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Classification, the computational process of categorizing an input into preexisting classes, is now a
cornerstone in modern computation in the era of machine learning. Here, we propose an approach for a
quantum physical computer; a quantum classifier, based on quantum transport of particles in a trained
quantum network. The classifier is based on sending a quantum particle into a network and measuring
the exit point of the particle, which serves as a “class” and can be determined by changing the network
parameters, differing from standard quantum computers as no gate operations are required to perform
the computation. Using this scheme, we demonstrate three examples of classification. In the first, wave
functions are classified according to their overlap with predetermined (random) groups. In the second,
we classify wave functions according to their level of localization. Both examples use small training sets
and achieve over 95% precision and recall. The third classification scheme is a “real-world problem,”
concerning classification of catalytic aromatic aldehyde substrates according to their reactivity. Using
experimental data, the quantum classifier reaches an average 86% classification accuracy. We show that
the quantum classifier outperforms its classical counterpart for these examples and demonstrates clear
advantage, especially in the regime of “small data.” These results pave the way for a classification scheme
that can be implemented as an algorithm and potentially realized experimentally on quantum hardware.

DOI: 10.1103/PhysRevApplied.22.014041

I. INTRODUCTION

Recent years have seen a huge advance in computa-
tional capabilities that are based on machine-learning (ML)
algorithms. Classification, pattern recognition, complex
predictions, and adaptive imitation, among others, are typ-
ical problems where ML shows incredible advantage over
regular search or inference algorithms [1–4]. The growing
global use of ML is expected to have substantial ener-
getic impact [5], and the search for alternatives has led to
the notion of “computing with physical systems”, namely,
going beyond the standard computing paradigm by har-
nessing natural physical processes for computing [6–10].
Efforts have been devoted to finding hardware elements
that directly show nonlinear functionality (e.g., memristors
[11–15] or other physical implementations [16–20]).

In spite of the substantial effort devoted to computing
with physical systems, to date all current examples under-
perform compared to standard “silicon” (i.e., regular com-
puters), both in computational performance and in power
usage, and an example where a physical computer can do
something better than silicon is yet to be found. Here, we
propose a quantum approach to supervised classification
(SC), based on quantum transport of particles through a

*Contact author: jdubi@bgu.ac.il

“quantum classification network” (QCN), which in prin-
ciple can be implemented in current experiments [21].
This quantum physical computer does not require qubits
or gates as in “standard” quantum computing. Importantly,
we demonstrate that this quantum physical computer out-
performs standard ML algorithms in the regime of “small
data” (i.e., when the training sets are very small).

SC is one of the most basic computational tasks per-
formed by ML algorithms [2]. We provide three funda-
mental examples for classification using the QCN. The first
is based on classifying wave functions according to their
overlap with predetermined groups. The second is based
on classifying wave functions according to their level of
localization. The third example, based on experimentally
measured data, is classification of substrates according to
their reactivity properties. We show that for these exam-
ples, the quantum-network based SC outperforms stan-
dard ML algorithms for small data sets. Moreover, we
show that the quantum coherent version also outperforms
a similar “classical” computation, thus demonstrating a
clear advantage of our computing scheme. Our proposal
can be implemented experimentally on various systems
such as networks of quantum dots or quantum waveg-
uide arrays (or even “standard” quantum computers), thus
paving the way for a design for hardware-based quantum
computations.
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II. SETUP AND FORMULATION

A. Classification protocol

We start by describing the general classification protocol
using quantum transport, namely, the problem of assigning
an input vector � to a specific class C[�]. The vectors
belong to a Hilbert space of size L (e.g., L = 2 for qubits)
and there are Nc classes to choose from. Our classification
protocol is defined as follows. A network is constructed
that has L entry nodes, a “hidden layer” of M nodes, and
a layer of Nc exit nodes, corresponding to Nc classes (see
Fig. 1). The network is excited such that the excitation is
defined by the state � (i.e., a quantum particle enters the
network through the source sites in a way that is defined by
the state �, as described in Sec. II B). As a result, current
flows through the network and exits through the drain sites.
From the currents, the class of �, C[�] is determined by
simply evaluating the currents from the different drain sites
and assigning the class to the node from which current is
maximal. We note that while the size of the source layer L
and the size of the exit layer Nc are defined by the prob-
lem (i.e., the size of the input vectors and the number of
classes, respectively), the size of the “hidden layer” M is
a parametric choice, which is determined by trial and error
(see, e.g., Fig. 6).

To give a concrete example (as in Fig. 1), consider states
from an L = 3 Hilbert space, which can be classified into
two classes. A specific state� is encoded into the injection
of particles to the network from the source (blue circles in
Fig. 1) and current leaves from the two drain sites (orange
circles in Fig. 1). If most of the current comes out of site
1 (say, the top site), then the state � will be classified as
belonging to class 1 (i.e., C[�] = 1) and vice versa.

B. The quantum network

We model the QCN using a tight-binding Hamiltonian
of the form H = ∑

i,j hij c†
i cj + h.c., where c†

i (ci) creates

FIG. 1. Schematic representation of the quantum classification
network. A wave function � of length L (L = 3 in this example)
is encoded into an input excitation of particles into the network,
the parameters of which are determined following a training
protocol. The particles exit the network through Nc sites, rep-
resenting the Nc classes. The class of � is then determined by
the exit site from which the current is maximal.

