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Quantum entanglement is a fundamental property commonly used in various quantum information pro-
tocols and algorithms. Nonetheless, the problem of identifying entanglement has still not reached a general
solution for systems larger than 2 × 3. In this study, we use deep convolutional NNs, a type of super-
vised machine learning, to identify quantum entanglement for any bipartition in a three-qubit system. We
demonstrate that training the model on synthetically generated datasets of random density matrices exclud-
ing challenging positive-under-partial-transposition entangled states (PPTES), which cannot be identified
(and correctly labeled) in general, leads to good model accuracy even for PPTES states, that were outside
the training data. Our aim is to enhance the model’s generalization on PPTES. By applying entanglement-
preserving symmetry operations through a triple Siamese network trained in a semisupervised manner, we
improve the model’s accuracy and ability to recognize PPTES. Moreover, by constructing an ensemble of
Siamese models, even better generalization is observed, in analogy with the idea of finding separate types
of entanglement witnesses for different classes of states.
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I. INTRODUCTION

Modern deep-learning (DL) architectures, that use mul-
tilayer neural networks (NNs), have enabled unprece-
dented achievements in various domains like computer
vision or natural language processing. Convolutional
neural networks (CNNs) with many hidden layers and
complex network structures are extremely powerful in fea-
ture learning, enabling automatic extraction of the most
optimal features. Deep CNNs easily outperform classi-
cal algorithms in image classification [1], object detection
[2,3], or face-recognition tasks [4]. In physics, one nat-
ural application of DL involves the study of quantum
many-body systems [5–8], where the extreme complex-
ity of many-body states often makes theoretical analysis
intractable. Nonetheless, employment of machine learn-
ing (ML) in physics for entangled-state representations is
typically focused on more traditional architectures such as
Boltzmann machines [7,9] or fully connected (FC) NNs
[10]. However, there are recent signals that deep convolu-
tional and recurrent networks can better represent highly
entangled quantum systems [11,12]. Therefore, it is worth
trying more modern architectures, which are closer to the
state-of-the-art approaches in DL, to study entanglement.

Entanglement is a fundamental feature of quan-
tum physics, where the correlation between subsystems
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(i.e., particles) cannot be described within a local classi-
cal model. In quantum information theory, entanglement is
regarded as a useful resource in achieving various tasks,
such as quantum computation, cryptography, and telepor-
tation. Simultaneously, the problem of identifying entan-
glement has not reached a general solution for systems
larger than 2 ⊗ 3 [13,14]. There exist analytic criteria for
separability of a given mixed state, which are either suf-
ficient and necessary, but not practically usable (require
minimization); or easy to use, but not conclusive [13].
One of the criterion of separability, which can be consid-
ered is the PPT (positive under partial transpose) criterion
[15]. It is based on the idea, that having a density matrix
partially transposed for a given bipartition, one can deter-
mine separability by simply looking at the eigenvalues of
this matrix. Namely, if all eigenvalues are positive, then
the state is separable in the given bipartition. However,
in the case of systems larger than two qubits it is only a
necessary condition of separability—there are no separa-
ble states, which have negative eigenvalues, but it is not a
sufficient condition—there exist mixed states, which are
entangled although they are PPT. Such states are called
PPT entangled states (PPTES). Similarly, all other oper-
ationally feasible analytic criteria provide partial solutions
only.

An interesting idea in this area is to implement NNs
on a quantum computer [16,17] and thus create a bridge
between DL and quantum computing [18], leading to
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exponential speedup in training deep NNs [17]. Recently
discovered quantum convolutional NNs [19] allow their
efficient training and implementation on realistic quantum
devices. Such networks can be used for efficient entangle-
ment detection in multiqubit systems [20], as well as for
solving different classes of quantum many-body problems
such as quantum phase recognition [19]. ML can also be
applied to a key problem in quantum algorithm design,
the automatic optimization of large unitary matrices into
sequences of two-qubit gates [21]. Entanglement can also
assist ML image classifiers by compressing images and
thus reducing computational resources needed [22].

Proposed studies will attempt to identify entanglement
using modern DL architectures and confront it with tra-
ditional analytic entanglement metrics. The first applica-
tions of advanced DL architectures to such problems are
already appearing, both with the utilization of unsuper-
vised [23] and supervised manner [24,25]. In this work,
we test a combined approach, which allows us to leverage
the strengths and limit the weaknesses of both techniques.
Specifically, a lack of appropriate conclusive criterion,
which could be used as a label, is a huge problem for
supervised learning, and susceptibility to mode collapsing
of unsupervised models may lead to incomplete cover-
age of the desired space, and therefore misclassification of
omitted states. Simultaneously, we aim to solve the more
general problem of precise entanglement identification by
predicting entanglement for each bipartition in a system.
In this sense, our model will predict a vector of probabili-
ties that identifies entanglement distribution in the system,
rather than just a single entanglement metric. Moreover,
Chen et al. [23] validate their method using PPT crite-
rion only. Our method tries to deal with more general
quantum systems in classifying PPTES, i.e., in situations
where the PPT criterion fails, and one cannot obtain reli-
able labels for supervised learning, testing more advanced
NN architectures than simple multilayer perception (MLP)
networks [10]. We also obtain better results than using
standard supervised trained NNs [24,25] and classical,
non-neural ML algorithms [26,27]. Therefore, our main
goal is to build a semisupervised machine-learning sys-
tem, composed mainly of CNNs, that trained on verified
states can only generalize at best on the PPTES family—as
depicted in Fig. 1.

