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Unlike conventional imaging with two-dimensional array sensors featuring millions of pixels, ghost
imaging enables the use of advanced detector technologies, giving advantages such as high signal-to-
noise ratio, wide spectral range, and robustness to light scattering. However, this involves an extremely
time-consuming measurement process, which means that it is difficult to meet the needs of high-quality
real-time imaging. This paradox becomes notable especially in the context of utilizing non-orthogonal
modulation patterns, such as the speckles generated by rotating ground glass. Efficient modulation patterns
and advanced reconstruction algorithms are widely studied as two main ideas to solve the above problem.
Here, we perform real-time, high-fidelity differential ghost imaging (DGI) at a low sampling ratio of 6.25%
by proposing a compact physically guided single-layer neural network with the DGI algorithm embedded.
Simulations and experiments show that, once the learned modulation patterns are obtained, our scheme
can achieve fast, high-quality, and noise-robust DGI without the need for complex iterative optimization
algorithms or subsequent optimization neural networks. Our scheme opens up new horizons for exploring
more efficient modulation patterns for ghost imaging by deeply combining physical priors.
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I. INTRODUCTION

Ghost imaging (GI) restores a scene by calculating the
second-order correlation of two light beams: modulation
pattern and bucket signal [1–15]. GI was first demonstrated
by Pittman et al. using entangled photon pairs [1]. Sub-
sequently, Bennink et al. discovered that GI could also
be achieved using classical light sources [2]. This dis-
covery sparked profound investigations into the nature
of GI within the academic community [3–6]. The even-
tual realization of computational ghost imaging (CGI)
[7,10] demonstrates that GI can be accurately described
using second-order correlations of classical optical fields,
without the necessity of relying on quantum properties.

Additionally, Shapiro’s CGI [7] illustrates that GI can
be achieved using only a single-pixel detector through pre-
computation of modulation patterns. It is worth noting that,
earlier, Sen et al. proposed a dual-photography [16] image
acquisition method that employed a single-pixel detector
to measure the intensity of modulated light. This approach
can be considered a prototype of single-pixel imaging
[8,12,13,17], closely resembling GI. Since there is only
one pixel to collect all photons, GI with a single-pixel
detector is endowed with great advantages over tradi-
tional camera imaging, such as detection sensitivity, dark
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count, response time, and spectral range. These advantages
are valuable in low-detection-intensity situations such as
medical imaging, remote sensing, or nonvisible spectral
scenarios where array detectors are expensive and rare.

Naturally, GI has received extensive attention from
researchers in various fields, such as spectral imaging
[18–20], terahertz imaging [17,21–25], x-ray imaging
[26–28], remote sensing [29,30], object tracking
[31–33], three-dimensional (3D) imaging [19,34,35], com-
plex amplitude optical field reconstruction [36–39], imag-
ing through scattering media [40–42], photoacoustic imag-
ing [43–45], etc. But that which makes also breaks: it is
also because only one pixel collects the light intensity of
the object, the reconstruction of the object requires multi-
ple measurements. This leads to a non-negligible acquisi-
tion time, and one has to make a trade-off between imaging
quality and measurement time, hindering the application of
GI in practical scenarios.

The need for fast and high-quality GI has led to sev-
eral outstanding efforts to address the above issues. On
the one hand, methods like speckle patterns with differ-
ent speckle sizes [46], reordering of the Hadamard bases,
[47–50] or Fourier bases of downsampled Fourier spec-
trum [51] are committed to designing and using more
efficient modulation patterns to achieve high-quality imag-
ing with a small number of measurements. On the other
hand, methods such as alternating projection [52] and
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compressed sensing [53,54] based techniques aim to obtain
better reconstruction by developing more advanced opti-
mization algorithms. However, this usually leads to multi-
ple iterations and high computational complexity.

Recently, deep learning (DL) [55] in an end-to-end form
has been adopted to construct the mapping from low-
quality reconstruction [56–58] or bucket signal [59,60] to
high-quality output. Furthermore, some researchers have
added modulation patterns into network training to conduct
imaging or sensing with the trained modulation patterns
[61–67]. Typically, a subsequent optimization network is
employed to intricately establish a mapping that bridges
the bucket signals [63] or lower-quality reconstructions
[66] with high-fidelity reconstructions.

