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Coreset selection can accelerate quantum machine learning models with provable
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Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of
quantum machine learning, poised to leverage the nascent capabilities of near-term quantum computers
to surmount classical machine learning challenges. Nonetheless, the training-efficiency challenge poses a
limitation on both QNNs and quantum kernels, curbing their efficacy when they are applied to extensive
datasets. To confront this concern, we present a unified approach—coreset selection—aimed at expedit-
ing the training of QNNs and quantum kernels by distilling a judicious subset from the original training
dataset. Furthermore, we analyze the generalization-error bounds of QNNs and quantum kernels when they
are trained on such coresets, unveiling performance comparable with that of those trained on the complete
original dataset. Through systematic numerical simulations, we illuminate the potential of coreset selection
in expediting tasks encompassing synthetic data classification, identification of quantum correlations, and
quantum compiling. Our work offers a useful way to improve diverse quantum machine learning models
with a theoretical guarantee while reducing the training cost.
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I. INTRODUCTION

Quantum neural networks (QNNs) [1–4] and quantum
kernels [5,6] have emerged as pivotal models in the bur-
geoning field of quantum machine learning (QML) [7–9],
poised to unlock the power of near-term quantum com-
puters to address challenges that elude classical machine
learning paradigms [10,11]. The allure of these models is
rooted in a fusion of theoretical advances and practical
adaptability. That is, theoretical evidence showcases their
superiority over classical counterparts in diverse scenarios,
spanning synthetic datasets, discrete logarithmic problems,
and quantum information processing tasks [6,12–16], as
measured by sample complexity and runtime consider-
ations. Complementing their theoretical strength, their
implementation displays flexibility, adeptly accommodat-
ing constraints posed by contemporary quantum hardware,
including qubit connectivity and limited circuit depth.
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This convergence of theoretical promise and practical flex-
ibility has spurred a wave of empirical investigations,
substantiating the viability and potential benefits of QNNs
and quantum kernels across real-world applications such
as computer vision [17–19] and quantum physics [20–28].

Despite their promising potential, QNNs and quantum
kernels face a pertinent challenge concerning the training
efficiency, resulting in a constrained practical applicabil-
ity towards large-scale datasets [29]. This limitation is
particularly evident due to the absence of fundamental
training mechanisms such as back-propagation and batch
gradient descent in most QNNs, which are imperative for
the swift training of deep neural networks [30]. Simi-
larly, the training process for quantum kernels necessitates
the collection of a kernel matrix of size O(N 2), with N
being the number of training examples and each entry
demanding independent evaluation via a specific quan-
tum circuit. Consequently, the capacities of both QNNs
and quantum kernels to effectively navigate vast train-
ing datasets, characterized by millions of data points, are
compromised.

In response to the above-mentioned challenge, sev-
eral research lines have emerged to increase the training
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efficiency of QNNs. The first line embarks on improv-
ing the optimizer or the initialization methods, seeking
to expedite convergence towards the minimal empiri-
cal risk through a reduction in measurements and iter-
ations [31–35]. Nonetheless, the nonconvex nature of
the loss landscape cautions against potential entrapment
within saddle points during the optimization process
[36–38]. The second avenue delves into feature-dimension-
reduction techniques, enabling more-streamlined use of
quantum resources for each data point [39,40]. However,
this approach may not necessarily alleviate overall run-
time complexity, potentially even exacerbating it. The third
research pathway navigates the realm of QNN expressivity,
imposing judicious constraints to facilitate the integra-
tion of back-propagation through meticulously engineered
ansatzes [41,42]. Nevertheless, the extent to which these
constrained ansatzes might impact QNN performance on
unseen data remains a dynamic yet-unresolved facet.

The endeavor to increase the training efficiency of
quantum kernels has received less attention, in contrast
to efforts to increase the training efficiency of QNNs.
This divergence in attention stems from the shared obser-
vation that both classical kernels and quantum kernels
demand O(N 2) runtime for the collection of the kernel
matrix. Existing literature focused on increasing the train-
ing efficiency of quantum kernels has predominantly cen-
tered on the development of advanced encoding methods
[43,44]. These methods aim to mitigate the use of quan-
tum resources and attenuate the manifestation of barren
plateaus [45]. However, despite the cultivation of various
research trajectories directed at enhancing QML models,
it is noteworthy that these approaches often retain model-
specific attributes, potentially harboring unforeseen side
effects. This realization begets a pivotal inquiry: can a
unified approach be devised that systematically increases
the training efficiency of both QNNs and quantum ker-
nels while safeguarding a steadfast theoretical guaran-
tee?

In this study, we provide an affirmation of the above
question by introducing coreset-selection techniques into
QML. Conceptually, coreset selection is an effective pre-
processing approach to distill a weighted subset from the
large training dataset, which guarantees that models fitting
the coreset also provide a good fit for the original data.
Considering that the training efficiency of both QNNs and
quantum kernels hinges on the number of training exam-
ples, coreset selection provides a unified way to increase
their training efficiency. Moreover, the theoretical foun-
dation of coreset selection is established on the recent
generalization-error analysis of QNNs and quantum ker-
nels, indicating that a few training examples are sufficient
to achieve a good test performance. In this regard, we
provide a rigorous analysis of the generalization ability
of QNNs and quantum kernels trained on the coreset.
The bounds achieved exhibit comparable generalization

performance of QNN and quantum kernel learning when
they are optimized under the original dataset and the core-
set. Numerical simulations on synthetic data, identification
of nonclassical correlations in quantum states, and quan-
tum circuit compilation confirm the effectiveness of our
proposal.

II. RELATED WORK

The prior literature related to our work can be divided
into two classes: algorithms for accelerating the optimiza-
tion of QML models, and the generalization-error analysis
of QML models. In the following, we separately explain
how our work relates to and differs from previous studies.

A. Acceleration algorithms for QML models

As already mentioned, various algorithms have been
introduced to expedite the optimization of QNNs rather
than quantum kernels. These algorithms can be classi-
fied into three distinct categories, each addressing different
facets of optimization improvement: data feature engi-
neering, QNN-architecture design, and optimizer enhance-
ment.

In the realm of data feature engineering, the core concept
revolves around implementing dimensionality-reduction
techniques such as principal-component analysis and fea-
ture selection during the preprocessing stage [46]. This
strategy effectively reduces the quantum resources required
for processing data points compared with their unpro-
cessed counterparts. Within the domain of architecture
design, there exists a dual focus on encoding-strategy
design [47,48] and ansatz design [49–53]. The underly-
ing principle emphasizes the use of a minimal number of
qubits, trainable parameters, and shallower circuit depths,
all geared towards achieving competent performance in
learning tasks. In parallel, efforts to enhance optimizers
have also attracted attention. The deployment of higher-
order gradient-descent or machine learning–assisted opti-
mizers [31–35] and distributed-learning schemes [54] has
been advocated as a means to accelerate convergence
rates and wall-clock time, thereby further increasing the
efficiency of QNN optimization.

