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Quantum master equations are commonly used to model the dynamics of open quantum systems, but
their accuracy is rarely compared with the analytical solution of exactly solvable models. In this work,
we perform such a comparison for the damped Jaynes-Cummings model of a qubit in a leaky cavity, for
which an analytical solution is available in the one-excitation subspace. We consider the non-Markovian
time-convolutionless master equation up to the second (Redfield) and fourth orders as well as three types
of Markovian master equations: the coarse-grained, cumulant, and standard rotating-wave approximation
(RWA) Lindblad equations. We compare the exact solution to these master equations for three different
spectral densities: impulse, Ohmic, and triangular. We demonstrate that the coarse-grained master equation
outperforms the standard RWA-based Lindblad master equation for weak coupling or high qubit frequency
(relative to the spectral density high-frequency cutoff ωc), where the Markovian approximation is valid.
In the presence of non-Markovian effects characterized by oscillatory, nondecaying behavior, the time-
convolutionless approximation closely matches the exact solution for short evolution times (in units of
ω−1

c ) even outside the regime of validity of the Markovian approximations. For long evolution times, all
master equations perform poorly, as quantified in terms of the trace-norm distance from the exact solution.
The fourth-order time-convolutionless master equation achieves the top performance in all cases. Our
results highlight the need for reliable approximation methods to describe open-system quantum dynamics
beyond the short-time limit.
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I. INTRODUCTION

The study of open quantum systems presents both con-
ceptual and technical challenges due to the complexity
and high dimensionality of the environment, or bath.
Exact analytical solutions describing the joint system-bath
evolution are rarely attainable, necessitating the develop-
ment of approximation methods to capture the reduced
system dynamics [1–3]. To address this challenge, var-
ious approaches have been developed to derive master
equations that describe the system’s evolution using the
reduced density matrix, the best known of which is the
Markovian Lindblad (or Gorini-Kossakowski-Lindblad-
Sudharshan) equation [4,5]. Numerous other master equa-
tions have been derived, some of which include non-
Markovian effects. In some cases, rigorous error bounds
have been derived that quantify the deviation between the
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solutions of known master equations and the exact solu-
tion [6]. However, these tend to be rather loose. Hence, it
is desirable to compare the predictions of various master
equations to nontrivial examples of exactly solvable open-
system problems. This has been done, e.g., for the central
spin model [7,8], and for two interacting qubits coupled to
two bosonic baths [9].

This is the goal of the present work, where we study
the damped Jaynes-Cummings model of a qubit inside a
leaky cavity [10]. In this model, the qubit system interacts
with the cavity electromagnetic field through the dipole
approximation [11]. The qubit decay rate can be associ-
ated with experimentally measurable parameters such as
the dipole moment and the energy gap [12]. Experimen-
tal proposals for simulating the spin-boson model with
an Ohmic spectral density using superconducting circuits
have been previously discussed [13–15]. We solve this
model analytically, assuming the zero-temperature limit
and the one-excitation subspace of the joint qubit-cavity
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system, where the cavity is populated by at most a single
photon. This is similar to previous studies that assume a
Lorentzian spectral density [16,17], but we do this for three
different spectral densities: impulse, Ohmic, and triangu-
lar (formally defined below). These choices are motivated
by experiments involving condensed matter systems such
as superconducting qubits interacting with bosonic modes
[18], rather than the original quantum optical setting of
an atom in a cavity that inspired the damped Jaynes-
Cummings model. The Ohmic spectral density, in partic-
ular, is very relevant in the context of transmon qubits,
though such systems are also affected by low-frequency
noise such as 1/f noise [19–21]. Similar considerations
apply to superconducting flux qubits [22].

We then compare the exact solution to a number of dif-
ferent Markovian and non-Markovian master equations.
We find that in the weak-coupling limit and for large
qubit frequencies relative to the spectral density cutoff,
where the Markovian approximation holds, the Lindblad
equation derived using the coarse-graining approach [23]
is more accurate than the standard rotating-wave approx-
imation–based Lindblad equation. In the non-Markovian
regime, the time-convolutionless master equation proves
to be accurate in approximating the exact solution for rel-
atively short evolution times. A similar conclusion was
reached in Ref. [9], where the Nakajima-Zwanzig equation
expanded to second order was shown to violate positivity
for sufficiently long evolution times.

All the approximation methods we consider struggle at
long evolution times.

This paper is structured as follows. In Sec. II, we intro-
duce the damped Jaynes-Cummings model and derive the
exact solutions for all three spectral densities. In Sec. III,
we explore various Markovian approximation methods in
the context of the damped Jaynes-Cummings model. We
begin with the coarse-grained Lindblad equation (CG LE)
in Sec. III A, then the cumulant LE (C LE) in Sec. III B,
and finally the commonly used rotating-wave approxi-
mation (RWA)–based LE (RWA LE) in Sec. III C. We
apply the time-convolutionless (TCL) approach to second
(TCL2, also known as the Redfield equation) and fourth
orders (TCL4) in Sec. III D. Section IV is the heart of
this work, where we present comparisons between the
exact solutions and the various approximation methods.
This includes a comparison of the exact solution with
Markovian and TCL approximations for the Ohmic spec-
tral density, a comparison of the exact solution with the
Markovian CG-LE and RWA-LE, and finally a comparison
with the non-Markovian TCL models for the impulse and
triangular spectral densities. We summarize our findings
and present our conclusions in Sec. V. A variety of techni-
cal details that complement the main text are presented in
the appendices.

Readers who are already familiar with the different
types of master equations may choose to skip Sec. III. All

our key analytical results are conveniently accessible via
Table I, which provides the corresponding equation num-
bers. Readers who are interested primarily in the results
of the comparison between the exact model results and
the various master equations may choose to skip ahead to
Sec. IV and focus on the graphs presented there.

II. EXACT DYNAMICS

A. General open-system setup

The total Hamiltonian of the system and the bath is
given by

H = H0 + HSB, (1)

where H0 = HS ⊗ IB + IS ⊗ HB with HS and HB the pure
system and bath Hamiltonians, respectively, and I the
identity operator.

We move to the interaction picture, where all operators
transform according to

X �→ X̃ (t) = eiH0tXe−iH0t. (2)

The dynamics of the total system in the interaction picture
are governed by the Liouville–von Neumann equation

dρ̃SB

dt
= −i[H̃SB, ρ̃SB] (3)

with ρ̃SB the density matrix of the total system acting on
the Hilbert space HSB = HS ⊗ HB. The joint system-bath
state is thus given by

ρ̃SB(t) = Ũ(t)ρ̃SB(0)Ũ†(t), (4)

where the unitary evolution operator is

Ũ(t) = T+ exp
(

−i
∫ t

0
H̃SB(t′)dt′

)
(5)

and T+ denotes Dyson time ordering.
The solution can equivalently be expressed as a Dyson

series by integrating and iterating Eq. (3):

ρ̃SB(t) = ρSB(0)+
∞∑

n=1

(−i)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn[H̃SB(t1), [H̃SB(t2), . . . , [H̃SB(tn), ρSB(0)]] · · · ].

(6)

The state of the system is given by the reduced density
operator

ρ̃(t) = TrB[ρ̃SB(t)], (7)

where TrB denotes the partial trace over the bath state.
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B. Model of a qubit in a leaky cavity

We analyze the dynamics of a single qubit inside a
leaky cavity, coupled to a bosonic bath at zero temperature.
By working in the single-excitation subspace, this model
becomes analytically solvable, and we closely follow the
solution method of Refs. [11,16], who considered the case
of a Lorentzian spectral density (see also Refs. [2,9]). Here,
we consider different bath spectral densities, as explained
in detail below.

The system Hamiltonian, HS, can be expressed as

HS = �0|1〉〈1| = �0σ+σ−. (8)

Here, σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and
lowering operators for the qubit, respectively. The qubit
ground state is |0〉 with energy 0 and its excited state is |1〉
with energy �0. The bath Hamiltonian, HB, is given by

HB =
∑

k

ωkb†
kbk =

∑
k

ωknk. (9)

Here, bk and b†
k represent the annihilation and creation

operators for the bosonic modes and nk is the number oper-
ator for mode k with energy ωk (we set � = 1 throughout).
The qubit-cavity interaction Hamiltonian is

HSB = σ+⊗B + σ−⊗B†, (10)

where B = ∑
k gkbk. Here the gk are coupling constants

with dimensions of energy. Introducing complex phases in
the couplings can model chirality [24].

In the interaction picture, the interaction Hamiltonian
HSB becomes

H̃SB(t) = σ+(t)⊗ B(t)+ σ−(t)⊗ B†(t), (11)

σ±(t) = e±i�0tσ±, B(t) =
∑

k

e−iωktgkbk.

This model is not analytically solvable in general, but it is
when we make the assumption that the cavity supports at
most one photon. We thus consider the initial joint system-
bath state to be

|φ(0)〉 = c0(0) |ψ0〉 + c1(0) |ψ1〉 +
∑

k

ck(0) |ϕk〉 , (12)

where

|ψ0〉 = |0〉S ⊗ |v〉B , (13a)

|ψ1〉 = |1〉S ⊗ |v〉B , (13b)

|ϕk〉 = |0〉S ⊗ |k〉B . (13c)

Here |v〉B denotes the vacuum state of the cavity,
and |k〉B = b†

k |v〉B = |01, . . . , 0k−1, 1k, 0k+1, . . .〉 denotes

the state with one photon in mode k. The subspace spanned
by {|ψ0〉 , |ψ1〉 , |ϕk〉} is referred to as the one-excitation
subspace, and is conserved under the Hamiltonian in
Eq. (1). That is, for all time t, the joint state remains in
the form

|φ(t)〉 = c0(t) |ψ0〉 + c1(t) |ψ1〉 +
∑

k

ck(t) |ϕk〉 (14)

subject to the normalization condition

|c0(t)|2 + |c1(t)|2 +
∑

k

|ck(t)|2 = 1. (15)

The total Hamiltonian in the interaction picture incorpo-
rates the RWA [2,25], rendering the model analytically
solvable due to the conservation of the total particle num-
ber. Assuming that the reservoir is at zero temperature,
an exact solution can be determined within the one-
excitation subspace. The problem remains solvable with
a more general bath state, assuming interaction with a
continuous-mode laser field [26].

We assume that initially there are no photons in the
cavity [11]; hence,

ck(0) = 0. (16)

We introduce a spectral density J (ω) via

∑
k

|gk|2e−iωkt =
∫ ∞

0
dωJ (ω)e−iωt. (17)

The continuum of bath spectral modes is a necessary con-
dition for irreversibility; a discrete spectrum necessarily
results in recurrences.

To complete the model specification, we consider three
different bath spectral densities: an impulse function cen-
tered at the cutoff frequency ωc, an Ohmic function with
the same cutoff frequency, and a triangular spectral density
with a sharp cutoff, namely,

J1(ω) = |g|2δ(ω − ωc), (18a)

J2(ω) = ηωe−ω/ωc , (18b)

J3(ω) = ηω�(ωc − ω), (18c)

where the Heaviside function obeys �(x) = 0 for x < 0
and �(x) = 1 for x ≥ 0. In the impulse spectral den-
sity J1(ω), the bath has a singular response at the cutoff
frequency, characterized by a Dirac delta function. The
Ohmic spectral density J2(ω) is ubiquitous in the study of
the spin-boson problem [27]. The dimensionless parameter
η in the Ohmic spectral density serves as a measure of the
coupling strength between the bath and the system, while
the ratio of the qubit frequency to the cutoff frequency mea-
sures the ratio of the photonic energy gap, which is the
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energy between the ground state and the excited state, and
the number of frequency modes before reaching the cutoff
frequency. The triangular spectral density J3(ω) is a sharp-
cutoff approximation to the Ohmic spectral density, which
we introduce to simplify analytical calculations. The case
of a Lorentzian spectral density was studied in Ref. [2].

C. Exact solution

Considering the entire qubit-cavity system as closed, its
evolution is governed by the Schrödinger equation, which
can be expressed as [see Appendix A]

i∂t |φ(t)〉 =
∑

k

gkck(t)ei(�0−ωk)t |ψ1〉

+
∑

k

g∗
k c1(t)e−i(�0−ωk)t |ϕk〉 . (19)

Multiplying this equation by 〈ψ1| or 〈ϕk|, we obtain the
following set of differential equations for the amplitudes:

ċ0(t) = 0, (20a)

ċ1(t) = −i
∑

k

gkck(t)ei(�0−ωk)t, (20b)

ċk(t) = −ig∗
k c1(t)e−i(�0−ωk)t. (20c)

Integrating, we arrive at

c0(t) = c0(0), (21a)

ck(t) = −i
∫ t

0
dt′g∗

k c1(t′)e−i(�0−ωk)t′ . (21b)

Let us define the memory kernel f (t) as the Fourier trans-
form of the spectral density, shifted by the qubit frequency
�0:

f (t) =
∫ ∞

0
dωJ (ω)ei(�0−ω)t. (22)

Substituting Eq. (21b) into Eq. (20b), we obtain

ċ1(t) = −
∫ t

0
dt′f (t − t′)c1(t′), (23)

which can be solved via a Laplace transform since the
right-hand side is a convolution. Denoting the Laplace
transform Lap of a general function g(t) by ĝ(s), and
recalling that Lap[ġ(t)] = sĝ(s)− g(0), we have

ĉ1(s) = c1(0)

s + f̂ (s)
, (24)

and c1(t) is then found via the inverse Laplace transform
of Eq. (24).

