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All-photonic artificial-neural-network processor via nonlinear optics

Jasvith Raj Basani ,1,2 Mikkel Heuck,3,4 Dirk R. Englund,3 and Stefan Krastanov 3,5,*

1
Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science,

Hyderabad Campus, Pilani, Telangana 500078, India
2
Department of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics,

and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
3
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
4
Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343,

Kgs. Lyngby 2800, Denmark
5
College of Information and Computer Sciences, University of Massachusetts Amherst, 140 Governors Drive,

Amherst, Massachusetts 01003, USA

 (Received 5 July 2022; revised 30 April 2024; accepted 24 May 2024; published 3 July 2024)

Optics and photonics have recently captured interest as a platform to accelerate linear matrix processing,
otherwise a bottleneck in traditional digital electronics. In this paper we propose an all-photonic computa-
tional accelerator wherein information is encoded in the amplitudes of frequency modes stored in a single
ring resonator. Interaction among these modes is enabled by nonlinear optical processes. Both the matrix
multiplication and elementwise activation functions on these modes (the artificial neurons) are performed
through coherent processes, enabling the direct representation of negative and complex numbers without
having to pass through digital electronics, a common limitation in today’s photonic architectures. This
design also has a drastically lower hardware footprint compared with today’s electronic and optical accel-
erators, as the entirety of the matrix multiplication happens in a single multimode resonator on chip. Our
architecture is unique in providing a completely unitary, reversible mode of computation, enabling on-chip
analog Hamiltonian-echo backpropagation for gradient descent and other self-learning tasks. Moreover,
the computational speed increases with the power of the pumps to arbitrarily high rates, as long as the
circuitry can sustain the higher optical power. Lastly, the design presented here is a less demanding ver-
sion of a future room-temperature quantum computational device. Therefore, while this architecture is
already viable today, direct reinvestments in it would be enabling its evolution into quantum computational
hardware.

DOI: 10.1103/PhysRevApplied.22.014009

I. INTRODUCTION

The last decade has witnessed phenomenal advances in
the domain of machine learning, with applications ranging
from natural language processing [1], structural biology
[2], and even game playing [3]. With the growing acces-
sibility of large datasets and larger computational power,
machine learning models have been increasing in complex-
ity to tackle a multitude of problems. The requirement for
better performance in these networks has necessitated the
development of hardware accelerators, specifically for the
training of deep neural networks. Recently, with advances
in silicon photonics [4,5], optical computing has been
introduced as an attractive platform to carry out large-
scale computational schemes. Properties of light, such as
coherence and superposition, blended with the vast array

*Contact author: aps.acc@krastanov.org

of CMOS-compatible optical devices has made photon-
ics a fruitful direction of exploration for efficiently and
effectively implementing computational schemes.

Photonic implementations of neural networks have been
proposed and successfully realized in free-space envi-
ronments using spatial light modulators [6–9], vertical-
cavity surface-emitting laser arrays [10], diffractive media
[11,12], and homodyne detection [13]. A number of tech-
niques have been used to construct optical neural networks
via photonic integrated circuitry, particularly with inter-
ferometric meshes [14–20], electro-optics [21], and time-
wavelength multiplexing [22,23]. These architectures have
been exploited to build scalable devices for spiking neural
networks [24–26] and reservoir computing [27–30]. The
photonic platform has garnered interest from scientists and
engineers alike, to leverage the massive parallelism being
offered by the multiple degrees of freedom of light (wave-
length, polarization, phase, etc.) Photonic solutions also
greatly reduce energy consumption due to data transfer
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and computational operations by performing operations
via passive optical interactions [12–14,31–33].

Our proposal for a fully photonic implementation of
an artificial neural network is based on nonlinear opti-
cal intermodulation. In contrast to previous approaches
[11,12,14,31,34,35], we encode information in the com-
plex amplitudes of frequency states that act as neurons,
in a multimode cavity. Information regarding the linear
operations that the neuron modes undergo is encoded
in the amplitudes of controlled pump modes and is
enabled via four-wave mixing (FWM) [36]. Further-
more, unlike other optical [33,37–39] and opto-electronic
[40–44] approaches, we also propose a scheme to per-
form the elementwise activation function coherently via
nonlinear optical processes [45–49]. This approach lets us
represent negative (or even complex) activation values, a
problem plaguing other optical approaches.