In early GI studies, images were directly reconstructed
with noniterative intensity correlation algorithm [1,4,7,
10,11]. For instance, in CGI [7], one considers a two-
dimensional image of an object, O ∈ R

L×L, consisting
of N pixels, where N = L × L. A sequence of modula-
tion patterns H = [H1, H2, . . . , HM ] ∈ R

M×L×L are loaded
onto a spatial light modulator. Here Hm ∈ R

L×L repre-
sents the mth modulation pattern, and M denotes the total
number of modulation patterns. After interacting with the
object, M bucket detection signals are obtained, denoted
as I = [I1, I2, . . . , IM ] ∈ R

M . The imaging result can be
obtained through the following correlation operation: O =
〈HmIm〉 − 〈Im〉〈Hm〉, where 〈·〉 is the ensemble average in
terms of m. Here, the reconstruction of objects is the
weighted sum of modulation patterns, with the bucket
detection signals serving as weights. A larger measurement
signal represents a greater similarity between the modula-
tion pattern and the target scene, thus carrying more weight
in the reconstruction. These algorithms strictly fit the phys-
ical mechanisms of GI and their noniterative nature leads
to almost negligible reconstruction times, making them
well suited to meet the demands of real-time imaging.

It is worth noting that, as the differential measurement
is sensitive only to the fluctuating part of the intensity sig-
nal, differential ghost imaging (DGI) [11] can significantly
enhance the signal-to-noise ratio (SNR) in contrast to con-
ventional GI. In contrast to the aforementioned DL meth-
ods, the DGI algorithm is simpler and is unencumbered
by the well-documented issue of interpretability associ-
ated with neural networks. Additionally, the algorithm
possesses inherent flexibility. The sequence of modula-
tion pattern projections need not be fixed, and real-time
reconstruction can be achieved using only a limited num-
ber of modulation patterns, eliminating the need to wait
for the completion of all modulation pattern projections.
Furthermore, algorithms such as DGI are devoid of any
nonlinear operations, a quality that can be advantageous
in the context of optical computations, where the incor-
poration of nonlinearities presents a formidable challenge.
While DGI offers numerous advantages, achieving high-
quality DGI with a low sampling ratio requires more

efficient modulation patterns and is still an urgent issue to
be addressed.

Is there a set of superior modulation patterns available
that can enhance the quality of DGI at a low sampling
ratio without augmenting the algorithm’s intricacy? To
address this question, we propose a compact physics-
guided single-layer neural network for DGI with learned
grayscale modulation patterns at a low sampling ratio of
6.25%. The design of our network structure completely
follows the two processes of DGI: bucket signal acquisi-
tion and DGI reconstruction. In addition, we add physical
prior regularization to the network training, which effec-
tively alleviates the artifacts and noise in the reconstructed
image and improves the noise robustness of the learned
modulation patterns. Benefiting from rigorous physical
modeling and the concise network structure, our learned
modulation patterns can be directly used for real-time
high-quality DGI without the need for additional opti-
mization networks or complex iterative optimization algo-
rithms. Compared with the typical modulation patterns, our
scheme shows superiority in terms of imaging quality and
noise robustness at a low sampling ratio of 6.25%.

II. METHODS

The schematic diagram of the experimental setup is
shown in Fig. 1(b). The light emitted by the light source (a
white light-emitting diode lamp) is reflected by the object
and then imaged to a digital micromirror device (DMD;
DLP7000, 1024 × 768 pixel array of 13.6 × 13.6 µm2

mirrors) by an imaging optic with a focal length of 100
mm. After being modulated by the DMD loaded with the
modulation patterns, the intensity signals are sequentially
collected by a single-pixel detector (Thorlabs PDA100A-
EC) with a focusing lens of 50 mm.

The bucket signal acquisition can be expressed as

I m =
L∑

i,j

H m
i,j · Oi,j (1)

where I m and H m are the mth bucket signal and modulation
pattern, respectively, and O is the object. Here we assume
that the size of the object is L × L = N , with a total of N
pixels. We adopt M modulation patterns; then the sampling
ratio can be defined as β = M/N . In all our simulations
and experiments, L = 128, N = 16 384, and M = 1024, so
we have β = 6.25%. By vectorizing O and I , we can get
the matrix representation of Eq. (1):

I M×1 = H M×N ON×1. (2)

Here I M×1 is the column vector composed of M bucket
signals, H M×N is the modulation matrix composed of M
modulation patterns, and ON×1 is the column vector com-
posed of N pixels of the object. One common and intuitive
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FIG. 1. Principle and framework diagram of the proposed scheme. (a) The compact physics-guided single-layer neural network
with learned grayscale modulation patterns. DGI: differential ghost imaging. (b) A brief sketch of the experimental setup. (c) �

regularization is added to the optimization of the objective function (loss) as an a priori constraint. Specifically, we mitigate the
artifacts and noise in the reconstruction by constraining the variance of the diagonal elements and nondiagonal elements of the matrix
� to converge to zero.