Next, in order to determine the interaction picture sys-
tem state by tracing out the bath state, we can utilize
Eq. (14) and find that

ρ̃(t) = TrB[|φ(t)〉〈φ(t)|] =
(

1 − |c1|2 c0c∗
1(t)

c∗
0c1(t) |c1|2

)
, (25)

so that

˙̃ρ(t) =
(−∂t|c1|2 c0ċ∗

1(t)
c∗

0ċ1(t) ∂t|c1|2
)

. (26)

At this point, it is straightforward to verify that the dynam-
ics are time local,

˙̃ρ = KS(t)ρ̃, (27)

with a generator given by

KS(t)ρ̃(t) = − i
2
S(t)[σ+σ−, ρ̃(t)]

+ γ (t)
(
σ−ρ̃(t)σ+−1

2
{σ+σ−, ρ̃(t)}

)
, (28)

provided we identify

S(t) = −2Im
(

ċ1(t)
c1(t)

)
, (29a)

γ (t) = −2Re
(

ċ1(t)
c1(t)

)
. (29b)

The rate γ (t) can be negative, corresponding to non-
Markovian dynamics according to the complete positivity
(CP) nondivisibility criterion [28].

We focus on the excited-state population and the coher-
ence, which evolve in time according to

ρ̃11(t) = |c1(t)|2 = |c1(0)|2 exp
{
−

∫ t

0
γ (t′)dt′

}
, (30a)

ρ̃01(t) = c0c∗
1(t) = c0c∗

1(0) exp
{

1
2

∫ t

0
[iS(t′)− γ (t′)]dt′

}
.

(30b)

Details of the derivation above can be found in
Appendix A.

We next discuss the solutions for the three spectral den-
sities of Eqs. (18). In each case, we express the solution in
terms of c1(t) or its Laplace transform.

D. Exact solution for three different spectral densities

1. J1 = |g|2δ(ω − ωc)

As a toy example, we consider the impulse bath spectral
density, which replaces the continuum of bath modes with

014028-4



MARKOVIAN AND NON-MARKOVIAN MASTER EQUATIONS. . . PHYS. REV. APPLIED 22, 014028 (2024)

a single mode. Consequently, we do not expect irreversibil-
ity and, indeed, the solution is oscillatory. To demonstrate
this, we circumvent the Laplace transform and instead use
Eq. (22) to write

f (t) = |g|2ei(�0−ωc)t. (31)

As a result, Eq. (23) becomes

ċ1(t) = −|g|2
∫ t

0
dt′ei(�0−ωc)(t−t′)c1(t′). (32)

Differentiating both sides yields

c̈1(t)− i(�0 − ωc)ċ1(t)+ |g|2c1(t) = 0, (33)

whose solution is

c1(t)
c1(0)

= ei(�0−ωc)t/2
[

cos
(

t
2
δ

)
− i
�0 − ωc

δ
sin

(
t
2
δ

)]
,

(34)

where δ is a real number:

δ =
√
(�0 − ωc)2 + 4g2. (35)

Since the solution is perfectly periodic, any master
equation approximation with a nontrivial dissipator term
will deviate from this exact solution for sufficiently long
times. Note that the excited-state population |c1(t)|2 ∈
|c1(0)|2{(�0 − ωc)

2/[(�0 − ωc)
2 + 4g2], 1}.

The Lamb shift and decay rate are now found from
Eqs. (29) to be

S(t) =
(

1 − (�0 − ωc)
2

δ2

)
(�0 − ωc)/δ

cot2(tδ/2)+ (�0 − ωc)2/δ2
,

(36a)

γ (t) =
(

1 − (�0 − ωc)
2

δ2

)
cot(tδ/2)

cot2(tδ/2)+ (�0 − ωc)2/δ2 .

(36b)

2. J2(ω) = ηωe−ω/ωc

Now we turn our attention to the Ohmic spectral density.
The memory kernel, as given in Eq. (22), takes the form

f (t) = ηω2
c ei�0t

(1 + iωct)2
. (37)

To obtain the Laplace transform analytically, we integrate
by parts and obtain

f̂ (s) = η

{
(s − i�0)e−(�0+is)/ωc

[
i
π

2
− Ci

(
s − i�0

ωc

)

− i Si
(

s − i�0

ωc

)]
− iωc

}
, (38)

where the sine and cosine integral functions are defined as

Si(z) ≡
∫ z

0

sin(t)
t

dt = π/2 −
∫ ∞

z

sin(t)
t

dt, (39a)

Ci(z) ≡ −
∫ ∞

z

cos(t)
t

dt, (39b)

Ei(z) ≡ −
∫ ∞

−z

e−t

t
dt, (39c)

where, for future reference, we have also defined the
exponential integral function.

Because of the absence of analytic expressions for the
Laplace transforms of the trigonometric integral functions,
we use the numerical inverse Laplace transform of Eq. (24)
to obtain c1(t). The Lamb shift and decay rate are then
calculated numerically using Eqs. (29).

3. J3(ω) = ηω�(ωc − ω)

Finally, we compute the memory kernel for the triangu-
lar spectral density, for which we obtain

f (t) =
∫ ωc

0
ηωeit(�0−ω) = ηeit(�0−ωc)

1 − eiωct + iωct
t2

.

(40)

The Laplace transform is

f̂ (s) = −iηωc − η(s − i�0) ln
(

s − i�0

s − i�0 + iωc

)
, (41)

and once more the (numerical) inverse Laplace transform
of Eq. (24) yields c1(t). Finally, the Lamb shift and decay
rate are again computed numerically using Eqs. (29).

III. APPROXIMATION METHODS

In this section, we compute the excited-state population
predictions for the damped Jaynes-Cummings model of the
previous section using three different Markovian master
equations and using TCL to second and fourth orders. In
each case, we first provide a brief summary of the under-
lying theory of the corresponding master equation, both to
assist the reader who may be unfamiliar with this theory
and to establish our notation.

A. Coarse-grained Lindblad equation

We follow the derivation of Ref. [29]. Let us choose a
dimensionless, fixed, and orthogonal system operator basis
for B(HS) as {Sα}M

α=0 with S0 = I and M = d2 − 1, where
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d = dim(HS) and

Tr(S†
αSβ) = 1

Nα
δαβ (42)

with Nα a normalization factor. We can then always write
the system-bath interaction Hamiltonian in the form

HSB =
∑
α

gαSα ⊗ Bα , (43)

where the {Bα} are dimensionless bath operators and the
{gα} are coupling coefficients. In the interaction picture,
with US(t) = e−iHSt and UB(t) = e−iHBt, we obtain

H̃SB =
∑
α

gαSα(t)⊗ Bα(t), (44a)

Sα(t) = U†
S(t)SαUS(t) =

∑
β

pαβ(t)Sβ , (44b)

Bα(t) = U†
B(t)BαUB(t) =

∑
β

qαβ(t)Bβ , (44c)

with initial conditions pαβ(0) = qαβ(0) = δαβ . The dynam-
ics of the total system + bath are described by Eqs. (4)
and (5). The system state is obtained by tracing over
the bath and, assuming that the initial state is factor-
ized [ρSB(0) = ρ(0)⊗ ρB(0)], can be represented as a
completely positive quantum dynamical map, i.e.,

ρ̃(t) = TrB[ρ̃SB(t)] =
M∑

i=0

K̃i(t)ρ(0)K̃
†
i (t), (45)

where the {K̃i} are Kraus operators in the interaction
picture, which are defined as

K̃i={μν}(t) = √
λμ 〈ν| Ũ(t) |μ〉 , (46)

where the initial bath state is spectrally decomposed
as ρB(0) = ∑

μ λμ|μ〉〈μ|. Using a standard Dyson series
expansion of Ũ(t) similar to Eq. (6), we can write

K̃i(t) = √
λμδμνI +

∞∑
n=1

K (n)
i (t)

=
M∑
α=0

biα(t)Sα = bi0I +
M∑
α=1

∞∑
n=1

b(n)iα (t)Sα , (47)

where K (n)
i (t) is the n th-order term in the Dyson series,

and the second line is an expansion in the system opera-
tor basis. In the weak-coupling limit (maxα gαt 
 1), the
higher-order terms in the expansion of K (n)

i (t) become
negligible, i.e., ‖K (n+1)

i ‖ ∼ gαt‖K (n)
i ‖. Therefore, we can

approximate the exact Kraus operators by truncating the
expansion to first order. This yields

K̃ (1)
i (t) = −i

√
λμ 〈ν|

∫ t

0
dt1H̃SB(t1) |μ〉

= −i
√
λμ

∑
α

gα
∫ t

0
dt1Sα(t1) 〈ν| Bα(t1) |μ〉

= −it
√
λμ

∑
αβγ

gαSβ 〈ν| Bγ |μ〉�βγα (t), (48)

where

�βγα (t) ≡ 1
t

∫ t

0
dt1pαβ(t1)qαγ (t1). (49)

Then, to match Eqs. (48) and (47), we have

b(1)iα (t) = −it
√
λμ

∑
α′α′′

gα′ 〈ν| Bα′′ |μ〉�αα′′
α′ (t), (50)

and Eq. (47) implies that bi0 = √
λμδμν . Next, we can con-

struct the process matrix χ(t) (closely related to the Choi
matrix), where

χαβ(t) =
∑
i=μν

biα(t)b∗
iβ(t), (51)

and truncate it to lowest order (n ≤ 1) in the Dyson
expansion as

χ00(t) =
∑
μ

λμ = 1, (52)

χ
(1)
α0 (t) = −it

∑
α′α′′

gα′ 〈Bα′′ 〉B�
αα′′
α′ (t), α ≥ 1, (53)

χ
(1)
αβ (t) = t2

∑
α′α′′β ′β ′′

gα′g∗
β ′ 〈B†

β ′′Bα′′ 〉
B

× �αα
′′

α′ (t)[�
ββ ′′
β ′ (t)]∗, α,β ≥ 1, (54)

where 〈X 〉B ≡ Tr(ρBX ). Let us also define

〈X 〉j ≡ 1
τ

∫ (j +1)τ

j τ
X (t)dt, (55)

where we call τ the coarse-graining timescale. Note that
χαβ(0) = δα0δβ0. Then

aαβ ≡ 〈χ̇ (1)αβ 〉
0

= 1
τ

[χ(1)αβ (τ )− χαβ(0)] = χ
(1)
αβ (τ )

τ
(56)

unless α = β = 0, in which case we have 〈χ̇00〉0 = 0.
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It can be shown [29] (see also Ref. [30]) that, starting
from Eq. (45), substituting the various expansions above,
rearranging terms, and assuming that Eq. (56) can be
extended to any interval [t, t + τ ] (essentially an assump-
tion of Markovianity), one arrives at the Lindblad equation
in the interaction picture:

˙̃ρ(t) = −i[HLS, ρ̃(t)]

+
M∑

α,β=1

aαβ

(
Sαρ̃(t)S

†
β−

1
2
{S†
βSα , ρ̃(t)}

)
. (57)

Here the Lamb shift is given by

HLS = i
2

∑
α

〈χ̇α0〉Sα − 〈χ̇α0〉∗S†
α

= 1
2

∑
α

φαSα + φ∗
αS†
α (58)

with

φα ≡
∑
α′α′′

gα′ 〈Bα′′ 〉B�
αα′′
α′ (τ ), (59)

and the decoherence rates are

aαβ = τ
∑

α′α′′β ′β ′′
gα′g∗

β ′ 〈B†
β ′′Bα′′ 〉

B
�αα

′′
α′ (τ )�

ββ ′′
β ′ (τ )

∗. (60)

The choice of the coarse-graining timescale τ is crucial.
It can be understood as a free optimization parameter,
constrained by the inequality

τS 
 τ 
 1/ωc, (61)

where τS is the timescale over which ρ̃(t) changes, which
arises from the replacement of

〈 ˙̃ρ(t)〉0 ≡ ρ̃(τ )− ρ(0)
τ

(62)

by ˙̃ρ(t) in arriving at Eq. (57).
For the spin-boson model given in Eq. (10), we have

S+ = σ+, S− = σ−, Bk = bk or b†
k . The system-bath inter-

action Hamiltonian in the interaction picture is given by
Eq. (11). From Eqs. (44b) and (44c), we obtain

p±±(t) = e±i�0t, p±∓(t) = 0, (63a)

q±±
kk′′ (t) = δkk′′e∓iωkt, q±∓

kk′′ (t) = 0, (63b)

where the + or − superscripts indicate that the correspond-
ing bath operator is bk or b†

k , respectively.

Assuming that the initial state of the bath (cavity) is the
zero-temperature vacuum state ρB(0) = |v〉〈v|, we obtain
the standard bosonic expectation values:

〈b†
kbl〉B = 〈b†

k〉B = 〈bk〉B = 〈b†
kb†

l 〉B = 〈bkbl〉B = 0,

〈bkb†
l 〉B = δkl.