(annihilates) a particle on the network node i. This is
a general approach that can be used to describe many
quantum transport networks, including (but not limited to)
electron transport in quantum dots [22], exciton transport
in bionetworks [23], and photons in waveguides [24,25].
We distinguish between nodes on the entry sites (indexed
iin = 1, . . . , L), on the network (“hidden”) layer (indexed
i = 1, . . . , M ) and exit sites (indexed iout = 1, . . . , Nc). The
network structure is such that entry sites are coupled to
all network sites but not to each other and not directly to
the exit sites (and, similarly, the exit sites are only con-
nected to the network sites). The network sites may be
interconnected between themselves.

Current propagation through the network, as well as
the connection of the network to the environment (i.e.,
input and output nodes) is modeled using the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) quantum mas-
ter equation [26,27] for the density matrix of the system, ρ,

ρ̇ = −i[H, ρ] +�k

(

V†
kρVk − 1

2
(V†

kVkρ + ρV†
kVk)

)

= −i[H, ρ] + L[ρ], (1)

where [·, ·] is the commutator and the Vk are the so-called
Lindblad operators. In the above setup, k = [1, 2] for Vin
(Vout), describing the source and drain terms.

The drain term, Vout, is defined by a set of Nc V- opera-
tors describing the extraction of current from the network,
of the form Vout,n = γ 1/2cr [28], where cr annihilates a par-
ticle on the site r, in which r = 1, . . . , Nc are indices of the
exit sites. The source term Vin is used to encode the wave
functions that are classified. If a vector� is considered, the
encoding is performed by setting Vin = γ

1/2
in

∑L
i=1�(i)c

†
i ,

where the index i = 1, . . . , L runs over the source sites.
The specific value of the rates γ is generally chosen to

be γ = 1 and it has no qualitative effect on the calculation
as long as the γ s are multiplied by the same factor (since
the currents are proportional to γ ). However, the above is
not unambiguous, and in some instances (e.g., the second
example; see Sec. III B) we have found that varying γout
leads to faster convergence and better classification results.

Once the Hamiltonian is defined (for the training proto-
col, see Sec. II C) and the source and drain Lindbladians
are provided, we proceed by evaluating the current from
each exit node [28] (for details, see Appendix A).

We point out that the scheme presented in Secs. II A
and II B is different from the one proposed in Ref. [29].
Specifically, in Ref. [29] the system requires two forms
of transfer of particles between sites, one coherent (man-
ifested through a tight-binding Hamiltonian) and an addi-
tional incoherent transfer, encoded in V operators of the
form γij c†

i ci, where the γij represent incoherent transfer
rates between sites. To achieve classification, the authors

014041-2



USING QUANTUM TRANSPORT NETWORKS. . . PHYS. REV. APPLIED 22, 014041 (2024)

thus require optimization of both the Hamiltonian param-
eters and the γij , which we do not. This also casts doubt
on the possibility of an experimental realization of the
scheme presented in Ref. [29], because experimental con-
trol of the incoherent transfer rates, which are determined
by an interplay between dephasing, local energies, and
other microscopic parameters, is essentially impossible, as
it involves a local measurement after a stochastic quantum
random walk and requires local control of both Hamilto-
nian parameters and local dephasing.

C. Network training and validation

In order to succeed in classification, the network param-
eters—in this case, the tight-binding amplitudes in the
Hamiltonian—need to be determined according to a given
training set. A training set

TS = {ϕn, Cn} , n = 1, . . . , NTS

is a set of input vectors ϕn along with their classifica-
tion Cn, where Cn is an integer from 1 to Nc, referring to
the class of the state ϕn, and n = 1, . . . , NTS is an index
running on all the vector states in the training set.

Once the training set is chosen, the next step is the sys-
tem training, i.e., finding a Hamiltonian that can achieve
the classification described above. According to the clas-
sification protocol, we define Jr[ϕ] as the current output
from the drain site r = 1, .., Nc when the input vector is ϕ.
The class of ϕ is thus defined as

C[ϕ] = Index (Max (Jr[ϕ], r = 1, . . . , Nc)) , (2)

i.e., the site index of the drain site with maximal current.
Training the Hamiltonian thus amounts to minimizing

the cost function

CF(H, TS) =
NTS∑

n=1

(C[ϕn] − Cn)
2 . (3)

For the optimization, we typically use particle-swarm opti-
mization (PSO) algorithms [30], in combination with stan-
dard gradient-descent algorithms, which have been found
to yield the fastest and most stable convergence.

Once the training is performed, the QCN is vali-
dated by applying the algorithm to Nv validation vectors,
ψn, (n = 1, . . . , Nv), which do not belong to the training
set, although their “true” class, Cn can be calculated (or is
known externally). Then, by comparing Cn to the output
class of the algorithm C[ψn], the performance of the QCN
can be characterized by the standard measures of classifi-
cation, namely, the precision P and recall R [2] (perfect
precision, P = 1, means that in the classification process
there were no false positives and perfect recall, R = 1,
means there were no false negatives).

We note on the fly that “training,” in the way described
above, is not the same as the training defined in modern
ML algorithms. Indeed, in our case, the full set of data
is a priori required and “training” implies optimizing the
cost function with respect to the given data (rather than
updating the system parameters when new data arrive, as
in modern ML algorithms). In that sense, our protocol is
closer to Hebbian learning of a Hopfield network [31].