method is using an inverse matrix H−1 to reverse the above
linear model. However, M < N in our case, which means
the modulation matrix H is nonsymmetric. To make this
problem solvable, we multiply by (H M×N )T on both sides
of Eq. (2) and let � = (H M×N )TH M×N , so we get

(H M×N )TI M×1 = �N×N ON×1. (3)

It is not difficult to see from Eq. (3) that a good solution
can be obtained when � approaches the identity matrix.
However, M < N in our case, as mentioned above, so it
is theoretically impossible for matrix � to reach the ideal
identity matrix; that is, the matrix � can only approximate
the identity matrix as closely as possible with a theoretical
limit.

In our scheme, we split the matrix � into the sum of two
matrices (�diag and �nondiag) with diagonal and nondiago-
nal elements of matrix �, respectively, as shown in Fig. 2.
We argue that, for a � that infinitely closely approaches
an identity matrix, the �diag matrix with flat diagonal
elements contributes to good reconstruction, while the
�nondiag matrix with nonzero elements mainly contributes
to artifacts and noise in the reconstructed image. Based
on this, we require that the � matrix should approach
the identity matrix by restricting the variance of the diag-
onal elements, and the absolute sum of the nondiagonal

elements of � should go to zero, as shown in Fig. 1(c):

Dvar = diag(�)var → 0,

Dnon = 1
N (N − 1)

∑
|diagnon(�)| → 0.

(4)

Here, we design a single-layer neural network in strict
accordance with the physical process of DGI, which con-
tains two parts: bucket signal acquisition and DGI recon-
struction, as shown in Fig. 1(a). In the first part, the object
O serves as the network input and label simultaneously,
and is modulated by M modulation patterns H to pro-
duce M bucket signals I : I = HO. In the second part,
we choose the DGI, a noise robust algorithm, combined
with the modulation patterns and bucket signals from the
first part to reconstruct the object image. Only the modula-
tion patterns in the first part of the network are trained as
learnable parameters, so it is considered as a single-layer
network. The loss function of the network consists of two
parts. In addition to the commonly used mean square error
(MSE) between the outputs and the labels, we innovatively
introduce the matrix � regularization to optimize the mod-
ulation patterns as shown in Fig. 1(c). We alleviate the
artifacts and noise in the reconstructions by constraining
the variance of diagonal elements and nondiagonal ele-
ments of � to approach zero, so as to improve the imaging
quality of the learned modulation patterns.
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FIG. 2. Schematic diagram of the � splitting. (a) Representation of the matrix �. In (b),(c), the blue sections correspond to the
diagonal and nondiagonal elements of the split � matrix, respectively. To form the matrices �diag and �nondiag, the clear regions in
(b),(c) are filled with zeros.

Therefore, the final objective function (loss function) to
optimize the modulation patterns H is

H ∗ = argminH ‖DGI(H , HO) − O‖2 + λ(Dvar + Dnon).
(5)

Here H ∗ is the optimized modulation pattern, DGI(·) rep-
resents the DGI reconstruction algorithm, and λ is the
weight factor used to balance � regularization in the
objective function. We choose λ = 0.01 in our scheme,
and more discussion about λ can be found in the
Appendix C.

We train the network on two datasets, CelebAMask-
HQ [68] and STL-10 [69]. CelebAMask-HQ is a dataset
consisting of 30 000 high-resolution human faces, 29 000
of which are used as the training set and the remaining
1000 are used as the test set after being downsampled to
128 × 128. STL-10 is a dataset containing 100 000 natu-
ral images of 10 categories with a size of 96 × 96. After
upsampling to 128 × 128, 90 000 (10 000) of them are
used as the training set (test set). The specific training
process is as follows. Firstly, the image samples (also serv-
ing as labels) are input into the network. Subsequently,
the trainable parameters in the network, i.e., the modula-
tion patterns H , are optimized via the objective function
[Eq. (5)]. Finally, upon completion of training, the network
parameters H ∗ are fixed and extracted, combined with
the DGI reconstruction algorithm for imaging. The whole
training process is implemented on the Pytorch framework
and sped up by an NVIDIA RTX 3090 graphics processing
unit. Our code is available at [70].