II. QUANTUM ENTANGLEMENT

Before discussing the introduced methods for the iden-
tification of entanglement in a given n-qubit quantum
system, let us introduce basic concepts and definitions
used when discussing this phenomenon. The foundations
of quantum mechanics state that in order to describe a
system that forms a n-qubit register, one must define a
2n-dimensional state space (known as the Hilbert space).
The most convenient (and general) way to describe these

FIG. 1. Idea of the supervised training with the training set
composed of states we know whether they are entangled or
not (verified strategy). The goal is to build a model capable of
generalizing to PPTES that are hard to recognize by analytical
methods.

multiqubit systems is to construct a density matrix:

ρ =
∑

i

pi |ψi〉 〈ψi| , (1)

where pi is a probability that the system is in a given state
|ψi〉. In this general approach, a quantum system is repre-
sented by a mixture of states, or in other words a mixed
state. However, if only one state is used to determine the
whole system, then it is said, that it is a pure state. In such
a case, the density matrix is reduced to the outer product of
a state vector |ψ〉 with itself ρ = |ψ〉 〈ψ |.

Having a complex system, i.e., a system consisting of
at least two qubits, one can define a separable state as the
one, that can be separated to a tensor product of subsystem
states. This definition is valid in the case of pure states,
however, is has to be extended to capture mixed states. In
the latter case, the biseparable mixed state can be written
as

ρAB =
∑

i

piρ
i
A ⊗ ρ i

B, (2)

where
∑

i pi = 1, while {ρ i
A} and {ρ i

B} are the density
matrices representing states of the corresponding subsys-
tems A and B. If the mixed state cannot be represented as
such a convex sum (pi ≥ 0) of product states, then the state
is entangled.
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In general, determining the separability of a given state
using the above-mentioned definition is a nontrivial prob-
lem [13]. Therefore, many different criteria have been
constructed to decide whether a state is entangled. One
noteworthy example is the negativity [28] metric, which
is defined as follows:

Neg(ρAB) =
∑

λi<0

|λi|, (3)

where λi are the negative eigenvalues of the partially
transposed density matrix ρTB associated with the
given bipartition A|B of the whole system. The par-
tial transpose operation for its density matrix ρAB =∑

i,j ,r,s ai,ra∗
j ,s |i〉A 〈j |A ⊗ |r〉B 〈s|B, with respect to the sub-

system B is defined as

ρTB =
∑

i,j ,r,s

ai,ra∗
j ,s |i〉A 〈j |A ⊗ (|r〉B 〈s|B)T

=
∑

i,j ,r,s

ai,ra∗
j ,s |i〉A 〈j |A ⊗ |s〉B 〈r|B . (4)

The negativity metric Neg(.) is based on the PPT separa-
bility criterion [29,30]. It states, that non-negative eigen-
values of the partially transposed density matrix are the
necessary condition of separability. However, it is a suffi-
cient condition only for 2 ⊗ 2 or 2 ⊗ 3 systems. In the case
of larger systems, one can be certain that if the negativity
is larger than zero (NPT states), then the state is entan-
gled. On the other hand, if the negativity is equal to zero
(PPT states) it is not always true that the state is separable,
i.e., we may have PPTES.

There exist some other methods of calculating entangle-
ment, for instance, entanglement of formation or entangle-
ment witnesses, however they are far more complex (time
consuming) because they require optimization in high-
dimensional spaces [31–33], and therefore impractical to
use in case of large datasets. All in all, one arrives with
analytical methods that are either hard to calculate or suffi-
cient only for pure states or low-dimensional mixed states.
On the other hand, there exist numerical algorithms, which
are able to qualify the entanglement after a finite time with
a desired precision [34–36], however, our attempts to use
them as numerical labels were rather unsuccessful due to
a problem with convergence of these algorithms. That is
why artificial NNs, which are also approximate numerical
methods, but statistical in nature, are supposed to cope with
this task.

III. NEURAL NETWORK ARCHITECTURES

Detecting quantum entanglement in many-qubit systems
is inseparably connected with analyzing the quantum state
of the system, which is represented by a density matrix.
The most natural concept of a NN designed to process such

an input (in the form of a finite two-dimensional array)
is a convolutional NN (CNN). This type of ML model
has already proved its efficiency in dealing with quantum
entangled systems [11,37–40]. In this paper, we propose
to use CNN as a feature-extracting backbone followed by
FC classification layers in three different configurations
presented in Fig. 2.

A. Deep convolutional networks

The first network architecture composed using a sin-
gle CNN is shown in Fig. 2(a). The input layer has size
K × K × 2, where K = 2N is the Hilbert-space dimension
and the density matrix is split into the two channels by
taking the real and the imaginary part separately. Subse-
quently, there are three convolutional layers with ReLU
activation functions, each with a kernel of size 2 × 2, and
the number of channels in the ith layer ci = �rici−1�. Here,
the ri = √

ri−1 parameter is the layers increasement ratio
initialized with r1 = 16, and �·� denotes floor operation.
Convolutional layers are followed by five fully connected
layers with 128 units each and ReLU activation functions.
Finally, the m-unit output vector with sigmoid activation
functions is used, where m corresponds to the number of
possible bipartitions in the N qubits’ system. The archi-
tecture of the CNN model for the three-qubit system is
presented in Fig. 2(a), however, this construction can be
easily extended to a larger N -qubit register.

