similar to the simple delayed FHN
neuron model of an RTD-LD studied in Ref. [26]. There
it was shown that the n pulses in a TLSn can be manipu-
lated independently and may thus serve as memory. We can
conclude that the approximation of using the FHN model
in Ref. [26] is justified to qualitatively reproduce the pulse
dynamics in the adiabatic limit of a slow RTD. Moreover,
TLSs are suitable to act as memory in the RTD-LD because
of their robustness to perturbations, called self-healing, and
their repulsive interaction, which allows information to be
stored over long periods of time.

C. Regime of the fast RTD

Now, we consider the scenario where the RTD and the
laser evolve on similar time scales by setting the charac-
teristic time scale of the RTD to tc,fast = tc,slow/1000, cf.
Sec. II C. A fast RTD means that the adiabatic approxima-
tion from Sec. II B used in Sec. III B is no longer justified
and we have to consider the complete RTD-LD system,

FIG. 6. (a)–(d) Continuation of TLS1 in the feedback strength κ for different bias voltages v0 in the fast (shades of red) and slow
(gray, cf. Fig. 3) RTD regimes. (e) Time traces of the multistable TLS solution at v0 = 1.5 and κ = 1.3.
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Eqs. (1)–(4). In this scenario, we anticipate the time scale
of the laser relaxation oscillations to interact with the RTD
spiking period.

Figure 6 shows a continuation in the feedback
strength κ , along with the branches from Fig. 3 for a slow
RTD in gray. Panels (a) to (d) are slices at different bias
voltages v0 ∈ {1.3, 1.4, 1.5, 1.6} in the PDC II region. As in
Fig. 3, the TLSs exist and are stable above a threshold in κ

that is similar to the slow-RTD scenario for v0 ∈ {1.3, 1.4},
but the onset is lower for v0 ∈ {1.5, 1.6}. Time simulations
confirm that the TLSs arise due to excitability of the steady
state, just as in the slow-RTD regime. Furthermore, the
large-scale behavior of the branches is similar with respect
to the resonance catastrophe, where the branches diverge
to infinity at κ = 1.5. However, the laser dynamics lead to
much more intricate branches, which can be attributed to
relaxation oscillations of the laser.

The most striking difference between the fast-RTD and
slow-RTD regime is that the branch is monostable from
κ = 0.3 to κ = 0.7 but distorts into a number of mul-
tistable patches around κ = 1.5, whereas the slow RTD
branch has a single monotonous stable patch. Multistabil-
ity has been reported in excitable time-delayed systems
before, e.g., the multistability of pulse numbers in the
laser cavity for the delayed Yamada model [70,71]. To
illustrate the significance of the multistable periodic solu-
tions, panel (e) compares the time traces of four exem-
plary TLS solutions of different energy coexisting at the
same bias voltage v0 = 1.5 and feedback strength κ =
1.3. The multistability of the TLSs is particularly inter-
esting because it could enable nonbinary encoding. Yet
the four solutions have slightly different periods, T ∈

{22.86, 22.34, 22.13, 22.08}, which implies that they move
at different speed around the circuit, rendering nonbinary
encoding unstable.

A continuation in the bias voltage v0 at fixed κ = 0.5,
as shown in Fig. 7, reveals crucial differences to the analo-
gous Fig. 4 for a slow RTD. In panel (a), the self-oscillation
branch (green) connects to the steady state (black) at two
AH bifurcations (white circles) and is much more twisted,
including an intricate multistable region near v0 = 1. Fur-
ther, the TLS1 (red) and TLS2 (blue) branches attach to
the canard explosion of the self-oscillation branch. This
reordering of where the branches attach can be explained
by shorter pulse widths, which reduce finite domain
size effects. Furthermore, around v0 = 1.3 and v0 = 1.5,
the self-oscillation branch loses stability in two period-
doubling (PD) bifurcations (white squares), between which
the emerging branch in dark green [whose period is indeed
twice as large, see panel (b)] itself loses stability in a pair of
AH bifurcations, followed by another pair of PD bifurca-
tions. However, the spectrum of Floquet multipliers shows
that the solution at about v0 > 1.26 is only marginally sta-
ble; a manual continuation with time simulations jumps
to TLS1 or the steady-state branch. Note that the period
T of the self-oscillation in panel (b) is generally similar
to the solution without feedback presented in Fig. 2, i.e.,
convex with unstable legs downward near the boundary of
the NDC region. We do not see this shape in the analo-
gous Fig. 4, again due to finite-size effects. The striking
observation in this figure, however, is that while the TLS1
branch is stable for a wide range of v0, the TLS2 branch
is entirely unstable. Panel (b) illustrates that, while the
self-oscillation branch is independent of the delay T, the

