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Induced polarization imparts piezoelectricity in noncrystalline polymer films
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Piezoelectric materials produce a linear deformation in response to an applied electric field and are
essential for precision-control devices. The conventional view is that polymers must be crystalline and
possess remanent polarization after artificial poling to gain piezoelectricity. For the ferroelectric poly-
mer poly(vinylidene difluoride), the required poling field is exceptionally high, up to 150–200 kV mm−1.
Here, we circumvent this limitation by utilizing the elastic displacement of electric dipoles and creating
a net polarization. We find that a subcoercive field of 49 kV mm−1 can induce a high piezoelectric coef-
ficient, d33, of −33 pm V−1 in an unpoled poly(vinylidene fluoride-trifluoroethylene) film. In this case,
the dielectric acts as a piezoelectric, as long as a bias electric field is applied, with its piezoelectric coeffi-
cient increasing proportionally to the strength of the electric field until polarization saturation sets in. The
proposed methodology is further extended to amorphous polymers, providing an opportunity to discover
alternative piezoelectrics within the dielectric family.

DOI: 10.1103/PhysRevApplied.22.014077

I. INTRODUCTION

Piezoelectric materials, which convert mechanical
energy into electrical energy and vice versa, have been
widely used in sensors, actuators, and ultrasonic trans-
ducers [1,2]. The piezoelectric materials can be classified
into two main categories. One category consists of non-
polar oxides, such as quartz, where, under external stress
or electric field, the dipole moment or polarization can
be created because of the absence of a symmetry center
[3]. The second category is polar oxides, including per-
ovskite ferroelectrics, which possess spontaneous dipole
moments. The latter have found wider applications due
to spontaneous polarization and excellent piezoelectricity.
However, in the original unpoled state, ferroelectric mate-
rials do not necessarily exhibit piezoelectricity because the
ferroelectrics have at least two equivalent polarization vec-
tors [4,5], where the neighboring unit cells form domains
with aligned polarization. Since the domains can ideally
be randomly oriented, overall, the polarization vectors of

*Contact author: zbyang@ust.hk
†X. Yan and X. Li contributed equally to this work.

domains cancel each other out, and the ferroelectric shows
a small or even zero piezoelectric response.

The method of endowing these ferroelectrics with piezo-
electricity is through artificial poling, thereby the domains
are aligned along the direction of the electric field [3],
and the remanent polarization is built. The critical elec-
tric field that forces domain switching is called the coer-
cive field (Ec). For Pb(Zr, Ti)O3 (PZT) based perovskite
ceramics, the most extensively studied ferroelectrics in
last 70 years, Ec= 1–3 kV mm−1 [6]. However, for the
ferroelectric polymer poly(vinylidene difluoride) (PVDF)
[7–10] and piezoelectric biopolymers such as amino acids
[11–13], Ec is 1–2 orders of magnitude higher, which
increases the risk of breakdown and the difficulty of
artificial poling.

Another crucial challenge for ferroelectric polymers is
their semicrystalline morphology [7,8,14]. This is because
only crystalline regions possess long-range polar order,
which can be exploited to obtain remanent polariza-
tion. However, the crystalline regions are surrounded
by a considerable portion of an amorphous matrix [8].
Amorphous solids, unlike crystals, lack long-range order
and their positive and negative charge centers coincide,
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therefore rendering them incapable of exhibiting remanent
polarization. Previous reports pointed out that the symme-
try could be broken to generate induced piezoelectricity
in centrosymmetric crystals and even amorphous materi-
als by applying a dc bias electric field [15–18]; however,
there is a lack of in-depth discussions, so the underly-
ing mechanism remains obscure. It is well known that
the polarization of dielectrics mainly arises from four
parts, electronic polarization, ionic polarization, dipole-
orientation polarization, and interfacial polarization [19],
as shown in Fig. 1(a). Among them, ionic polarization
exists predominantly in ionic solids, while interfacial
polarization is restricted to low frequencies (<1 Hz) in
semicrystalline polymers or their composites. The ori-
entation polarization of spontaneous dipoles is limited
by the crystallographic structure, and electronic polariza-
tion is present in all dielectric materials over a broad
frequency range (see Appendix A). It has been recog-
nized that the dipole moment at the molecular or lattice
level can result in remanent polarization. This leads to
the question of whether atomic scale polarization can be
exploited to obtain polarization, and thus, piezoelectricity
in dielectrics, the structures of which normally preclude
piezoelectricity.