III. RESULTS

It should be emphasized that the core of our scheme is
to explore more efficient modulation patterns using DGI
methodology at a low sampling ratio of 6.25%. We focus
on comparing the grayscale modulation patterns obtained
by our scheme with several typical modulation pat-
terns in GI: binary random patterns (Random), reordered

Hadamard patterns (Hadamard) [48], Fourier sinusoidal
patterns (Fourier) [51], the trained binary patterns of the
deep convolutional autoencoder network (DCAN) [63],
and the physics-informed deep neural network (Informed
and Fine-tune) [66]. Specifically, our scheme obtains four
sets of modulation patterns by training on two datasets:
human face dataset CelebAMask-HQ [68] and natural
images of 10 categories dataset STL-10 [69]. We mark
the four sets of modulation patterns by Face, Face-Reg,
STL10, and STL10-Reg, where “-Reg” indicates that �

regularization is added during the training process. Figure
3 row 7 shows the examples of different modulation pat-
terns. See Appendix B for more details on the learned
modulation patterns. We perform numerical simulations
with these modulation patterns under the same sampling
ratio of β = 6.25%, and the reconstruction results for
several objects are shown in Fig. 3.

Obviously, as shown in Fig. 3 column a, it is difficult
to extract any target information from the reconstruction
of the random binary patterns (Random) with such a low
sampling ratio. Because of the low sampling ratio, the
Hadamard reconstructions show mosaic-like results with
a lot of details lost, as shown in Fig. 3 column b. The
Fourier reconstruction [Fig. 3 column c] also exhibits loss
of high-frequency details accompanied by severe ringing
effects [71]. The reconstruction of DCAN and Informed
(trained with the dataset STL10), as shown in Fig. 3
columns d and e, respectively, have similar performance.
They exhibit a slight improvement over Hadamard but
fall short of Fourier’s reconstruction. In addition, such
schemes using subsequent optimization networks have the
possibility of hallucinations and creation of artifacts [72].
These artifacts are known to be features that do not look
real, which is evident in the results of Informed shown
in Fig. 3 column e. Yet, as shown in Fig. 3 column f,
the reconstruction quality was significantly improved and
the above artifacts were alleviated after adopting the iter-
ative optimization Fine-tune process based on Informed.
As can be seen from Fig. 3 rows 1 and 4 and their local
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FIG. 3. Comparison of simulated reconstruction results of different modulation patterns with a sampling ratio of β = 6.25%. Row
7 contains the examples of different modulation patterns, and column k shows the ground truth for objects. Rows 1 and 3 are face
targets, while rows 4 and 6 are nonface natural images. Rows 2 and 5 are partial magnifications of rows 1 and 4, respectively, and the
red boxes in k1 and k4 are the selected magnification areas.

enlargements in Fig. 3 rows 2 and 5, our schemes show
fewer artifacts and distortions while having better details
compared to Hadamard, Fourier, DCAN, and Informed
results, especially Face-Reg and STL10-Reg with � reg-
ularization. The peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) for Face-Reg and
STL10-Reg with � regularization also show an overall
improvement compared to Face and STL10 shown in Figs.
4(a) and 4(b).

Specifically, Face and Face-Reg trained with the human
face dataset perform well on face images (Face1 and
Face2), as shown in Fig. 3 column i, rows 1–3 and col-
umn j, rows 1–3, which are rich in facial details, smooth,
and detailed overall. However, this advantage does not
continue in nonface images. Because of the intrinsic char-
acteristics of the modulated patterns shown in Fig. 3
column i, row 7 and column j, row 7, the nonface recon-
structions [Fig. 3 column i, rows 4–6 and column j, rows
4–6] of Face and Face-Reg appear with artifacts of facial-
like features. This sacrifice of generalizability in exchange
for outstanding performance for specific tasks has cer-
tain implications in scenarios such as magnetic resonance

imaging. In contrast, STL10 and STL10-Reg trained with
the STL-10 dataset have balanced and decent performance
on face and nonface images [Fig. 3 columns g and h], but
are slightly inferior to Face and Face-Reg on face images.
This is also consistent with the quantitative results in Figs.
4(a) and 4(b).