FIG. 7. (a) Continuation in the bias voltage v0 at κ = 0.5 in the fast-RTD regime. The steady state (black) loses its stability through
two AH bifurcations (white circles). The green, red, and blue branches correspond to the periodic self-oscillation, TLS1, and TLS2,
respectively. (b) Period T of the periodic branches. The dark green branch arises through a period doubling (white squares) of the
self-oscillation. (c) Exemplary time traces in voltage v and current i of the solutions at v0 = 1.2 for self-oscillation and v0 = 1.5 for
the TLS1 and TLS2. The position of the time traces in (a) and (b) is indicated by black circles.
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TLS branches have a period T = τ + δ that changes with
the delay through a shorter or longer resting time while
the pulse remains the same. The exemplary time traces
of the periodic solutions at v0 = 1.5 in panel (c) demon-
strate that the TLSs are indeed localized perturbations
to a background resting state, but their qualitative shape
remains mostly the same, whereas the self-oscillation fills
the whole temporal domain.

The question that remains is why the TLS2 branch
is unstable. By initializing two nonequidistant pulses at
a distance d0 = 0.4τ ≈ 0.376T in local time σ , we find
in Fig. 8(a) that the two respective pulses in the carrier
number n move closer and closer over time until
they eventually merge at about t = 1800. The two-time
representation of this transition for the current i in panel (b)
reveals how the pulses interact as they race around
the RTD-LD circuit. We conclude that the interaction
of the pulses is attractive. Consequently, the branch of
the equidistant TLS2 solution in Fig. 6 is unstable due
to this attractive, nonreciprocal interaction between the
pulses.

Notably in Fig. 8(a), the second of the two spikes has
a higher peak intensity, as shown in the inset. The differ-
ence in the peak height holds the key to understanding
the mechanism by which the pulses attract each other.

(a)

(b)

FIG. 8. (a) Time series of the carrier number n of the TLS2 at
v0 = 1.5, κ = 1, and τ = 80 in the fast-RTD regime. The inset
of one period shows that the second pulse is larger than the first.
(b) The corresponding two-time diagram of two TLSs generated
from an initial condition with a pair of spikes spaced a distance
d0 = 0.4τ ≈ 0.376T apart in local time σ . The folding factor is
T = τ + δ2 ≈ 85.09. The fit (red line) of the position of the sec-
ond pulse with fit parameter (50.3 ± 0.3) × 10−3 corresponds to
the solution of the equation of motion, Eq. (12).

The second pulse occurs while the the carrier number n
of the first pulse has not yet fully relaxed. Consequently,
the second pulse has more gain and is more intense than
the first. Since the higher intensity leads to stronger feed-
back on the voltage v, the excitable response is slightly
accelerated and thus, the second pulse catches up with the
first. This mechanism occurs because the slow variable
that governs the pulse interaction is the carrier number n,
which effectively decreases the excitability threshold in the
feedback strength of a pulse. For the slow RTD, in con-
trast, the incomplete recovery of the current i increases the
excitability threshold. Our findings agree with repulsive
and attractive interactions reported and explained for other
excitable time-delayed systems, e.g., the delayed Yamada
model [72].