Here, we demonstrate a paradigm shift for achiev-
ing induced piezoelectricity in polymer films with-
out permanent poling. We show that for films of the
unpoled ferroelectric polymer poly(vinylidene fluoride-
trifluoroethylene) [P(VDF-TrFE)] [10], a net polarization
can be created by a dc bias electric field, resulting in asym-
metric microstructures, and thereby, inducing linear strain
under the alternating field. This occurs even at a dc bias
field as low as 49 kV mm−1, and the resulting piezoelec-
tric coefficient reaches −33 pm V−1, comparable to that
in commercially poled P(VDF-TrFE) [9]. We emphasize
that piezoelectricity induced by the subcoercive field orig-
inates from electrostriction, and its value is closely related
to electronic polarization and reversible dipole-orientation
polarization.

II. RESULTS AND DISCUSSION

A. Induced piezoelectricity in unpoled ferroelectric
P(VDF-TrFE) polymer film

Owing to the high pliability, light weight, and low
cost, PVDF and its copolymers have been widely used
in electronic devices such as flexible sensors and energy
harvesters [10,20]. P(VDF-TrFE), the most actively stud-
ied binary copolymer, has a coercive field as high as
60–80 kV mm−1 [7,8]. To achieve persistent and stable
piezoelectricity, the poling electric field must be at least
150–200 kV mm−1, which is 2–3 times the coercive field,
making it a considerable challenge for mass production.
Here, we find a solution to this challenge by utilizing
a smaller bias electric field during application, which

eliminates the need for an ultrahigh poling field. This
approach requires minimal additional power because poly-
mers exhibit very low conductivity.

We prepared a ferroelectric copolymer 70/30 mol %
P(VDF-TrFE) thin film by an electrohydrodynamic depo-
sition process (Fig. S1 within the Supplemental Material
[21]). The thickness of the obtained P(VDF-TrFE) film
is 6.8–8.0 μm (Fig. S2 within the Supplemental Material
[21]). The morphological phase transition is investigated
by differential scanning calorimetry (DSC), and the crys-
tallinity is estimated to be about 53% by integrating the
melting peak (see Fig. S3 within the Supplemental Mate-
rial [21] and Appendix B) [14]. The XRD results show
that the crystalline region is dominated by the polar β

phase (Fig. S4 within the Supplemental Material [21])
[22], which results in strong piezoelectricity of poled
PVDF-based polymers [14,22].

Figure 1(b) shows the polarization-electric field hystere-
sis loops of the sample under different electric fields. When
the electric field is less than 30 kV mm−1, the maximum
polarization is small (<1 μC cm−2), and the polarization
demonstrates a linear correlation with the electric field
(Fig. S5 within the Supplemental Material [21]). As the
electric field approaches 80 kV mm−1, polarization under-
goes a nonlinear increase (Fig. S5 within the Supplemental
Material [21]). Correspondingly, domain switching occurs,
which can be seen from the obvious current peak in the
current-electric field curves (Fig. S6 within the Supple-
mental Material [21]).

In the semicrystalline ferroelectric polymer P(VDF-
TrFE), polarization contributions originate from electronic
polarization, dipole-orientation polarization, and interfa-
cial polarization [Fig. 1(a) and Appendix A]. Interfacial
polarization can be ignored under the current measurement
frequency due to its long response time (>1 s). As shown
in Fig. 1(c), the frequency-dependent relative dielectric
permittivity exhibits an obvious inflection point around
1 Hz, and permittivity decreases significantly as the fre-
quency increases, which is also consistent with the results
from the frequency-dependent polarization curves at low
electric field (Fig. S7 within the Supplemental Material
[21]). Upon further increasing the frequency, the relative
permittivity remains stable until the frequency is above
104 Hz. In contrast, electronic polarization occurs in an
extremely short time (<10−10 s) and the displacements
are almost perfectly elastic [19], making it one of the
contributors to the observed linear polarization.

The source of nonlinear polarization observed in ferro-
electrics is attributed to the reorientation of spontaneous
dipoles [23], which depends on the magnitude and fre-
quency of the electric field, as shown in Fig. 1(d) and
Fig. S8 within the Supplemental Material [21] (see also
Ref. [24]). It can be seen that polarization increases with
decreasing frequency. When the frequency is down to
0.1 Hz, or even 0.01 Hz, leakage occurs [25]. At such low
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(a)

(b) (c)

(d) (e)

FIG. 1. Polarization mechanisms and polarization behavior of P(VDF-TrFE) films. (a) Schematic representation of the four polar-
ization mechanisms of dielectrics. (b) Polarization-electric field hysteresis loops under electric fields from 5.3 to 176 kV mm−1;
measurement frequency is 100 Hz. (c) Frequency-dependent relative dielectric permittivity measured under a voltage of 1 V. (d)
Polarization-electric field loops under various measuring frequencies. (e) Schematic diagram of the free-energy profile for a system
with polarization, and the orientation of dipoles at three stages under different electric fields. Numbers represent the energy states of the
three stages of polarization switching, colors of the dipoles distinguish their initial orientations, and translucent gray arrows indicate
the direction of the electric field.
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frequencies, part of the observed polarization comes from
interfacial polarization.