The above results are obtained without considering
noise, and noise is an important factor that cannot be
ignored in practical application scenarios. Here, we simu-
late the noise conditions by adding Gaussian white noise
to the bucket signal and use the SNR (where SNR =
10 log10(Psignal/Pnoise), where Psignal and Pnoise are the pow-
ers of the bucket signal and noise, respectively) of the
bucket signal to measure the noise level. We selected a
total of 20 images containing both human faces and natural
images as test data. The average PSNR and SSIM curves
of Figs. 4(c) and 4(d) show that the imaging quality of
all modulation patterns deteriorates as the SNR decreases
(i.e., the noise increases). At a very low sampling ratio,
Random cannot achieve effective reconstruction; conse-
quently, its results exhibit minimal variation under differ-
ent noise conditions. Fourier is very sensitive to noise,
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FIG. 4. Quantitative comparison of imaging quality for different modulation patterns with β = 6.25%. (a),(b) The peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) for the reconstructions of target images (Face1, Face2, Boat, and Flower).
(c),(d) The curves of average PSNR and SSIM versus noise for the reconstructions of 20 selected face and natural target images.

and its reconstruction quality decreases greatly with the
increase of noise.

In contrast, three schemes based on subsequent opti-
mization network, DCAN, Informed and Fine-tune, show
strong robustness to noise. This is not surprising, since the
strong noise immunity of neural networks is a well-known
fact. Compared with the above three network schemes,

our scheme performs worse, especially under strong
noise conditions. However, our scheme has considerable
advantages over other schemes (except the Fine-tune) at
low noise conditions. Specifically, the reconstruction of
Face and STL10 without � regularization degrades sig-
nificantly with the enhancement of noise, while Face-Reg
and STL10-Reg show comparable noise robustness to
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FIG. 5. Comparison of the experimental reconstruction results of different modulation patterns with a sampling ratio of β = 6.25%.
Face2, Flower, and the Chinese character “zhong” are targets printed on A4 paper, and David is a 3D sculpture with part of the USAF
resolution chart as the background. The lower right corner of the reconstructed images shows PSNR and SSIM values, respectively.
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FIG. 6. A selection of image frames of the 30-s video (see Visualization 1 in the Supplemental Material [73]) with the STL10-Reg
modulation patterns. The lower right green number is the corresponding frame number.

Hadamard with a slight advantage under � regularization.
It can be seen that � regularization in our scheme can
effectively improve the noise robustness of the modula-
tion patterns. In fact, on average, Fine-tune has the best
performance of all the schemes as shown in the quantita-
tive indices in Figs. 4(c) and 4(d). However, this iterative
approach comes at the expense of time, making it difficult
to meet the requirements of real-time imaging.

In experiments, we adopt the experimental system
shown in Fig. 1(b). Like the settings in simulation,
we compare the actual imaging performance of several
schemes at a sampling ratio of 6.25%. Details on the
preprocessing for modulation patterns in experiment and
reconstruction algorithms can be found in the Appendix
A. Figure 5 shows the experimental reconstruction for dif-
ferent modulation patterns. Here we select two types of
objects as imaging targets: one is a target printed on A4
paper, such as Face2, Flower, and the Chinese character
“zhong”; the other is a real 3D object, the sculpture David
with part of the USAF resolution chart as the background.
We use the image reconstructed by the Hadamard bases
with a sampling ratio of 100% as the ground truth shown
in the last column of Fig. 5. The quantitative evaluation
PSNR and SSIM of the reconstructed images are marked
in the lower right corner.

Overall, Fig. 5 shows the results consistent with the
simulation shown in Fig. 3. After time-consuming iter-
ative optimization, Fine-tune has been greatly improved
compared with Informed. Our scheme still achieves the
best reconstruction quality except for Fine-tune. Face and
Face-Reg trained with the human face dataset yield more
detailed facial features when they are used to reconstruct
Face2, but perform slightly worse on nonface images.
STL10 and STL10-Reg trained with the natural image
dataset have decent and balanced performance on vari-
ous categories of images. By comparing the reconstruc-
tion results of STL10 and STL10-Reg, as well as Face
and Face-Reg, we can draw the same conclusion as the
simulation: after adding � regularization, the quality of

reconstructed image is improved, as the image is smoother
and artifacts and noise are effectively suppressed.

Since the proposed scheme uses the learned modulation
patterns for DGI, its imaging speed is mainly limited by
the refresh rate of the spatial light modulator. Here, we
experimentally verify the real-time imaging performance
of the proposed scheme with STL10-Reg modulation pat-
terns. We choose a toy astronaut as imaging target and
capture its dynamic motion with part of the USAF reso-
lution chart as the background. We set the DMD to operate
at its highest refresh rate: 22 kHz. For images with a pixel
number of N = 128 × 128, we achieve real-time imaging
with a video rate of ∼10 Hz at a sampling ratio β = 6.25%.
We captured a 30-s-long video with 300 frames, and 10
example frames are shown in Fig. 6. The results in Fig. 6
show that the overall video imaging results are good, with
clear details. However, the image also appears noisy (e.g.,
frames 205, 225, and 265) when the target object is mov-
ing fast. The full video is available in Visualization 1 in the
Supplemental Material [73].