Our work is complementary to the above-mentioned
approaches since the reduced size of the data is indepen-
dent of data feature engineering, QNN-architecture design,
and optimizer enhancement. In other words, QNNs trained
on the coreset can be further accelerated by the above-
mentioned approaches. Moreover, differently from prior
literature that concentrates on the acceleration of QNNs,
coreset selection can be directly used to accelerate the
collection of quantum kernels.
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B. Generalization of QML models

Several studies have undertaken the task of quantifying
the generalization error of QNNs through the lens of the
foundational learning-theoretic technique known as uni-
form convergence [55–59]. In general, the resulting bound
for generalization adheres to the format of O(

√
p/N ),

where p denotes the number of trainable parameters and
N signifies the number of training instances. For quantum
kernels, the generalization-error upper bound scales with
O(

√
C1/N ), where C1 depends on the labels of the data and

the value of the quantum kernel [6]. When system noise is
considered, the generalization-error upper bound degrades
to O(

√
C1/N + N/(C2

√
m)), where m is the shot number

and C2 depends on the kernel value, shot number, and noise
level [60].

Our work leverages the above analysis to quantify how
the coreset selection affects the learning performance of
QNNs and quantum kernels, respectively.

We note that although Ref. [61] also discusses quantum
coreset, its primary emphasis lies in using fault-tolerant
quantum computers to speed up the construction of core-
sets, a subject that falls outside the scope of our work. In
addition, Refs. [62,63] illustrated the potential of coreset
in specific applications, i.e., clustering and image classi-
fication, without a unified view and generalization-error
analysis.

III. PRELIMINARIES

In this section, we first introduce the concept of machine
learning and a coreset. Then we formally introduce the
mechanism of QNNs and quantum kernels under the
supervised-learning paradigm.

A. Foundations of machine learning

Let St = {xi, yi}Nt
i=1 be the dataset in which each paired

training example (xi, yi) is independent and identically
sampled over Z = X × Y with probability distribution
pZ , where X is the feature space and Y is the label space.
The goal of supervised-learning algorithms is to find a
hypothesis f : X → Y with trainable parameters w such
that the true risk R on the distribution pZ is minimized with

R = E(x,y)∼pZ [l(fw(x), y)], (1)

where l(·, ·) is the loss function used to measure the degree
of fit between the output of the hypothesis and its corre-
sponding ground truth. As the distribution pZ is unknown
and given that accessing all the data over Z would be
impractical, in practice, the optimal hypothesis is estimated
by one optimizing w to minimize the empirical risk Re over
the training dataset, i.e.,

Re = 1
Nt

∑

(xi,yi)∈S
l(fw(xi), yi). (2)

FIG. 1. Coreset construction as a k-center problem. The red
stars are k picked points with radius δc covering the entire set.
In the case shown, there are five center data points Pk ∈ S , with
k ∈ {1, 2, . . . , 5}, such that the maximum distance from any point
in D to its closest center is minimized.

B. Coreset in machine learning

As the learning algorithm evolves, not only are models
becoming increasingly complex, but training datasets are
also growing larger. With growing volumes of data, the
challenges for how to organize and analyze the massive
data force us to devise effective approaches to condense
the enormous dataset. The concept of coreset selection, as a
paradigm for extracting a data subset that comprises infor-
mative samples such that the generalization performance
of the model trained on this reduced set is close to that of
models trained on the entire dataset [64], is a promising
solution to address the issue.

Definition (Coreset). Let P be a set of points in space
V , and let f be a monotone measure function. We call a
subset Q ⊆ P an ε coreset of P if

|f (Q)− f (P)| ≤ ε · f (P). (3)

Various coreset-selection approaches are used to assist
in dealing with computationally intractable problems in
different learning tasks and data types [65,66]. Throughout
the whole work, we consider a geometry-based method to
construct the coreset [67]. As shown in Fig. 1, the goal of
coreset construction is to find k data points as the centers C
such that the maximum distance between any point s ∈ S
and its nearest center is minimized, i.e., selecting C such
that the radius δc minimized. The optimization of finding
the coreset can be formulated as

Sc = arg min
C⊆S,|C|=k

max
xj ∈S

D(xj , xc), (4)

where D(xi, xc) = minxc∈C d(xi, xc) denotes the distance
between point i and its closest center. Although it is a non-
deterministic polynomial time–hard problem to find Sc,
there is a provable greedy algorithm that can efficiently get
a 2-approximate solution, i.e., if C∗ is the optimal solution
of Eq. (4), we can efficiently find a solution C such that
δC∗ ≤ δC ≤ 2 · δC∗ .
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FIG. 2. A general feed-forward process of quantum neural net-
works. The input state |φ0〉 is firstly fed to a feature-encoding
block to map the classical data x to |x〉, and then the variational
circuit Uθ is used to form a parametrized state |x, θ〉, which is
used to minimize the loss function. In the end, the measurement
output is used to estimate the prediction residuals.

C. Quantum neural networks

“Quantum neural network” refers to a class of neural
networks that leverages the power of variational quan-
tum circuits and classical optimizers to tackle learning
problems. A QNN is composed mainly of three compo-
nents—feature encoding, a variational parametrized cir-
cuit, and measurement—as depicted in Fig. 2. Generally,
feature encoding uses an encoding circuit Ux to map the
classical input x into an n-qubit state |x〉. The concrete
approaches of feature encoding are diverse, as outlined
in Refs. [48,68]. A variational parametrized circuit Uθ

evolves the feature state |x〉 to a parametrized state |x, θ〉,
where the parameters θ are to be tuned to minimize the
training loss. Measurement extracts the processed informa-
tion stored in the parametrized state |x, θ〉 into the classi-
cal register and may be combined with a postprocessing
operation to form the output of the QNN.

In this work, we consider a QNN implemented by
the data-reuploading strategy [47,68,69], alternating the
feature-encoding circuit Ux and the variational circuit Uθ

to generate the parametrized state |x, θ〉, i.e.,

|x, θ〉 = UθUx · · · UxUθUx |ϕ〉 . (5)

Without loss of generality, the feature-encoding circuit and
the variational circuit take the forms

Ux =
n⊗

j =1

exp (−ixj H) and Uθ =
n⊗

j =1

exp(−iθj H)V, (6)

where H ∈ {σx, σy , σz} is the Hermitian operator and V
refers to the fixed gates such as a sequence of controlled-
NOT gates. Once the variational state |x, θ〉 is evolved,
the measurement operator M is applied to obtain the esti-
mated expectation value. Given the training dataset S =
{xi, yi}Nt

i=1, the empirical risk of the QNN over S is given by

RQNN
e (θ) = 1

|S|
∑

xi,yi∈S
l(tr[M |xi, θ〉〈xi, θ |], yi). (7)

A possible choice of l is the mean square error, i.e.,
l(a, b) = (a − b)2. The optimization of the QNN, i.e., the
minimization of RQNN

e , can be completed by the gradient-
descent optimizer based on the parameter-shift rule [29].