In Appendix D, we derive equations of motion for the
pulse interaction from the simple ansatz that the interaction
forces decay exponentially—motivated by the exponen-
tial decay of the carrier number n in the pulse tail with
rate tn—and act only forward in time because of causality.
The solution of these equations for the distance d between
two pulses with an initial distance d0 in local time is

d(θ) = 1
2

+ 2
tn
T

arctanh
(

eBθ tanh
(

T
2tn

[
d0 − 1

2

]))

(12)

in terms of the round-trip number θ , with a single
free parameter B = 2A exp(−T/(2tn))T/tn, where A is the
strength of the interaction force that contains the overlap
integrals between the corresponding (adjoint) Goldstone
modes and the tail of the interacting pulses. A fit based on
Eq. (12), represented by the red line in Fig. 8(b), yields B =
(50.3 ± 0.3) × 10−3 and is in excellent agreement with the
time simulation.

D. Characteristic time scale

Having discussed the similarities and differences
between the slow and the fast RTD, we finally consider
the bifurcation diagram of the TLS1 and TLS2 solutions in
the characteristic time scale tc shown in Fig. 9 to explain
how these two regimes are related. In this diagram, the
fast-RTD time scale corresponds to tc = 15.9 ps and the
slow RTD is located far to the right at tc = 15.9 ns in
the adiabatic limit (the branch remains relatively constant
beyond tc = 60 ps). There are two key features of the TLS
solutions that we saw above to point out here.

First, the TLS2 loses stability at around tc = 52 ps and
remains unstable for smaller characteristic time scales.
This is the point where the pulse interaction forces change.
Apart from the difference in stability, the TLS1 and the
TLS2 branch agree well even quantitatively.

Second, both TLS branches exhibit slanted snaking in
the fast-RTD domain, where the stability of the TLS2
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FIG. 9. Continuation of the TLS1 and TLS2 solutions in the
characteristic time scale tc at v0 = 1.5 and κ = 1. The slow-RTD
scenario is located at tc = 15.9 ns, the fast-RTD scenario at tc =
15.9 ps.

breaks down. Notably, the stable patches of the snaking
correspond to those of the continuation in κ in Fig. 6. This
horizontal snaking is another consequence of the complex
laser dynamics. The insets in Fig. 9 of stable periodic solu-
tions in the (v, i) phase space show that the stable patches
evidently correspond to different numbers of oscillations
in the tail, which appear as bumps in the phase-space tra-
jectory, first one (cyan), then two, etc., up to five (brown).
Note that the multistable solutions of the branches at κ = 1
and v0 = 1.5 are exactly those two stable solutions from
Fig. 6(c) at κ = 1. Consequently, the multistability we dis-
cussed above has its origin in the snaking of the TLS1
branch in the characteristic time scale. However, with
even stronger feedback, the snaking branches separate into
islands, which further indicates that the dynamics of the
RTD-LD are considerably convoluted.

IV. CONCLUSIONS

Our investigation of the RTD-LD system subjected to
time-delayed feedback demonstrates with a realistic model
derived from Ref. [46] that this optoelectronic circuit is
indeed excitable and functions as an artificial neuron by
generating temporally localized states (TLSs), which can
serve as memory in neuromorphic computing. This anal-
ysis has far-reaching implications for actual devices and
technology as it demonstrates under which conditions the
RTD-LD device can be used for neuromorphic computa-
tion and memory buffers. We also explain the reason for
these conditions, adding physical insight relevant even for
a wider class of devices with slow-fast dynamics, namely
that the fundamental limitations are due to the characteris-
tic time scale of the RTD. The simpler delayed FitzHugh-
Nagumo (FHN) model [26] previously used to model the

RTD-LD adequately describes the qualitative dynamics if
the RTD is slow compared to the laser. In the slow-RTD
limit, we find repulsive TLS interaction, which makes the
memory stable. Yet our analysis has unveiled features and
challenges previously unknown for the RTD-LD system,
including the multistability of TLSs and attractive TLS
interaction, if the RTD is fast, i.e., on a similar time scale
as the laser. Although multistability could, in principle,
enable nonbinary encoding, the periods of the coexisting
TLSs types are not the same. Furthermore, the attractive
interaction, which we could explain by the dynamics of
the carrier number of the laser and describe analytically
with excellent agreement, makes memory in the fast-RTD
regime impossible, except for large delays. The signifi-
cance of the laser dynamics is exemplified by the complex
bifurcation scenarios with a fast RTD. We find a transi-
tion between the slow-RTD and fast-RTD regime through
slanted snaking in the characteristic time scale of the RTD.