IV. DISCUSSION AND CONCLUSION

We recall two aspects of the efforts in GI: better
modulation patterns and more advanced reconstruction
algorithms. Compared with methods committed to better
modulation patterns [46–51], our scheme attains supe-
rior image quality and noise robustness while maintaining
a comparable simple reconstruction algorithm as these
methods do. As for schemes dedicated to the develop-
ment of more advanced reconfiguration algorithms [52–
54], this usually leads to multiple iterations and high
computational complexity. Furthermore, existing schemes
[63–66] for training modulation patterns are limited to
binarization constraint on the modulation patterns, while
additional subsequent optimization networks are required
(e.g., Unet). The binary modulation pattern has only two
values for its elements, and its variation space is greatly
restricted. This leads to a limited encoding capacity for
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modulation patterns, especially at a low sampling ratio.
Alternatively, the Fine-tune approach [66] enhances the
Informed [66] by iteratively optimizing the reconstruction
quality for an individual target image. Nevertheless, such
excellent image quality is accompanied by a drawback
of an iterative process that consumes considerable time,
which poses a challenge to cater to the requirements of
real-time imaging.

Compared to these methods, our approach offers a
notably simpler and more interpretable reconstruction pro-
cess, yet still achieves optimal imaging quality (except for
Fine-tune). Our model stands out due to its fewer training
parameters, resulting in a faster training and reconstruc-
tion speed. Furthermore, the DGI of the reconstruction part
does not contain any nonlinear operations, which may be
of benefit in optical computations where nonlinearities are
difficult to introduce. We also acknowledge that, in sce-
narios with high noise levels, the imaging quality of our
scheme is inferior to that of the approaches based on the
subsequent optimization networks (DCAN, Informed, and
Fine-tune).

In conclusion, we propose a physics-guided compact
single-layer neural network with � regularization to train
efficient modulation patterns for DGI at a low sampling
ratio β = 6.25%. Benefiting from the DGI physical pro-
cess prior, the learned grayscale modulation patterns can
be directly used for DGI without any further optimization
networks or complex iterative optimization algorithms.
We have demonstrated that our scheme is superior in
imaging quality compared to some typical GI modulation
patterns through simulations and experiments. In addi-
tion, we achieve real-time imaging with a video rate of
∼10 Hz for images with a pixel number of N = 128 ×
128. Our scheme complements the existing modulation
pattern options and may enhance the performance of com-
putational imaging schemes based on sequential correla-
tion measurements without the use of complex iterative
optimization algorithms.
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APPENDIX A: MODULATION PATTERNS
PREPROCESSING AND PRINCIPLE OF IMAGE

RECONSTRUCTION

In our experiments, we preprocess the modulation
patterns to fit the actual imaging system as shown in Fig. 7.

Specifically, in step 1, we divide the mth modulation pat-
tern Hm(x, y) into positive pattern Hm(x, y)+ and negative
pattern Hm(x, y)− according to the values

Hm(x, y)+ =
{

Hm(x, y), Hm(x, y) � 0,
0, Hm(x, y) < 0,

Hm(x, y)− =
{

−Hm(x, y), Hm(x, y) � 0,
0, Hm(x, y) > 0,

(A1)

where m = 1, 2, . . . , M . As stated in the main text, the
sampling ratio β = M/N = 6.25%, where M = 1024 and
N = 16 384.

After considering the positive and negative separation,
a total of 2 × M = 2048 modulation patterns need to be
loaded on the DMD. However, it is well known that DMD
has only two states, “ON” and “OFF”, to represent “1” and
“0”, respectively. So our grayscale modulation patterns
cannot be directly loaded into DMD yet. We use the Floyd-
Steinberg dithering algorithm [74] to dither the above posi-
tive and negative patterns (step 3). Before dithering, in step
2, we first calculate the Kronecker product (768 × 768) of
the modulation pattern (128 × 128) and the all-1s matrix
(6 × 6), and then we obtain the final pattern loaded into
the DMD (1024 × 768) by zero-padding (step 4).