(64)

Then, by utilizing Eq. (49), we obtain a slightly modified
expression for � up to first order:

�
β,(β ′k′′)
α,(α′k) (t) = 1

t

∫ t

0
dt1pαβ(t1)q

α′β ′
kk′′ (t1) (65)

with α,β,α′,β ′ ∈ {+, −}. Using Eq. (63), we have the
following nonzero �:

�
+,(+k)
+,(+k)(t) = ei(�0−ωk)t − 1

i(�0 − ωk)t
, (66a)

�
−,(−k)
−,(−k)(t) = e−i(�0−ωk)t − 1

−i(�0 − ωk)t
. (66b)

We also have a slightly modified expression for b by using
Eq. (50):

bμν,α = −it
√
λμ

∑
(α′k′)

gα
′

k′ 〈μ| Bα
′

k′ |ν〉�α,(α′k′)
α,(α′k′) (67)

with Bαk representing bk when α = + and b†
k when α = −.

The Lamb shift rates are given by Eq. (59), and vanish, i.e.,

φα =
∑
(α′k′)

gα
′

k′ 〈Bα′
k′ 〉B�

α,(α′k′)
α,(α′k′)(τ ) = 0, (68)

since the expectation values of creation and annihilation
operators between vacuum states vanish, as indicated by
Eq. (64). This result will be seen to undermine the quality
of the CG-LE and C-LE when we perform a comparison
with the exact results in Sec. IV below.

The decoherence rates are

aαβ(τ ) = τ
∑

(α′k′)(β ′l′)
gα

′
k′ g−β ′

l′ 〈B−β ′
l′ Bα

′
k′ 〉B

× �
α,(α′k′)
α,(α′k′)(τ )�

β,(β ′l′)
β,(β ′l′)(τ )

∗. (69)

Using Eqs. (64) and (66), we obtain

a++(τ ) = 0, (70)

a−−(τ ) =
∑

k

|gk|2τ sinc2
(
(�0 − ωk)τ

2

)
, (71)

γ (τ) ≡ a−−(τ ) =
∑

k

|gk|2τ sinc2
(
(�0 − ωk)τ

2

)
, (72)
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where sinc(x) ≡ sin(x)/x. Introducing the spectral density

J (ω) =
∑

k

|gk|2δ(ω − ωk), (73)

we can write this as

γ (τ) =
∫ ∞

0
dωJ (ω)τ sinc2

(
(�0 − ω)τ

2

)
. (74)

Let us now define

δ̄(x, y) ≡ 1
2π

y sinc2
(

xy
2

)
, y ≥ 0. (75)

This function behaves similarly to the Dirac-δ function:
∫ ∞

−∞
δ̄(x, y)dx = 1, (76a)

lim
y→∞ δ̄(x, y) = δ(x). (76b)

That is, it is sharply peaked at x = 0, and the peak becomes
sharper as y grows. The peak width is about 1/y. We can
thus also write

γ (τ) = 2π
∫ ∞

0
dωJ (ω)δ̄(�0 − ω, τ). (77)

We show below that this representation allows us to
express the RWA-LE as the τ → ∞ limit of the CG-LE
and C-LE results, as expected on general grounds [23].

Finally, we obtain the interaction picture Lindblad
equation as

˙̃ρ(t) = γ (τ)
[
σ−ρ̃(t)σ+− 1

2 {σ+σ−, ρ̃(t)}]. (78)

Taking matrix elements, we find that the populations and
coherences are decoupled. Solving for the excited-state
population and coherence, we respectively obtain

ρ̃11(t) = ρ11(0)e−γ (τ)t, (79a)

ρ̃01(t) = ρ01(0)e−γ (τ)t/2, (79b)

which are to be contrasted with the exact solutions given
in Eqs. (30). The coarse-graining time τ can be chosen to
optimize the agreement with the exact solution. As shown
in Ref. [23], τ can be determined through optimization for
models without known exact solutions.

1. J1(ω) = |g|2δ(ω − ωc)

For the impulse spectral density, using Eq. (77), we find
that

γ (τ) = |g|2τ sinc2
(
(�0 − ωc)τ

2

)

= 2π |g|2δ̄(�0 − ω, τ). (80)

2. J2(ω) = ηωe−ω/ωc

For the Ohmic spectral density, using Eq. (77), we find
that

γ (τ) = η

∫ ∞

0
ωe−ω/ωcτ sinc2

(
(�0 − ω)τ

2

)
dω

= 2πη
∫ ∞

0
ωe−ω/ωc δ̄(�0 − ω, τ)dω

= η

τ
e−�0/ωc

[(
1 − �0

ωc
− i�0τ

)
Ei

(
�0

ωc
+ i�0τ

)

+
(

1 − �0

ωc
+ i�0τ

)
Ei

(
�0

ωc
− i�0τ

)

+ 2
(
�0

ωc
− 1

)
Ei

(
�0

ωc

)]
+ 2η
τ
(1 − cos�0τ),

(81)

where the last equality is derived in Appendix B 1.

3. J3(ω) = ηω�(ωc − ω)

For the triangular spectral density, using Eq. (77), we
find that

γ (τ) = η

∫ ωc

0
ωτ sinc2

(
(�0 − ω)τ

2

)
dω

= 2πη
∫ ωc

0
ωδ̄(�0 − ω, τ)dω

= 2η
τ

[
ln

(
ωc

�0
− 1

)
+ Ci(τ�0)− Ci[τ(ωc −�0)]

+ ωc{cos[τ(ωc −�0)] − 1}
ωc −�0

− cos[τ(ωc −�0)]

+ cos(τ�0)

]
+ 2η�0{Si[τ(ωc −�0)] + Si(τ�0)},

(82)

where the last equality is derived in Appendix B 2.

B. Cumulant Lindblad equation

This section briefly reviews an alternative derivation
of the Lindblad equation, based on a cumulant expan-
sion [23]. Similarly to the CG-LE, the C-LE approach also
uses a coarse-graining timescale that can be optimized to
approximate the exact result. Despite using a rather differ-
ent approach to deriving the Lindblad equation, we show
that, for the problem we study in this work, the C-LE
ultimately results in identical expressions for the master
equation and its parameters (and hence also the solution,
of course) as the CG-LE.
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We start by writing the system-bath interaction Hamil-
tonian of Eq. (1) as

HSB = λ
∑
α

Sα ⊗ Bα , (83)

where Sα and Bα are the system and bath operators, respec-
tively (not necessarily Hermitian), and λ is a dimensionless
parameter to be used below for a series expansion, which
we eventually set equal to 1. Note that, unlike Eq. (43),
the Sα are now not a basis, and the Bα have dimensions
of energy since they include the coupling constants gα .
Assuming a factorized initial condition ρSB(0) = ρ(0)⊗
ρB(0), we associate a complete positive trace-preserving
(CPTP) map �λ to the reduced density matrix of Eq. (7):

ρ̃(t) = �λ(t)ρ(0). (84)

This CPTP map can be related to Eq. (6) by introducing
superoperators K (n), which collect terms with matching
powers of λ:

�λ(t) = exp
( ∞∑

n=1

λnK (n)(t)
)

. (85)

This is known as the cumulant expansion. The first-order
term is then

K (1)(t)ρ(0) = −i
∫ t

0
dsTrB[[H̃(s), ρSB(0)]], (86)

which can be eliminated by shifting the bath operators Bα ,
assuming stationarity, i.e., [HB, ρB(0)] = 0 (see below and
Appendix C). Moving on to the second order in λ, we have

K (2)(t)ρ(0) = −
∫ t

0
ds

∫ s

0
ds′TrB[H̃(s), [H̃ (s′), ρSB(0)]],

(87)

where the double commutator can be rearranged using

TrB[Sα(s)⊗ Bα(s), [Sβ(s′)⊗ Bβ(s′), ρ(0)⊗ ρB(0)]]

= [Sα(s), Sβ(s′)ρ(0)]Tr[Bα(s)Bβ(s′)ρB]

− [Sα(s), ρ(0)Sβ(s′)]Tr[Bβ(s′)Bα(s)ρB]. (88)

Introducing the bath correlation function

Bαβ(s, s′) ≡ Tr[Bα(s)Bβ(s′)ρB], (89)

we have

Bαβ(s, s′) = B∗
αβ(s

′, s). (90)

To obtain a reduced form of the second-order cumulant in
Eq. (87), it is useful to define a new variable that includes

the double integration of the bath correlation function as

Bαβω(t) ≡
∫ t

0
ds

∫ s

0
ds′eiω(s−s′)Bαβ(s, s′). (91)

We introduce two more variables that will be associated
with the Lamb shift and the decoherence rate, namely,

Qαβω(t) ≡ 1
2i

[Bαβω(t)− B∗
αβω(t)] = Im[Bαβω(t)] (92)

and

bαβω(t) ≡
∫ t

0
ds

∫ t

0
ds′eiω(s−s′)Bαβ(s, s′)

= Bαβω(t)+ B∗
αβω(t) (93a)

= 2Re(Bαβω(t)), (93b)

where the equality in the second line is shown in
Appendix D.

Explicitly, in this section, α ∈ {+, −}, and as in
Eq. (11), in the interaction picture the system operators
are S±(t) = σ±e±i�0t and the bath operators are B+(t) =∑

k gke−iωktbk, B−(t) = ∑
k g∗

k eiωktb†
k . The initial bath state

ρB = |v〉〈v| and the commutation rules (64) give us just one
nonzero bath correlation function:

B+−(s, s′) = Tr[ρBB+(s)B−(s′)]

=
∑
l,l′

glg∗
l′e

−i(ωls−ωl′ s′)Tr[ρB(0)blb
†
l′], (94a)

B−+(s, s′) = B++(s, s′) = B−−(s, s′) = 0. (94b)

The double commutator (88) can now be simplified as
∑
α,β

TrB[Sα(s)⊗ Bα(s), [Sβ(s′)⊗ Bβ(s′), ρ(0)⊗ ρB(0)]]

= ei�0(s−s′)[σ+, σ−ρ(0)]B+−(s, s′)

− e−i�0(s−s′)[σ−, ρ(0)σ+]B+−(s′, s). (95)

Using Eq. (90), we have

K (2)(t)ρ(0)

= −B+−,�0(t)[σ+, σ−ρ(0)] + B∗
+−,�0

(t)[σ−, ρ(0)σ+]

= −iIm(B+−,�0(t))[σ+σ−, ρ(0)]

+ 2Re[B+−,�0(t)]
[
σ−ρ(0)σ+− 1

2 {σ+σ−, ρ(0)}].
(96a)

Hence, the second-order cumulant takes the form

K (2)(t)ρ(0) = −iQ+−,�0(t)[σ+σ−, ρ(0)]

+ b+−,�0(t)
[
σ−ρ(0)σ+− 1

2 {σ+σ−, ρ(0)}].
(97)
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Hence, the state in the interaction picture after the CP map
in Eq. (84) using a truncation up to the second order in the
cumulant expansion is

ρ̃(t) = �λ(t)ρ(0) ≈ exp[λ2K (2)(t)]ρ(0)

= ρ(0)− iλ2Q+−,�0(t)[σ+σ−, ρ(t)]

+ λ2b+−,�0(t)
[
σ−ρ(t)σ+− 1

2 {σ+σ−, ρ(t)}]. (98)

Now we use the coarse-graining method by averaging over
the coarse-graining timescale τ as in Eq. (56), i.e.,

〈ḃ+−,�0(t)〉0 = b+−,�0(τ )

τ
, (99a)

〈Q̇+−,�0(t)〉0 = Q+−,�0(τ )

τ
, (99b)

which, when applied to Eq. (98), yields

〈 ˙̃ρ(t)〉0 = −iλ2〈Q̇+−,�0(t)〉0[σ+σ−, ρ(0)]

+ λ2〈ḃ+−,�0(t)〉0
[
σ−ρ(0)σ+− 1

2 {σ+σ−, ρ(0)}],
(100)

where we also used Eq. (62). Let us now define

S(τ ) ≡ 2〈Q̇+−,�0(t)〉0 = 2Im[B+−,�0(τ )]
τ

, (101a)

γ (τ) ≡ 〈ḃ+−,�0(t)〉0 = 2Re[B+−,�0(τ )]
τ

, (101b)

where we used Eqs. (92) and (93b).
For a general ρB(0) obtained by tracing out the sys-

tem from Eq. (14), we find that [ρB(0), HB] �= 0 (as shown
in Appendix E), which means that the bath correlation
function Bαβ(s, s′) is not stationary. However, it is for the
vacuum bath state ρB(0) = |v〉〈v|, which we assume to be
the case throughout, so we can write

B+−(s, s′) = B+−(s − s′) =
∫ ∞

0
dωJ (ω)e−iω(s−s′).

(102)

We then obtain, using Eq. (92),

S(τ ) = 1
τ

Im
∫ τ

0
ds

∫ s

0
ds′eiω(s−s′)

∫ ∞

0
dωJ (ω)e−iω(s−s′)

= τ

2
Im

∫ ∞

0
dωJ (ω) = 0, (103)

since the spectral density is real. That is, just like in the
CG-LE case [Eq. (68)], the Lamb shift vanishes.