The network is trained in a supervised manner. To eval-
uate the loss function we use binary cross entropy averaged
over all possible bipartitions:

LCNN = LBCE (p(ρ) , q) = −1
mn

m∑

j

n∑

i

qij log(pj (ρi))

+ (1 − qij ) log(1 − pj (ρi)), (5)

where m is the number of bipartitions, n is the batch size,
qij is the label for the j th bipartition of the given state ρi
(with 0 meaning separable, and 1—entangled bipartition),
and pj (ρi) is the predicted probability that ρi has parts for
j th bipartition entangled.

B. Siamese networks

Entanglement should be invariant to local operations
taken on separate qubits. In other words, applying single-
qubit rotations or phase modification does not influence
the entanglement between different qubits. Moreover, per-
mutations of the qubits in the system also should not
have any impact on the entanglement identification. Hav-
ing those two facts in mind, we propose to extend the
CNN into a triple Siamese NN, to force the model to be
immune to such symmetry operations, and thus improve
its robustness. Specifically, in this approach instead of hav-
ing only one density matrix on the input, we augment it
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(b)

ʹ

ʹ
ʹ

FIG. 2. Model architectures: (a) NN for three-qubit input density matrix (red): CNN backbone with three convolutional layers, each
of 2 × 2 kernels (dark blue blocks); five fully connected layers (green blocks); and finally, three-element output vector identifying
entanglement in three possible bipartitions (light blue). (b) Architecture of the triple Siamese network, where each subnetwork, being
the CNN from the model (a), is fed by a different input (original or transformed), but shares the same network parameters (weights). (c)
Ensemble of Siamese networks with separate Ne Siamese models trained on different domains determined using separability measure
M (being a pretrained autoencoder model).

into three matrices, which are processed parallelly. The
characteristic is that each subnetwork is an exact copy
of the original CNN but with the model weights shared
between them—see Fig. 2(b). The first input is the orig-
inal matrix, the second one represents the original state
with extra random local unitary operations (LU) applied
to each qubit, and the third one corresponds to the den-
sity matrix, which is permuted with respect to randomly
selected qubits. Hence, now the loss for a given batch is
defined as follows:

Lsiam = λ0LBCE (p(ρ), q)

+ λ1
1

mn

m∑

j

n∑

i

∣∣pj (ρi)− pj (lu(ρi))
∣∣

+ λ2
1

mn

m∑

k=π(j )

n∑

i

∣∣pj (ρi)− pk(π(ρi)
∣∣ , (6)

where by lu(ρi) we denote some random LU operation
on state ρi, π(ρi) is the permutation of state ρi chosen
independently for a given batch, and λ1, λ2 are hyperpa-
rameters, which allow adjustment of the influence of such
extensions of the loss function. At the beginning λ0 = 1,
λ1 = 0, and λ2 = 0, while during the training after 10

epochs, we increased the λ2 and λ3 regularizers to 0.5.
This shifts the impact from the label-based part of the loss
(controlled by λ0) to the symmetrizing (i.e., enforcing sym-
metries) part (λ1 and λ2), which is a typical approach for
semisupervised training schemes. One remark is, that per-
mutation π can rearrange the output vector in the case
of certain bipartitions. For example, three-qubit permuta-
tion π = (1, 3, 2) does not change the predicted probability
of entanglement for the bipartition (1|23). Contrarily, the
same permutation switches the probabilities for the other
two bipartitions (2|13 and 3|12). Therefore, corresponding
indexes must be selected carefully, which we denoted by
writing k = π(j ).

C. Ensemble of networks

During the experiments, we observed that there is a sig-
nificant difficulty in forcing NN models to recognize mixed
separable and entangled states at the same time. Thus, to
cope with this issue we decide to train several Siamese
models, forming ensemble of size Ne, that work separately
on their domains—see the scheme in Fig. 2(c). Different
classes of states falling into separate domains can be dis-
tinguished on the basis of some external measure M that
quantifies their separability. To obtain such a measure, we
use a pretrained autoencoder NN model, introduced in our

014068-4



IDENTIFICATION OF QUANTUM ENTANGLEMENT. . . PHYS. REV. APPLIED 22, 014068 (2024)

FIG. 3. Idea of the ensemble method: various states can be
distinguished on the basis of some external measure (here defined
by a pretrained autoencoder loss M ) and then learned sepa-
rately by ensemble of models that work independently in their
M domains.

recent work [41]. The autoencoder was trained to recon-
struct separable mixed states, hence the reconstruction loss
can measure whether a given state is similar to sepa-
rable states, and consequently serve as machine-learned
separability measure M . Having values of M for differ-
ent states, we form Ne = 10 domains with logarithmic
intervals [0, 0.0001), [0.0001, 0.0002), [0.0002, 0.0005),
[0.0005, 0.001), [0.001, 0.002), [0.002, 0.005), [0.005,
0.01), [0.01, 0.02), [0.02, 0.05) and [0.05, ∞).