Although the bifurcation analysis aims to provide a
comprehensive understanding of how the more realistic
model presented here agrees with or differs from sim-
pler approximate models like the FHN model, numerical
path continuation of the system proves very difficult. The
self-oscillation branch serves to show the complexity intro-
duced by the laser dynamics. We focus here on the parts
relevant for understanding how to employ the RTD-LD
as optoelectronic memory, but there is more to explore in
terms of nonlinear dynamics in this system.

In particular, it would be interesting to investigate which
bifurcations connect the two regimes of the RTD time
scale with different TLS interaction mechanism. A promis-
ing variation could be a smaller laser, which might yield
higher speeds, but would require the increased noise to be
addressed through Fokker-Planck equations as was already
done for the FHN system [12]. The prospect of experimen-
tal realization and eventually technological application,
taking into account the theoretical findings in this paper,
with all its caveats, stands as a promising research project
to show that the RTD-LD might work in practice as an
artificial neuron for neuromorphic computing.

The supporting code and supplemental videos for this
paper are openly available on Zenodo [57].
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TABLE I. Overview of the model parameters and their typical
values. Parameters that apply only to the nondimensionalized
system are highlighted in purple.

RTD parameters Value

a f (V) parameter −5.5 × 10−5 A
b f (V) parameter 0.033 V
c f (V) parameter 0.113 V
d f (V) parameter −3 × 10−3 V
n1 f (V) parameter 0.185
n2 f (V) parameter 0.045
h f (V) parameter 18 × 10−5 A
κ optical feedback rate (LD → RTD) varied
κ varied
R resistance 10 �

r 9.0 × 10−4

C capacitance 2 {nF, fF}
L inductance 126 {µH, nH}
V0 dc bias voltage varied
v0 varied
σ electrical noise amplitude 0

LD parameters
N0 transparency carrier number 5 × 105

n0 2.5
α polarization factor 0
τs photon lifetime 5 × 10−13 s
τn carrier lifetime 3.3 × 10−10 s
γm Spont. em. into lasing mode 107 s−1

γl Spont. em. into leaky modes 109 s−1

γnr non-radiative recombination 2 × 109 s−1

η current injection efficiency (RTD → LD) 1
η 0.57
J bias current in laser 200 µA
j −0.43
τ time delay of light coupling (LD → RTD) {0.32, 0.63} ns
τ {20, 40}

derived parameters
β spont. em. coupling β = γm/(γm + γl) 0.01
Jth transcritical bifurcation value 338 µA
jth 1
μ2 stiffness 1.96
tc characteristic time scale of RTD 15.9 {ns, ps}

physical constants
qe elementary charge 1.60 × 10−19 C
kB Boltzmann constant 1.38 × 10−23 J

K
T temperature 300 K

APPENDIX A: SYSTEM PARAMETERS

The system parameters are listed in Appendix I along
with typical values in the numerical implementation. Most
fixed values are consistent with those in Ref. [46], but we
have chosen a different value for d to avoid a discontinuity
in the current-voltage characteristic f (v).

APPENDIX B: MODEL DERIVATION

In this section, we derive the RTD-LD model, Eqs.
(1)–(4), on the basis of a model presented in Appendix B 1

by performing a change of variables in Appendix B 2 and
a nondimensionalization in Appendix B 3.

1. Physical model

The physical model for the voltage V, current I , electric
field E, and carrier number N , adapted from Ref. [46] by
adding a time-delayed feedback from the laser to the RTD,
reads

CV̇ = I − f (V) − κ|E(t − τ)|2 + σξV(t), (B1)

Lİ = V0(t) − V − RI , (B2)

Ė = 1 − iα
2

[
G − 1

τs

]
E +

√
γmN

2
[ξx(t) + iξy(t)],

(B3)

Ṅ = J + ηI
q

− γtN − G|E|2 (B4)

with the total decay rate γt = γl + γm + γnr, gain G =
γm(N − N0), and the parameters listed in Appendix A.
The photon number S is related to the complex electrical
field E = Ex + iEy via S = |E|2 = E2

x + E2
y . As our model

shall just consider the field intensity S, we set the Henry
factor α = 0 without loss of generality. Note that Eqs.
(B1)–(B4) are stochastic delay-differential equations with
uncorrelated Gaussian white noise ξV, ξx, and ξy with zero
mean E[ξ ] = 0 and autocorrelation 〈ξ(t1)ξ(t2)〉 = δ(t1 −
t2), where ξV, ξx, and ξy are mutually independent. For the
scope of our analysis, however, we shall assume the noise
in the RTD to be negligible by setting σ = 0, in accordance
with time simulations.