For the decay rate, we now have, using Eq. (93a),

γ (τ) = 1
τ

∫ ∞

0
dωJ (ω)

∫ τ

0
ds

∫ τ

0
ds′ei(�0−ω)(s−s′)

=
∫ ∞

0
dωJ (ω)τ sinc2

(
(�0 − ω)τ

2

)
, (104)

which is identical to the CG-LE result, Eq. (74).
Moreover, similar to how we arrived at Eq. (57), assum-

ing Markovianity in the sense that Eq. (100) can be
extended to any interval [t, t + τ ], we again arrive at the
Lindblad equation in the interaction picture, after replacing
〈 ˙̃ρ(t)〉0 �→ ˙̃ρ(t), and setting λ = 1. The form of this Lind-
blad equation is identical to Eq. (78). In particular, both the
excited-state population and the coherence are the same as
in Eqs. (79). Thus, the end results of the C-LE and CG-LE
are identical for the model considered in this work.

C. Rotating-wave approximation Lindblad equation

The RWA drops the nonsecular (off-diagonal) frequency
terms that appear in the C-LE [see, e.g., Eq. (94a)]. This
approximation is based on the idea that the terms with
ω �= ω′ are rapidly oscillating if t � |ω − ω′|−1, which
thus (roughly) average to zero. Since we assume that t �
τB, where τB is the bath correlation time (the time over
which the bath correlation function decays), the former
assumption is consistent provided we also assume that
the Bohr frequency differences satisfy minω �=ω′ |ω − ω′| >
1/τB. Combining this with the weak-coupling assumption,
we obtain

g 
 1
τB
< min

ω �=ω′ |ω − ω′|. (105)

By considering the weak-coupling limit, taking the bath
correlation timescale as the inverse of the cutoff frequency,
and considering the Bohr frequencies {0, ±�0}, Eq. (105)
becomes

η 
 1 < �0/ωc. (106)

Furthermore, the Born approximation states that, for a
sufficiently large bath, the composite state factorizes:

ρ̃SB(t) ≈ ρ̃(t)⊗ ρB. (107)

Thus, up to second order in the Dyson series, the system
state evolves according to

˙̃ρ = −TrB

[
H̃(t),

∫ t

0
dτ [H̃ (t − τ), ρ̃SB(t − τ)]

]

= −
∑
α,β

TrB

[
Aα(t)⊗ Bα(t),

∫ t

0
dτ [Aβ(t − τ)

⊗ Bβ(t − τ), ρ̃(t − τ)⊗ ρB]
]

, (108)
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where in our case α,β ∈ {+, −}. It is useful to define the
stationary (single-variable) bath correlation, a special case
of Eq. (89):

B+−(t, t − τ) =
∫ ∞

0
dωJ (ω)e−iωτ ≡ B+−(τ ). (109)

Now, if we assume that t � τB then ρ̃(t − τ) ≈ ρ̃(t).
We discuss the limitations of this approximation in
Appendix F, where we show that it can lead to an
unbounded error.

Expanding the double commutator in terms of the bath
correlation function, we obtain

∑
α,β

TrB[Sα(t)⊗ Bα , [Sβ(t − τ)⊗ Bβ(t − τ), ρ̃(t)⊗ ρB]]

= [S+(t), S−(t − τ)ρ̃(t)]B+−(τ )

− [S−(t), ρ̃(t)S+(t − τ)]B+−(−τ). (110)

Consequently, substituting Eq. (110) back into Eq. (108),
we can write

˙̃ρ(t) = −
∫ t

0
dτB+−(τ )ei�0τ [σ+, σ−ρ̃(t)]

+
∫ t

0
dτB+−(−τ)e−i�0τ [σ−, ρ̃(t)σ+]. (111)

To arrive at a Lindblad form, we complete the Markovian
approximation by setting the upper limit of the integral to
be ∞. This is justified since the bath correlation decays
rapidly to zero for t � 1/ωc. Now, let

�αβ(ω) ≡
∫ ∞

0
dτBαβ(τ )eiωτ (112)

=
∫ ∞

0
dω′J (ω′)

∫ ∞

0
dτei(ω−ω′)τ

= πJ (ω)+ i
∫ ∞

0
dω′ J (ω′)P

(
1

ω − ω′

)
,

where we have used the identity

∫ ∞

0
dτeixτ = πδ(x)+ iP

(
1
x

)
, (113)

and where the Cauchy principal value is defined as

P
(

1
x

)
[f ] = lim

ε→0

∫ ε

−ε

f (x)
x

dx (114)

for smooth functions f with compact support on the real
line R.

We show in Appendix G that taking the complex conju-
gate of �αβ yields

�∗
±∓(ω) =

∫ ∞

0
dτB±∓(−τ)e−iωτ . (115)

This simplifies Eq. (111) into Lindblad form:

˙̃ρ(t) = −�+−(�0)[σ+, σ−ρ̃] + �∗
+−(�0)[σ−, ρ̃σ+]

= −iIm[�+−(�0)][σ+σ−, ρ(t)]

+ 2Re[�+−(�0)]
[
σ−ρ(t)σ+− 1

2 {σ+σ−, ρ(t)}].
(116)

This result has the same form as the exact Eq. (28), but with
a time-independent Lamb shift and decay rate given by

S = 2Im[�+−(�0)] = 2
∫ ∞

0
dω′ J (ω′)P

(
1

�0 − ω′

)
,

(117a)

γ = 2Re[�+−(�0)] = 2πJ (�0). (117b)

This last result is consistent with the finding that the RWA-
LE is the τ → ∞ limit of the C-LE [23], since it follows
from Eqs. (76b) and (77) that

lim
τ→∞ γ (τ) = 2π

∫ ∞

0
dωJ (ω)δ(�0 − ω) = 2πJ (�0).

(118)

The population and coherence are given by the τ → ∞
limit of Eqs. (79), i.e.,

ρ̃11(t) = ρ11(0)e−γ t, (119a)

ρ̃01(t) = ρ01(0)e−γ t/2. (119b)

We are now ready to present the results for the three
spectral densities.

1. J1(ω) = |g|2δ(ω − ωc)

For the impulse spectral density, using Eq. (117), we
find that

S = 2|g|2P
(

1
�0 − ωc

)
, (120a)

γ = 2π |g|2δ(�0 − ωc). (120b)

This means that the decay rate either vanishes or is sin-
gular at �0 = ωc. Hence, the RWA-LE is unsuitable for
describing the model with this spectral density.
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2. J2(ω) = ηωe−ω/ωc

We can immediately write down the decay rate as γ =
2πJ2(�0). However, the Cauchy principal value compli-
cates the calculation of the Lamb shift, so we use a direct
method instead.

For the Ohmic spectral density, the bath correlation in
Eq. (109) takes the form

B+−(τ ) = η

∫ ∞

0
ωe−ω/ωce−iωτdω = ηω2

c

(1 + iωcτ)2
.

(121)

The one-sided Fourier integral in Eq. (112) becomes

�+−(�0) = ηωc

∫ ∞

0
d(ωcτ)

ei�0τ

(1 + iωcτ)2
(122a)

= −iηωc + η�0e−�0/ωc[π + i Ei(�0/ωc)],
(122b)

where we derive the second equality in Appendix H 1.
Thus, the Lamb shift and the decay rate are

S = 2J2(�0)Ei
(
�0

ωc

)
− 2ηωc, (123a)

γ = 2πJ2(�0). (123b)

3. J3(ω) = ηω�(ωc − ω)

We can once more immediately write down the decay
rate as γ = 2πJ3(�0), but a direct calculation is again
advantageous for arriving at the form of the Lamb shift.

For the triangular spectral density, the bath correlation
in Eq. (109) takes the form

B+−(τ ) = η

∫ ωc

0
ωe−iωτdω = η

e−iωcτ (1 + iωcτ)− 1
τ 2 .

(124)

The one-sided Fourier integral in Eq. (112) becomes

�+−(�0) = ηωc

∫ ∞

0
d(ωcτ)

e−iωcτ (1 + iωcτ)− 1
(ωcτ)2

ei�0τ .

(125)

Thus, as we derive in Appendix H 2, the Lamb shift and
the decay rate are

S = −2�0 ln
∣∣∣∣ωc

�0
− 1

∣∣∣∣ − 2ηωc, (126a)

γ = 2πJ3(�0). (126b)

Note that Eq. (106) requires�0 > ωc, but in this case it fol-
lows from Eq. (126b) that γ vanishes. This breakdown of

the validity conditions of the Markov approximation, along
with the issue of the potentially unbounded approximation
error discussed in Appendix F, highlights that the RWA-
LE has limited validity for the model we study here. Our
simulation results reinforce these conclusions, as shown in
Sec. IV below.

D. Time-convolutionless master equation

In this section we briefly review the time-convolutionless
formalism, closely following the presentation of Ref. [2]
while adding a few pertinent details.

We can rewrite the Liouville equation in Eq. (3) as

dρ̃SB

dt
≡ λLρ̃SB, L ≡ [H̃SB, ·], (127)

where we introduce the Feshbach projection superoperator
P via

PρSB ≡ TrB(ρ)SB ⊗ ρB, (128)

and its orthogonal complement Q = I − P . For an arbi-
trary operator A, we define

Â ≡ PA, Ā ≡ QA, (129)

which leads via Eq. (127) to

∂tρ̂SB = λL̂ρ̂SB + λL̂ρ̄SB, (130a)

∂tρ̄SB = λL̄ρ̂SB + λL̄ρ̄SB. (130b)

The second equation has a solution given by

ρ̄SB(t) = G(t, 0)ρ̄SB(0)+ λ

∫ t

0
G(t, t′)L̄(t′)ρ̄SB(t′)dt′,

(131)

where

G(t, 0) ≡ T+exp
(
λ

∫ t

0
L̄(t′)dt′

)
. (132)

From Eq. (127), we obtain

ρ̃SB(t) = U+(t, t′)ρ̃SB(t′), (133)

where

U+(t, t′) = T+exp
(
λ

∫ t

t′
L̄(s)ds

)
. (134)

We can back propagate the system state as

ρ̃SB(t′) = U−(t′, t)ρ̃SB(t′), (135)
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where U−(t′, t) = [U+(t, t′)]−1. When we substitute
Eq. (135) back into Eq. (131), we obtain

ρ̄SB(t) = G(t, 0)ρ̄SB(0)+�(t)ρSB(t), (136a)

�(t) ≡ λ

∫ t

0
G(t, t′)L̄(t′)Û−(t′, t)dt′. (136b)

Assuming that I −� is invertible and using Eq. (130), we
arrive at

∂tρ̂SB(t) = J (t)ρ̄SB(0)+ K(t)ρ̂SB(t), (137a)

J (t) ≡ λL̂(t)[I −�]−1G(t, 0)Q, (137b)

K(t) ≡ λL̂[I −�]−1P . (137c)

If the inhomogeneity J (t) vanishes (as is the case for a
factorized initial system-bath state) then the resulting mas-
ter equation is time local and known as the TCL master
equation. By expressing I −� as a geometric series, we
obtain

[I −�]−1 =
∞∑

n=0

�n(t). (138)

This allows us to write the TCL generator as an expansion
in powers of λ:

K(t) = λL̂(t)
( ∞∑

n=0

�n(t)
)
P =

∞∑
n=1

λnKn(t). (139)

For Gaussian baths, like the one considered here, the odd-
order terms vanish, i.e., K2n+1 = 0, which follows from
the vanishing multitime bath correlation function utilizing
Wick’s theorem [31,32]. In general, the n th-order term is
given by [33,34]

Kn(t) =
∫ t

0
dt1

∫ t

0
dt2 · · ·

×
∫ tn−2

0
dtn−1〈L(t)L(t1) · · ·L(tn−1)〉oc (140)

with the ordered cumulants defined as

〈L(t)L(t1) · · ·L(tn−1)〉oc

=
∑

(−1)qPL(t) · · ·L(ti)PL(tj ) · · ·L(tm)P , (141)

where the sum is over all possible arrangements of q P’s
and n L’s such that there is at least one L between any two
P’s and there is a time ordering t ≥ · · · ≥ ti ≥ tj · · · ≥ tm.