III. RESULTS

A. Example I: Group-overlap classification

Our first example entails SC according to the overlap of
an input wave function with different sets of predetermined
groups of known wave functions. Consider G groups of
wave functions, each group containing NG wave functions
ϕ

g
n , g = 1, . . . , G, n = 1, . . . , NG. The class of an input vec-

tor ψ will be determined according to its overlap with the
wave functions of the group n. Put in mathematical form,
we define the average overlap of ψ with the group g,

ηg = 1
NG

NG∑

n=1

|〈ϕg
n |ψ〉|2. (4)

The class of ψ is defined as the index of the group of
maximal overlap, C[ψ] = Index[Max{η1, η2, . . . ηG}]. The
quantum network classification is obtained by setting the
network to have G exit nodes and training the network
such that when a vector ϕg

n is input, most of the current
will leave through exit node g, i.e., by minimizing the cost
function

CF(H, TS) =
G∑

g

NG∑

n

G∑

i

(Ji[ϕg
n ] − δi,g)

2, (5)

where i is the index of the exit node and δ is the Kronecker
delta function.

We start our demonstration of QCN by examining the
simplest possible case of L = 2, G = 2, and NG = 2,
namely, by classifying inputs (of length 2, i.e., qubits)
according to their overlap with only two vectors. The
training set of the two vectors, ϕ1,2, is given by

TS =
{
ϕ1 = cos(x)|0〉 + sin(x)|1〉, C1 = 1,
ϕ2 = sin(x)|0〉 + cos(x)|1〉, C2 = 2,

(6)

where we have chosen x = 0.3. A network of 2-4-2 is cho-
sen (namely, four nodes in the “hidden layer,” M = 4) and
trained (by varying the hopping matrix elements such that
the cost function is minimized) using PSO as mentioned
above.

Once the training is complete, we test the classifica-
tion using a validation set containing 1000 random states
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ψn, each assigned a class according to its overlap in the
following way. Defining the overlap η(n)g = 〈ψn|ϕg〉, the
class of ψn is Cn = 1 (or 2) if η(n)1 > η

(n)
2 (or η(n)1 < η

(n)
2 ).

The class C[ψn] defined by the QCN is the index of the
exit site which carries the most current when ϕn is inserted
into the network.

For this example, we find P2 = R2 = 1, i.e., perfect
classification. Put simply, there are no validation vec-
tors ψn which belong to class 1 and, when injected to
the trained network, have the most current come out of
node 2 (and vice versa). This is depicted in Fig. 2(a).
For simplicity, we define for each ψn an overlap balance
η̃n = (η

(n)
1 − η

(n)
2 )/(η

(n)
1 + η

(n)
2 ) and a current balance J̃ n =

(J1[ψn] − J2[ψn])/(J1[ψn] + J2[ψn]). Both η̃n and J̃ n vary
between ± 1

2 and perfect classification means that they have
the same sign for every ψn. In Fig. 2(a), we plot J̃ n versus
η̃n for all the validation vectors. Indeed, for all of the ψn,

(a)

(b)

FIG. 2. Performance of the QCN protocol for group-overlap
classification. (a) Current balance J̃ versus the overlap balance
η̃ for Nv = 1000 validation vectors for G = 2 and NG = 2. No
points reside on the second and fourth quarters, indicating that J̃
and η̃ always have the same sign. This means perfect classifica-
tion for this case, with P = R = 1. (b) Same as (a) for G = 2 and
NG = 40 (a training set consisting of two groups with 20 vec-
tors each). We find P = 0.9914 and R = 0.9745, almost perfect
classification. The outliers are due to validation vectors that have
very close overlap to the two classes and thus lie close to the
η̃ = 0 point (see the enlargement of this area in the inset).

the sign of J̃ and η̃ is the same. Similar results are obtained
for other values of x. Specifically, for x = 0.6 (representing
an overlap> 0.9 between ϕ1 and ϕ1), we still find precision
and recall larger than %98.5, which can be increased with
an increasing training time (see Appendix B).

Of course, this is an extremely simple example. To gen-
eralize it, we have extended the study to the cases of
NG = 20 and NG = 40 (still with G = 2, i.e., two classes
each containing NG vectors). The states are of the same
form, ϕi = cos(xi)|0〉 + sin(xi)|1〉, where the xi are chosen
randomly from a uniform distribution U[0, 2π ]. Using the
same training protocol as for the NG = 2, we find P20 =
0.9961, R20 = 0.9644 and P40 = 0.96767, R40 = 0.9984,
i.e., almost perfect classification. The current balance J̃
versus overlap balance η̃ for NG = 20 is shown in Fig. 2(b).
The outliers, namely, validation states that give a false pos-
itive or negative, are such that there is an extremely similar
overlap with the two training sets and thus they lie close to
the η̃ = 0 point, as shown in the inset to Fig. 2(b). The spe-
cific shape of the plot arises due to the specific choice of
vectors in the overlap classes [see Eq. (6)]. Similar tests for
other random choices of vectors give similar results.