The proposed processor is rapidly reprogrammable, and
can be realized using only microring resonators (which
can be fabricated easily via well-established lithography
techniques). Moreover, the entirety of the computation
performed by the proposed hardware is, in principle,
reversible and unitary, opening up many possibilities for
low-power (even reversible) computation, and on-chip effi-
cient analog Hamiltonian-echo backpropagation [50] for in
situ learning tasks. We also find that the speed of com-
putation performed by our device scales with the pump
power, hence providing for extremely fast operations, to
within limitations imposed by the hardware. Finally, the
accelerator presented here can serve as a near-term com-
mercially viable stepping stone for more demanding quan-
tum hardware, particularly for room-temperature quantum
computation [51].

This paper is organized as follows. In the following
Sec. II, we introduce the scheme for matrix multiplica-
tion via the method active coupling of “neuron” pulses in
a multimode optical cavity. We discuss the Hamiltonian
and matrix transformation implemented by the optical cav-
ity and establish the time dynamics of the neuron modes.
The limitations of the available operations and methods
for overcoming these limitations are discussed. Section III
discusses our implementation of the nonlinear activation
function. In Sec. IV we perform simulations to train our
neural network accelerator on the Modified National Insti-
tute of Standards and Technology (MNIST) dataset [52]
to illustrate the performance of our hardware design in
different parameter regimes. Our paper concludes with a
discussion of the results, the potential for in situ training,
and the prospects for experimental realization of this work.

II. PROGRAMMABLE TRANSFORMATIONS VIA
FOUR-WAVE MIXING

Deep neural networks (DNNs) are a class of artificial
neural networks that, fundamentally, consist of multiple

stacked layers of neurons, each connected via a matrix
multiplication (�x �→ W�x) and an elementwise nonlinear
activation function (xi �→ σ(xi)). For a DNN of arbitrary
depth, the input to the (k + 1)th layer is related to the input
of the kth layer as

x(k+1)
i = σ

⎛
⎝∑

j

W(k)
i,j x(k)

j

⎞
⎠ . (1)

We propose realizing the matrix multiplication by W(k) in a
multimode optical cavity. For instance, consider an optical
cavity implemented as a microring resonator that supports
a frequency comb in the telecommunication range (around
1550 nm). The frequency states supported by the micror-
ing resonator are chosen to be either “pump” or “neuron”
modes, that interact with each other via the process of
FWM. Our design encodes information to be processed
in the complex amplitudes of the neuron modes, while
the matrix-multiplication operations are enabled by inter-
action with controlled pump modes. With FWM being
an inherently third-order nonlinear optical process, the
microring resonator will have to be fabricated from a
material that facilitates the third-order nonlinear optical
response described with a large χ(3) susceptibility coeffi-
cient. The neural network weights that act as interconnects
between the network’s layers are encoded in the strength
of the pumps.

A. Method of active coupling for programmable linear
transformations

Our protocol for implementing a fully connected neural
net layer employs actively capturing and storing neuron
modes into a microring resonator as depicted in Fig. 1.
In order to realize such active capturing, we consider the
resonator to be coupled to the waveguide via a tunable cou-
pler that controls the coupling coefficient γ (t). The mixing
of the neuron modes to perform linear operations on them
is enabled via FWM with time-dependent control pumps.
We term this scheme as the method of active coupling.
Similar dynamics can be realized without actively cap-
turing the pump and neuron modes—by simply allowing
them to propagate and interact while propagating through
a series of resonators [53]. The latter scheme, which we
term as the method of passive coupling, is an experimen-
tally less demanding version, but a hardware inefficient
version of active coupling. The method of passive coupling
is described in Appendix A. To understand the mecha-
nism through which the neurons are intermodulated, we
first consider a resonator with only four modes, i.e., two
neural modes and two pump modes. The lower two modes
are the pumps that drive the system, denoted by operators
(p̂1, p̂2). The two higher-frequency modes act as neurons,
denoted by (â1, â2). The Hamiltonian associated with the
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FIG. 1. (a) Schematic of the neural network represented as a sequence of N layers. The information being processed is encoded in the
amplitudes of neuron modes, i.e., frequency modes (blue), while the linear transformations W(i) are implemented via interaction with
strong classical pump modes (red). The nonlinear elementwise activation function (given by orange blocks) occurs during propagation
through waveguides via nonlinear optical interactions of the neuron modes with additional pump modes (green). (b) Hardware for
consecutive layers of the optical neural network are shown: microring resonators connected via a waveguide. Each ring resonator is
coupled to the waveguide with a coupling constant γ (t) and experiences internal losses γH. The transmission spectra of the microring
resonator is shown alongside, where the nth nearest neighbour pump and neuron modes are coupled (given by green and grey arrows).

interaction of the four waves is

Ĥ = �χ
(

p̂1p̂†
2 â1â†

2

)
+ H.c. (2)