In Fig. 3 distributions of samples from various sub-
sets are presented, appearing in the training and test sets,
according to the value of separability measure. It is seen
that the chosen measure separates well the separable and
entangled states, apart from some specific group of mixed
separable states, which are confused by the network with
entangled states. In fact, if this subset had not existed, one
could have simply utilized the unsupervised autoencoder
as the perfect tool to distinguish between separable and
entangled states, as proposed in Chen et al. [23] However,
with the current approach of training supervised models
specifically on the subsets of the data set, we can force the
networks to learn the characteristic patterns of the given
subgroups, and therefore allow them to detect states omit-
ted by the autoencoder. One can notice, that it is in full
agreement with the analytical approach of finding sepa-
rate types of entanglement witnesses for different classes
of states.

What may also be beneficial, the various PPTES classes
are separated somewhat with respect to the M measure
(cf. Fig. 3). Interestingly, the distribution of the Acin et
al. states seems to be the closest to the separable states,

hence correct classification of these states may be the most
problematic.

Nevertheless, due to its specification, the ensemble
model should be able to recognize entanglement patterns
with higher accuracy than standard models and general-
ize well on PPTES states, which were not present in the
training datasets as shown on the scheme in Fig. 1.

IV. TRAINING DATA GENERATION

The most crucial thing to train a ML model is to have
a well-balanced and diversified dataset. Thus, in order to
achieve this goal, we propose various methods of density
matrices’ generation, that will be used to build synthetic
datasets for training our NN models.

Two main techniques were used to generate pure ran-
dom states. The first idea is to use a quantum circuit model
that contains local single-qubit gates U that randomize
separate qubits, and the random number of two-qubit con-
trolled gates CU, that can entangle qubits. The CU gates
are put into random pairs of qubits. Combining these two
types of quantum gates with their appropriate parame-
ters (angles), one can obtain a suitable generator of pure
states, both entangled and separable ones. The detailed
parametrization of the gates and circuit organization can
be found in the Appendix. An example of a three-qubit cir-
cuit generated by this method is presented in Fig. 4. The
second idea of generating random pure states is based on
sampling from the uniform Haar measure [42] described in
the Appendix.

Having these two methods, one can suspect that using
both of them produces a sufficiently diversified dataset of
the pure-state vectors and consequently density matrices.
However, apart from them, we also included three specific
types of quantum states, which may hardly occur when
using both procedures. Namely, using the circuit approach
we intentionally generate pure separable states (here CU
gates are absent in the circuit), the GHZ state, and the W
state [43], each of them being locally randomized with the
U gates. It is obvious, that having only pure states included
in the training dataset may result in missing the possibil-
ity of detecting mixed states. That is why, we should also
think of generating such states straight from the definition
of a mixed state:

ρ =
d∑

i

pi |ψi〉 〈ψi| , (7)

where for training purposes we select d at random over
the interval [2, 2N ], and N is a number of qubits. In this
naïve method one simply mixes many pure states |ψi〉
with random probabilities pi. However, to have as diver-
sified dataset as possible, we also use the second method
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FIG. 4. Example of a circuit generating a three-qubit random state. It consists of U and CU gates (violet blocks) with random
parameters written in each block (and defined in the Appendix).

of generating mixed states:

ρAB = trC(|ψABC〉 〈ψABC|), (8)

with a partial trace operation trC(·). Namely, we gener-
ate a larger pure system |ψABC〉 and trace out some part
of it (subspace C), until the desired size of the system AB
is achieved. This way, if the global space ABC is entan-
gled, one can be sure that the reduced density matrix ρAB
is mixed.

To train a NN in a supervised learning scheme one needs
to have labels q—see Fig. 2(b), which classify each biparti-
tion of the system in a given state as entangled or separable.
Then, each state ρi is labeled by a binary vector qij , where
subsequent elements j encode the presence of entangle-
ment for the given bipartition. In the case of pure states, we
calculate the negativity measure [Eq. (3)] for each biparti-
tion and mark it accordingly to its value: if Neg = 0, it
is marked as separable, while if Neg > 0 it is marked as
entangled. In the case of mixed states, where it is not guar-
anteed that the negativity measure distinguishes separable
and entangled states, we either generate states that are sep-
arable (by definition) or entangled (by taking only NPT,
i.e., where the negativity is conclusive), or in case of PPT
we propose two different strategies for labeling unknown

states. This latter group is key because it contains PPTES,
and therefore allows us to train a model to capture them.

The most naïve strategy is based on negativity metric
and simply labels mixed states accordingly to the Neg
value—we will call this strategy as negativity labeled.
However, the main problem with this approach is that it
may falsely label mixed PPT states, i.e., where the crite-
rion is inconclusive. That is why we introduce a second
strategy called verified, where the PPT states are simply
excluded from the data. The main disadvantage of such a
solution is that it automatically excludes all of mixed sep-
arable states. To minimize this drawback, we supplement
the dataset by generating them straight from the definition.
Further descriptions of the labeling strategies can be found
in the Appendix.

Having defined various methods for the generation of
pure and mixed states together with two different strate-
gies for labeling mixed states we have generated training
datasets. They are summarized in Table I, along with the
number of generated states for each group. In total, we
have synthesized two training sets, each with the same
structure of the pure (120 000 states) and mixed separable
(160 000 states), but with different strategies for labeling
mixed entangled (160 000 states) and mixed biseparable
(120 000 states).