2. Change of variables

To arrive at a deterministic model, we aim to average the
noise from the stochastic processes ξx and ξy . It turns out to
be convenient to use the photon number S rather than the
complex electric field E. For the transformation from E to
S, consider an Itô drift-diffusion process that satisfies the
stochastic differential equation d�E(t) = �Adt + Bd�w, where
we write the complex field as a vector �E = (Ex, Ey)

T of
real and imaginary parts, with �A = 1

2 a�E and B = b id, and
the Wiener process (Brownian motion) d�w = (ξx(t + dt) −
ξx(t), ξy(t + dt) − ξy(t))T. In our model,

a = G − 1
τs

, (B5)

b =
√

γmN/2. (B6)

Itô’s formula states that for any transformation g(t, x)
(which is C2) of an n-dimensional Itô process d �X (t) =
�Adt + Bd�w, the kth component of the Itô process �Y(t) =
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�g(t, �X (t)) is described by (cf. [73, pp. 48])

dYk = ∂gk

∂t
dt +

n∑
i=1

∂gk

∂xi
dXi + 1

2

n∑
i,j =1

∂gk

∂xi∂xj
dXidXj .

(B7)

Consequently, for g(t, x) = |�x|2 and S(t) = g(t, �E(t)),
we arrive after some calculation (using that dXidXj =∑n

k=1 BikBjkdt in this expansion to order dt because dwi =
O(

√
dt) and dwidwj = δij dt) at

dS = aSdt + 2b2dt + 2b(Exdwx + Eydwy). (B8)

Introducing the phase φ = atan2(Ey , Ex) of the field �E, we
write the last term as

2b
(√

S cos(φ)dwx +
√

S sin(φ)dwy

)
, (B9)

which is well defined since the noise variance goes to zero
once S approaches zero. So we can define a new stochastic
process

dwS = (
cos(φ)dwx + sin(φ)dwy

)
, (B10)

where ξS defined by dwS = ξS(t + dt) − ξS(t) is again
a Wiener process since V[ξS] = cos2(φ)V[ξx] + sin2(φ)

V[ξy ] = 1. With these definitions, we have

dS = (aS + 2b2)dt + 2b
√

SdwS, (B11)

and reinserting a and b from above,

Ṡ =
(

G − 1
τs

)
S + γmN +

√
2γmNSξS(t), (B12)

with noise variance 2γmNS. Note that Ref. [46] is missing
a factor 2 in the variance.

3. Nondimensionalization

We define the dimensionless time t̃ and delay τ̃ through
t = tct̃ and τ = tcτ̃ , respectively, with the characteristic
time scale tc. Similarly, V = vcv, V0 = vcv0, I = ici, S =
scs, and N = ncn + N0 define the dimensionless system
variables (v, i, s, n) and the bias voltage v0. We shall deter-
mine a natural selection of characteristic scales by calcu-
lating the steady states of the system or approximations
thereof.

First, let us consider the steady state of the RTD. We
see from Eq. (B1) that the fixed points without feedback
(κ = 0) are determined by I = f (V) and V ≈ V0 if the
resistance R is small. The current-voltage characteristic
f (V) has a jump height of order a around c − n1V = 0, i.e.,
at V = c/n1. With the characteristic scale for voltage and

current defined as vc = c/n1 and ic = |a|, the new function
f̃ (v) = f (v/vc)/ic has a jump of order 1 around v = 1.