We experimentally compared several typical modula-
tion patterns: random binary patterns (Random), reordered
Hadamard patterns (Hadamard), Fourier sinusoidal pat-
terns (Fourier), trained binary patterns (DCAN, Informed,
and Fine-tune), and the four sets of learned grayscale mod-
ulation patterns obtained by our proposed scheme (Face,
Face-Reg, STL10, and STL10-Reg), all with the same
sampling ratio of β = 6.25%. For Random, Hadamard,
and DCAN, since the modulation patterns only take two
values of +1 and −1, we did not perform the Floyd-
Steinberg dithering (step 3). As for the Fourier modulation
patterns, we did not implement the positive and negative
pattern separation (step 1), and we use the four-step phase
shift method to reconstruct the Fourier spectrum of the
target image, which yields a total of 512 × 4 = 2048 mod-
ulation patterns when the sampling ratio β = 6.25%. The
modulation patterns of Informed and Fine-tune take two
values of +1 and 0, so we did not perform steps 1 and 3.
All four sets of our grayscale modulation patterns (Face,
Face-Reg, STL10, and STL10-Reg) are preprocessed in
the above four steps.

For modulation patterns Random, Face, Face-Reg,
STL10, and STL10-Reg, we adopt DGI [11] as the recon-
struction algorithm:

ODGI = 〈HmIm〉 − 〈Im〉
〈Sm〉 〈SmHm〉. (A2)
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FIG. 7. Four preprocessing steps for modulating patterns in experiments.

Here Hm is the mth modulation pattern, Im is the mth
measurement, Sm is the total intensity of the mth mod-
ulation pattern, which is defined as Sm = ∑

x,y Hm(x, y),
and 〈 · 〉 is the ensemble average in terms of m defined as
〈Hm〉 = (1/M )

∑M
m=1 Hm and 〈Im〉 = (1/M )

∑M
m=1 Im. For

the two special sets of orthogonal bases, Hadamard and
Fourier, we use the most general reconstruction method as
in [75,76]:

OHadamard = 1
M

M∑

m=1

HmIm = 〈HmIm〉. (A3)

As for the Fourier modulation patterns, we adopt the four-
step phase shift method to reconstruct the Fourier spectrum
of the target image and reconstruct the object image by
applying an inverse Fourier transform [76]. It should be
pointed out that we adopt the “Circular” sampling strategy
for the Fourier spectrum. For DCAN, Informed, and Fine-
tune, we adopt the same subsequent optimization network
and iterative optimization Fine-tune process as described
in Refs. [63,66].

In our practical experiments, we control the DMD and
acquire bucket detection signals using LABVIEW, while
image reconstruction is performed using MATLAB due to
its superior matrix manipulation speed. Coordinating these
two software platforms is complex and time-consuming.
Therefore, we adopt a strategy where we first acquire the
bucket detection signals (considering the reconstruction
time using the DGI algorithm) and then reconstruct the
images.

The time required to load 2048 modulation patterns into
the DMD memory is on the order of minutes. However,
once loaded, the DMD can project these patterns at a dis-
play rate of 22 kHz (its maximum operating frequency),
resulting in a display time of 0.093 s for the 2048 modu-
lation patterns, which corresponds to a frame rate of 10.74
Hz. Another critical factor is the reconstruction time using
DGI, which takes approximately 0.015 s per reconstruc-
tion calculation. Considering these two time constraints,
we estimate the imaging frame rate of the system to be
approximately 9.26 Hz.

Optimizing programming languages and enhancing
hardware capabilities could potentially reduce the time
required by the reconstruction algorithm. Other time
considerations are believed to be negligible or can be
addressed through measures such as improving system
integration and preloading memory.

APPENDIX B: LEARNED MODULATION
PATTERNS

Figure 8 shows some typical samples of modulation
patterns trained by the proposed scheme. Figure 8 rows
1, 2, 3, and 4 are selected modulation patterns of Face,
Face-Reg, STL10, and STL10-Reg, respectively. It can be
seen that modulation patterns trained by the two datasets
have distinct characteristics. Face and Face-Reg, trained
by the face dataset CelebAMask-HQ, have facial-like fea-
tures composed of speckles, while STL10 and STL10-Reg,
trained on the natural image dataset STL-10, are more like
random speckle. Notably, it is these facial features that
contribute to the extraordinary performance of face image
reconstruction and are responsible for face-like artifacts in
nonface reconstruction. We compromise the generalization
ability of the modulation patterns to achieve excellent per-
formance in specific scenes, such as face images, which
has notable implications.