To see how the QCN compares to a classical classifica-
tion network (CCN), we have run the same classification
problem with a standard classical neural network (for
details, see Appendix B). While for NG = 2 the classi-
cal algorithm performs perfectly, it provides rather poor
classification for NG = 20, 40. In Fig. 3, we plot P and
R for NG = 2, 20, 40 for the QCN (stars) and the classical
algorithm (circles). The solid and dashed lines are guides
to the eye. It is clearly visible that the QCN substantially
outperforms the CCN in this regime. However, as we go
to much larger training sets (e.g., NG = 600, not shown),
the classical algorithm gives P = 0.9853 and R = 1. This
affirms that the advantage we observe is limited to small
training sets. It is also important to note that we have
allowed the “metaparameters” of the CCN to change; i.e.,
attempts to adjust the number of nodes or the activation
functions has not increased the results for the CCN and
the results that we report here are the optimal ones that we
have obtained.

To further elaborate on the advantage of the QCN, in
Fig. 3(b) the cost function is plotted versus the number
of iterations (the so-called calculation epoch) of the train-
ing and validation sets for the QCN (red solid and dashed
lines, respectively) and the CCN (blue solid and dashed
lines, respectively), for NG = 40. For the QCN, the vali-
dation set follows the training-set behavior, which is what
is expected from a well-performing classification network.
For the classical network, on the other hand, the valida-
tion set begins to diverge, leading to poor classification.
This behavior is a hallmark for the so-called “overfitting”
problem [32,33]. It thus seems that the QCN overcomes
the overfitting problem for small data sets. Here, we raise
a conjecture that for this problem, finding the minimum of
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FIG. 3. Advantage of the QCN demonstrated on overlap-based classification. (a) Precision and recall with varying sizes of training
sets of the QCN (stars) and CCN (circles). As can be seen, except for NTS = 2, the QCN algorithm shows advantage over the classical
algorithm. (b) Cost function versus the training epoch of the training and validation sets (solid and dashed lines, respectively) for the
QCN and CCN (red and blue, respectively), for an NG = 40 overlap classification. While for the quantum network the validation-set
cost function follows the training-set cost function, the classical-validation cost function diverges, a clear indication of “overfitting”
due to the small training set.

the cost function on a (quantum) Hilbert space is a convex
optimization problem but that it becomes nonconvex for
the classical problem, which leads to the overfitting. Proof
of this conjecture is left to future studies.

As a final example for overlap classification, we have
performed the calculation for G = 4, namely four classifi-
cation classes. We use a 3-5-4 network. The results for the
precision and recall (averaged over the four classes) are
given in Table I. Comparing to the classical algorithm, we
again find substantial advantage for the QCN.

We point out that this example, although simple to
understand, is a somewhat atypical classification problem.
The reason is that in this example, the classes and the train-
ing set are defined by the same group of input vectors. We
thus proceed with a more standard example in Sec. II B.

B. Example II: Classification by level of localization

The next classification assignment that the QCN has
been trained to achieve is classification based on the level
of localization. We measure the level of localization by
the inverse participation ratio (IPR) [34–36], which is a
well-known measure of localization, defined by

I[ψ] =
(

L∑

i=1

|ψ(i)|4
)−1

. (7)

TABLE I. Classification success values for G = 4.

NG = 4 NG = 20 NG = 40

Precision QCN 0.9309 0.9116 0.9383
Recall QCN 0.9000 0.8888 0.8646
Precision CCN 0.5002 0.6537 0.9100
Recall CCN 0.2874 0.6848 0.6533

The IPR ranges from I = 1 for a completely localized
wave function to I = L for a fully delocalized wave func-
tion (where the weight is equal over all basis states).
The use of different measures of localization (e.g., wave-
function entropy) yields similar results.

As a first example, we set L = 5 and randomly chose
NTS = 10 states, divided into G = 2 groups of “localized
states” with I < 2 and “extended states” with I > 3
(states with 2 < I < 3 have been discarded). After train-
ing a 5-8-2 network, 1000 validation wave functions have
been tested.

In Fig. 4, we plot the current from exit nodes 1 (red cir-
cles) and 2 (blue circles) as a function of the IPR of the
test wave function. It can be clearly seen that for valida-
tion states with I < 3, most of the current flows out of
node 2 and vice versa, as is indeed required for this clas-
sification. The precision and recall for this case study have
been found to be P = 0.9409 and R = 0.9330.

As for the case of overlap classification, we proceed to
compare the performance of the QCN versus the classi-
cal algorithm for different numbers of training-set vectors
NTS. As seen in Fig. 4(b), where the precision and recall
are plotted as a function of NTS for the QCN (stars) and
classical algorithm (circles), the QCN consistently out-
performs the classical algorithm over the entire range of
examined NTS.

C. Robustness against dephasing

Dephasing, or the general loss of wave-function coher-
ence, may destroy the ability of the network to per-
form classification, since the classification depends on the
coherent transport of the excitations through the trained
network. To explore the effect of dephasing, one can add
Zeno-type local dephasing terms to the Lindbladian [37]
with the V operators Vi = (�dep)

1/2c†
i ci, where i runs over

all network sites and �dep is the dephasing rate. In Fig. 5,
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(a) (b)

FIG. 4. Performance and advantage of localization-based classification. (a) Currents from exit nodes 1 (red circles) and 2 (blue
circles) for 1000 wave functions, plotted versus the wave functions IPR, I. A clear ability to classify between localized (I < 2) and
delocalized I > 3 wave functions is seen—for localized states, most of the current exits from node 1, and for delocalized states, most
of the current exits from site 2. (b) Comparison of the precision and recall between quantum and classical network classification, based
on the wave-function level of localization (via the IPR; see text) with varying sizes of NTS. The data clearly show the advantage of
the QCN.