Next, we shall find the steady states of the LD. Solving
Ṡ = 0 and Ṅ = 0 with Eqs. (B12) and (B4) in the limit of a
large laser (where γm/γt = 0), ignoring the average noise
γmN , and assuming the current injection I to be constant
here for simplicity, we get two solutions: the off-state

Noff ≈ J + ηI
γtq

, (B13)

Soff ≈ 0, (B14)

in which the laser does not emit photons, and the on-state

Non ≈ nc(1 + n0), (B15)

Son ≈ τsjc
q

(j + η̃i − 1) , (B16)

where nc = 1/(τsγm) is the characteristic scale along with
the dimensionless transparency carrier number defined
by N0 = ncn0. We set the characteristic bias current to
jc = qγtnc = qγt/τsγm such that J = jc(j + n0) and let
η̃ = ηic/jc. A natural choice for the characteristic photon
number is

sc = τsjc
q

= γt

γm
= 1

τnγm
. (B17)

In summary, the characteristic scales of the system vari-
ables and parameters are

vc = c/n1, (B18)

ic = |a|, (B19)

sc = 1/(τnγm), (B20)

nc = 1/(τsγm), (B21)

jc = qγtnc, (B22)

κc = ic/sc, (B23)

rc = vc/ic, (B24)

ηc = jc/ic, (B25)

where we also define the dimensionless resistance r =
R/rc and feedback strength κ̃ = κ/κc.

To complete the derivation, we determine a character-
istic time scale for the RTD and each of the four system
variables (v, i, s, n). We begin by inserting the definitions
(B18) to (B25) of the rescaled variables into the system
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Eqs. (B1), (B2), (B12), and (B4),

Cvc

ictc

dv

dt̃
= i − f̃ (v) − κ̃s(t̃ − τ̃ ), (B26)

Lic
vctc

di
dt̃

= v0 − v − ri, (B27)

τs

tc

ds
dt̃

= (n − 1)s + γm

γt
(n + n0)

+
√

2τsτnγm(n + n0)sξS(t), (B28)

τn

tc

dn
dt̃

= j + η̃i − n(1 + s). (B29)

Although noise can have a profound impact on the dynam-
ics of a system [12], the noise here appears to be negligible
after the change of variables because, for typical param-
eters, the value

√
2τsτnγm ≈ 6 × 10−8 is much smaller

than n and s, which are of order one. Furthermore, time
simulations verify that neglecting the noise is justified.
Alternatively, we could derive the Fokker-Planck equation
to obtain differential equations for the expected value of the
state vector (v, i, s, n), but this would complicate matters
unnecessarily. Notably, the prefactor of the average noise
is

γm

γt
= βQE, (B30)

where the spontaneous emission coupling factor [43],

β = γm

γr
, (B31)

is nonzero if the laser is small and the quantum efficiency
is defined as

QE = γr

γr + γnr
(B32)

with the radiative decay rate γr = γm + γl and the total
decay rate γt = γr + γnr.

By setting

μ = Cvc

ictc
=
(

Lic
vctc

)−1

, (B33)

and solving the condition

1 = μμ−1 = LC
t2c

(B34)

for the characteristic time scale tc of the RTD, we obtain

tc =
√

LC. (B35)

A natural time scale of the photon number is the photon
lifetime τs, while for the carrier number the time scale is

the carrier lifetime τn. Since only the relative time scale of
the LD versus the RTD is relevant for the dynamics of the
system, we define the characteristic time scales of the LD
relative to tc, i.e.,

tv = μ, (B36)

ti = μ−1, (B37)

ts = τs/tc, (B38)

tn = τn/tc. (B39)

We thus arrive at the system equations

tv
dv

dt̃
= i − f̃ (v) − κ̃s(t̃ − τ̃ ), (B40)

ti
di
dt̃

= v0 − v − ri, (B41)

ts
ds
dt̃

= (n − 1)s + γm

γt
(n + n0), (B42)

tn
dn
dt̃

= j + η̃i − n(1 + s). (B43)

Outside of this section, we omit the tilde on f̃ , t̃, τ̃ , and η̃

and take the dot to mean the derivative with respect to t̃,
e.g., v̇ = dv/dt̃.