It is not difficult to see from Fig. 8 that the speckle
particle sizes in each set of modulation patterns are well
distributed. The modulation pattern with larger speckle
particles contributes more to the low-frequency signal of
the reconstructed image, and the smaller speckle particles
contribute the high-frequency details. Therefore, the pro-
posed scheme can reconstruct the low-frequency signal of
the image while retaining more high-frequency details at
a very low sampling ratio. Next, we discuss the effect of
� regularization on modulation patterns. Taking Fig. 8
rows 1 and 3 as controls, it can be concluded by observing
Fig. 8 rows 2 and 4 that the speckle particles in the modu-
lation patterns with � regularization are more delicate and
smooth, which helps to obtain a reconstruction with less
noise and artifacts.
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FIG. 8. Normalized typical examples of the learned modulation patterns. Rows 1–4 show some sample modulation patterns for Face,
Face-Reg, STL10, and STL10-Reg, respectively. In each row, from left to right, the speckle particles change from large to small.

APPENDIX C: INFLUENCE OF WEIGHT FACTOR
λ ON IMAGING RESULTS

We use the weight factor λ to balance the MSE and �

regularization in the objective function (loss function):

H ∗ = argminH ‖DGI(H , HO) − O‖2 + λ(Dvar + Dnon)

A larger value of λ corresponds to a relatively stronger �

regularization, and vice versa. We give the � matrix with
different λ in Fig. 9(b). When λ = 0, most values of the �

matrix are nonzero. With the increase of λ, the nondiagonal
elements of the � matrix gradually converge to zero, and
the diagonal elements are more flat. In our simulations and
experiments, we empirically chose λ = 0.01. We test the
model with different λ on 20 images consisting of face and
natural images.

Figure 9(a) shows the simulated reconstruction results
of two sample images (Face4 and Boat) in multiple scenar-
ios. It can be seen that the reconstruction of both Face and
STL10 have more distortions and artifacts when λ = 0,
i.e., without � regularization. These artifacts decrease and
the reconstructed image becomes smoother as λ increases.
However, the reconstruction quality of the image does not
always grow with λ, which can be seen from the curves of
average PSNR and SSIM of the 20 images in Fig. 9(c). The
reconstruction quality first increases and then decreases
with the increase of λ. This is consistent with the results in
Fig. 9(a): as λ increases, the artifacts in the reconstructed

images become fewer, but at the same time the images
become more blurred with some details lost.

As mentioned in the main text, there is a theoretical
limit for the matrix � to approach the identity matrix with
a sampling ratio β = 6.25%. With � regularization, we
effectively mitigate the artifacts and noise in the recon-
structed images, but also reduce their resolution (i.e., the
reconstructed images are more blurred). This is due to
the combined effect of the above theoretical limit and the
complex competition between MSE and � regularization
in the objective (loss) function. We illustrate the issue of
resolution degradation with the following discussion.

We take the center of the matrix � as the origin and
establish the coordinate system in the diagonal and subdi-
agonal directions as shown in Fig. 10(a). In fact, the width
of the intensity distribution in the subdiagonal direction
(x axis) of the matrix � is inversely proportional to the
imaging resolution. We crop a total of 1001 line segments
with a length of 2049 pixels in the subdiagonal direction,
as shown in the red rectangle in Fig. 10(a). Figure 10(b)
shows the result of summing these 1001 line segments
under different λ cases. For the curve corresponding to
each λ in Fig. 10(b), we extract its upper envelope and per-
form a Gaussian fit to plot its FWHM in Fig. 10(c). Figure
10(c) shows that, with the increase of λ, the FWHM of
the upper envelope line increases, which leads to the reso-
lution decrease of the reconstructed image. It can be seen
that the addition of � regularization reduces the artifacts
and noise of the reconstructed image, but also sacrifices a
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FIG. 9. Effects of different λ on imaging results of the proposed scheme. (a) The reconstruction results of the modulation patterns
trained by two datasets with different λ for the imaging targets Face4 and Boat. (b) Three-dimensional display of matrix � with
λ = 0, 0.001, 0.01, and 0.1. Here, for the purpose of display convenience, the matrix � has been downsampled to 512 × 512. (c) The
curves of average PSNR and SSIM versus λ for the reconstructed results of 20 selected face and natural target images with Face-Reg
and STL10-Reg, respectively.

certain resolution, which is consistent with our simulation
and experimental results. One has to balance the impact of
� regularization and make a compromise between fewer

artifacts and higher image resolution. Here, we chose λ =
0.01 in our simulations and experiments. A better choice
for λ may exist, which is beyond the purpose of this work.
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