Since Eq. (27) is already time local, we can relate it to
the TCL generator K(t) via [17]

KS(t)ρ(t) = TrB[K(t)(ρ(t)⊗ ρB)]. (142)

This leads exactly to the ansatz given in Eq. (28), i.e., the
TCL master equation is given by

˙̃ρ = KS(t)ρ̃ = − i
2
S(t)[σ+σ−, ρ̃(t)]

+ γ (t)
(
σ−ρ̃(t)σ+−1

2
{σ+σ−, ρ̃(t)}

)
. (143)

The solution is given by Eqs. (30), to the desired order in
perturbation theory, i.e.,

ρ̃11(t) = ρ11(0) exp
{
−

∫ t

0
γ (n)(t′)dt′

}
, (144a)

ρ̃01(t) = ρ01(0) exp
{

1
2

∫ t

0
[iS(n)(t′)− γ (n)(t′)]dt′

}
,

(144b)

where n = 2 for TCL2, n = 4 for TCL4, etc.
To find the perturbative expansion of the Lamb shift and

the decay rate, we observe that σ+ is an eigenoperator of
the generator

KS(t)σ+= − 1
2 [γ (t)+ iS(t)]σ+. (145)

Using the superoperator L(t) = −i[HSB(t), ·], we can ver-
ify [35] that σ+ ⊗ ρB is an eigenoperator of L(t)L(t1) with
eigenvalue −f (t − t1), where f (t) is defined in Eq. (22).
Substituting Eq. (139) into Eq. (145), we obtain

KS(t)σ+ =
∞∑

n=1

(−λ2)n
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ t2n−2

t0
dt2n−1

× 〈f (t − t1)f (t2 − t3) · · ·
× f (t2n−2 − t2n−1)〉ocσ+. (146)

Here, the terms in the summation follow the rule of con-
sidering all possible arrangements of the memory kernel
f (ti − tj ). It is important to ensure that the times are prop-
erly ordered as tm ≤ · · · ≤ ti ≤ tj ≤ · · · ≤ t. Consequently,
we can expand γ (t) and S(t) as

γ (t) =
∞∑

n=1

λ2nγ2n(t), S(t) =
∞∑

n=1

λ2nS2n(t). (147)

In particular, if we define the function

Z(t, t′) ≡
∫ t

0
dt1f (t′ − t1),
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we obtain, as shown in Ref. [17], the expressions

γ2(t)+ iS2(t) = 2
∫ t

0
dt1f (t − t1) = 2 lim

t′→t
Z(t, t′),

(148a)

γ4(t)+ iS4(t) = 2
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3[f (t − t2)

× f (t1 − t3)+ f (t − t3)f (t1 − t2)].
(148b)

Thus,

S2(t)[γ2(t)] = 2Im[Re] lim
t′→t

Z(t, t′), (149a)

S4(t)[γ4(t)] = 2Im[Re]
∫ t

0
dt1

∫ t1

0
dt2[f (t − t2)Z(t1, t2)

+ f (t1 − t2)Z(t, t2)], (149b)

where the imaginary and real parts are taken for S and
γ , respectively. The TCL2 and TCL4 cases respectively
correspond to the following substitutions in Eq. (144):

TCL2:

{
S(2)(t) = S2(t),
γ (2)(t) = γ2(t),

(150a)

TCL4:

{
S(4)(t) = S2(t)+ S4(t),
g(4)(t) = γ2(t)+ γ4(t).

(150b)

This follows from Eq. (147) with λ = 1 (recall that λ is a
formal expansion parameter).

Next, we consider our three spectral densities.

1. J1 = |g|2δ(ω − ωc)

We use the integral of the shifted memory kernel from
Eq. (31):

Z(t, t1) = 2|g|2 sin[(�0 − ωc)t1/2]
�0 − ωc

ei(�0−ωc)(2t−t1)/2.

(151)

The second-order Lamb shift and decay rate are, using
Eq. (149a),

S2(t) = 2|g|2 1 − cos[(�0 − ωc)t]
�0 − ωc

, (152a)

γ2(t) = 2|g|2t sinc[(�0 − ωc)t]. (152b)

The fourth-order Lamb shift and decay rate are, using
Eq. (149b),

S4(t) = 4|g|4 − sin2(�0 − ωc)t + (�0 − ωc)t sin(�0 − ωc)t
(�0 − ωc)3

, (153a)

γ4(t) = 2|g|4 2(�0 − ωc)t cos(�0 − ωc)t − sin 2(�0 − ωc)t
(�0 − ωc)3

. (153b)

2. J2(ω) = ηωe−ω/ωc

Again, we use the integral of the shifted memory kernel from Eq. (37):

Z(t, t1) = iηωcei�0t

1 + iωct
− iηωcei�0(t−t1)

1 + iωc(t − t1)
+ iJ (�0)

[
Ei

(
�0

ωc
[1 + iωc(t − t1)]

)
− Ei

(
�0

ωc
(1 + iωct)

)]
. (154)

The second-order Lamb shift and decay rate are, using Eq. (149a),

S2(t) = −2ηωc + 2ηωc
cos(�0t)+ ωct sin(�0t)

1 + (ωct)2
− 2J2(�0)

{
Re

[
Ei

(
�0

ωc
(1 + iωct)

)]
− Ei

(
�0

ωc

)}
, (155a)

γ2(t) = 2ηωc
ωct cos(�0t)− sin(�0t)

1 + (ωct)2
+ 2J2(�0)Im

[
Ei

(
�0

ωc
(1 + iωct)

)]
. (155b)

The Markovian decay rate is obtained in the long time limit. Using limx→∞ Ei(ix + 1) = iπ , we obtain

γM = lim
t→∞ γ2(t) = 2πη�0e−�0/ωc = 2πJ (�0), (156)

in agreement with Eq. (123b).
For the fourth-order decay rate, Eq. (149b) does not admit a closed-form solution and needs to be evaluated

numerically.
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3. J3(ω) = ηω�(ωc − ω)

We use the shifted integral of the memory kernel in Eq. (40):

Z(t, t1) = η

t(t − t1)
[ei(�0−ωc)(t−t1)t − ei�0(t−t1)t + (ei�0t − ei(�0−ωc)t)(t − t1)]

+ iη�0{Ei[i(�0 − ωc)t] − Ei(i�0t)− Ei[i(�0 − ωc)(t − t1)] + Ei[i�0(t − t1)]}. (157)

Thus,

S2(t) = −2iη
[

sin(�0t)− sin[(�0 − ωc)t]
t

−�0 ln
∣∣∣∣1 − ωc

�0

∣∣∣∣ − ωc + Re(�0{Ei[i(�0 − ωc)t] − Ei(i�0t)})
]

, (158a)

γ2(t) = 2η
(

cos(�0t)− cos[(�0 − ωc)t]
t

− π�0�(ωc −�0)+�0Im{Ei(i�0t)− Ei[i(�0 − ωc)t]}
)

. (158b)

We recover the Markov approximation in the large-t limit:

lim
t→∞ γ2(t) = 2πηJ3(�0). (159)

While the TCL result (158b) does not entirely match the
exact result, it does describe an oscillatory behavior similar
to the exact solution, which is entirely absent in the Marko-
vian limit. A similar phenomenon has been described in the
context of nonequilibrium dynamics in Ref. [36].

Moreover, recall that the Markovian rate vanishes when
�0 > ωc [Eq. (126b)], resulting in the absence of decay. In
contrast, when �0 > ωc, we find that

∫ ∞

0
γ2(t′)dt′ = 2η

[
ωc

�0 − ωc
+ ln

(
�0 − ωc

�0

)]
, (160)

so that the asymptotic limit for the population in the
TCL2 approximation (which coincides with the Redfield
equation), exp{− ∫ ∞

0 γ2(t′)dt′}, is nonzero. This qualita-
tively recovers the nonzero decay property of the exact
solution.

For the fourth-order decay rate, Eq. (149b) again does
not admit a closed-form solution and needs to be evaluated
numerically.

IV. ANALYSIS

In this section, we compare the exact solution for the
excited-state population ρ11(t) and the coherence to the
results of the various approximation schemes we described
above. We also compare the exact Lamb shift and decay
rate γ (t) to the corresponding quantities predicted by these
approximation schemes. We do this for all three spec-
tral densities where possible, for the CG-LE and C-LE,
RWA-LE, TCL2 (Redfield), and TCL4. These results are
summarized with corresponding equation references in
Table I.

A. Computation of the optimal coarse-graining time in
CG-LE

Before presenting the comparison to the exact results,
we first explain our methodology for optimizing the
coarse-graining time τ within the framework of the CG-
LE, since in the ensuing comparison we use the optimal τ
values. Recall that the coarse-graining time needs to satisfy
the condition ωcτ 
 1 [Eq. (61)].

To determine the appropriate coarse-graining timescale
τ , we minimize a metric that quantifies the deviation from
the exact solution. We employ the integrated trace-norm

TABLE I. Analytical results. The equations listed in the table are explicit analytical results. The results for empty cells are obtained
numerically.

Exact C-LE and CG-LE RWA-LE TCL2 TCL4

Population ρ11 Eq. (30a) Eq. (79a) Eq. (119a) Eqs. (144a), (150a) Eqs. (144a), (150b)
Coherence ρ01 Eq. (30b) Eq. (79b) Eq. (119b) Eqs. (144b), (150a) Eqs. (144b), (150b)
Lamb shift S J1 Eq. (36a) 0 Eq. (120a) Eq. (152a) Eq. (153a)

J2 0 Eq. (123a) Eq. (155a)
J3 0 Eq. (126a) Eq. (158a)

Decay rate γ J1 Eq. (36b) Eq. (80) Eq. (120b) Eq. (152b) Eq. (153b)
J2 Eq. (81) Eq. (123b) Eq. (155b)
J3 Eq. (82) Eq. (126b) Eq. (158b)
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(a) (b)

FIG. 1. (a) Integrated trace-norm distance D[0,100] between the exact solution and the Markovian approximations, CG-LE and RWA-
LE, as a function of the dimensionless coarse-graining time ωcτ for the Ohmic bath spectral density J2 with η = 1 and �0/ωc = 1.
The minimum is obtained for a coarse-graining time τ = 0.501 939/ωc. (b) The coarse-graining at which D[0,100] is minimized as a
function of the qubit frequency �0/ωc for η = 1 for the three different spectral densities. The labeled red dots indicate the values of
�0/ωc shown in each of the corresponding figures.

distance [23] as our chosen metric, defined as

D[0,T] ≡ 1
2T

∫ T

0
dt‖ρexact(t)− ρapprox(t)‖1, (161)

where ‖M‖1 ≡ Tr
√

M †M . Since M = ρexact − ρapprox is
Hermitian and traceless, it can be written as

( a b
b∗ −a

)
in

the qubit case, so that Tr
√

M 2 = 2
√

a2 + |b|2, and we can
simplify the integrand as

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J2(ω) = ηωe−ω/ωc η = 1      Ω0/ωc = 1

FIG. 2. (a) Trace-norm distance ‖ρexact − ρapprox‖1, (b) decay rate ratio γ /γRWA, (c) Lamb shift ratio S/SRWA, (d) population ρ11, and
the coherence in its (e) real part Re(ρ01) and (f) imaginary part Im(ρ01) with an initial state ρ(0) = |+〉〈+| for Ohmic spectral density
J2(ω) = ηωe−ω/ωc as a function of dimensionless time ωct for coupling η = 1 and qubit frequency ratio �0/ωc = 1. Five different
approaches are depicted in the plots: the exact solution (Exact), TCL2 (Redfield), TCL4, CG-LE, and RWA-LE (Markov). The CG-LE
coarse graining time is τ = 0.501 939/ωc.
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‖ρexact − ρapprox‖1

= 2
√
(ρ11,exact − ρ11,approx)2 + |ρ01,exact − ρ01,approx|2.

(162)

In Fig. 1(a), we illustrate the distance D between the
exact solution and both the CG-LE and the RWA-LE as
a function of the dimensionless quantity ωcτ , where we
vary the coarse-graining time τ . In this example, we use
the parameters η = 1 and �0/ωc = 1, and the numerical
integration is performed up to a total time of ωcT = 100.
This upper limit is justified by the observation that the
distance is minimized at relatively short times. For exam-
ple, in Fig. 1(a) the minimum occurs at ωcτ = 0.501 39,
thus satisfying Eq. (61). Notably, the coarse-graining solu-
tion outperforms the RWA-LE solution, consistent with the
findings reported in Ref. [23].

In Fig. 1(b), we present the minimum coarse-graining
time as a function of the qubit frequency �0/ωc for η =
1 across the three different spectral models. The coarse-
graining times used in the later figures are indicated with
red dots in the plot. We selected �0/ωc ∈ [0.15, 2] to
account for a range of small to large qubit frequencies.

The most notable conclusion from Fig. 1(b) is that the
condition ωcτ 
 1 cannot be satisfied for the impulse (J1)
and triangular (J3) spectral densities within the range of
�0/ωc values shown. However, it is satisfied for the Ohmic
spectral density (J2), the most physically relevant of the

three. We thus expect the CG-LE to perform poorly for
J1 and J3, but to perform relatively well for J2. These
expectations are borne out in our results below.

Note further that, for the Ohmic spectral density, the
coarse-graining timescale increases as the qubit frequency
decreases, tending to the RWA-LE solution, in line with
Eq. (117). Conversely, for the spectral density J1 =
|g|2δ(ω − ωc), characterized by strong non-Markovian
behavior and oscillations that prevent the fitting of a
Markovian exponential decay, the coarse-graining time
diverges at ω − ωc to attempt to fit the exact solution.

We remark that to ensure the validity of RWA-LE, the
weak-coupling limit (106) needs to be satisfied, a point we
comment on in more detail below.

B. Exact solution versus TCL and Markov
approximations for the Ohmic spectral density

We now present the results of a comparison between the
exact solution and the different master equations for the
Ohmic spectral density, the most physically interesting of
the three densities. Our general expectations are that the
TCL approximations will capture some of the aspects of
the non-Markovian dynamics and will thus outperform the
two Markovian master equations, and that the CG-LE will
outperform the RWA-LE due to the ability to optimize the
coarse-graining timescale τ in the former. This expecta-
tion depends on the validity condition ωcτ 
 1 not being

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J2(ω) = ηωe−ω/ωc η = 1/2   Ω0/ωc = 1

FIG. 3. Same as Fig. 2 with weak coupling η = 1/2 and a qubit frequency equal to the cutoff: �0/ωc = 1. The CG-LE coarse
graining time is τ = 0.659 732/ωc.
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violated, as explained in the previous section. Indeed, we
find that this holds for all the examples we consider in this
section, at least in the sense that we find ωcτ < 1 in all
cases.