TABLE I. Training datasets composition. Both sets have the same structure of pure and mixed separable states but have different
strategies for labeling mixed entangled states.

State type Generating method Labeling method Amount

Pure separable Circuit with random one-qubit gates only
(separable circuit)

Negativity 40 000

Pure biseparable Kronecker product of one-qubit state and
two-qubit state, sampling from Haar measure

Negativity 20 000

Pure entangled Random circuits, including W and GHZ, and
sampling from the Haar measure

Negativity 60 000

Mixed separable Separable circuit, Kronecker product (A4) of
random one-qubit states, and Kronecker
product (A4) of traced one-qubit states

By definition
20 000+

120 000+
20 000

Mixed biseparable Kronecker product (A5) of one-qubit state, and
two-qubit state

Two strategies: negativity, verified 120 000

Mixed entangled from the definition (7), and using partial trace (8) Two strategies: negativity, verified 100 000+
60 000
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TABLE II. Averaged bipartite entanglement detection accuracy for the three-qubit system using different models trained on verified
dataset. The results are presented for test sets composed of pure and mixed states, together with the various classes of PPTES. The last
row shows results for the MLP model that operates directly on measurements set while not on the (reconstructed) density matrix.

Models Pure states Mixed states Horodecki PPTES UPB PPTES Acin PPTES

CNN 97.40 86.39 83.01 88.85 57.45
Siamese CNN 98.31 90.79 86.99 94.89 50.81
Ensemble 98.18 87.88 88.63 89.58 87.36
MLP based on measurements 79.31 79.31 89.67 99.81 36.30

In order to correctly evaluate the model, apart from the
training sets, the validation and test sets were also cre-
ated. The first validation set is generated with the same
structure as the verified training dataset but with 10 times
smaller number of examples, i.e., 56 000 states generated.
Additionally, the second validation data set consisting of
10 000 2 ⊗ 2N−1 dimensional PPTES states [44] is gen-
erated as well. Next, we defined two test datasets for
pure (30 000 states) and mixed states separately. The lat-
ter contains 20 000 separable states, and 20 000 entangled
containing NPT states only (verified strategy), generated
both from the definition [Eq. (7)] and using partial trace
[Eq. (8)]. Therefore, the test dataset contains only the cor-
rectly labeled states. Further details on states’ generation
can be found in the Appendix.

Since the main reason for creating the artificial classi-
fier is to have the ability to detect not only NPT entangled
states but also PPTES, we generate three separate test
datasets, each containing 10 000 well-defined PPTES of
different types. Precisely, the first PPTES test set includes
2 ⊗ 4 PPTES introduced by Horodeccy [15] and then gen-
eralized to N qubits, 2 ⊗ 2N−1-dimensional states [44].
The second test set is generated with the use of unex-
tendible product basis (UPB) [45], with a similar approach
being described by Ma et al. [10] The third one is com-
posed of fully PPT entangled states proposed by Acin et al.
[46] All of these states are further randomized by applying
local operations to the separate qubits.

V. RESULTS

After we have defined the deep NN models and gener-
ated the labeled training and test sets, we can move on to
training and then testing our models. To verify the mod-
els’ fidelity we used the standard accuracy metric, which is
defined as follows:

Acc = 1
mn

m∑

i=1

TPi + TNi, (9)

where m is the number of possible bipartitions, TPi and
TNi represent the number of true positive (entangled clas-
sified as entangled) and true negative (separable classified
as separable) examples for a given bipartition i, and n is
the total number of samples in the test datasets.

We also optimized the architecture hyperparameters by
training the models on the verified set and evaluating on the
validation sets—discussion can be found in the Appendix.
The results show that the most efficient architecture is the
network (CNN or Siamese CNN) with three convolutional
layers and a kernel of shape 2 × 2.

Let us analyze the results for the smallest configura-
tion where nontrivial entanglement relations may occur,
i.e., three-qubit system. In Tables II and III results are pre-
sented for CNN, Siamese, and Ensemble models, trained
on both training sets: verified and negativity labeled. The
accuracy was calculated for all generated test sets: with
pure states, mixed states, and with various PPTES classes.

When analyzing Table II, the first thing, that one can
notice, is that all models work pretty well in the case of
pure states, reaching accuracies over 97%. However, as
one might expect, the detection of mixed states is slightly
weaker. When it comes to comparing CNN, Siamese CNN,
and Ensemble networks one can see the advantage of the
Siamese CNN model in better recognizing mixed states
than CNN: 91% vs. 86%. In the case of PPTES, we
also observe the advantage of using the Siamese model,
which gives better for Horodecki (87% vs. 83%) and
UPB states (95% vs 89%). However, in the case of Acin
states the fidelity for the Siamese network is slightly lower
(51% vs. 57%)—we suspect that this is due to the fact
that Acin states are “closer” to separable states than two
other PPTES (cf. Figure 3), causing the Siamese detector
(which is more sensitive to PPTES) to generate more false-
positive predictions. It is worthwhile to recall here, that all
models were trained on the datasets, which do not include
PPTES. This means, that the models can generalize well
to Horodecki and UPB states, and slightly worse to Acin
states.