From a thermodynamic point of view [23,26], in the ini-
tial state, the spontaneous dipoles are locate at a stable
state with the free-energy (G) minimum, which is desig-
nated as position “0” on the energy profile [Fig. 1(e)]. For
P(VDF-TrFE) with a hexagonal crystal structure [20,22],
the angles between the dipole vectors are 60°, 120°, and
180°. When a small electric field is applied, the dipole
orientations change slightly, which will also contribute to
linear polarization. Meanwhile, the system energy slightly
increases to position “1,” but the energy supplied to
the system is insufficient to overcome the energy barrier
(�G = G1− G0) required for dipole flipping; as a result,
the dipole is trapped in a metastable state and will return
to its initial orientation once the electric field is removed.
When the energy applied to the system surpasses �G,
the spontaneous dipoles completely flip and align along
the direction of the electric field. When the electric field
is withdrawn, a new energetically stable state is reestab-
lished (position “2”). Thus, the net polarization signifi-
cantly increases due to the alignment of the dipoles; the
process is irreversible and is a major contributor to the
nonlinear polarization of ferroelectric materials. It should
be noted that the poling field is usually required to be at
least twice that of the coercive field to achieve a stable and
permanently polarized state.

In this context, when the electric field is below Ec,
induced polarization occurs in P(VDF-TrFE) [7], which is
characterized by linear polarization behavior attributed to
electronic displacement and reversible dipole-orientation
polarization. The slope of the polarization-electric field
curve is proportional to the relative dielectric permittivity,
and the obtained value is about 9.7, which is consis-
tent with the result measured under a small signal volt-
age of 1 V [Figs. 1(c) and S9 within the Supplemental
Material [21] ]. Under an electric field greatly surpassing
Ec, e.g., 160 kV mm−1 [Fig. 1(b)], polarization increases
substantially and the hysteresis loop is almost saturated.
We can observe that the remanent polarization is about
6.8 μC cm−2 and Ec is about 71 kV mm−1 at a frequency
of 100 Hz. The total polarization will consist of both the
induced polarization (Pi) and the spontaneous polarization
(Ps) [7], as follows:

P = Pi + Ps = εE + Ps, (1)

where ε is the dielectric permittivity.
A ferroelectric without artificial poling does not exhibit

piezoelectricity due to the absence of remanent polariza-
tion; however, it will be electrostrictive under an electric
field because of the anharmonic shifts of atoms or ions
in all dielectrics [27]. We measured the electromechan-
ical response of P(VDF-TrFE) films under an ac elec-
tric field (Eac). The displacement of the film along the

thickness direction was measured by a contactless laser
method, as shown in Fig. 2(a). Figure 2(b) shows the input
voltage and output displacement waveforms; the ampli-
tude of the applied electric field is about 27 kV mm−1,
which is much lower than Ec of the P(VDF-TrFE) film.
We can observe a clear displacement response and find
that the period of the displacement waveform is half
that of the input voltage waveform. For the input har-
monic signal, it can be expressed as U = U0sin2π ft,
where U0 is the amplitude of the input ac voltage, f
is the frequency, and t is the response time. The strain
from the electrostrictive effect is expressed as Se= ME2,
where M is the electrostrictive coefficient [28–30], since
(sin2π ft)2 = 1/2[1−cos4π ft], we observed the second-
harmonic displacement response. Unlike PZT, the sign
of the P(VDF-TrFE) film’s electrostrictive coefficient is
negative (Fig. S10 within the Supplemental Material [21]
and Appendix C). Figure 2(c) shows the correspond-
ing FFT amplitude spectra of the generated displacement
signal. When the frequency of the input voltage signal
is 500 Hz, the displacement signal reaches its peak at
1000 Hz. In addition, we fit the strain data with different
ac field amplitudes and find that they follow the parabolic
law [Fig. 2(d)]. The obtained electrostrictive coefficient
(M 33) is about −3.6 × 10−19 m2 V−2, which is compara-
ble to the previously reported values (calculated M 33 is
−3.8–4.4 × 10−19 m2 V−2) [7–9].