For the initial condition, we consider a simple scenario
where c1(0) = c0(0) = 1

2 and ck(0) = 0. In this setup, the
system is initially in the state |+〉 = (|0〉 + |1〉)/√2, while
the bath is initially in the vacuum state |v〉 of the cavity. To
determine the amplitude for the exact solution, from which
we obtain the population ρ11(t) = |c11(t)|2 of excited state
|1〉, we need to apply a numerical inverse Laplace trans-
form to Eq. (24), where the Laplace transform of the
memory kernel f̂ (s) is given by Eq. (38). Irrespective of
the specific positive values of η, ωc, and �0, the roots of
Eq. (24) are found to be complex. This means that the
amplitude c1(t) is oscillatory. This trend persists even in
cases of weak coupling, resulting in a damped oscillation
of the amplitude.

1. General observations

Figures 2–5 offer a comparison of the temporal dynam-
ics against the exact solution across four distinct approx-
imations: TCL2, TCL4, CG-LE (= C-LE), and RWA-LE.
The comparison metrics comprise the trace-norm distance
‖ρexact − ρapprox‖1, decay rate γ , Lamb shift S, population
ρ11, and coherence ρ01, all with the Ohmic spectral density
J2, but with different values of the coupling η and qubit

frequency ratio �0/ωc. The equations plotted for each
curve are listed in Table I.

During the initial time intervals (ωct ≈ 1), the TCL2 and
TCL4 solutions generally exhibit much closer agreement
with the exact solution than the Markovian CG-LE and
RWA-LE, as evidenced especially by the trace-norm dis-
tance curves. The plots representing population and the
real part of the coherence reveal that the TCL approx-
imations aptly capture the Zeno effect observed in the
exact solution—characterized by a gradual concave decay
at short times. This stands in contrast to the monotonic
exponential decay exhibited by the Markovian approaches.

Note that, as mentioned above in the discussion of
Eq. (117), the TCL2 decay rate γ gradually approaches
the asymptotic behavior of the RWA-LE decay rate. Con-
cerning the CG-LE, we note that it exhibits a smaller
trace-norm distance from the exact solution compared to
the RWA-LE, as anticipated in Ref. [23]. This is due to
the aforementioned ability to optimize the coarse-graining
time. Both Markovian approximations exhibit a constant
decay rate and Lamb shift, but in the case of the CG-LE,
the Lamb shift S is zero, resulting in the coherence being
purely real.

2. Weak and strong coupling

Recall that the RWA-LE needs to satisfy Eq. (106), in
particular η 
 1. In practice, we use both weak (η = 0.5)

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J2(ω) = ηωe−ω/ωc η = 1      Ω0/ωc = 1/2

FIG. 4. Same as Fig. 2 with an Ohmic spectral density J2(ω) and the same coupling η = 1, but with a lower qubit frequency:
�0/ωc = 1/2. The CG-LE coarse graining time is τ = 0.999 876/ωc.

014028-18



MARKOVIAN AND NON-MARKOVIAN MASTER EQUATIONS. . . PHYS. REV. APPLIED 22, 014028 (2024)

and strong (η = 1) coupling. We thus expect the RWA-LE
to be a relatively poor approximation in the latter case, at
least for relatively short evolutions.

Figures 2 and 3 compare the results for weak and
strong coupling. Using a qubit frequency equal to the
cutoff frequency �0/ωc = 1, Fig. 2 shows the strong-
coupling results, while Fig. 3 shows the weak-coupling
results.

After rising first, the exact decay rate [Eq. (29b)] for
strong coupling (η = 1) in Fig. 2(b) exhibits a negative
trend and continues to exhibit nonmonotonic behavior
for even longer evolution times. Intervals during which
γ turns negative correspond to non-Markovian dynam-
ics, leading to an increase in population, as evidenced in
Fig. 2(d). Consequently, during intermediate times, the
approximation methods struggle to accurately match the
exact solution, which displays a remarkably slow popula-
tion decay.

In contrast, for weak coupling (η = 1/2), the decay
rate in Fig. 3(b) remains positive, causing the population
and coherence to approach zero more rapidly. This aligns
closely with the behavior exhibited by the approximation
methods, as demonstrated in Figs. 3(d)–3(f). This trend is
also affirmed by the trace-norm distance plots in Figs. 2(a)
and 3(a), where weaker coupling results in a smaller
trace-norm distance difference between the approximation
methods and the exact solution.

3. Weak and strong qubit frequency

Fixing the coupling at η = 1 [technically at the upper
limit of Eq. (106)], we compare the cases where the qubit
frequency �0 is either less than or greater than the cut-
off frequency ωc, as shown in Figs. 4 and 5, respectively.
Recall that Eq. (106) also imposes the validity condi-
tion �0/ωc > 1 on the RWA-LE, so we expect better
agreement in Fig. 5, as is indeed the case.

In more detail, from the trace-norm distance plots in
Figs. 4(a) and 5(a), we observe that all the approxi-
mations exhibit closer agreement with the exact result
when the qubit frequency is relatively high, especially at
longer evolution times. This trend is also noticeable in
the population [Figs. 4(d) and 5(d)] and coherence decay
[Figs. 5(e), 5(f), 4(e), and 4(f)]. For low qubit frequencies,
as in Fig. 4(b), the exact decay rate γ exhibits non-
Markovian negative phases. Correspondingly, the popula-
tion in Fig. 4(d) increases initially and then stabilizes at a
nonzero value. The approximations fail to match the exact
solution’s behavior for extended periods, with the TCL
approximation being effective primarily during short times
(ωct < 1.5). This behavior is characteristic of strong non-
Markovian behavior, which is expected in models with
nonflat spectral densities such as those considered here.

Conversely, for higher qubit frequencies in Fig. 5(b),
the behavior of the TCL decay rate resembles that of the
exact solution. Even the exact Lamb shift in Fig. 5(c)

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J2(ω) = ηωe−ω/ωc η = 1      Ω0/ωc = 4

FIG. 5. Same as Fig. 2 with an Ohmic spectral density J2(ω) and the same coupling η = 1, but with a larger qubit frequency:
�0/ωc = 4. The CG-LE coarse graining time is τ = 0.025 953/ωc.
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(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J1(ω) = |g|2δ(ω − ωc) |g| = 1 Ω0/ωc = 1/2

FIG. 6. Same as Fig. 2, but with an impulse bath spectral density J1(ω) = |g|2δ(ω − ωc) with coupling |g| = 1 and a low qubit
frequency: �0/ωc = 1/2. The CG-LE coarse graining time is τ = 7.197 305/ωc.

closely aligns with the approximation methods, with the
notable exception of CG-LE (where the Lamb shift is
zero). Consequently, in this scenario, the approximations

reasonably reproduce the exact behavior, as demonstrated
in Figs. 5(d)–5(f). The TCL4 approximation is particularly
good according to all six of our metrics.

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J1(ω) = |g|2δ(ω − ωc) |g| = 1 Ω0/ωc = 2

FIG. 7. Same as Fig. 2, but with an impulse bath spectral density J1(ω)with coupling |g| = 1 and a high qubit frequency:�0/ωc = 2.
The CG-LE coarse graining time is τ = 3.609 881/ωc.
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C. Exact solution versus TCL and Markov
approximations for the impulse spectral density

For the impulse spectral density J1(ω) = |g|2δ(ω − ωc),
the exact solution for population |c1(t)|2 of the excited
population [see Eq. (34)] is purely periodic. Consequently,
no Markovian approximation with exponential decay can
accurately capture the exact solution. This renders the
RWA-LE inadequate for the description, as remarked in
the discussion of Eq. (120b). However, since the CG-LE
retains the coarse-graining timescale as an optimization
parameter, we use it to understand how close a Marko-
vian approximation can still be to the exact solution in this
rather extreme non-Markovian case, even though we have
already concluded that the validity condition of the CG-LE
cannot be satisfied [recall the discussion in Sec. IV A].

Figures 6 and 7 depict the time evolution of the same
metrics as in the previous section, but for the impulse
spectral density J1 with two different qubit frequencies:
�0/ωc = 1/2 and �0/ωc = 2. For this spectral density,
we have closed analytical expressions for the TCL Lamb
shift [see Eqs. (152a) and (153a)] and decay rate [see
Eqs. (152b) and (153b)]. In general, we observe that, as
expected, the CG-LE is a poor approximation to both
the short-time and longer-time oscillatory behavior of the
decay rate, population, and coherence.

In contrast, the TCL2 and TCL4 approximations in
Eqs. (152b) and (153b) are fairly accurate for short-time
dynamics. However, the populations and coherences under

TCL4 deviate rapidly from the exact solution for longer
times, as demonstrated in Figs. 6(d)–6(f) and 7(d)–7(f).
The deviation is accentuated by the recurrent intervals of
negative decay rates in the exact solution and TCL approx-
imations. This is especially noticeable in TCL4, where the
oscillations of the decay rates increase with time, taking
on higher negative values, as seen in Figs. 6(b) and 7(b).
Consequently, TCL4 develops an instability reflected in
the diverging oscillation frequency of the coherence seen
in Figs. 6(e) and 6(f). An explanation of the breakdown of
the TCL approximation is given in Appendix I.

When comparing the low qubit frequency case
(�0/ωc = 1/2) in Figs. 6(d)–6(f) with the high qubit fre-
quency case (�0/ωc = 2) in Figs. 7(d)–7(f), a distinction
emerges. In the former, TCL2 exhibits a decay to zero
similar to CG-LE, while in the latter, TCL2 mirrors the
oscillatory behavior of the exact solution. This observation
underscores the higher accuracy of the TCL approximation
as the qubit frequency increases. However, while TCL4 is
a better approximation at short times ωct < 1.5, it is worse
than TCL2 at long times for the impulse spectral density.

D. Exact solution versus TCL and Markov
approximations for the triangular spectral density

The triangular spectral density J3(ω) = ηω�(ωc − ω)

is intermediate between the impulse density J1(ω) and the
Ohmic density J2(ω) because it matches J2(ω) for low
frequencies and drops to zero for frequencies exceeding

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J3(ω) = ηΘ(ωc − ω) η = 1 Ω0/ωc = 1/2

FIG. 8. Same as Fig. 2, but with a triangular bath spectral density J3(ω) = ηω�(ωc − ω) with coupling η = 1 and a low qubit
frequency: �0/ωc = 1/2. The CG-LE coarse graining time is τ = 2.631 777/ωc.
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the cutoff. In Figs. 8 and 9, we perform a comparison for
�0/ωc = 1/2 and �0/ωc = 1.8. Recall that here too, the
validity condition of the CG-LE cannot be satisfied, as
discussed in Sec. IV A.

Similar to the impulse case J1, for J3, we observe a
strong non-Markovian oscillatory behavior in the exact
solution’s population and coherence, in Figs. 8(d)–8(f)
and 9(d)–9(f), respectively. The decay rate [as seen in
Figs. 8(b) and 9(b)] oscillates between positive and neg-
ative values.

As previously discussed, the TCL approximation is
capable of capturing the quantum Zeno effect, which leads
to a better agreement with the exact solution than the
Markovian approximation does for short evolution times.
However, a significant difference emerges in the exact
decay rate between low and high qubit frequencies, as
shown in Figs. 8(b) and 9(b). In the latter case, the decay
rate oscillates and converges to zero (equivalent to the rate
of the Markov approximations). Conversely, in the former
case, the decay rate exhibits discontinuous behavior, ren-
dering the approximation methods unsuitable for fitting the
exact solution. In general, when �0 < ωc, the discontinu-
ous behavior of the decay rate leads to oscillatory popula-
tion dynamics, where the population first decays to zero,
then revives, and subsequently decays again. However,
for �0 > ωc, the decay rate converges to zero, resulting

in nondecaying population dynamics, similar to what was
observed for J1 in Fig. 7(d).

Furthermore, as depicted in Fig. 8(c), the exact Lamb
shift S diverges when �0 < ωc, in contrast to the zero
Lamb shift in the CG-LE and the constant nonzero S in the
RWA-LE and TCL2 (which converges to the RWA). How-
ever, TCL4 diverges in an attempt to match the exact S. In
contrast, for the Lamb shift S when �0 > ωc [as shown in
Fig. 9(c)], the TCL approximations align with the oscil-
latory behavior of the exact solution. Even the constant
RWA-LE approximation closely resembles the asymp-
totic behavior. However, the CG solution maintains a zero
Lamb shift.

Moving on to the population and coherence in �0 < ωc,
as illustrated in Figs. 8(d)–8(f), we observe that the approx-
imations rapidly decay to zero, matching the exact solution
at short times. However, the oscillatory behavior at later
times remains beyond the reach of the approximations,
similar to what was observed for J1 in Fig. 6(d).