D. Quantum kernels

Kernel methods have been extensively studied in clas-
sical machine learning and have been applied to various
scenarios, such as face recognition and the interpretation
of the dynamics of deep neural networks [70,71]. Their
quantum counterparts have also been extensively inves-
tigated from both experimental and theoretical perspec-
tives [3,60]. Formally, quantum kernels leverage quantum
feature maps that encode the classical vector x into a
higher Hilbert space to perform the kernel trick. One
well-known quantum kernel function κ(x, x′) is defined as
the overlap between the quantum states |x〉 and |x′〉 that
encodes x and x′ via an n-qubit feature-encoding circuit
Ue, i.e., κ(x, x′) = |〈x′|x〉|2, with |x〉 = Ue(x)|+〉⊗N and
|+〉 = H |0〉, as shown in Fig. 3. In this work, we consider
a generic quantum feature map as proposed in Ref. [3], i.e.,

Ue(x) = exp

⎛

⎝
∑

i

xiσ
Z
j +

∑

i,j

(π − xi)(π − xj )σ
Z
i σ

Z
j

⎞

⎠.

(8)

We note that other symmetric positive-definite functions
are also valid candidates for implementing quantum ker-
nels. Different forms of the quantum kernel correspond to
different feature maps in Hilbert space, which could pro-
vide quantum merits for classification tasks if designed
properly [14].

IV. CORESET SELECTION FOR QML MODELS

In this section we first introduce the algorithmic imple-
mentation of coreset selection. Then we elucidate how to
use the constructed coreset to train QNNs and quantum
kernels.

FIG. 3. Quantum circuit implementation of the quantum ker-
nel κ(x, x′) considered in this work. The circuit separately
encodes x and x′ as the parameters of h-layer variational circuits
U and U† into the states |x〉 and |x′〉.
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ALGORITHM 1. The greedy algorithm for k-center coreset
selection.

The pseudocode of coreset selection for QML models
is summarized in Algorithm 1. The main idea is regard-
ing the coreset selection as a data-preprocessing strategy,
which aims to find k balls, centered at points {xs}k

s=1 in
data space P , to cover the whole dataset with radius δc. Let
S = {(x1, y1), . . . , (xNt , yNt)} be an nc-class dataset and let
a hyperparameter k satisfy k  nc. We apply the following
procedure to each class to construct the coreset.

For each class i ∈ [nc], in the first step, we randomly
pick a data point x from the set S(i) ⊆ S and put it into
the initialized empty set S(i)c , where S(i) refers to the set
of all training data points associated with the label i. In
the second step, we iteratively choose the data point from
S(i) to be as far away as possible from the other cen-
ters in S(i)c . That is, for each class i, we repeatedly find
a data point x for which the distance d(x, x′) is maximized,
where x ∈ S(i), x′ ∈ S(i)c . The searched-for data point is

then appended to S(i)c . This iteration procedure is termi-
nated when |S(i)c | ≥ �((|S(i)|)/|S|) · k�. In other words, the
coreset size of each class i is restricted to be proportional to
the ratio of the size of that class |S(i)| to the overall amount
of data |S|. When the coreset for each class is collected, we
merge these sets to create a coreset with Sc = ∪nc

i=1{S(i)c }
and set the weight γs as the number of samples covered by
the coreset example xs in radius δc. Once the coreset Sc is
built, we can integrate it into QML models.

We note that k is a hyperparameter that depends on mul-
tiple factors, such as the underlying data distribution and
the trade-off between accuracy and coreset size [72,73]. A
crucial research line of coreset construction is to determine
an appropriate k, and any advanced method for this topic
can be seamlessly embedded into our framework. Typical
instances include geometric decomposing–based coreset
algorithms [72,74–76]. In addition, it was pointed out in
Ref. [76] that if the loss function of the learning prob-
lem satisfies certain continuous conditions, there are some
fundamental properties of the coreset generated by k clus-
tering. As a result, we can heuristically find k by following
Algorithm 1 given in Ref. [76].

Remark. As we use the fidelity-based distance to mea-
sure the similarity between data points which scales with
O(n2), it becomes a bottleneck for pruning the dataset.
The training efficiency also brings a limitation to select-
ing a coreset; that is, the proposed method is based on a
greedy algorithm that takes a relatively long time to go
through the entire dataset to find out k. Nevertheless, such
a pruning process needs to be performed only once, and
the prepossessing requires just a single execution, after
which the resultant coreset can be used indefinitely for var-
ious tasks, such as model training, parameter tuning, and
quantum ansatz design, which leads to decreased compu-
tational and storage requirements. In addition, we believe
more-efficient similarity-estimation techniques will be pro-
posed in the future to address the cost issue of similarity
estimation, whether in classical or quantum.

ALGORITHM 2. QNN with coreset selection.
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ALGORITHM 3. Quantum kernel with coreset selection.

In the following, we introduce how to apply the pro-
posed coreset to QNNs and quantum kernels, respectively.

The psuedocode of a QNN trained on the coreset is sum-
marized in Algorithm 2. Conceptually, we only need to
replace the full training data S with the coreset Sc, and
rewrite the cost function by introducing the weight {γs} for
each corresponding data point x in the coreset Sc, i.e.,

RQNN
c = 1

|Sc|
∑

xs,ys∈Sc

γs · l(tr[M · |xs, θ〉〈xs, θ |, ys), (9)

where |xs, θ〉 and M are as in Eq. (7).
We next explain the implementation of a quantum ker-

nel–based support-vector-machine (SVM) classifier on the
coreset. As we use the coreset Sc and introduce the weights
{γ }, there is a slight difference between the original SVM
and the coreset-enhanced SVM, where the Lagrange mul-
tipliers αi in the dual problem are upper bounded by C · γi
instead of C. Mathematically, we have

max
α

∑

i

αi − 1
2

∑

i,j

αiαj yiyj K(xi, xj ),

subject to
∑

i

yiαi = 0,

0 ≤ αi ≤ C · γi, i = 1, . . . , k, (10)

where K(x, x′) = |〈x|x′〉|2 is the quantum kernel function.
The training process is similar to that for the original SVM
and is given in Algorithm 3.