Although the switching of spontaneous dipoles does
not occur at low electric fields, we can exploit induced
polarization. The inversion symmetry of bound charges in
the dielectrics can be broken by applying a dc bias field
[20,28,31,32], leading to asymmetric charge distribution
and induced polarization. Under the concurrent applica-
tion of a dc electric field (Edc ∼ 68 kV mm−1) and an
ac electric field (Eac ∼ 27 kV mm−1), we observe a first-
harmonic displacement that corresponds to the frequency
of the electric field at 500 Hz, as shown in Fig. 3(a). The
deformation of the polymer sample under an ac + dc elec-
tric field can be attributed to two aspects. First, it is thermal
expansion due to the Joule heating effect. However, the
PVDF-based polymer has a positive thermal-expansion
coefficient [33] while we observe a negative strain, elimi-
nating this explanation. Alternatively, the deformation can
be caused by the electromechanical coupling effect. As
shown in Fig. S11 within the Supplemental Material [21],
we observe that, when the dc bias field is positive, the
phase of the output displacement is opposite to that of
the input ac voltage. This indicates that the sample con-
tracts when the direction of the ac field aligns with the
induced-polarization direction (see Appendix D). We thus
can conclude that the generated deformation in the P(VDF-
TrFE) film is primarily due to the negative piezoelectric
effect [7,9]. More importantly, the generated displacement
does not attenuate significantly under the continuous dc
bias field (Fig. S12 within the Supplemental Material [21]).
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(a) (b)

(c) (d)

FIG. 2. Electric-field-induced electrostrictive response of P(VDF-TrFE) films. (a) Schematic diagram of the experimental setup,
simultaneously recording the input voltage and the output displacement. Dimensions of the sample are 15 × 15 mm2 and 7.5 μm thick.
Upper-right corner shows the equivalent circuit of the voltage source. (b) Time-resolved harmonic displacement response under an
electrical input of Eac= 27 kV mm−1 at f = 500 Hz. (c) Corresponding fast Fourier transform (FFT) amplitude spectra of the generated
harmonic displacement as a function of frequency. (d) Electrostrictive strain as a function of Eac measured at 500 Hz. Dashed line
represents the parabolic fit.

Figure 3(b) is the fast Fourier transform amplitude spec-
tra corresponding to the displacement signal. In addition to
the first-harmonic displacement, a weak second-harmonic
displacement response can also be observed at 1000 Hz
because Eac is much smaller than that of Edc. Once the
magnitude of Eac is comparable to or even higher than
Edc, we can observe an asymmetric response consisting
of the first and second harmonics (Fig. S13 within the
Supplemental Material [21]).

We measured the variation of the piezoelectric strain
with the amplitude of the ac field under different dc bias
fields, as shown in Fig. 3(c). For a specific dc bias field,
piezoelectric strain increases linearly with the ac ampli-
tude, following the piezoelectric strain equation: Sp= dEac.
Under a dc bias field of 68 kV mm−1 and an ac field
of 27 kV mm−1, the piezoelectric strain is as high as
–0.1%, corresponding to an effective piezoelectric strain

coefficient of –36 pm V−1. It should be noted that the
piezoelectric coefficient varies as a function of the dc bias
field, where the piezoelectric coefficients are –27, –33,
and –36 pm V−1 at dc bias fields of about 37, 49, and
68 kV mm−1, respectively.

Under the measuring electric field, P(VDF-TrFE) shows
linear polarization behavior [7], as P = εE. According
to the phenomenological theory [34,35], the piezoelec-
tric coefficient, d, is closely related to the electrostrictive
coefficient, permittivity, and polarization, by

d = 2QPε, (2)

where Q is the polarization-related electrostrictive coef-
ficient; the formula M = Qε2 holds for linear dielectrics
[27]. Thus, the induced piezoelectric coefficient, dind,
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Induced piezoelectric displacements in P(VDF-TrFE) films. (a) Time-resolved harmonic electromechanical displacements
measured at 500 Hz and excited by Eac= 27 kV mm−1 under Edc= 68 kV mm−1, where the offset of the displacement signal is discarded
before the curve is plotted. (b) FFT amplitude spectra of the first-harmonic displacement generated as a function of frequency. (c) Linear
piezoelectric strain as a function of Eac with Edc ∼ 37, 49, and 68 kV mm−1 measured at 500 Hz. Dashed line represents the linear fit.
(d) Concurrently measured first- and second-harmonic displacements under constant Eac= 27 kV mm−1 and various Edc. (e) Induced
d33 and 2MEdc with various Edc under constant Eac. (f) XRD 2θ patterns of the film under various in situ Edc applications. Dashed line
represents reference values.

under the bias electric field can be derived as

dind = 2MEdc. (3)

The formula shows that dind is related to M and the bias
electric field. To verify this, we measured the displacement

of the P(VDF-TrFE) film under a constant ac field and vari-
ous dc bias fields. We set the ac field to be 27 kV mm−1 and
the maximum dc bias field to be 133 kV mm−1, so both the
first- and second-harmonic displacements can be detected.
We find that the absolute value of the piezoelectric strain
first increases rapidly with the dc bias field, until it
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approaches a value of about 90 kV mm−1, above which the
strain continues to increase but at a slower pace, as shown
in Fig. 3(d). On the other hand, the absolute value of elec-
trostrictive strain remains almost constant with Edc below
90 kV mm−1, and then decreases slightly. We obtained d33
and M 33 using the piezoelectric and electrostrictive strains,
and calculated the 2MEdc value, as shown in Fig. 3(e). The
results indicate a clear correlation between the variation of
2MEdc and d33, with both exhibiting almost identical pat-
terns, even if the former value is slightly higher than the
latter one.