In contrast, for the population and coherence at �0 >

ωc, as depicted in Figs. 9(d)–9(f), the TCL approxima-
tion exhibits an oscillatory and nondecaying behavior, akin
to the exact solution, matching the Zeno effect at short
times. TCL4, in particular, matches the exact solution
well up to ωct ≈ 2. The CG-LE approximation performs
much better than RWA-LE for short times in describing

(a) (b) (c)

(d) (e) (f)
Trace-norm distance Decay rate Lamb shift

Population Coherence—real part Coherence—imaginary part

J3(ω) = ηΘ(ωc − ω) η = 1 Ω0/ωc = 1.8

FIG. 9. Same as Fig. 2, but with a triangular bath spectral density J3(ω) = ηω�(ωc − ω) with coupling η = 1 and a high qubit
frequency: �0/ωc = 1.8. The CG-LE coarse graining time is τ = 1.862 988 6/ωc. Note that in panel (b), the RWA-LE decay rate is
zero due to Eq. (126b).
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the excited-state population, which remains constant in
the latter due to its zero decay rate [as can be seen from
Eq. (126b)]. The two are comparable in describing the
coherence. For long times, the Markov approximations,
which display monotonic decay, fail to capture the exact
behavior. CG-LE, which aims to minimize the trace-norm
distance with the exact solution, decays slowly to achieve
its objective.

In summary, for the triangular spectral density, when
�0 > ωc, the non-Markovian oscillatory behavior is cap-
tured qualitatively by the TCL approximation, as opposed
to the CG approximation or the RWA. In contrast, when
�0 < ωc, all approximations exhibit rapid decay and fail
to accurately capture the exact solution.

V. SUMMARY AND CONCLUSIONS

In this work, we studied the dynamics of a qubit in a
cavity interacting with bosonic baths described by three
different spectral densities: impulse, Ohmic, and triangular.
The model is exactly solvable within the single-excitation
subspace, and this allowed us to perform a comprehen-
sive comparison to a number of different master equa-
tions, both Markovian (CG-LE, C-LE, and RWA-LE) and
non-Markovian (TCL2 and TCL4). Of the three spectral
densities, the Ohmic model is the most physically rele-
vant, in particular in the context of transmons [19–21] and
superconducting flux qubits [22], and the other two were
introduced primarily to allow us to reach closed-form ana-
lytical results, as well as to study extreme non-Markovian
dynamics.

For weak coupling and a large qubit frequency, the
Ohmic case leads to a quasiexponential decay, charac-
teristic of the Markovian limit. In this regime, therefore,
we found that the purely Markovian master equations are
able to approximate the exact solution rather well. Out-
side of this regime, in particular also for the impulse and
triangular spectral densities, the Markovian master equa-
tions perform poorly, but we found that the TCL master
equation is still relatively accurate, in particular for short
evolution times. TCL is also able to distinctly capture non-
Markovian features such as bath-induced population and
coherence oscillations.

Within the regime of validity of the Markovian master
equations, we found the CG-LE and C-LE to be bet-
ter approximations than the standard RWA-LE. This was
achieved by optimizing the coarse-graining time to min-
imize the difference between the CG-LE and the exact
solution.

Overall, this work shows that low-order quantum mas-
ter equations can be accurate when operated in their
guaranteed regime of validity (short evolution times, in
particular), but significant caution must be exercised in
trusting their predictions outside of these regimes, as they
can dramatically deviate from the exact dynamics. The

TCL approach stands out as significantly more accurate
than the Markovian master equations, even when the lat-
ter are fine tuned via the optimization of a free parameter
such as the coarse-graining time. The standard Lindblad
equation based on the rotating-wave approximation is
particularly suspect.

Future research may wish to address—within the con-
text of the same analytically solvable model as studied
here, or similar analytically solvable models—the accu-
racy of the TCL master equation at higher orders, as
well as a variety of other master equations, such as the
phenomenological post-Markovian master equation [37,
38], Floquet-based master equations for periodic driving
[39,40], time-dependent Markovian quantum master equa-
tions [6,41–44], the universal Lindblad equation [45], the
geometric-arithmetic master equation [46,47], regularized
cumulant-based master equations [48], as well as various
adiabatic master equations [49–51]. Another interesting
direction worth considering is to incorporate more gen-
eral initial states, such as a thermal Gibbs state, a coherent
state [26], or a squeezed initial bath state. The accuracy
of both Markovian and non-Markovian approximations is
expected to improve for higher-temperature baths. Finally,
it is important to consider other types of bath spectral
densities, in particular 1/f noise, which plays an impor-
tant role in determining the low-frequency response and
dephasing rates of superconducting qubits, where it can be
suppressed using techniques such as dynamical decoupling
[52].
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APPENDIX A: DETAILED EXACT SOLUTION

Considering the Hamiltonian in Eq. (1), the general
solution for the one-excitation subspace is given by
Eq. (14). This solution can be expressed as a linear combi-
nation of the basis eigenvectors {|ψ〉0 , |ψ〉1 , |ϕk〉}, which
are tensor products of the qubit system basis {|0〉 , |1〉} and
the one-excitation bath basis {|v〉 , |k〉}k∈1,2,..., as shown in
Eqs. (13). Here, |v〉 denotes the vacuum state with no pho-
tons, and |k〉 = b†

k |v〉 represents the state with one photon
in mode k. The coefficients of the linear combination sat-
isfy the normalization condition given in Eq. (15). For the
evolution of the closed system within the one-excitation
subspace, we utilize the Schrödinger equation with the
interaction Hamiltonian in Eq. (11). Using
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σ−(t) |0〉 = σ+(t) |1〉 = B(t) |v〉 = 0, (A1a)

σ+(t) |0〉 = ei�0t |1〉 , σ−(t) |1〉 = e−i�0t |0〉 , (A1b)

B(t) |k〉 = gke−iωkt |v〉 , B†(t) |v〉 =
∑

k

g∗
k eiωkt |k〉 , (A1c)

this leads to Eq. (19):

i ˙|φ〉 = ċ0(t) |ψ0〉 + ċ1(t) |ψ1〉 +
∑

k

ċk(t) |ϕk〉

= λH̃SB |φ(t)〉

= λ[σ+(t)⊗ B(t)+ σ−(t)⊗ B†(t)]
(

c0(t) |ψ0〉 + c1(t) |ψ1〉 +
∑

k

ċk(t) |ϕk〉
)

= λ

(
σ+(t) |0〉 ⊗ B(t)

∑
k

ck(t) |k〉 + c1(t)σ−(t) |1〉 ⊗ B†(t) |v〉
)

= λ

( ∑
k

gkck(t)ei(�0−ωk)t |ψ1〉 +
∑

k

g∗
k c1(t)e−i(�0−ωk)t |ϕk〉

)
. (A2)

We can obtain the joint system-bath density matrix using Eq. (14):

ρSB(t) = (|c0|2|0〉〈0| + c0c∗
1|0〉〈1| + c1c∗

0|1〉〈0| + |c1|2|1〉〈1|)⊗ |v〉〈v|

+ |0〉〈0| ⊗
( ∑

j ,k

cj c
∗
k |j 〉〈k| +

∑
k

(c0c
∗
k |v〉〈k| + c∗

0ck|k〉〈v|)
)

+
∑

k

c1c
∗
k |1〉〈0| ⊗ |v〉〈k| +

∑
k

ckc∗
1|0〉〈1| ⊗ |k〉〈v|. (A3)

Taking the partial trace over the bath, we obtain the sys-
tem state in the matrix form shown in Eq. (25). Its time
derivative is given in Eq. (26). If we write the system
density matrix in terms of the populations ρ00, ρ11 and its
coherences ρ01, ρ10, we have

ρ11(t) = |c1(t)|2 = 1 − ρ00(t), (A4a)

ρ01(t) = c0ċ∗
1(t) = ρ∗

10(t). (A4b)

Explicitly substituting the system density matrix into the
ansatz (28) along with Eq. (27), we obtain

KS(t)ρ =
(

γ (t)ρ11 [iS(t)− γ (t)]ρ01/2
[−iS(t)− γ (t)]ρ10/2 −γ (t)ρ11

)
.

(A5)

Comparing this with Eq. (26) gives the differential equa-
tions

∂t|c1(t)|2 = −γ (t)|c1(t)|2, (A6a)

c∗
0ċ1(t) = − 1

2 [iS(t)+ γ (t)]c∗
0c1(t). (A6b)

From the first equation, we obtain the population evolution
(30a), and from the second one, we can take its real and
imaginary parts to obtain Eqs. (29).

APPENDIX B: SIMPLIFICATION OF THE DECAY
RATE EXPRESSIONS FOR THE CG-LE

1. Ohmic spectral density

Starting from Eq. (81), we have

γ (τ) =
∫ ∞

0
ηωe−ω/ωcτ sinc2

(
(�0 − ω)τ

2

)
dω

= 2
τ
η

∫ ∞

−�0

dν
(ν +�0)e−(ν+�0)/ωc

ν2 (1 − cos ντ),

(B1)

where we have used the change of variables ν = ω −�0.
This integral can be split into two parts. By using the
exponential integral function Eq. (39c) we have
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∫ ∞

−�0

dν
e−ν/ωc

ν
(1 − cos ντ) = − Ei

(
�0

ωc

)
+ 1

2

[
Ei

(
�0

ωc
+ i�0τ

)
+ Ei

(
�0

ωc
− i�0τ

)]
. (B2)

For the second integral, we can utilize integration by parts. Setting u = e−ν/ωc(1 − cos ντ) and dv = ν−2dν, we have

∫ ∞

−�0

udv = −e�0/ωc

�0
(1 − cos�0τ)+

∫ ∞

−�0

dν
e−ν/ωc

ν

(
τ sin ντ − 1

ωc
(1 − cos ντ)

)
. (B3)

Since
∫ ∞

−�0

dν
e−ν/ωc

ν
τ sin ντ = − i

2
τ

[
Ei

(
�0

ωc
+ i�0τ

)
− Ei

(
�0

ωc
− i�0τ

)]
, (B4)

we can combine all the terms and arrive at the final expression for γ (τ) given in Eq. (81).

2. Triangular spectral density

Starting from Eq. (82) we have

γ (τ) =
∫ ωc

0
ηωτ sinc2

(
(�0 − ω)τ

2

)
dω

= 2
τ

∫ ωc−�0

−�0

dν
η(ν +�0)

ν2 (1 − cos ντ), (B5)

where we have again used the change of variables ν = ω −
�0. Now, for �0 < ωc, we have

∫ ωc−�0

−�0

dν
1 − cos ντ

ν

= ln
(
ωc −�0

�0

)
− Ci[(ωc −�0)τ ] + Ci(�0τ),

(B6)

where the sine and cosine integral functions are given in
Eqs. (39a) and (39b), respectively. The second term can be
obtained by using integration by parts:

∫ ωc−�0

−�0

dν
1 − cos ντ

ν2

= − 1 − cos ντ
ν

∣∣∣∣
ωc−�0

−�0

+ τ

∫ ωc−�0

−�0

sin(ντ)
ν

. (B7)

The last term is the sine integral function. Combining, we
arrive at the total rate as given by Eq. (82).

APPENDIX C: WHY THE FIRST-ORDER
CUMULANT K (1) IN THE C-LE CAN BE MADE TO

VANISH

Let 〈B〉 = Tr(ρBB) and define a new, shifted bath oper-
ator:

B′ ≡ B − 〈B〉IB. (C1)

Its expectation value vanishes:

〈B′〉 = 〈B〉 − 〈B〉〈IB〉 = 0. (C2)

The corresponding bath interaction picture operator is

B′(t) = U†
B(t)B

′UB(t) = U†
B(t)(B − 〈B〉IB)UB(t)

= B(t)− 〈B〉IB, (C3)

where, as before, UB(t) = e−iHBt. Assuming stationarity,
[HB, ρB(0)] = 0 immediately implies that [UB(t), ρB] = 0.
In this case 〈B′(t)〉 = 0 also, since then

〈B′(t)〉 = Tr[U†
B(t)B

′UB(t)ρB]

= Tr[B′UB(t)ρBU†
B(t)] = 〈B′〉 = 0. (C4)

Let

H ′
SB ≡ A ⊗ B′, �H ′

S ≡ 〈B〉A, H ′
S ≡ HS +�H ′

S.
(C5)

Correspondingly, the system-bath interaction can be writ-
ten as

HSB = H ′
SB + A ⊗ (B − B′) = H ′

SB +�H ′
S ⊗ IB. (C6)

Thus, we can write the full Hamiltonian as

H = HS ⊗ IB + HSB + IS ⊗ HB = H ′
0 + H ′

SB, (C7)

H ′
0 ≡ H ′

S ⊗ IB + IS ⊗ HB,

where H ′
0 defines a new, shifted interaction picture

Hamiltonian.
Correspondingly, in this new interaction picture H̃ ′(t) =

U′†
0 (t)H

′
SBU′

0(t) = A(t)⊗ B′(t), and, using Eq. (C4), we
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find that

TrB[H̃ ′(t), ρSB(0)] = TrB[A(t)⊗ B′(t), ρS(0)⊗ ρB(0)]

= 〈B′(t)〉[A(t), ρS(0)] = 0. (C8)

Therefore, K ′(1)(t)ρ(0) = 0, with K ′(1) defined within the
shifted interaction picture and with the modified system-
bath interaction H ′

SB.
The extension to the case when HSB has the general form

HSB = ∑
α Aα ⊗ Bα is immediate; in this case B′

α = Bα −
〈Bα〉IB and

H ′
S =

∑
α

〈Bα〉Aα , H ′
SB =

∑
α

Aα ⊗ B′
α . (C9)

Now, for our bath operators B+(t) = ∑
k gkeiωktbk and

B− = B∗
+ and the bath state ρB = |v〉〈v|, we have

〈B+(t)〉 = Tr[ρBB+(t)] =
∑

k

gkeiωkt〈bk〉 = 0, (C10)

and, analogously, 〈B−(t)〉 = 0, both arising from the fact
that the annihilation and creation operators average to zero
[Eq. (64)]. As a result, in our case, in fact B′(t) = B(t).