we plot the precision and recall for a IPR classification for
NTS = 30 (the same calculation as in Fig. 2) as a function
of the dephasing rate � (where � is taken in units of the
average hopping matrix element of the Hamiltonian, t̄).
We find that while the precision actually increases with
the dephasing rate, the recall decreases substantially, at
� ∼ 100t̄. One can evaluate this rate for realistic systems.
Noting that t̄ ∼ 1 µeV for quantum dots [22] and t̄ ∼ 1 eV
for photonic mazes [25], it follows that the dephasing time
should be longer than approximately 50 ns for quantum
dots and approximately 50 fs for photonic mazes, which
is well within reach in current experimental setups. Simi-
lar calculations with different parameters (e.g., different G
and NTS) give similar results.

D. Implementation of the QCN to chemical data

The two previous examples, while representative, are
somewhat artificial—they have been created to test the

FIG. 5. Robustness against dephasing. Precision and recall of
the group localization classification for NTS = 30 as a function
of the dephasing rate.

QCN algorithm. Next, we demonstrate the action of the
QCN on real experimental data. For this, we turn to the
world of chemistry and catalysis, where ML algorithms
have been used for many years and yet many problems
are characterized by having a small data set, i.e., they are
“small-data” problems [38,39].

Specifically, we consider the classification of aromatic
aldehyde substrates, based on their preferred reaction con-
ditions to a deuteration reaction. The aldehydes are clas-
sified, on a scaling of their reactivity, into three broad
categories: (1) those that undergo full deuteration with
a catalyst called SIPr but due to their reactivity, tend
to proceed and form benzoin—suppressing this further
reaction demands also adding boronic acid (BA) to the
reaction; (2) aromatic aldehydes that undergo full deuter-
ation with SIPr alone; and (3) those that require a tria-
zolium catalyst (TAC) for their full deuteration. The first
group contains the most reactive substrates, while the
third group contains the least reactive ones. The substrate
reactivity depends on various properties, including steric
hindrance, dipole charges, partial charges obtained from
natural population analysis (NPA) [40], etc. Since no for-
mal method for determination of the specific reactivity
conditions is known, the use of ML algorithms may prove
valuable.

In the experiment, 60 substrates (i.e., molecules) have
been tested and experimentally classified into one of the
three classes described above. We use these data for the
classification scheme as follows. Each substrate is charac-
terized by a list of 20 numerical values corresponding to
its physical characteristics (some stated above; for the full
data set, see Appendix F), which display a broad distribu-
tion over the substrates. The values are then normalized
such that they are distributed in the range [−1, 1] and then
constructed into a “normalized wave function,” namely, a
list of normalized parameter values, normalized by itself
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to unity. With three classes and ten numerical character-
istics, the network thus has ten input nodes (representing
the numerical characteristics of the substrate) and G = 3
output nodes (representing their reactivity).

We note that since we are working with a very small
data set, the typical procedure for classification proto-
cols—namely, dividing the data set into a training set and
validation set and determining the performance of the pro-
tocol from the chosen training set—may be inadequate. We
therefore proceed with a slightly more detailed analysis.
We focus on the accuracy, A, defined as the number of cor-
rect predictions divided by the total number of predictions
[2], rather than the precision and the recall, because of the
small data-set size. For an estimation of the protocol accu-
racy, we thus repeat this procedure ten times, randomly
choosing a validation set and a training set at each repe-
tition, and evaluate the accuracy of the protocol for each
realization. This gives us an average accuracy and a stan-
dard deviation, which is a better statistical description for
the protocol performance.

The first step is to determine the optimal network size.
For the performance assessment, we follow a version of
a random cross-validation procedure. We randomly select
from the available data a training set of size NTS = 10
and train the network (i.e., optimize the cost function).
The accuracy is then evaluated with a validation set with
ten random vectors (different from the training set). The
procedure is then repeated 10 times, each time with a dif-
ferent randomly chosen training and validation sets. The
final accuracy value received is a mean of the ten calcula-
tions. In Fig. 6(a), we plot the accuracy (mean and standard
deviation) as a function of the size of the internal layer
(e.g., the black circles in Fig. 1). We find that a network
with seven sites gives the best accuracy, of approximately
86%.

We then turn to determining how many vectors the
training set requires to obtain good classification accu-
racy. Using the optimal network size found above, in
Fig. 6(b) we show the accuracy as a function of the
training-set size. Surprisingly, we find that the best accu-
racy is actually reached for a rather small training-set
size NTS = 10 and that increasing the training-set size
actually reduces the accuracy on average. Similar results
have been obtained for the precision and recall (see
Appendix G).

The results of Fig. 6 show that the QCN protocol aver-
ages at an accuracy of around A = 0.86 and for some
validation sets reaches up very close to 100% accuracy
(similar values have been obtained for the precision and
recall). These values are comparable to (and even higher
than) the accuracy of similar calculations performed with
classical algorithms [38,41–43] and yet have been obtained
with a much smaller training set (of only approximately
ten vectors). This demonstrates the possibility of quantum
advantage in the QCN protocol in the regime of small data.