It was reported that the origin of the piezoelectricity
for poled PVDF-based polymers was electrostriction [7,9].
The application of a low dc bias field does not substan-
tially impact the dimensions of the crystalline region and
the crystal structure of P(VDF-TrFE) [20,36]. As shown
in Fig. 3(f), when the applied dc bias field is lower than
53 kV mm−1, there is minimal variation in the peak posi-
tion and intensity of the (110)/(200) diffraction of the β

phase. When the P(VDF-TrFE) film is subjected to a sub-
coercive field, the induced polarization increases linearly
with the strength of the electric field, that is, the linear
change in the electric dipole moment leads to an induced
d33 that is almost proportional to the dc bias field. When the
applied dc bias field is higher than 93 kV mm−1, the inten-
sity of the (110)/(200) diffraction is significantly reduced,
implying a decrease in the coherent crystallization region
[20]. The calculated results (see Appendix E) show that the
crystallite size decreases from 15.2 nm (53 kV mm−1) to
13.0 nm (93 kV mm−1). Previous reports pointed out that
the ordered structure with a small rattling space generally
exhibited a larger Q [27]. Therefore, decreased M 33 under
Edc above 90 kV mm−1 can be linked to the suppression of
Q by the reduction of the microcrystalline size.

B. Induced piezoelectricity in noncrystalline dielectric
polymers and biological materials

The above results indicate that the induced piezoelec-
tricity in the ferroelectric films studied are closely related
to the electrostrictive coefficient, M, in the subcoercive
field. Since domain switching does not contribute to this
process, the induced-piezoelectricity method should not
be limited solely to ferroelectric polymers, but rather, it
should be applicable to all dielectrics, including noncrys-
talline ones [32].

We next apply the same approach to induce a piezo-
electric effect in nonferroelectric polymers. We prepared
two kinds of polymer films, polyvinyl alcohol (PVA) and
a biological tissue. PVA is a nontoxic, biocompatible, and
linear synthetic polymer [37]. Due to good adhesion and
plasticity, it is widely used as a plasticizer for forming
inorganic powders and as a matrix for flexible piezoelec-
tric composites, but it does not show piezoelectricity itself.
We prepared PVA films (Fig. S14 within the Supplemental

Material [21]) by an electrohydrodynamic deposition pro-
cess (Fig. S1 within the Supplemental Material [21]). The
broad reflection peak of the XRD pattern at 2θ ∼ 20°
(Fig. S15 within the Supplemental Material [21]) indicates
a semicrystalline morphology [38]. The DSC analysis
(Fig. S16 within the Supplemental Material [21], see also
Refs. [39–41]) shows that its crystallinity is about 12%.
Although the arrangement of atoms or molecules exhibits
a certain level of localized order on a small length scale, it
does not possess long-range order and has a structure that
is similar to that of amorphous materials [42,43]. Figure
S17 within the Supplemental Material [21] shows its
polarization-electric field curves; no hysteresis is observed,
even under electric fields as high as 226 kV mm−1, and
remanent polarization is always less than 1 μC cm−2, thus
ruling out the possibility of permanent poling.

We measured the electromechanical response of
the PVA film under an ac electric field (Fig. S18
within the Supplemental Material [21]), the results
show that the electrostrictive coefficient (M 33) is about
−1.9 × 10−19 m2 V−2. Induced displacement under an
ac + dc electric field was also observed [Fig. 4(a)]; the
phase relationship of the voltage and displacement wave-
forms implies the negative piezoelectric effect in PVA,
which is attributed to the dimensional effect caused by
van der Waals forces [7,9,44]. Under a dc bias field of
about 48 kV mm−1, we observe that the first-harmonic
strain increases linearly with increasing ac field, as shown
in Fig. 4(b). As a result, the piezoelectric coefficient is
−25 pm V−1.

Piezoelectric biomaterials, such as piezoelectric biolog-
ical tissues, have attracted extensive attention in recent
years due to their advantages of biocompatibility, absorba-
bility, and degradability. However, due to the large
molecular polarity and complex assembly, biopolymers are
difficult to permanently pole and show minimal piezoelec-
tricity on the macroscopic level [11,45]. It was reported
that small intestinal submucosa (SIS) was a semicrystalline
organic biomaterial, mainly composed of amorphous col-
lagen fibers [46]. We prepared SIS films (Figs. S19 and
S20 within the Supplemental Material [21]) through an
exfoliation process [47]. The polarization measurements
show that it is not ferroelectric under the current electric
field (Fig. S21 within the Supplemental Material [21]),
and due to the loose microstructure (Fig. S19 within the
Supplemental Material [21]), the breakdown strength is
very low, and the maximum polarization is even less than
0.1 μC cm−2. Nevertheless, we can also observe clear
displacement responses under ac (Fig. S22 within the Sup-
plemental Material [21]) and ac + dc (Fig. S23 within the
Supplemental Material [21]) electric fields. Under a dc bias
field of about 40 kV mm−1, the piezoelectric coefficient is
−13 pm V−1.