APPENDIX C: TIME SIMULATION

To solve the RTD-LD system numerically, we use a
semi-implicit method. The coupling between the RTD and
the LD is directed in the sense that the LD does not influ-
ence the RTD instantly, which means that within each step,
we can first solve the RTD and then the LD. While we
choose time steps tk = kh with step size h and k ∈ N for
the variables (i, v, s), the carrier number n is calculated as
split stepping at tk+(1/2) = (k + 1

2 )h.
We obtain the numerical scheme by integrating the sys-

tem Eqs. (1)–(4) over one time step and averaging the vari-
ables between time steps. For the RTD, the discretization
leads to

tv(vk+1 − vk) = h
2
(ik + ik+1) −

∫ tk+1

tk
dt f (v)

− h
2
κ(sk−τ̄ + sk+1−τ̄ ), (C1)

ti(ik+1 − ik) = hv0 − h
2
(vk + vk+1) − h

2
r(ik + ik+1),

(C2)

where the number of delay time steps is τ̄ = τ/h, where h
is chosen such that τ̄ is an integer.

To approximate the integral, a Taylor expansion of v(t)
around tk to first order in t and subsequently of f (v) around

024050-13



MAYER MARTINS, GUREVICH, and JAVALOYES PHYS. REV. APPLIED 22, 024050 (2024)

vk to first order in h,

∫ tk+1

tk
dt f (v)

=
∫ tk+1

tk
dt f

(
vk + t

h
(vk+1 − vk) + O(t2)

)

=
∫ tk+1

tk
dt

[
f (vk) + t + O(t2)

h
(vk+1 − vk)f ′(vk)

]

= hf (vk) + h
2
(vk+1 − vk)f ′(vk) + O(h2), (C3)

yields

tv(vk+1 − vk) = h
2
(ik + ik+1) − hf (vk)

− h
2
(vk+1 − vk)f ′(vk)

− h
2
κ(sk−τ̄ + sk+1−τ̄ ), (C4)

ti(ik+1 − ik) = hv0 − h
2
(vk + vk+1) − h

2
r(ik + ik+1).

(C5)

Collecting the terms of step k + 1 on the left, we rewrite
the equations as

a11vk+1 + a12ik+1 = b1, (C6)

a21vk+1 + a22ik+1 = b2, (C7)

so that the solution for the step k + 1 of RTD is

vk+1 = a22b1 − a12b2

a11a22 − a12a21
, (C8)

ik+1 = a11b2 − a21b1

a11a22 − a12a21
, (C9)

with

(
a11 a12
a21 a22

)
=
(

tv + h
2 f ′(vk) − h

2
h
2 tI + h

2 r

)
(C10)

and

(
b1
b2

)
=
( h

2 ik + tvvk − h
[
f (vk) − vk

2 f ′(vk)
]

hv0 − h
2 (vk + rik) + tiik

)
. (C11)

The derivative f ′(v) necessary for the calculation is

f ′(v) = − sign(a)n1

log
(

F+(v)+1
F−(v)+1

)

d
(

(c−n1vcv)2

d2 + 1
)

− sign(a)n1
q

kBT

F+(v) + F−(v)F+(v)+1
F−(v)+1

F+(v) + 1

× arctan
(

c − n1vcv

d
+ π

2

)
+ h

|a|n2
q

kBT
e

q
kBT n2vcv

(C12)

with the abbreviation

F±(v) = e
q

kBT (b−c±n1vcv). (C13)

For the LD, we arrive at

ts (sk+1 − sk) = h
2

(
nk+ 1

2
− 1

)
(sk+1 + sk)

+ h
γm

γt

(
nn+ 1

2
+ n0

)
(C14)

+
√

2hτsτnγm(nk+ 1
2

+ n0)skξS,k(t),

where sk in the optional noise term approximates (sk+1 +
sk)/2, and by solving for sk+1, we get

sk+1 =
(

ts + h
2

(
nk+ h

2
− 1

) )
sk + h γm

γt

(
nn+ 1

2
+ n0

)

ts − h
2

(
nk+ h

2
− 1

) .