(a)

(b)

FIG. 6. Performance of the QCN protocol on real-world data.
The classification protocol (see text for details) is used for
randomly chosen training and validation sets, from which the
average and standard deviation of the accuracy are evaluated. (a)
Average classification accuracy for a network of constant NTS =
10, as a function of the size M of the intermediate (hidden) layer
(see Fig. 1). The network that presents the best performance is
a 10-7-3 network. (b) Mean accuracy of the QCN classification
for different numbers of training-set vectors, NTS. The best result
is obtained for NTS = 10, with accuracy A = 0.86, and reach-
ing up to A = 1.0 for some validation sets. The fact that the best
NTS and M are so small shows the potential of the QCN proto-
col for small-data problems. The error bars indicate the standard
deviation.

IV. SUMMARY AND DISCUSSION

In summary, we have presented a paradigm for a
“quantum computer,” namely, a quantum device aimed
at performing calculations, based on quantum transport
of particles through a network. This approach is com-
pletely orthogonal to standard quantum computers, since
no gates or qubits are involved, and it is designed specifi-
cally to perform supervised classification, a computational
task relevant to modern ML.

We examine three examples for classification. The first
two examples are based on the overlap of functions with a
predefined set and on classification according to the level
of wave-function localization. These examples demon-
strate a clear advantage over the classical algorithms. The
third example aims at classifying aromatic aldehyde sub-
strates according to their chemical reactivity in deuteration
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reaction, using measured data, thus demonstrating how
the QCN algorithm can be implemented in a real-world
classification task with a small data set.

Admittedly, the QCN algorithm that we present is com-
putationally more expensive and, for large system sizes,
may be more time consuming than the classical algorithms.
However, it shows a clear advantage, which is especially
relevant for the regime of small data [44], where the avail-
able data sets are limited in size, a regime that seems highly
relevant in fields such as material design and chemistry
[38,45–47]. This may become practical for situations in
which calculation time is an unimportant factor but recall
and precision are important.

What is the origin of the advantage of the QCN
algorithm? One possible conjecture is as follows. The cost
function of the QCN algorithm is based on the relation
between the currents and the hopping matrix elements in a
network, a relation that is typically of a Lorentzian nature.
This means that the optimization landscape is fairly shal-
low, i.e., the local minima are not “exponentially deep”
but are “Lorentzianly deep,” which allows the algorithm
to effectively escape local minima and to reach the global
minimum even for a small training set. If this is the case,
how is it that this works for such small training sets? It may
also be the case that within the optimization landscape, the
local minima are separated by plateaus, in some form of
quantum concentration of measure [48]. These hypotheses
are left for future investigations.

Importantly, the QCN scheme that we present here is not
just an algorithm to be implemented on a computer. Rather,
it is a scheme that can, in principle, be implemented
using current state-of-the-art experiments. One possible
implementation could be through using photonic networks
(see, e.g., Refs. [21,49–51]), which are arrays of vertically
grown waveguides, the position and size of which (and
hence the coupling between them) can be controlled and
in which single-photon states can be generated. Another
possible way to implement the QCN algorithm is by using
existing quantum computers, by exciting a coherent super-
position of single-excited qubits encoding the input state
and measuring some qubits defined as “exit qubits” (of
course, multiple measurements will be required). While
this is, in a way, an under-use of such systems (because
only a small submanifold of the full available Hilbert space
is used), as long as the coupling between the qubits can
be tuned, the QCN algorithm can be demonstrated (with-
out the use of any operations during computation). A third
possibility is to use coherent manipulation and prepara-
tion of states in arrays of semiconductor quantum dots
[52–56]. Yet a fourth possibility—at least similar in
spirit—is to use coherent light in photonic arrays, where
the refraction index of each pixel in the array can be con-
trolled and tuned [8,57] and the propagation of light (gov-
erned by Maxwell’s equations) mimics the coherent prop-
agation of quantum particles in the QCN. One possibility

to consider is that the efficiency of the QCN is not due to
quantum correlations but, rather, to coherent propagation
(which can be achieved by using coherent light). Investiga-
tions in all of these directions are ongoing. Thus, this work
hopefully paves the way for a quantum machine aimed at
performing specific ML computational tasks, beyond the
standard paradigm of quantum computing.

The custom code that has been created during the work
that has led to the main results of this paper is published in
a public GitHub repository [58].

APPENDIX A: CURRENT FROM THE LINDBLAD
EQUATION

As discussed in Sec. II, the system is described by a gen-
eral tight-binding Hamiltonian and the Lindblad equation,

ρ̇ = −i[H, ρ] +�k

(

V†
kρVk − 1

2
(V†

kVkρ + ρV†
kVk)

)

= −i[H, ρ] + L[ρ].

We limit the calculation to a single-exciton manifold (we
expect only minor changes if one uses the full Fock space,
as demonstrated in Ref. [28]).

We solve the Lindblad equation and evaluate the current
at the steady state. i.e., ρ̇s = 0 [23,59–61].