Our results demonstrate that electrostrictive materials
can be operated in the field-biased piezoelectric mode,
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(a)

(c)

(b)

FIG. 4. Induced piezoelectricity and the proposed mechanism in dielectric films with linear polarization. (a) Time-resolved harmonic
electromechanical displacement of polyvinyl alcohol film under an ac + dc field. (b) Piezoelectric strain of the film varies with the ac
field amplitude at Edc= 48 kV mm−1. Dashed line represents the linear fit. (c) Schematic diagram of induced piezoelectric strain under
an ac + dc field. Dotted circle represents the initial position of the charge carrier; dP and dN represent the displacement of positive and
negative charge carriers, respectively; and �L represents the macroscopic deformation of the sample. Under a dc bias field, charge
carriers with opposite signs move relative to each other, and the dielectric has an induced polarization. Simultaneously applying ac and
dc fields, the small electric field disturbance causes a change in the amount of induced charge on the electrode surface. Here, Eac > 0
means that the direction of Eac is consistent with that of Edc. Thus, the amount of induced charge increases, and the sample contracts
due to the dimensional effect [9] of the polymer.

whether they are crystalline, noncentrosymmetric, or polar
[3,32]. In the present case, a dc bias field is applied
to the film to induce polarization, whereupon the mate-
rial acts as a piezoelectric as long as the field is applied
[Fig. 4(c)]. When ac and dc fields are simultaneously
applied, the ac field’s small disturbance causes a change
in the amount of charge on the electrode surface, which,
in turn, leads to a linear deformation of the film. Specifi-
cally, when Eac > 0, the surface charge increases, and the
polarization of dielectrics must increase accordingly to
accommodate the change. In polymers, the intermolecu-
lar van der Waals force is much weaker than the covalent
bond in the molecule. Under the application of a small
ac field, the interaction between molecules is more easily

affected. As a result, the molecular distance of the poly-
mer will decrease and the sample will contract, so that
the dipole moment per unit volume increases, i.e., the
dimensional effect [9]. Moreover, the stronger the dc bias
field, the larger the strain and piezoelectric effect until
polarization saturation sets in. In practical applications,
applying a bias electric field is easy to implement, espe-
cially for actuators, where the bias of an ac signal can be
achieved simply by designing the capacitance and resis-
tance of the circuit. More importantly, this method will
greatly broaden the types of dielectric materials for actu-
ators and may even solve the hysteresis and temperature
stability issues of piezoelectric strain in traditional oxide
ferroelectric materials.
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III. CONCLUSION

We demonstrate the possibility of achieving large piezo-
electricity by electric-field-induced symmetry breaking in
dielectric polymers. Our results show that a piezoelec-
tric coefficient of −33 pm V−1 can be induced in unpoled
P(VDF-TrFE) polymer films by applying a dc bias field of
<50 kV mm−1. By exploiting atomic scale electric dipoles,
net polarization is built in ferroelectric films even, under a
subcoercive field, thus a linear electromechanical response
is induced under the concurrent application of ac and dc
fields. This strategy can even be extended to amorphous
dielectric films. Our findings provide a good paradigm
to revamp piezoelectricity in polymers by exploiting the
electrostriction of materials, thus presenting an alternative
design strategy for a wide range of eco-friendly functional
materials.

IV. MATERIALS AND METHODS

A. Preparation of inks

Inks of P(VDF-TrFE) copolymer are prepared by
dissolving 1-g P(VDF-TrFE) powder (VDF/TrFE = 70/
30 mol , Piezo Technologies, France) in 10-ml N,N -
dimethylformamide (Sigma-Aldrich), and stirring at 70 °C
for 12 h to form homogeneous solutions.

Inks of PVA are prepared by dissolving 5-g PVA
particles (with average molecular weight 57 000–
66 000 g mol−1 and 98–99% hydrolyzed, Alfa Aesar) in
100-ml distilled water at 70 °C for 3 h. Once PVA is
completely dissolved, it is stirred overnight at room tem-
perature to form homogeneous solutions.