(C15)

Similarly, we derive from

tn
(

nk+ 3
2

− nk+ 1
2

)
= h(ηik+1 + j )

(C16)

− h
2

(
nk+ 1

2
+ nk+ 3

2

)
(1 + sk+1)

that

nk+ 3
2

=
(

tn − h
2 (1 + sk+1)

)
nk+ 1

2
+ h(ηik+1 + j )

tn + h
2 (1 + sk+1)

. (C17)

In summary, Eqs. (C8), (C9), (C15), and (C17) define the
scheme for a time simulation of the RTD-LD model.

APPENDIX D: TLS EQUATIONS OF MOTION

In this section, we seek to model TLSs moving in the
parameter space (θ , σ) of the two-time diagram in Fig. 8
in the fast-RTD scenario. The TLSs live on a helical qua-
sitorus, where their position is defined by the angle 2πσ
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and the length θ . Let us assume for concreteness just two
interacting TLSs S1 and S2; the generalization to multiple
TLSs is straightforward. Further, since the local time σ

corresponds to the position on the optical delay line of the
RTD-LD circuit, it is reasonable to suppose that the inter-
action forces between the TLSs do not depend explicitly on
the round-trip number θ but only on the distance |σ2 − σ1|
and their ordering in local time. Without loss of generality,
assume σ2 > σ1.

In general, there can be a “force” forward, F+, and
backward, F−, in local time so that

dσ1

dθ
= F−(σ1 − σ2 + 1) + F+(σ1 − σ2 + 1),

dσ2

dθ
= F−(σ2 − σ1) + F+(σ2 − σ1),

(D1)

where adding the period 1 in the expression for dσ1/dθ

accounts for the correct ordering, for S2 can only affect S1
on the next round trip (since causality rules out interac-
tion backward in time t). Note that F− and F+ are viscous
forces because they are proportional to a velocity in the
two-time representation rather than an acceleration as is
typical of TLSs [25,74,75].

Assuming an exponential decay with distance because
the mechanism of attraction is explained by the slope of the
carrier number n (cf. Sec. III C), the equations of motion
are

dσ1

dθ
= −A− exp(−γ−(σ1 − σ2 + 1)T)

+ A+ exp(−γ+(σ1 − σ2 + 1)T),

dσ2

dθ
= −A− exp(−γ−(σ2 − σ1)T)

+ A+ exp(−γ+(σ2 − σ1)T),

(D2)

and moreover, we can simplify matters by noting that the
attraction forward in time is negligible (A+ � A−) because
the tail of the carrier number is small to the left. Thus, the
TLSs move only backward in local time

dσ1

dθ
= −A− exp(−γ−(σ1 − σ2 + 1)),

dσ2

dθ
= −A− exp(−γ−(σ2 − σ1)).

(D3)

This tail in n decays exponentially with the rate

γ− = γl + γm + γnr (D4)

to the off-state of the laser after a light pulse. The minus
sign as an index is omitted in the following.

The evolution of the difference d = σ2 − σ1 is therefore

dd
dθ

= −A[exp(−γ dT) − exp(γ (d − 1)T)]

= −A exp(−γ T/2)[exp(−γ (d − 1/2)T)

− exp(γ (d − 1/2)T)]

= 2A exp(−γ T/2) sinh(γ (d − 1/2)T), (D5)

which proves that the equilibrium occurs at d = 1/2.
To solve differential Eq. (D5), we substitute D = γ (d −
1/2)T or equivalently d = D/(γ T) + 1/2 to arrive at

dD
dθ

= 2Aγ T exp(−γ T/2) sinh(D)

= B sinh(D) (D6)

with B = 2Aγ T exp(−γ T/2). Finally, we separate the
variables and integrate,

1
B

∫ D

D0

dD̃
1

sinh(D̃)
=
∫ θ

0
dϑ = θ

⇔ log
(

tanh(D/2)

tanh(D0/2)

)
= Bθ

⇔ D = 2 arctanh
(
eBθ tanh(D0/2)

)
.

(D7)

Resubstituting d for D and recalling that γ = 1/tn, we
arrive at the solution

d(θ) = 1
2

+ 2
tn
T

arctanh
(

eBθ tanh
(

T
2tn

[
d0 − 1

2

]))
,

(D8)

with the fit parameter B = 2A exp(−T/(2tn)) T/tn.
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