V. GENERALIZATION ABILITY OF QML
MODELS UNDER CORESET SELECTION

In machine learning, generalization analysis is a cru-
cial theoretical tool to measure how accurately a learning
model predicts previously unseen data [77]. It helps us
as a guiding metric to choose the best-performing model
when comparing different model variations. As explained
in Sec. III A, the purpose of learning algorithms is to find
a hypothesis f such that the true risk R on the data distri-
bution Z is as small as possible. However, it is unlikely
to directly estimate the true risk R since the distribution Z
is unknown, and an alternative solution is minimization of
the empirical risk Re over the given samples. The general-
ization error quantifies the gap between the true risk R and
the empirical risk Re, i.e.,

|R − Re| = |E(x,y)∼pZ [l(fw(x), y)]

− 1
|S|

∑

(xi,yi)∈St

l(fw(xi), yi)|. (11)

Thus, the true risk R can be upper-bounded by its empirical
error and the generalization error, i.e.,

R ≤ |R − Re|︸ ︷︷ ︸
generalization error

+ |Re|︸︷︷︸
empirical error

. (12)

Since the empirical error—namely, the training loss—is
close to zero in general, we can consider only the upper
bound of the generalization error. Thus, a natural ques-
tion is whether the coreset selection could provide a tighter
generalization bound compared with random sampling for
the same pruned training size. To answer this question, we
need first to define the empirical error Rr on a sub-training-
set Sr that is generated by random sampling from the full
dataset S as

Rr = 1
|Sr|

∑

xi,yi∈Sr

l(fw(xi), yi), (13)

where |Sr| = Nr is the size of Sr. Hence, the generalization
error Gr over Sr is represented as

Gr = |R − Rr| = |E(x,y)∼pZ [l(fw(x), y)]

− 1
|Sr|

∑

xi,yi∈Sr

l(fw(xi), yi)|. (14)

According to previous studies on the generalization analy-
sis of QNNs and quantum kernels [6,59], with probability
at least 1 − δ over Sr, we have the generalization error of
a QNN
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GQNN
r ≤ O

(√
m log (m)

Nr
+
√

log (1/δ)
Nr

)
, (15)

where m is number of the trainable parameters of the QNN,
and the generalization error of a quantum kernel

Gqkernel
r ≤ O

⎛

⎝
√

�‖w‖�2

Nr
+
√

log (4/δ)
Nr

⎞

⎠ . (16)

To bound the generalization error Gc on the coreset Sc, we
similarly define the empirical error Rc on the coreset Sc as

Rc = 1
|Sc|

∑

xs,ys∈Sr

γs · l(fw(xs), ys), (17)

where |Sc| = Nc is the size of Sc and γs is the weight for
each coreset example xs that is used to make Rc approxi-
mate to Re over the full dataset S . Then, we can express
Gc as

Gc = |R − Rc| = |E(x,y)∼pZ [l(fw(x), y)]

− 1
|Sc|

∑

xs,ys∈Sc

l(fw(xs), ys)|. (18)

On the basis of the triangle inequality, Gc can be bounded
as follows:

Gc = |R − Rc| ≤ |R − Re|︸ ︷︷ ︸
generalization error

+ |Re − Rc|︸ ︷︷ ︸
coreset error

. (19)

Here we name the second term, i.e., |Re − Rc|, the “core-
set error,” which describes the gap between the empirical
loss on the full dataset and the coreset. As the bound of the
generalization-error term, i.e., |R − Re|, is given in previ-
ous work [6,59], we focus only on the bound of the coreset
error.

By analyzing the coreset error, we first provide the
generalization-error bound of QNNs.

Theorem 1 (Generalization-error bound of QNNs on
the coreset). Given sample set S = {xi, yi}Nt

i=1 with those
samples being i.i.d. (independent and identically dis-
tributed) drawn from distribution Z , Sc is the δc cover
of S . Assume that there is a λη-Lipschitz-continuous
class-specific regression function η(x) = p(y = c|x) and
that the loss l(fw(xs, ys)) over the coreset Sc is zero and
bounded by L. We have the following upper bound for the
generalization error of QNNs trained on the coreset with

probability 1 − δ:

GQNN
c ≤ O

(√
m log(m)

Nt
+
√

log(1/δ)
Nt

+ δc(ληLnc

+ d
√

dx max
j

|wj | |M | (|M | + max |y|)
)

, (20)

where m is the number of parameters in the QNN, d is the
number of QNN layers, nc is the number of classes, M is
the measurement operator, and dx is the feature dimension.

For the coreset error |Re − Rc|, we assume that the train-
ing error on the coreset is equal to zero, and thus it becomes
the average error that can be bounded with radius δc over
the entire dataset determined by the k-center covering
problem shown in Fig. 1, which is related to the data-
pruning rate ζ = |Sc|/|S|. Combining the generalization
bound on the full dataset and the bound of the risk gap
between the full dataset and the coreset, we have that the
generalization error of the QNN on the coreset is bounded
mainly by two terms, i.e., O((√m log(m)/Nt + δc). Thus,
GQNN

c will give a tighter bound than GQNN
r when we care-

fully choose the data-pruning rate ζ . It is clear that GQNN
c

gives a tighter bound on the first term since Nr < Nt. For
the second term, as δc is related to ζ , a low ζ will cause
δc to become large, leading to a high approximation error.
Conversely, a high ζ will decrease the approximation error,
but the acceleration of training will disappear because Nc
is approximately equal to Nt.

We next provide the generalization-error bound of quan-
tum kernels on the coreset.

Theorem 2 (Generalization-error bound of quantum
kernels on the coreset). Given sample set S = {xi, yi}Nt

i=1
with those samples being i.i.d. (independent and identi-
cally distributed) drawn from distribution Z , Sc is the δc
cover of S . Assume that there is a λη-Lipschitz-continuous
class-specific regression function η(x) = p(y = c|x) and
that the loss l(fw(xs, ys)) over the coreset Sc is zero and
bounded by L. We have the following upper bound for
the generalization error of the SVM with a quantum kernel
trained on the coreset with probability 1 − δ:

Gqkernel
c ≤ O

⎛

⎝
√

�‖w‖�2

Nt
+
√

log (4/δ)
Nt

+ δc(ληLnc

+ Nc

√
dx max

j
|wj | · (1 + (Nq − 1)r))

)
, (21)

where nc is the number of classes, dx is the feature dimen-
sion of x, Nq is the size of the mapped quantum state |x〉,
and r is the maximum value of the feature x.
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Similarly to the analysis of the generalization error of
QNNs on the coreset, the generalization error of an SVM
with a quantum kernel is also mainly bounded by two
terms, i.e., O(√((�‖w‖�2)/Nt)+ δc), which indicates we
have results similar to those for GQNN

c . Here, when we use
coreset selection to reduce the size of the training exam-
ples, we reduce the complexity of getting the kernel matrix,
which provides O(k2) speedup, where k = Nt/Nc, while
also having a provable generalization guarantee.

It is not easy to propose a universal trick for select-
ing an appropriate data-pruning rate ζ that determines δc
to achieve good generalization performance because it is
related to the distribution of the given training set S and the
unknown true data distribution Z . Nevertheless, we report
some numerical experiments on various data and models;
the results not only support the analytical findings but also
might provide some practical advice for the selection of
ζ . Consequently, if we carefully choose the data-pruning
rate and the size of the training set to scale at least quasi-
linearly with the number of gates used, we are able to
accelerate the quantum machine learning model with a per-
formance guarantee. These results provide effective and
practical guidance for achieving accurate and reliable per-
formance with a reasonable model complexity and sample
complexity.