Once ρs is at hand, we evaluate the current, J , from the
extraction sites Ji = d〈ni〉/dt, where 〈ni〉 is the on-site den-
sity (i is the site identifier), via the relation 〈ni〉 = Tr(n̂iρ).
Substituting the expression for the on-site density into Ji
gives an equation for the current,

Jij = d〈ni〉
dt

= d
dt

Tr(n̂iρ). (A1)

Inserting the derivative into the trace and applying it on its
contents yields

Ji = Tr( ˙̂niρs + n̂iρ̇s). (A2)

Considering only exit sites, this expression formally
becomes

Jext = Tr
(
n̂ext(−i[H, ρs] + Lext[ρs])

) = 0. (A3)

The above expression vanishes due to trivial current con-
servation at the steady state (the two terms are identical
in magnitude and opposite in sign). In order to evaluate
the exiting current, we thus evaluate only the term relat-
ing to the exit sites (or, more specifically, to the measuring
apparatus), e.g., the term

Jext = Tr
(
n̂extLext[ρs]

)
. (A4)
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FIG. 7. Recall and precision of the overlap task with x = 0.6,
for different values of NG.

APPENDIX B: TRAINING THE CLASSICAL
CLASSIFICATION NETWORK

In order to compare the QCN and the classical network,
we use the following procedure. First, we take exactly the
same training set for both cases. Then, we train the clas-
sical network using KERAS [62], which is a convenient
application programming interface (API) for implementing
ML models in PYTHON. The activation function of the CCN
is “Relu,” the output-layer activation is a “sigmoid,” the
optimizer of the network is “Adam,” and the loss function
used is “CROSSENTROPY.”

APPENDIX C: OVERLAP CLASSIFICATION FOR
x = 0.6

In Fig. 7, we plot the precision and recall for the
overlap classification problem with x = 0.6, with Nv =
1000 validation vectors for G = 2 and different values of
the training-set size [compare these results with those of
Fig. 3(a)]. Specifically, for the training-set size NG = 2,
we choose vectors as in Eq. (6), with x = 0.6. For training
sets larger than 2, we chose vectors randomly in the form
ϕi = cos(xi)|0〉 + sin(xi)|1〉 [similar to Fig. 3(a)], where
the xi have been chosen randomly from a uniform distribu-
tion U[0, 0.6], thus generating two groups with much larger
overlap between them. Even in this case, the precision and
recall that we obtain are larger than 0.985.

Even for x = 0.6, representing an overlap of 〈ϕ1|ϕ2〉 ∼
0.932, the calculation yields a classification recall and
precision above 0.985.

APPENDIX D: OVERFITTING

In classical ML, overfitting is typically attributed to one
of three causes: (i) high hypothesis complexity, (ii) flawed
iteration propagation or inappropriate cost function, or (iii)
a noisy or nonrepresentative data set [32,33]. In our exam-
ples, one can rule out the two first possibilities and thus
it seems that the classical algorithm fails due to the fact
that the training set is not large enough and is thus non-
representative of the full range of outcomes. The quantum
algorithm that we present seems to overcome this problem.

APPENDIX E: ROLE OF DEPHASING

The dephasing has been added to the Lindblad equation
with the Lindblad operator Ldep = √

γdep
∑

i a†
i ai, while a†

i
and ai are the creation and annihilation operators. The cal-
culation of precision and recall in the presence of dephas-
ing has been done for the overlap classification problem,
for G = 2, NG = 2, 10, 20, and for the IPR classification
problem, for NTS = 10, 20, 30, 40. The recall and precision
as a function of the dephasing rate γdep, for different val-
ues of NG are shown in Figs. 8 and 9. We find that the
robustness against dephasing diverges. While the overlap-
based classifiers Fig. 8 show good to strong robustness
(between τ = 1 and τ = 10−4, where τ is the dephasing
time of the system), the IPR classifiers show typically less
robust behavior, as in the case of NTS = 10, where in a
dephasing time of less than τ = 104, the performance of
the network starts to decay rapidly. Yet, as the training-
set size increases, the reaction to dephasing becomes more
stable, as seen in Fig. 9.

We point out that the units of γdep and τ are taken in
relation to the units of the average hopping elements of
the Hamiltonian, t̄. One can evaluate this rate for realis-
tic systems. Noting that t̄ ∼ 1 µeV for quantum dots [22]
and t̄ ∼ 1 eV for photonic mazes [25], it follows that the
dephasing time should be longer than approximately 0.3
ns for quantum dots and approximately 0.3 fs for pho-
tonic mazes, which is well within the reach of current

(a) (b) (c)

(     ) (     ) (     )

FIG. 8. Recall and precision of the overlap task as a function of the dephasing rate γdep, for different values of NG.
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FIG. 9. Recall and precision of the IPR task as a function of the dephasing rate γdep, for different values of NTS.

experimental setups. Of course, if one wishes to use the
QCN as an algorithmic approach to “small-data” prob-
lems, dephasing is irrelevant. However, for future physi-
cal implementations of the QCN, dephasing needs to be
addressed. The limiting dephasing times will depend on
the specific implementation and the size of the training set,
which can change the dephasing robustness by a few orders
of magnitude.

APPENDIX F: IMPLEMENTATION OF QCN ON
REAL-WORLD DATA

The QSC distinguishes between substrates based on a
collection of 20 parameters, which have been specifically
calculated for these purposes. The parameters represent
different attributes of the substrates, which tend to lead to
classification by the reactivity of each group. The detailed
parameters are as follows:

(1) Two vibration-frequency calculations have been
made using the GAUSSIAN 16 software [63]. The first
parameter is the frequency of vibrations between the car-
bonyl carbon (“2” in Fig. 10) and the neighboring oxygen
(“3” in Fig. 10) and a second parameter is determined as
the frequency of vibrations between the carbonyl carbon
and the neighboring group (“7” in Fig. 10).