Inks of PZT are prepared by the following steps.
First, the Pb1.2(Zr0.52Ti0.48)O3 sol was prepared. Lead(II)
acetate trihydrate, [Pb(CH3COO)2] · 3H2O (99%, TCI),
is first dissolved in acetic acid (99%, TCI) at 120 °C
and mixed by magnetic stirring. When it is completely
dissolved, the solution is cooled to room temperature.
Zirconium(IV) n-propoxide (C12H28O4Zr, 70 wt % in
1-propanol, TCI) is mixed with titanium(IV) butoxide
(C16H36O4Ti, 99%, TCI) in another container. Then, zir-
conium(IV) n-propoxide and titanium(IV) butoxide are
added to lead(II) acetate solution, and diluted with ethylene
glycol (99.5%, Dieckmann) to 0.2 mol L−1 with stirring
for 6 h in air. Finally, inks of PZT slurry are prepared
by adding the proper amount of commercial PZT powders
(typically 30–50 wt %, particle size of <500 nm) to the
PZT sol and homogenizing the mixture by ball milling.

B. Deposition of thin films

The films are prepared by electrohydrodynamic deposi-
tion (Fig. S1 within the Supplemental Material [21]). Inks
are loaded into a 5-ml syringe and supplied to a metal
nozzle [inner (outer) diameter of 0.6 (0.91) mm] by a
syringe pump (Lead fluid apparatus, Pump TYD01) with

the flow rate of 10–20 μl min−1. Si (100) wafer (thick-
ness of 500 μm, n-type) is used as a substrate and cleaned
with ethanol prior to deposition. A positive potential is
applied to the nozzle using a high-voltage supply (DW-
P303–1ACH2, Dongwen High Voltage Power Supply Co.,
Ltd.), while the nozzle-to-substrate distance is kept to
8–10 mm. The substrate is positioned on an electrically
grounded plate, mounted atop of an X -Y translation stage.
Electrohydrodynamic jetting is formed by increasing the
nozzle voltage to 3000–7000 V, until the pendant liquid
drop elongates, splits into multiple micro- and nanojets,
and falls onto the substrate. During deposition, the sub-
strate is alternately rastered with the major scan in the X
and Y directions with a speed of 10–30 mm s−1. Deposi-
tion is carried out under ambient conditions, with a relative
humidity of 50–70% and temperature of 22–26 °C. After
the deposition of two layers, the wet P(VDF-TrFE) poly-
mer films are dried at 70 °C for 5 min and annealed at
110 °C for 24 h. The wet PVA films are dried at 70 °C
for 30 min. For deposited PZT precursors, sol infiltration
into every five layers of the as-prepared films by means
of spin-coating is performed. Sintering treatment at 800 °C
for 30 min is performed to synthesize perovskite structures.

C. Structural characterization

To observe the morphology of the samples, the film was
immersed in liquid nitrogen, and the cross section of the
sample was obtained after bending and brittle fracture. The
cross-section morphology of the sample was observed by
a scanning electron microscope (Quanta 450, FEI). The
heat-flow curves of the samples were obtained by using
a differential scanning calorimeter (DSC3, Mettler Toledo)
at a heating rate of 5 °C min−1. The crystal structure of the
sample was examined by using an x-ray diffractometer (D8
Advance, Bruker). For in situ crystal-structure measure-
ments, gold electrodes were prepared by using a magnetron
sputter (Q150T ES Plus, Quorum Technologies); the thick-
ness of the gold electrodes was about 10 nm, and the
diameter of the circular electrodes was controlled by a
mask to be 10 mm. The voltage was applied to the sam-
ple through a high-voltage dc power supply (TCM6000i,
Dalian Teslaman Tech. Co., Ltd.), and x-ray diffraction
was performed after the voltage was stabilized.

D. Dielectric property measurements

The capacitance and loss of the P(VDF-TrFE) film sam-
ple were measured by using an inductance-capacitance-
resistance (LCR) meter (E4980A, Agilent Technologies,
Inc.), and the applied voltage was 1 V. During the mea-
surement, the sample chamber was evacuated, and the
temperature was controlled by a program controller; the
heating rate was 3 °C min−1. The capacitance of the sam-
ple in the frequency range of 10−3–107 Hz was measured
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by using a broadband impedance spectrometer (Concept
40, Novocontrol Technologies).

E. Ferroelectric property measurements

To determine the ferroelectric properties, in the pro-
cess of magnetron sputtering, the diameter of the circular
electrode is 2 mm under the control of a mask, and the
polarization-electric field hysteresis loop of the sample is
obtained by using a ferroelectric instrument (CPE1801,
PolyK Technologies, LLC) at 100 Hz. The frequency-
dependent P-E loops and S-E curves were measured using
a ferroelectricity analyzer (Aix ACCT, TF Analyzer 1000,
Aachen, Germany).