VI. NUMERICAL RESULTS

In this section, we report extensive numerical sim-
ulations to explore the performance of the proposed
coreset-selection method. Specifically, we use our proposal
to accomplish three learning tasks, which are synthetic
data classification, quantum correlation identification, and
quantum compiling.

A. Synthetic data classification by quantum kernels

We first use the quantum kernel to classify a syn-
thetic dataset with a coreset. The construction rule for the
synthetic dataset mainly follows the method in Ref. [6].

Specifically, given samples {xi, yi}N
i=1 that are indepen-

dently sampled from the distribution X , the corresponding
labels are modified according to the maximized geometric
difference given by

max
y∈RN

∑N
i=1
∑N

j =1(K
Q)−1

ij yiyj
∑N

i=1
∑N

j =1(KC)−1
ij yiyj

, (22)

where KQ and KC denote the quantum kernel and the clas-
sical kernel, respectively. The optimal solution of Eq. (22)
yields the modified labels y∗ such that the geometric
difference is maximized:

y∗ = sign(
√

KQv), (23)

where v is the eigenvector of
√

KQ(KC)−1
√

KQ with the
maximum eigenvalue, and sign(z) is the elementwise func-
tion such that set the ith element as +1 if zi > median(z)
otherwise set as −1. As proved in Ref. [6], quantum ker-
nels can achieve quantum advantages when learning this
dataset.

An illustration of the synthetic dataset construction is
shown in Fig. 4. Concretely, in our numerical simula-
tions, the synthetic dataset is based on Fashion-MNIST
[78]. As the dimension of the vectorized data of Fashion-
MNIST is too high for a noisy intermediate-scale quan-
tum (NISQ) device, we preprocess the data as the low-
dimensional representation by principal-component anal-
ysis and then relabel the class of each data point accord-
ing to Eq. (22). Besides, the element of the classical
kernel KC

ij is given by the radial-basis-function kernel
KC

ij = exp(−(||xi − xj ||2/2σ 2)). The quantum kernel KQ
ij

is generated through our encoding the data points into the
Nq-qubit Hilbert space by a quantum circuit Ue,

KQ
ij = tr(ρ(xi)ρ(xj )), (24)

where ρ(x) = Ue(x)|0〉〈0|U†
e(x). We can further assume

that the following form of Ux is implemented through

FIG. 4. The synthetic dataset used adapted from Fashion-MINIST [78]. We use principal-component analysis (PCA) to get the low-
dimensional representation, and then embed the reduced data into the quantum Hilbert space. In the end, we relabel the data according
to maximization of the geometric difference between classical and quantum kernels in Eq. (22).
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FIG. 5. Performance of the proposed model assessed by our comparing random sampling and coreset selection in terms of their
classification abilities on synthetic data. The solid line represents the average test accuracy of models trained with these methods. The
shaded area refers to the range of the test accuracy. The dotted red line denotes the maximum accuracy achieved by random sampling
over 400 examples.

quantum gates in an Nq-qubit circuit: Ux = (U(x)H⊗Nq)2

|0〉⊗Nq , where U(x) = exp
(∑Nq

j =1 xj σ
Z
j +∑Nq

j ,j ′=1 xj xj ′

σ Z
j σ

Z
j ′
)

.
Once the synthetic dataset had been prepared, we con-

ducted experiments on training sets of various sizes and
subsequently tested on 200 unseen examples to get the test
accuracy. Instead of independently and randomly choos-
ing the training data from the entire set S , we first solved
the k-center problem over the set S with 1000 examples
that are equivalent to form the coreset Sc. In Fig. 5, we
show a comparison of the classification performance under
these settings. Figure 5 depicts the correlation between the
size of the training set, obtained with random sampling
and coreset selection, and the corresponding test accuracy.
For experiments involving the same number of train-
ing examples, we conducted five independent trials, each
using randomized initialization, resulting in the shaded
area shown in Fig. 5. The number of samples selected
in the proposed coreset method refers to the parameter
k in the k-center problem, where we vary it from 100
to 400 to estimate its impact on model performance. As
k increases, the performance improves due to the model
being trained on a larger number of training samples. The
broader dataset encompasses more information about the
true data distribution, leading to better performance. The
average test performance of these trials is plotted as a solid
line. We also highlight the best test accuracy of random
sampling as the dashed red line. From the results shown
in Fig. 5, for training with the same number of samples,
the coreset method exhibits higher test accuracy. Mean-
while, to achieve competitive performance, the coreset
method requires nearly half of the samples. For instance,

even though the test accuracy of the coreset over 250
samples is around 0.93, which is slightly higher than the
0.88 of random sampling, it has already achieved compet-
itive performance of the model over 400 random sampling
data. The findings support our analytical results: QNNs
trained on the coreset have better generalization perfor-
mance than those with randomly picked training data under
appropriate k. The coreset-enhanced classifier significantly
increases the training efficiency, achieving competitive
performance while using only approximately 50% of the
training examples compared with random sampling.

B. Correlation identification by QNNs

Nonclassical correlation plays a core role in quantum
information and quantum computation [79]. Nevertheless,
identifying the nonclassical correlation of a given quan-
tum state is a challenging task. Yang et al. [80] explored
classifying nonclassical correlation experimentally with
machine-learning techniques. Consider the family of quan-
tum states characterized by p and θ with the following
form:

ρAB(p , θ) = p|ψθ 〉〈ψθ | + (1 − p)
I

2
⊗ trA(|ψθ 〉〈ψθ |),

(25)

where p ∈ (0, 1), θ ∈ (0, 2π), and state |ψθ 〉 = cos(θ)
|00〉 + sin(θ)|11〉. There are rules to determine the non-
classical correlation of quantum states ρAB, including sep-
arable, entangled, one-way-steerable, and nonlocal states:

(1) According to the Peres–Horodecki criterion, the
states are separable when p < 1

3 , otherwise they are entan-
gled.

014074-9



HUANG, YUAN, WANG, and DU PHYS. REV. APPLIED 22, 014074 (2024)

(a) (b)

FIG. 6. Results related to correlation identification. (a) The quantum states are represented as dots in a polar plot. The radius of the
polar plot represents the parameter p , which varies from 0 to 1. The phase stands for the parameter θ , which varies from 0 to 2π .
The blue and orange dots indicate the separable and entangled states, respectively. (b),(c) Comparison of test accuracy between the
classifier with (b) random sampling and (c) coreset selection for different sizes of the training set.

(2) When (1/
√

2) < p < (1/(
√

1 + sin2(2θ))), the
quantum state is one-way steerable.