To handle unsatisfactory results for the Acin states, we
introduced the ensemble of networks and thus were able
to train several models to capture different PPTES classes
separately. This approach improved accuracy for Acin
states up to 87% with slightly lower (than for Siamese)
accuracy for UPB: 90%, and slightly better for Horodecki:
89%. In Fig. 5 we plot accuracies for the subsequent mod-
els’ domains in the ensemble showing that Acin PPTES are
quite well detected over almost all covered domains. This
proves the usefulness of the ensemble approach where each
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TABLE III. Test results as in Table II, but now the models trained on the negativity labeled dataset.

Models Pure states Mixed states Horodecki PPTES UPB PPTES Acin PPTES

CNN 97.37 88.89 82.80 95.78 5.71
Siamese CNN 98.43 91.49 83.04 87.39 1.04
Ensemble 98.13 89.71 84.51 90.61 4.01

model specializes in detecting entangled states included
only within its own domain.

As the standard representation for the quantum system
is a density matrix, hence naturally we proposed to use it
as the model input. However, in principle, one could also
train the models to operate directly on measurements set.
Such an approach may seem beneficial as it reduces the
necessity to tomographically reconstruct the density matrix
from measurements [47]. On the other hand, it simultane-
ously limits the models’ ability to capture the structural
representation of the data, which is contained only in the
arrangement of matrix coefficients. To compare those two
approaches we trained a simple MLP, with measurements
on the input, getting slightly worse results, as presented in
Table II(last row), besides UPB states, for which the model
works quite well. Therefore, we conclude that using a den-
sity matrix is more efficient strategy, especially that one
can always either perform the standard tomography [47]

(a) (b)

(c) (d)

FIG. 5. Accuracy (blue bars) of the Ensemble models plot-
ted separately for the subsequent models’ domains, determined
using the separability measure M . Ratio (red bars) character-
izes the population of the subsequent domains by the states
included in various datasets: (a) validataion, (b) Acin PPTES,
(c) Horodecki PPTES, (d) UPB PPTES. Purple color means that
blue and orange bars overlap.

before proceeding with NNs, or embed equivalent linear
transformation into the NN model, or even train a separate
NN to reconstruct ρ from the complete measurement set.

Contrasting the above results with those for negativ-
ity labeled training set, presented in Table III, we notice
slightly higher accuracy for the general set of mixed states,
but worse for the PPTES classes, especially in the Acin
states. However, we still observe some ability to detect
Horodecki and UPB states, suggesting that NNs learned
to recognize some features of entanglement more general
than the negativity criterion itself.

VI. DISCUSSION

The main problem with building a general classifier of
entanglement in quantum states is a lack of reliable meth-
ods for labeling mixed states. If we label some states with
mistakes, the ML methods may learn from the mistakes as
well. Thus, while it is good to see the high accuracy of the
models for pure or mixed NPT states, PPTES are our main
concern.

However, we were able to show that if we use a prop-
erly diversified training dataset, we can force the model to
generalize correctly to capture PPTES even if they were
not present in the training set. This effect can even be
strengthened if we use the architecture of Siamese CNN
trained in a semisupervised scheme with regularization
terms that force the model to respect the system symme-
tries, that do not change the entanglement configuration
(LU or respective permutations).

Improved generalization efficiency through the use of
Siamese networks shows the possible direction for the
development of ML models for describing physical sys-
tems with their inherent symmetries.

Unfortunately, Siamese CNN performs worse with a
certain group of states that are inherently closer to
separable states, i.e., the Acin states. To overcome this,
we introduced the Ensemble model, which is combined
with a separability measure (unsupervised autoencoder)
that enables the training of multiple models tuned to dif-
ferent groups of PPTES, and is capable of learning the
characteristic patterns of the given subgroups. The autoen-
coder itself, which is trained in an unsupervised way
(on separable states), does not fully distinguish between
mixed separable and entangled states, but extending it
with an ensemble of supervised models leads to synergis-
tic improvement. There are no PPTES in the training set
(training is PPTES agnostic), thus we can suspect that the
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TABLE IV. Scaling properties of the Ensemble model: com-
parison of detection accuracies between three- and four-qubit
systems.

System size Train dataset Pure states Mixed states

Three qubits 92.29 98.18 87.88
Four qubits 96.28 97.65 91.58

Ensemble model should give equally good results for any
other type of PPTES.

During the experiments, we also tested other NN archi-
tectures. However, both generic multilayer FC networks,
as well as more advanced tensor networks [48], used as
a backbone model instead of CNN, gave a worse per-
formance. This shows that convolutional networks can
be well suited to efficiently represent entanglement in
multiqubit systems.

To verify whether the proposed approach can be scaled
to larger multiqubit systems we calculate results presented
in Table IV, showing that the Ensemble model works
correctly also for detecting bipartite entanglement in a
four-qubit system. Accuracy for the detection of pure states
is only slightly worse, while for mixed states is better,
which should be taken with caution. Particularly, if we
look at the accuracy for the training set we notice that
it is also higher in the four-qubit case, which mislead-
ingly implies that identifying the entanglement is easier
in a larger space. In fact, it simply means that the gener-
ated dataset does not cover the complexity of this space
(especially in the case of mixed states), and future works
should focus on improving the generation methods of
mixed states in higher-dimensional space. Nevertheless,
the model architecture seems to scale correctly.