(2) Four dipole calculations have been made using
GAUSSIAN. Each substrate has three dipole parameters
taken along each axis (see Fig. 10) plus the total dipole.

(3) The distances (bond lengths) between the atoms 2-1,
2-3, and 2-7 (see Fig. 10) have been measured (also using
GAUSSIAN).

(4) The partial charges on each atom (1, 2, 3, and 7)
obtained from natural population analysis (NPA) [40] have
been calculated using the NBO 3.1 extension in GAUSSIAN.

(5) The charge differences between atoms 1-2, 2-3, and
2-7 have been calculated.

(6) Using Verloop’s sterimol program and the
open-source PYTHON module STERIMOL [64], three more
steric parameters have been obtained in order to catch the

y

z x

FIG. 10. The coordinate system used for the geometry and
frequency parameters. While the y axis is defined as the axis
along the aromatic ring carbonyl, the x axis is orthogonal to it
in the plane of the ring and the z axis is going into the page. 2,
Carbonyl carbon; 1, the carbon of the aromatic ring attached to
the carbonyl; 3, the oxygen atom; 7, the group connected to 1.
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FIG. 11. Verloop’s sterimol parameters L, B1, and B5, demon-
strated on 2-Fluorobenzaldehyde.

orientation of the aldehyde in space. In order to calcu-
late sterimol values, one needs to determine a principal
axis: here, the principal axis, L, is the carbonyl-ring axis
(see Fig. 11). Thus the first steric parameter calculated,
denoted L, is the added length of the substituted ring and
the carbonyl ring bond distance. the other two are B1,
the minimal width perpendicular to the principal axis, and
B5, the maximal width perpendicular to the principal axis
(Fig. 11).

(7) The location of B5 on L has been calculated.

APPENDIX G: TRAINING PROCESS ON
REAL-WORLD DATA

The construction of a classification network is a trial-
and-error process. The first task after choosing the basic
model, the QSC, is to find the best optimization technique
suited for the problem. At its core, optimization involves

the process of finding the best solution or outcome from
a set of possible choices, while adhering to certain con-
straints or objectives. The convergence speed is an impor-
tant attribute of optimization methods, with faster methods
yielding quicker solutions but potentially missing global
optima. With regard to the QSC, the network dimensions
(i.e., its input, output, and intermediate sizes) are prede-
termined manually but the parameters of the Hamiltonian,
serving as an adjacency matrix, need to be optimized by
the desired optimizer. The best optimization method cho-
sen for this mission has been particle-swarm optimization
(PSO) [30], an algorithm inspired by the social behavior of
birds and fish. It models potential solutions as particles in
a multidimensional space, which move toward the optimal
solution by adjusting their positions based on their own
experiences and the experiences of their neighbors. It is
a fairly heavy optimizer with high function-investigation
abilities, although it tends to get stuck in local minima.
While using PSO for finding the Hamiltonian parameters,
another challenge is to tune the network dimensions, which
are manually predetermined as mentioned. In Fig. 6(a),
we present the outcomes of six different PSO trains of
the network, for six different numbers of intermediate
nodes.

Another important feature of the training process is the
training set. The training set is a subset of the states to
classify, chosen to train the system. The remaining states,
or a suitable number out of them, will be used for val-
idating the system. These states are the “validation set.”
A good training process will use the minimum size of the

(d) (e) (f)

(a) (b) (c)

FIG. 12. Histograms describing the validation process leading to Fig. 6. (a)–(c) Different intermediate node numbers (M ) with equal-
size training sets (NTS = 10): (a) M = 2; (b) M = 7; (c) M = 15. (d)–(f) M is fixed and NTS varies: (d) NTS = 6; (e) NTS = 20; (f)
NTS = 30. Each plot contains the accuracy outcomes of ten different trains, performed on different random training sets and validated
along a validation set of NVS = 10 that is also chosen at random. The average of each histogram is then calculated and inserted to
produce Fig. 6.
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training set and yield maximum classification performance
on the validation set, not a trivial task due to the diffi-
culty in making generalizations as the number of examples,
the training states, is descending. In Fig. 6(b), we present
another five PSO outcomes for five different training-set
sizes. The graph shows how, for this problem, the best per-
formance is achieved for a very small training-set size,
which points to the high generalization abilities of the
QSC.

In Fig. 12, we show histograms aimed to provide a
better insight into the training process and how we pro-
duced Fig. 6. In Figs. 12(a)–12(c), different dimensions
of the network are trained, for the same training-set size
NTS = 10. For each network dimension, we perform ten
different PSO trains, with different randomly chosen train-
ing sets and validation sets. This is called a random tenfold
cross-validation. The sizes of the TS and the VS stay at
N = 10 for each training session. After obtaining the accu-
racy values from each network classification, the average
outcome is calculated and the performance ability of the
network is determined. This process of choosing a random
validation set instead of just choosing the remaining (not
training) states is chosen due to the high dependence of the
classification outcome on the specific validation set and on
our willingness to compare between different values of NTS
in a finite small substrate sample (Ntotal = 60), as can be
seen in Figs. 12(d)–12(f). In Figs. 12(d)–12(f), we present
histogram plots of three models with equal intermediate
node numbers, 2, and varying sizes of training set. The
process of producing the histograms is identical to the one
described earlier, while the validation-set size remains 10.
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