(3) When p > (1/(
√

1 + sin2(2θ))), the state is
nonlocal.

Therefore, to identify the nonlocal correlation of a given
state under the learning framework, we can label the quan-
tum states with different nonclassical correlations accord-
ing to the above criteria and create the dataset {ρAB

j , yj }N
j =1,

where yi represents the type of correlation, i.e., separable,
entangled, one-way steerable, and nonlocal.

To further enhance the methods, we apply coreset selec-
tion to this learning task, which reduces the number of
training samples and shortens the runtime. For classifying
the quantum correlation, we uniformly pick the parameters
p ∈ (0, 1) and θ ∈ (0, 2π) to generate the 1000 quantum
states as the full training set as shown in Fig. 6(a). Then we
label the class of correlation in terms of the criteria listed
above. Here we continue with the same experimental setup
as in the previous section, where we examine the test accu-
racy of the model, trained over various sample sizes, on
200 unseen random samples.

The dashed red lines in Figs. 6(b) and 6(c) denote
the maximum test accuracy achieved with the classifier
through random sampling, with a maximum of 900 train-
ing samples. When the coreset method is used to prune the
dataset, for sample sizes exceeding 180, the average test
accuracy obtained is almost higher than the greatest accu-
racy achieved by random sampling. We emphasize that
to achieve competitive performance, the coreset selection
requires a far smaller data size than random sampling. This
indicates that coreset selection could provide better per-
formance than training on random sampling data, which
matches our theoretical findings.

C. Quantum compiling by QNNs

Compiling a unitary into a sequence of gates is a chal-
lenging and high-profile task for NISQ devices. With the

limitation of current NISQ hardware, compiling a unitary
should not only take account of the function but should
also consider the connectivity and depth of the output cir-
cuit. Recently, various methods for quantum compiling
have been proposed under the framework of variational
quantum algorithms [49,59,81]. In general, these algo-
rithms consider the compiling task as an optimization
problem on a given compact quantum gate set that con-
sists of fixed and parametrized quantum gates. The goal is
to optimize the structure and gate parameters such that the
proposed quantum circuit approximates the given unitary.

Here we consider a method that tackles the compil-
ing task by a quantum machine learning protocol. Given
an n-qubit target unitary U, the training data consist of
random input states and their corresponding output when
U applied on input states |ψj , i.e., {|ψj 〉, U|ψj 〉}N

j =1. To
approximate the target unitary U, one can simply minimize
the empirical loss of the squared trace distance between
target states U|ψj 〉 and parametrized output states V(θ)|ψj 〉
and over randomly sampled states in Hilbert space. Con-
cretely, we randomly pick the quantum gates from the gate
pool consisting of single parametrized gates {Rx, Ry , Rz}
and a controlled-NOT gate to build the target quantum cir-
cuits U. Then we set the input as the random state |ψi〉 in
Hilbert space and get training pairs {|ψj 〉, U|ψj 〉}1000

j =1 . In
Fig. 7(b), we present a comparison between the models
trained on random samples and the coreset with vari-
ous data sizes and pruning ratios. We separately estimate
the performance of the model with ζ = {0.8, 0.4, 0.6, 0.2}.
Each data point with a different color in the plot corre-
sponds to a different value of ζ . For the compiling task on a
specific unitary, we found that 1000 training examples are
redundant, and the effective size of the training data scales
linearly with the system size, which is similar to what pre-
vious work found [59]. Twenty examples are sufficient
for training the variational compiler to achieve a reason-
able performance for a six-qubit system. Since the ran-
domly sampled training points are likely to be uniformly
located in Hilbert space and the proposed coreset-selection
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(a) (b)

FIG. 7. Results of unitary compiling. (a) The target unitary is used in numerical simulations. (b) Performance comparison between
the different pruning ratios ζ of the coreset on the compiling task. The solid dark and light lines represent the models trained on the
coreset and random samples. The vertical axis represents the percentage of states in the test set for which the trace distance to their
corresponding targets is below 10−5. ENT, .

approach also uses k centers to uniformly cover the entire
set, the compilers trained on the coreset with different
values of ζ have performance similar to that of those
trained on the randomly sampled set. Moreover, we high-
lighted that the model’s inferior performance compared
with other cases, when the pruning ratio ζ = 0.2, is due
to the inadequate training data, which hinders the develop-
ment of good generalization behavior. This also suggests
that while the coreset method can reduce the sample size
effectively, inadequate data still impact the model’s perfor-
mance. Additionally, this phenomenon is intertwined with
the geometric attributes of data distributions, which may
result in differing compression-ratio thresholds.

VII. DISCUSSION

In this work, we investigate enhancing the QML model
from the data-engineering perspective and attempt to alle-
viate a practical problem when handling a large volume of
data samples. In particular, we consider the coreset con-
struction as a k-set cover problem and then analyze the
generalization performance of QML models on the coreset.
Our investigation of various learning scenarios, includ-
ing on the classification of synthetic data, identification of
nonclassical correlations in quantum states, and quantum
circuit compilation, confirms the extreme improvements in
the effectiveness of our proposal.

Our research findings highlight the considerable
enhancement in model training achieved through the use of
the coreset method. Data pruning contributes to increased
training efficiency. Besides, it also helps filter out noisy
data, thereby enhancing model performance. It is evident
that selecting a sparser coreset enforces a more-rigorous
upper bound on the number of trainable gates and ab
appropriate data-pruning rate. The size of the training set
should scale at least quasilinearly with the number of gates.

These findings provide effective and practical guidelines
to achieve accurate and reliable results with a reasonable
configuration of gates and training data. Although we have
increased model-training efficiency through data-pruning
methods, there is still significant room for enhancement.
For instance, without prior assumptions about the dataset,
identifying the ideal k value or pruning ratio ζ becomes
even more complex. One way is to leverage the geometric
properties of the dataset, which might offer a more-efficient
method for identifying k or the pruning ratio ζ . Besides,
one can also improve our proposal by introducing the influ-
encing functions that might better characterize the impact
of data variations on the model, thus achieving more-
precise data filtering. We leave this to future work. We
hope that the work presented in this article will offer valu-
able insights and guidance for future practical research in
quantum machine learning, from theoretical or practical
aspects, on NISQ devices.
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APPENDIX

1. Proof of Theorem 1

Theorem 3 (Generalization bound for QNNs [59]). Let
the QNN to be trained consist of m trainable parametrized
two-qubit or one-qubit gates, and an arbitrary number of
nontrainable fixed gates. Suppose that, given training data
S = {xi, yi}Nt

i=1 and a loss function l(fθ ; xi, yi) bounded by
L, our optimization yields the optimized parameters θ∗.
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Then, according to Theorem C.6 in Ref. [59], the gener-
alization error of the optimized QNN is bounded by the
following form with probability at least 1 − δ over the
choice of independent and identically distributed training
data St from Z:

|R − Re| < O
(√

m log(m)
Nt

+
√

log(1/δ)
Nt

)
. (A1)

Lemma 1. The loss function l(fθ (x), y) of the d-layer
QNN introduced in Sec. III C is the λ-Lipschitz in the
feature space with

λ = 2d
√

dx max
j

|wj | |M | (|M | + max |y|). (A2)

Proof. Assume that we have given data x = (x1, . . . ,
xdx) and that data-encoding scheme used by the QNN is the
d-layer reuploading scheme. Then the mapped quantum
state is written as

|x, θ〉 = U(x, θ(d), w(d)) · · · U(x, θ(1), w(1)) |0〉 , (A3)

where w is the encoding parameters in data reuploading,
and the ith layer U(x, θ(i), w(i)) can be represented as

U(x, θ(i), w(i)) = U(θ(i))
∏

k

exp (iw(i)k xkPk), (A4)

where P is a Pauli gate, and θ and w are both trainable
parameters.