F. Strain measurements

We measured the displacement of the sample by a con-
tactless laser method. The electric field was applied to the
film without artificial poling treatment; the type, ampli-
tude, and frequency of the electric field were controlled by
a function generator (DG1062, RIGOL Technologies Co.,
Ltd.), a power amplifier (E01.A2, Harbin Core Tomorrow
Science and Technology Co., Ltd.), and a high-voltage dc
power supply (TCM6000i, Dalian Teslaman Tech. Co.,
Ltd.) The displacement of the sample was captured by a
laser vibrometer (NLV-2500, Polytec GmbH) with a sen-
sor sensitivity of 50 nm V−1 and a resolution of 15 pm.
Then, the displacement signal and the input voltage sig-
nal were simultaneously monitored by the digital stor-
age oscilloscope (RTE 1024, Rohde & Schwarz USA,
Inc.)

All data are available in the main text or within the
Supplemental Material [21].
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APPENDIX A: DIELECTRIC POLARIZATION
MECHANISM

Four types of polarization can be induced in dielectrics
[19]: electronic polarization due to the displacement of
electrons with respect to positive nuclei within the atom,
ionic polarization due to the displacement of charged
atoms with respect to each other in certain ionic crys-
tals, dipole polarization due to the effect of the applied
field on the orientations of permanent dipole moments,
and finally interfacial polarization caused by the accumu-
lation of free ions at the interfaces between materials with
different conductivities and dielectric constants.

Dielectric polarizations are classified as instantaneous
polarizations and absorptive polarizations [19]. Instanta-
neous polarizations may be thought of as polarizations
that can form completely in times less than say 10−10 s.
Among the above polarization types, electronic polariza-
tion and ionic polarization are instantaneous polarization.
Dipole polarizations can form in times from 10−8 to 10−2 s.
However, the interfacial polarization takes longer to
establish, >1 s.

APPENDIX B: CALCULATION OF
CRYSTALLINITY

The degree of crystallinity (xc) can be calculated using
the following equation [48]:

xc = �Hm

�H0
, (B1)

where �H m is the enthalpy of melting of the sample,
which can be obtained by integrating the melting peak in
the DSC curves, near 150 °C for P(VDF-TrFE). �H 0 is the
enthalpy of melting of materials that are 100% crystalline;
for pure P(VDF-TrFE), �H 0 is 40 J g−1.

APPENDIX C: THE SIGN OF THE
ELECTROSTRICTIVE COEFFICIENT

When the dielectric material is excited by an electric
field with a sine wave, the input voltage and the generated
electrostrictive strain can be expressed as [28]

U(t) = U0 sin 2π ft, (C1)

Se(t) = ME2(t) = M
2

U2
0

L2 (1 − cos 4π ft), (C2)

where L is the sample thickness. According to the phase
relationship of the harmonic function, if M is positive, we
know that regardless of whether the input sine is located
at the peak (2π ft =π /2) or the valley (2π ft = 3π /2), the
output strain is located at the peak (4π ft = nπ , n is odd
number). Conversely, if M is negative, the output strains
are all located in valley, as shown by the blue dotted line

014077-10



INDUCED POLARIZATION IMPARTS PIEZOELECTRICITY. . . PHYS. REV. APPLIED 22, 014077 (2024)

in Fig. S10(a) within the Supplemental Material [21]. We
also find that the phase difference of the displacement sines
of P(VDF-TrFE) and PZT films is π (Fig. S10 within
the Supplemental Material [21]), implying that their signs
are opposite. These results indicate that the sign of the
electrostriction coefficient of P(VDF-TrFE) is negative.

APPENDIX D: THE SIGN OF THE
PIEZOELECTRIC STRAIN COEFFICIENT

There is no doubt that the direction of induced polar-
ization must be along that of the dc bias field. Under a
positive bias field, when the input ac sine is at the peak,
the direction of the ac field is consistent with the polariza-
tion direction, thus its sign is positive. For P(VDF-TrFE),
at this time, the displacement sine is in the valley, thus
the sample shrinks relative to the initial thickness, so the
strain is negative, as shown by the blue diamond sym-
bol in Fig. S11(a) within the Supplemental Material [21].
According to the piezoelectric equation, the sign of the
piezoelectric coefficient is negative. In contrast, the out-
put displacement sine of PZT has the same phase as the
input ac sine [Fig. S11(b) within the Supplemental Mate-
rial [21] ], which indicates that the sign of its piezoelectric
coefficient is positive.

In addition, we intercepted simultaneous data of dis-
placement and ac voltage and plotted them in Figs. S11(c)
and S11(d) within the Supplemental Material [21]. As we
can see, for P(VDF-TrFE) films, the slope of the curve is
<0, indicating a negative piezoelectric coefficient.

APPENDIX E: CALCULATION OF P(VDF-TrFE)
CRYSTALLITE SIZE

The crystallite size was calculated using Scherrer’s
formula [49]:

b = Kλ

L cos θ
, (E1)

where b is the FWHM in radians; λ is the wavelength of
the x-ray beam (1.54056 Å); L is the crystallite size in Å;
and K is a constant, which varies from 0.89 to 1.39, but for
most cases it is close to 1.
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