Entanglement is a key feature of quantum systems
with huge application potential in quantum computation.
Controllable entangled states are resources for quantum
communication, quantum teleportation, or quantum key
distribution protocols (quantum cryptography). Not all
quantum states are equally valuable as a resource [49]. To
quantify this value, different entanglement measures can
be used. In real situations, entanglement measures are dif-
ficult to compute for an arbitrary mixed state (in a situation
when a state is a part of a larger system) as the dimen-
sion of the entangled system grows. From this perspective,
searching for more reliable and scalable methods of entan-
glement identification in quantum resources is desirable,
in particular usage of neural-network-based representa-
tions seems to be an interesting method for developing
alternative entanglement detectors.

VII. METHODS AND CODE AVAILABILITY

To implement the quantum circuit model, during the
training dataset generation, the python Qiskit [50] library

is used. Also, when sampling from the uniform Haar mea-
sure during generation we use the built-in Qiskit method.
All the NN models were implemented, trained, and eval-
uated using the PyTorch [51] library that supports auto-
grad mechanism. The typical training time depends on the
model size and ranges from 1 h for the pure CNN model
to 3–4 h for the Siamese CNN and 20 h for the Ensem-
ble model. To train the NN models we used Nvidia RTX
4090 GPU. The whole dataset generation lasts about 1 day
for three-qubit density matrices, using a typical few-core
CPU. The code with the neural models’s definition and
detailed training schemes, as well as the data generation
procedures, are available at Ref. [53].
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APPENDIX

1. Circuit for random states’ generation

Here we present two methods for generating random
pure states.

The first idea is to use a quantum circuit model. It is a
common technique in quantum computing when one needs
to process states of many qubits. In this approach, firstly
we initialize the set (register) of N qubits in a given state
(usually |0〉⊗N ), and then apply so-called quantum gates.
One can distinguish two main types of such operations:
the local—single-qubit gates, and the two-qubit controlled
gates. Although both of them can be understood as rota-
tions on the qubit sphere by the given angles, in the latter
such operation is performed only on the single qubit while
the rest of the qubits can be used to determine (control)
whether this operation should or should not be performed.
A controlled gate can be used to entangle two qubits. In
contrast, single qubit gates can only modify the local states
of qubits and not influence the global entanglement proper-
ties. Therefore, by combining these two types of quantum
gates with appropriate parameters (angles), one can obtain
a suitable generator of pure states, both entangled and sep-
arable ones. The universal single-qubit gate is defined as
follows:

U(θ ,φ, λ) =
(

cos θ2 −eiλ sin θ
2

eiφ sin θ
2 ei(φ+λ) cos θ2

)
, (A1)

where θ , φ, and λ are three Euler angles. Subsequently, the
controlled universal gate is described as

CU(θ ,φ, λ, γ ) =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiγ cos θ2 −ei(γ+λ) sin θ

2

0 0 ei(γ+φ) sin θ
2 ei(γ+φ+λ) cos θ2

⎞

⎟⎟⎠,

(A2)
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with additional global phase eiγ . To obtain the most pos-
sible diversified dataset, the parameters of these two gates
are chosen at random, where the range for each parameter
θ , φ, λ, and γ is equal to [0, 2π).

Let us now describe the circuit organization. At first,
the system is initialized in the random separable state by
applying the U gates to each of the qubits in the register.
Next, the random number of CU gates is picked from the
range [1, 2

(N
2

)
), where N is the number of qubits. The CU

gates are put to random pairs of qubits. And finally, the
state is locally randomized, again, by applying the U gates.

The second idea of generating random pure states is
based on sampling from the uniform Haar measure. At
first, we generate a vector x of size K = 2N (N is the num-
ber of qubits) with its elements being uniformly sampled
over an interval (0, 1]. Secondly, we replace each coor-
dinate xi with yi = − log(xi), therefore obtaining vector y
with logarithmic distribution over an interval [0, ∞). Next,
we generate a K-dimensional phase vector γ , where each
coordinate is chosen at random from the range [0, 2π).
Finally, we construct a state vector as

|ψHaar〉 =
√

y1∑
i yi

eiγ1 |00 · · · 0〉

+ · · · +
√

yK∑
i yi

eiγK |11 · · · 1〉 . (A3)

2. Strategies for state labeling

We propose two different strategies for labeling PPT
mixed states, i.e., in situations where the negativity crite-
rion is inconclusive.

The most simple solution is to trust the negativity met-
ric and always label mixed state accordingly to the Neg
value—we will call this strategy as negativity labeled.
However, such an approach may result in a network trained
to reflect just the PPT criterion instead of actual entan-
glement. That is why we can think of the second method,
which simply excludes mixed PPT states (with Neg = 0).
We will call this strategy as verified, because all the labels
here are again correct. The main disadvantage of such a
solution is that it automatically excludes all of the mixed
separable states from the training set. To minimize this
drawback, we generate some extra mixed separable states
straight from the definition:

ρabc =
∑

i

piρ
i
a ⊗ ρ i

b ⊗ ρ i
c, (A4)

where one can generate single-qubit states ρ i
a, ρ i

b, ρ i
c,

and combine them with Kronecker product into the three-
qubit mixed separable state ρabc. This approach can be
easily generated for N -qubit states just by extending the
number of single-qubit states. Similarly, we can generate

biseparable states as

ρabc =
∑

i

piρ
i
a ⊗ ρ i

bc, (A5)

where single-qubit state ρ i
a is combined with two-qubit

state ρ i
bc. Subsequently, in order to obtain states bisepa-

rable in different bipartition qubits are randomly permuted.