Assume that the Jacobian vector J of the loss function
l = (〈x, θ |M |x, θ〉 − y)2 is bounded in the feature space.
We now investigate the Lipschitz constant of l:
∣∣l(x)− l(x′)

∣∣ ≤ max ‖J‖2‖x − x′‖2 for all x, x′ ∈ R
dx ,
(A5)

where the Jacobian matrix is given by

J =
[
∂l
∂x1

, . . . ,
∂l
∂xdx

]
. (A6)

Thus, the maximum norm of the Jacobian matrix J can be
bounded by the maximum norm of the derivative of l with
respect to x:

max ‖J‖2 ≤
√

dx max
j

∣∣∣∣
∂l
∂xj

∣∣∣∣ , (A7)

where
∣∣(∂l/∂xj )

∣∣ can be bounded by
∣∣∣∣
∂l
∂xj

∣∣∣∣ =
∣∣∣∣(〈ψ | M |ψ〉 − y) · 2R

(
〈ψ | M

∂ |ψ〉
∂xj

)∣∣∣∣

≤ (|M | + max |y|) · 2|M | ·
∣∣∣∣
∂ |ψ〉
∂xj

∣∣∣∣
2

, (A8)

where |M | denotes the spectral norm of the measure-
ment operator. To bound ‖(∂ |ψ〉/∂xj )‖2, let U(k) =

U(x, θ(k), w(k)). We first apply the product rule to
(∂ |ψ〉/∂xj ):

∂ |ψ〉
∂xj

=
d∑

k=1

U(d) · · · iw(k)j Pj U(k) · · · U(1) |0〉 . (A9)

As the norm of the operators U(k) and Pj is equal to 1, we
can bound

∣∣(∂ |ψ〉/∂xj )
∣∣
2 by

∣∣∣∣
∂ |ψ〉
∂xj

∣∣∣∣
2

≤
d∑

k=1

∣∣∣U(d) · w(k)j Pj U(k) · U(1) |0〉
∣∣∣
2

=
d∑

k=1

∣∣∣w(k)j

∣∣∣ ≤ d max
j

∣∣wj
∣∣ . (A10)

Hence, we can bound
∣∣(∂l/∂xj )

∣∣ by

∣∣∣∣
∂l
∂xj

∣∣∣∣ ≤ 2d max
j

|wj | · |M | · (|M | | + max |y|). (A11)

Provided the feature space and the label space are bounded,
the loss function is λ Lipschitz continuous with

λ = 2d
√

dx max
j

∣∣wj
∣∣ · |M | (|M | + max |y|). (A12)

�

We ignore the residual training error in the coreset from
now on. For the nc-class classification problem, we assume
that there are class-specific regression functions that repre-
sent the probability of a class label in the neighborhood of
a feature vector ηc(x) = p(y = c|x) and that they satisfy
the property of being λη Lipschitz continuous with respect
to the feature space of x. Then we present Lipschitz con-
stants for the loss functions of a QNN and derive the upper
bound for the generalization error.

Proof of Theorem 1. By the triangle inequality,

GQNN
c = ∣∣R − RQNN

c

∣∣ ≤ ∣∣R − RQNN
e

∣∣+ ∣∣RQNN
e − RQNN

c

∣∣ .
(A13)

Since
∣∣∣R − RQNN

e

∣∣∣ is bounded by Theorem 3,

|R − RQNN
e | < O

(√
m log(m)

Nt
+
√

log(1/δ)
Nt

)
. (A14)

Let us attempt to relate Re to the coreset. Since we assume
that the training loss over the coreset RQNN

c is equal to zero,
only RQNN

e should be considered. Here we allow differently
labeled samples to appear mixed in a local region of the
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feature space. Instead of regarding the probability of each
label jumping between 0 and 1, we use the local class-
specific regression function η to describe the probability
of each label close to a point:

RQNN
e = 1

|X |
∑

xj ∈X

∑

ci

(ηci(xj ) · l(fθ (xj ), ci))

= Exj ∈X
∑

ci

(ηci(xj ) · l(fθ (xj ), ci)). (A15)

For each (xj , yj ) drawn from the training set, we are guar-
anteed that the distance between any drawn sample (xc, yj )

and its nearest center (xc, yj ) in coreset with the same class
is less than δc. If locally the class-specific regression func-
tion ηcj �= 0 for another label ci, with ci �= yj , then we
would have at least one differently labeled sample within
δc from xc and 2δc from xj . This other-class sample in the
same circle, in turn, guarantees an other-class center xc(ci)

within 3δc from xj . For each xj , we have

∑

ci

ηci(xj ) · l(fθ (xj ), ci)

=
∑

ci

ηci(xj ) · [l(fθ (xj ), ci)− l(fθ (xj (ci)), ci)
]

+
∑

ci

ηci(xj ) · l(fθ (xc(ci)), ci)

+
∑

ci

ηci(xt) · l(fθ ; xc(ci), ci)

=
∑

ci

ηci(xj ) · [l(fθ (xj ), ci)− l(fθ (xj (ci)), ci)
]

+
∑

ci

[
ηci(xj )− ηci(xc(ci))

] · l(fθ (xc(ci)), ci)

+
∑

ci

ηci(xc(ci)) · l(fθ (xc(ci)), ci). (A16)

The last term is the loss of the center weighted by the local
probability of being of the same class as that center. For a
specific center, it will be called by both same-class samples
and other-class samples that find it closest in the coreset,
and the number of calls is approximately proportional to
the number of samples covered by the center. With the fac-
tor ηci(xc(ci)) in each call, the corresponding weight for

a center in the coreset should be the number of samples
covered times the local probability of being of the cen-
ter class, i.e., the number of same-class samples covered
by the center. This justifies our choice of the weight in
Eq. (17). Assuming the weighted loss is trained to zero,
the form of the previous expression is then simplified to

∑

ci

ηci(xj ) · l(fθ (xj ), ci)

=
∑

ci

ηci(xj ) · [l(fθ (xj ), ci)− l(fθ (xc(ci)), ci)
]

+
∑

ci

[
ηci(xj )− ηci(xc(ci)

] · l(fθ (xc(ci)), ci).