APPENDIX D: PROOF OF EQ. (93a)

It is useful to relate Bαβω(t) with bαβω(t):

Bαβω(t) =
∫ t

0
ds

∫ s

0
ds′ei(ω(s−s′)Bαβ(s, s′)

=
[ ∫ t

0
ds

∫ t

0
ds′ −

∫ t

0
ds

∫ t

s
ds′

]

× ei(ω′s−ωs′)Bαβ(s, s′)

=
[ ∫ t

0
ds

∫ t

0
ds′ −

∫ t

0
ds′

∫ s′

0
ds

]

× eiω(s−s′)Bαβ(s, s′)

= bαβω(t)−
∫ t

0
ds

∫ s

0
ds′e−iω(s′−s)Bαβ(s′, s)

= bαβω(t)− B∗
αβω(t).

In the last line we used Eq. (90).

APPENDIX E: [HB, ρB] �= 0

The bath state can be obtained via a partial trace of the
system from state (14), whose explicit pure density matrix

is given in Eq. (A3):

ρB(t) = TrS|φ(t)〉〈φ(t)| = (|c0|2 + |c1|2)|v〉〈v|
+

∑
k

ck(t)c∗
0|k〉〈v| +

∑
k

c∗
k(t)c0|v〉〈k|

+
∑
k,k′

ckc
∗
k′ |k〉〈k′|. (E1)

Now using the bath Hamiltonian in Eq. (9) and using the
identities nj |v〉 = 0 and nj |k〉 = δjk |j 〉, we have

HBρB =
∑
j ,k

ωj cj (t)c∗
k(t)|j 〉〈k| +

∑
j

ωj c∗
0cj (t)|j 〉〈v|

= (ρBHB)
† �= ρBHB

=
∑
j ,k

ωj ck(t)c∗
j (t)|k〉〈j | +

∑
j

ωj c0c
∗
j (t)|v〉〈j |.

In the particular case where ρB(0) = |v〉〈v|, or c0 = 0 and
ck(0) = 0, it trivially follows that [HB, ρB(0)] = 0.

APPENDIX F: INADEQUACY OF THE MARKOV
APPROXIMATION

In the main text, we showed that we can reduce
Eq. (108) to Eq. (116). However, this may lead to an
unbounded approximation error, as we now show in detail.

Before the Markov approximation, Eq. (108) contains
terms of the form

∫ t

0
dτBαβ(±τ)e±i�0τ σασβρ̃(t − τ), (F1)

where α,β ∈ {+, −}. The Markov approximation replaces
the latter with

∫ ∞

0
dτBαβ(±τ)e±i�0τ σασβρ̃(t). (F2)

Therefore, the approximation error is the difference
between these two quantities, which we write as

δ = ‖�1 +�2‖ ≤ ‖�1‖ + ‖�2‖, (F3)

where ‖ · ‖ represents the operator norm and

�1 ≡
∫ ∞

0
dτBαβ(±τ)e±i�0τ σασβ[ρ̃(t)− ρ̃(t − τ)],

(F4a)

�2 ≡
∫ ∞

t
dτBαβ(±τ)e±i�0τ σασβρ̃(t − τ). (F4b)

Let ‖ · ‖1 denote the trace norm and observe that ‖AB‖ ≤
‖A‖‖B‖1 for any pair of operators A and B.

014028-26



MARKOVIAN AND NON-MARKOVIAN MASTER EQUATIONS. . . PHYS. REV. APPLIED 22, 014028 (2024)

For the Ohmic spectral density J2(ω), using Eq. (121),
we have

‖�2‖ ≤
∫ ∞

t
dτ |Bαβ(±τ)| ‖σα‖ ‖σβ‖ ‖ρ̃(t − τ)‖1

≤
∫ ∞

t
dτ |B+−(±τ)| = ηωc

∫ ∞

t

d(ωcτ)

1 + (ωcτ)2

=
(
π

2
− arctan(ωcτ)

)
ηωc. (F5)

This quantity goes to zero for ωcτ � 1, as required. On
the other hand, the error term �1 is unbounded. First, by
the mean value theorem, there is a point t′ ∈ [t − τ , t] such
that

‖ρ̃(t)− ρ̃(t − τ)‖ ≤ τ sup
t′∈[t−τ ,t]

‖ ˙̃ρ(t′)‖, (F6)

so that

‖�1‖ ≤
∫ ∞

0
dτ τ |Bαβ | sup

t′∈[t−τ ,t]
‖ ˙̃ρ(t′)‖. (F7)

We can bound ‖ ˙̃ρ(t′)‖ using the state evolution in
Eq. (111), where we undo the Markovian approxima-
tion by replacing ρ̃(t) with ρ̃(t − τ) [i.e., returning to
Eq. (108)]:

‖ ˙̃ρ(t)‖ ≤
∫ t

0
dτ |B+−(τ )| ‖[σ+, σ−ρ̃(t − τ)]‖

+
∫ t

0
dτ |B−+(−τ)| ‖[σ+, ρ̃(t − τ)σ−]‖

≤ 4
∫ t

0
dτ |B+−(τ )| ‖σ+‖ ‖σ−‖‖ρ̃(t − τ)‖1

≤ 4
∫ t

0
dτ |B+−(τ )| ≤ 4

∫ ∞

0
dτ |B+−(τ )|

= 2πηωc.

In the last line we used Eq. (F5) evaluated at t = 0.
While the integral

∫ ∞

0
τ n|B+−(τ )|dτ = π

2
ηω1−n

c sec(nπ/2) (F8)

converges for |n| < 1, it does not for |n| ≥ 1. Indeed, for
the Ohmic spectral density, we have

∫ ∞

0
τ |B+−(τ )|dτ = lim

τ→∞
η

2
ln[1 + (ωcτ)

2], (F9)

which diverges. While this diverging upper bound does
not prove that the error δ itself diverges, it does suggest

that this is indeed the case and hence that the approxima-
tion of replacing ρ(t − τ) by ρ(t) is inaccurate. Indeed,
the exact solution exhibits excited-state population oscil-
lations instead of purely Markovian exponential decay for
all values of the parameters of the Ohmic density.

A similar situation arises for the triangular spectral
density J3(ω). We find, numerically, that the integral∫ ∞

0 τ n|B+−(τ )|dτ [recall Eq. (124)] diverges for n > 0,
and therefore the Markov approximation is inadequate.

For a rigorous error bound, see Ref. [6].

APPENDIX G: PROOF OF EQ. (115)

Recall that �αβ(ω) ≡ ∫ ∞
0 dτBαβ(τ )eiωτ and HSB =

σ+ ⊗ B+ + σ− ⊗ B− and B†
+ = B−. Thus, if α �= β, Bα =

B†
β . It follows that

B∗
βα(τ ) = Tr[(ρBBβ(τ )Bα)†]

= Tr[ρBUB(τ )B†
αU†

B(τ )B
†
β]

= Tr[ρBUB(τ )BβU†
B(τ )Bα] = Bβα(−τ).

Hence, B∗
±∓(τ ) = B±∓(−τ) [as well as B∗

±±(τ ) =
B∓∓(−τ), though we do not use this result], which yields
�∗

±∓(ω) = ∫ ∞
0 dτB±∓(−τ)e−iωτ .

APPENDIX H: SIMPLIFICATION OF THE LAMB
SHIFT EXPRESSIONS FOR THE RWA-LE

1. J2(ω) = ηωe−ω/ωc

Here we derive Eq. (122b). Our starting point is
Eq. (122a), which we write as

�+−(�0)/(ηωc) =
∫ ∞

0
d(ωcτ)

ei�0τ

(1 + iωcτ)2

=
∫ ∞

0

eiαxdx
(1 + ix)2

(H1a)

=
∫ ∞

−∞

eiαxdx
(1 + ix)2

−
∫ 0

−∞

eiαxdx
(1 + ix)2

,

(H1b)

where α = �0/ωc and x = ωcτ .
The complex exponential integral is defined as [53]

E1(z) ≡
∫ ∞

z

e−u

u
du = −

∫ −z

−∞

eu

u
du, (H2)

where z = x + iy and | arg(z)| ≤ π/2. The following prop-
erty holds for y > 0:

−E1(−y) = Ei(y)+ iπ . (H3)

Here the real exponential integral Ei was defined in
Eq. (39c).
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The first integral on the right-hand side of Eq. (H1b) can
be computed via the residue theorem, i.e.,

∫ ∞

−∞

eiαxdx
(1 + ix)2

= −
∫ ∞

−∞

eiαxdx
(x − i)2

= −2π i(iαe−α), (H4)

since the second-order pole of the analytic function is at
x = i, so that the residue is

Res = d
dx

eiαx
∣∣∣∣
x=i

= iαe−α . (H5)

For the second integral on the right-hand side of Eq. (H1b),
we use a change of variable z = x − i and integrate by
parts:

∫ 0

−∞

eiαxdx
(1 + ix)2

= −
∫ 0

−∞

eiαxdx
(x − i)2

= −e−α
∫ −i

−∞

eiαzdz
z2

= −e−α
[

− eiαz

z

∣∣∣∣
−i

−∞
+ iα

∫ −i

−∞

eiαz

z
dz

]

= i − iαe−α
∫ −i

−∞

eiαz

z
dz

= i − iαe−α
∫ α

−∞

eu

u
du.

Using the complex exponential integral (H2) alongside
Eq. (H3), we have

∫ 0

−∞

eiαxdx
(1 + ix)2

= i − iαe−α[−E1(−α)]

= παe−α + i − iαe−α Ei(α).

Hence, the integral of interest, Eq. (H1a), becomes

∫ ∞

0

eiαxdx
(1 + ix)2

= παe−α − i + iαe−α Ei(α)

= −i + αe−α[π + i Ei(α)]. (H6)

Collecting these results we obtain Eq. (122b).

2. J3(ω) = ηω�(ωc − ω)

Here we derive Eq. (126). Our starting point is Eq. (125),
which we write as

�+−(�0)

ηωc
=

∫ ∞

0
dx

e−ix(1 + ix)− 1
x2 eiαx, (H7)

where, again, α = �0/ωc and x = ωcτ .

We start from the following indefinite integral, solved
via integration by parts:

∫
eiux

x2 dx = −eiux

x
+ iu

∫
eiux

x
dx. (H8)

Hence, the integral in Eq. (H7) is equal to

∫ ∞

0

ei(α−1)x

x2 dx −
∫ ∞

0

eiαx

x2 dx + i
∫ ∞

0

ei(α−1)x

x
dx

= eiαx(1 − e−ix)

x

∣∣∣∣
∞

0
− iα

∫ ∞

0

eiαx(1 − e−ix)

x
dx

= −i + 2α
∫ ∞

0
ei(2α−1)u sinc(u)du.

To compute the last integral, we consider the real and
imaginary parts separately. The real part is

∫ ∞

0
cos(2α − 1)u

sin u
u

du

=

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

sin 2αu + sin(2 − 2α)u
2u

du = π

2
, 0<α< 1,

∫ ∞

0

sin 2αu − sin(2α − 2)u
2u

du = 0, α > 1.

The imaginary part is

∫ ∞

0
sin(2α − 1)u

sin u
u

du

=
∫ ∞

0

cos(2α − 2)u − cos 2αu
2u

du

=

⎧⎪⎪⎨
⎪⎪⎩

−1
2

ln
(

1
α

− 1
)

, 0 < α < 1,

−1
2

ln
(

1 − 1
α

)
, α > 1.

Therefore, the integral in Eq. (H7) is

�+−(�0)

ηωc
=

⎧⎪⎪⎨
⎪⎪⎩
πα − i

[
1 + α ln

(
1
α

− 1
)]

, 0 < α < 1,

−i
[

1 + α ln
(

1 − 1
α

)]
, α > 1.

Collecting these results and using Eq. (117) we obtain
Eq. (126).

APPENDIX I: BREAKDOWN OF THE TCL
APPROXIMATION

For strong coupling or a small gap�0 < ωc, as in Figs. 6
and 8, we observe that the TCL approximation is accu-
rate for short times, but fails to capture the subsequent
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oscillatory behavior. For these cases, the operator I −�

in Eq. (137) is not invertible. For example, in the case of
the impulse spectral density J1, there is a common time t0
where the excited-state population ρ11(t0) = |c1(t0)|2 = 0
independently from the initial condition. This can be seen
directly from Eq. (34) or from Eq. (36b) when γ diverges.
The time t0 is the minimum time tn such that

tn = 2
|δ|

(
arctan

|δ|
|�0 − ωc| + nπ

)
, (I1)

where n is an integer and δ is given in Eq. (35). Since the
TCL master equation is a time-local master equation, it is
impossible to invert the evolution for t ≥ t0 back to its ini-
tial condition. This implies that the TCL master equation
gives an inconsistent result when the exact solution for the
population vanishes.

A similar argument can be given for the triangular
spectral density J3, as shown in Fig. 8. In contrast, this
argument is not valid for the infinite range Ohmic spec-
tral density J2, where the population decreases, but only
vanishes as t → ∞.
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