3. Generated datasets’ structure

Having two strategies for labeling mixed states (label-
ing pure states is obvious), we consider generating separate
training datasets, each corresponding to the different strat-
egy: negativity labeled or verified. All of them retain the
same structure of pure states: 40 000 pure separable states,
and 60 000 pure entangled states—generated using ran-
dom circuits (using U [Eq. (A1)] and CU [Eq. (A2)] gates)
including W and GHZ, and sampling from Haar measure
method [Eq. (A3)]. Additionally, 20 000 pure biseparable
states are generated by sampling one- and two-qubit states
from Haar measure and then combining them with the
Kronecker product.

In the case of mixed states, we generate 20 000 mixed
separable states using separable circuits and formula [Eq.
(A4)]. Further 60 000 separable states are generated as a
Kronecker product of mixed single-qubit states obtained
with the usage of quantum circuits. A similar approach
is used in order to generate another 60 000 states, with
the remark that single-qubit states are sampled from Haar
measure, and 20 000 states, where single-qubit states are
obtained by tracing from the larger system. Next, we gen-
erate 120 000 biseparable mixed states, by creating single
and two-qubit states and then, combining them into three-
qubit states by applying the Kronecker product. The first
half of these states is obtained by the usage of quantum
circuits and another half is sampled from Haar measure.
Then, we generate 100 000 mixed entangled states by mix-
ing pure entangled states explicitly from the definition
[Eq. (7)], and keeping only those with Neg > 0 (NPT).
Finally, we add 60 000 mixed states generated with the use
of the partial trace from a global pure entangled state [Eq.
(8)]. For the last group in which we have no guarantee that
states are either separable or entangled, we apply the two
labeling strategies. Additionally, the first training dataset,
with the verified labeling strategy, is extended with 20 000
of mixed states with maximal ranks calculated as a partial
trace of the larger fully entangled global system generated
with the quantum circuit. Those extra states are handily
labeled as entangled.

To verify that generated sets homogeneously cover the
areas of three-qubit space for separable and entangled
states, we present Fig. 6 showing distributions of above-
mentioned groups of states as a function of two mea-
sures: negativity and separability M . It can be observed
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(a) (b)

FIG. 6. Distribution of the training dataset plotted against (a)
negativity metric and (b) separability measure M . Note that for
separable states Neg = 0 by definition, thus they are not visible
on the (a) plot.

that all these three sets fill the corresponding areas fairly
homogeneously.

In order to correctly evaluate the model, apart from the
training sets, the validation and test sets were also created.
The first validation set is generated with the same distribu-
tion as the verified training set but with a reduced number
of examples, i.e., 10% meaning 56 000 states generated.
The second one consists of 10 000 2 ⊗ 2N−1-dimensional
PPTES states [44]. Next, we define two test datasets for
pure and mixed states separately. The former consists of
15 000 separable states, (separable circuits and Kronecker
product of single-qubit states), and 15 000 entangled states
(random circuits and sampling from Haar measure). The
latter contains 20 000 separable states (mixture of sepa-
rable circuits and Kronecker product), and 20 000 entan-
gled containing NPT states only, generated both from the
definition [Eq. (7)] and using partial trace [Eq. (8)].

4. Network optimization

Having defined the CNN and the extended Siamese
network model, we optimized their architecture hyperpa-
rameters (e.g., number of layers or kernel size) by training
them on the weakly labeled training set and evaluating on
the validation sets. In particular, each model was trained
for 20 epochs. Then, we measured the averaged biparti-
tion accuracy on both validation sets and chose the most
accurate model.

Having performed the above procedure for different
models, we can compare their architectures and conse-
quently find the most optimal one. This is demonstrated in
Fig. 7, where the accuracy for the CNN network models is
plotted against the number of parameters. One can notice
that using deeper (consisting of more convolutional and
FC layers) models tends to have better accuracy. However,
as the complexity of the networks increases, by adding
more convolutional and FC layers, we observe a saturation
in prediction accuracy for the models containing approxi-
mately 106 parameters. This is why we decided to limit our
architectures, presented in Fig. 2, to three convolutional
and five FC layers only.

FIG. 7. CNN model architecture scaling. Number of param-
eters is increased either by changing the number of fully con-
nected layers (denoted by different colors), convolutional layers
(different marker types) or directly by increasing the number of
convolutional channels. The accuracy is measured on the first
validation dataset.

It is worth mentioning that the parameter count sig-
nificantly exceeds the number of linearly independent
real parameters needed to characterize a three-qubit sys-
tem, i.e., 82 − 1 = 63. This is due to a fact that modern
NNs are usually overparameterized, that is, unlike tradi-
tional statistical and ML models where taking too complex
models results in overfitting (the so-called bias-variance
trade-off), in DL models the usage of more parameters
even improves their properties [52]. It is then observed
as a “double descent” curve that generalizes the standard
“U-shaped” bias-variance curve by showing that increas-
ing model capacity beyond some critical point results in
improved performance. Increasing the size of the model
can act as a kind of regularization. This suggests that
parameter counting cannot indicate the true complexity of
deep NNs.
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