(A17)

The two parts in the last equation can be separately
bounded by the Lipschitz continuity λζ and λl of ηci and
l, and we assume that l is bounded by L. Substituting the
corresponding constants, we have

Exj ∈X
∑

ci

(ηci(xj ) · l(fθ (xj ), ci))

≤
⎛

⎝
∑

ci �=yj

ηci(xj ) · 3δc + ηyj (xj ) · δc

⎞

⎠ λl

+ ((nc − 1) · 3δc + δc)Lλη

≤
(
∑

ci

ηci(xj )

)
3δcλl + (3nc − 2)δcληL

= 3δcλl + (3nc − 2)δcληL. (A18)

According to Hoeffding’s bound and the assumption of
zero coreset training loss, we have the coreset error of the
QNN with probability 1 − δ:

∣∣RQNN
e − RQNN

c

∣∣ ≤ 3δcλl + (3nc − 2)δcληL

+
√

L2 log(1/δ)
2n

. (A19)

Combing the bound of
∣∣∣R − RQNN

e

∣∣∣, we have the general-
ization bound of the QNN on the coreset with probability
1 − δ:

GQNN
c ≤ O

(√
m log(m)

Nt
+
√

log(1/δ)
Nt

+ δc(ληLnc + d
√

dx max
j

|wj | |M | (|M | + max |y|)
)

. (A20)

�
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2. Proof of Theorem 2

Theorem 4 (Generalization bound for learning with
quantum kernels [13]). Suppose the parameters w of the
hypothesis fw are optimized to be w∗ by our minimizing the
loss l(fw(x)), y) = | min(1, max(−1,

∑
j wj κ(xj , x)))− y|

on a training set {xi, yi}Nt
i=1. Then, according to Theorem

2 in [6], the generalization error of the optimized hypoth-
esis is bounded by the following form with probability at
least 1 − δ over the choice of independent and identically
distributed training data S from Z:

|R − Rqkernel
e | < O

⎛

⎝
√

�‖w‖2�
Nt

+
√

log(4/δ)
Nt

⎞

⎠ . (A21)

Lemma 2. The function l(fw(x)), y) = | min(1, max(−1,∑
j wj κ(xj , x)))− y|, where κ(x, x′) is the quantum kernel

function, is λ Lipschitz continuous in the feature space,
with

λ = 2kc

√
dx max

i
|wi| · (1 + (Nq − 1)r). (A22)

Proof. This follows immediately from evaluation of the
norm of the weight vector in the mapped Hilbert space.
The function l can be viewed as l = g ◦ f , where

g(f ) = | min(1, max(−1, f ))− y| (A23)

and

f (w, x) =
kc∑

j =1

wj κ(xj , x), (A24)

where κ : R · R → R is the quantum kernel function and
kc is the size of the coreset. The function g has a Lipschitz
constant of 1 with respect to f . Concretely, it is defined as
follows:

κ(xj , xk) = 〈φ(xj ),φ(xk)〉 = |〈0|U†
xj

Uxk |0〉|2, (A25)

where Ux = (U(x)H⊗Nq)2|0〉⊗Nq , U(x) = exp
(∑Nq

j =1 xj

σ Z
j +∑Nq

j ,j ′=1 xj xj ′σ Z
j σ

Z
j ′
)

, and Nq is the system size of the
mapped state.

For any fixed w, we have

∣∣f (w, x)− f (w, x′)
∣∣ ≤ max

x

√√√√
dx∑

j =1

∣∣∣∣
∂f
∂xj

∣∣∣∣
2

· ∣∣x − x′∣∣

≤
√

dx max
j

∣∣∣∣
∂f
∂xj

∣∣∣∣ ·
∣∣x − x′∣∣ . (A26)

Assume that we train the SVM with a quantum kernel on a
coreset {xi}kc

i=1, and let ρ(x) = Ux|0〉〈0|U†
x. Then we have

∣∣∣∣
∂f
∂xj

∣∣∣∣ = 2

∣∣∣∣∣

kc∑

k=1

wkR
(

〈0|∂U†(x)
∂xj

ρ(xk)U(x)|0〉
)∣∣∣∣∣

≤ 2kc · max
k

|wk| ·
∣∣∣∣〈0|∂U†(x)

∂xj
ρ(xk)U(x)|0〉

∣∣∣∣

= 2kc · max
k

|wk| ·
∣∣∣∣
∂U(x)
∂xj

∣∣∣∣
2

. (A27)

Since U(x) = exp(
∑Nq

j =1 xj σ
Z
j +∑Nq

j ,j ′=1 xj xj ′σ Z
j σ

Z
j ′ ), we

denote Us = ∏Nq
k=1 exp(ixkσ

Z
k ) and Ue = ∏Nq

k<l Uk,l, where
Uk,l = exp(ixkxlσ

Z
k σ

Z
l ). Then the norm of the derivative of

U(x) with respect to xj can be bounded:

∣∣∣∣
∂U(x)
∂xj

∣∣∣∣
2

=
∣∣∣∣
∂Us

∂xj
Ue + Us

∂Ue

∂xj

∣∣∣∣ (A28)

≤
∣∣∣∣
∂Us

∂xj

∣∣∣∣
2
· |Ue|2 + |Us|2 ·

∣∣∣∣
∂Ue

∂xj

∣∣∣∣
2

(A29)

≤
∣∣∣iσ Z

j

∣∣∣ ·
∣∣∣exp(ixj σ

Z
j )

∣∣∣ ·
∣∣∣∣∣∣

Nq∏

k �=j

exp(ixkσ
Z
k )

∣∣∣∣∣∣

+
∣∣∣∣∣∣

Nq∑

k �=j

ixkσ
Z
k σ

Z
j Uk,j ·

Nq∏

m<n,(m,n) �=(k,j )or(j ,k)

Um,n

∣∣∣∣∣∣
(A30)

≤ 1 + (Nq − 1)max
j

|xj |. (A31)

If we substitute Eq. (A31) into Eq. (A27), we have

∣∣∣∣
∂f
∂xj

∣∣∣∣ ≤ 2kc max
i

|wi| · (1 + (Nq − 1)r). (A32)

Assuming r, the maximum feature value of x, is bounded
and if we substitute Eq. (A32) into Eq. (A26), we can
conclude that the function l(fw(x)), y) is 2kc

√
dx maxi |wi| ·

(1 + (Nq − 1)r) Lipschitz continuous. �

Proof of Theorem 2. The proof of Theorem 2 is similar
to the proof of Theorem 1, but with replacement of the
relevant Lipschitz constant and generalization bound from
Lemma 2 and Theorem 1, respectively. �
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