The coupling coefficient χ determines the strength of
interaction, incorporating effects from several parameters
including the nonlinear susceptibility of the material of
our cavity, phase matching, and mode volume realized in
the cavity. The pumps in each timestep are assumed to
be strong classical modes of light and their operators can
be replaced by a classical complex amplitude p̂i �→ pi =√

〈n̂i〉eiθ , involving the expectation value of the number of
photons ni in the given pump mode and its phase θ . Fur-
thermore, these pumps are much stronger than the other
modes and, hence, are nondepletive. We assume that the
resonances of the modes obey the FWM energy match-
ing condition, such that ωp2 − ωp1 = ωa2 − ωa1 . During
capture or release γ is increased in order to transfer the
neuron modes from the waveguide into the resonator or
vice versa. During the FWM process γ is kept at its min-
imal value to avoid information loss via leakage into the
environment, thus, the total loss rate � can be written as
� = γ + γH = γH.

The time dynamics of the modes can be solved using
coupled mode theory [54,55]. The exact form of the cou-
pled amplitude equations can be found in Appendix A. In
the general case for a deep neural network with N neu-
rons, we can extend this formalism to see that pumps that
are nth nearest neighbours [i.e., have a frequency differ-
ence of n × �FSR for a ring with the free spectral range
(FSR) �FSR] couple all the neuron modes at that frequency
difference. Without loss of generality, we make the simpli-
fying assumption that the first pump P1 is much stronger
than the other pumps, permitting us to neglect the cross-
coupling terms, leading to the following coupled amplitude
equations:

Ṗi(t) = 0 = −�

2
Pi(t) − √

γ Sin,P(t), (3)

dAi

dt
=
(

−�

2
+ iχ |P1|2

)
Ai

− χ

⎡
⎣

N∑
j >i

(
P1P∗

j

)
Aj −

i−1∑
j <i

(
P∗

1Pj
)

Aj

⎤
⎦ . (4)

Here Ai and Pi represent, respectively, the amplitude of the
ith neuron mode and the amplitude of the ith pump mode
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inside of the resonator. The pump amplitudes are set to a
scale much higher than the scale of the neuron activations,
to permit neglecting the direct neuron-neuron interactions.
The encoded data is introduced into the system via the
input waveguide mode, denoted by Sin,P (representing the
activation values of the neurons). In terms of matrix-vector
operations, Eq. (4) can be written as �̇A = P �A, where the
matrix P is constant by diagonal (also known as a Toeplitz
matrix). The nth off-diagonal elements of matrix P takes
the value P1Pn. The Pi values might need a correction
to account for nonlinear interactions purely between the
pumps, however, this is a straightforward matrix inversion
problem that does not affect the neural dynamics.

The solution to this system of equations (at the end of
a period 	t during which P is constant) is �A(t = 	t) =
e	tP �A(t = 0). While we assumed piecewise constant P for
simplicity in this example, a freely evolving P is just as
easy to work with. It is important to note here that the
Toeplitz nature of the N × N matrix P gives us only N
degrees of freedom, as opposed to N 2 degrees of freedom
encoded in the weights of a fully connected deep neu-
ral network. This implies that the transformation imposed
on the input optical modes during a single timestep (one
instance of FWM over the period of 	t), would span only
a fraction of the space that would otherwise be spanned by
the full group of unitary transformations. To quantify the
group of operations that can be spanned by matrices of the
form e	tP, we introduce the concept of expressivity.

The expressivity is the average fidelity with which a
transformation T(P) parametrized as e	tP can represent an
arbitrary unitary operation U. Numerically, we estimate
the expressivity by sampling M Haar-random unitaries
{Ui}1≤i≤M and, for each one, we use gradient descent
to find the T(Pi) that approximates it most closely. We
estimate the expressivity using the trace distance as

F = 1 − 1
M

M∑
i=1

√
tr
[
(Ti − Ui) (Ti − Ui)

†], (5)

which both accounts for imperfections due to losses (devi-
ations from unitarity) and insufficient degrees of freedom.
Since this function is convex [56] in both Ti and Ui, the
gradient descent always converges to the global optimum.

The transformation performed by a single layer, i.e., a
single matrix of the form e	tP, does not reach expressivity
large enough to perform arbitrary unitary transformations.
To solve this problem, we leverage the time dependence
of the pumps to perform multiple instances of FWM by
varying the amplitudes of the pumps in each timestep 	t.
Physically, this corresponds to each pump mode consist-
ing of a series of piecewise constant segments, each with
a duration of 	t. Each layer of the neural network is now
implemented by several noncommuting cascaded matrices
of the form e	tP. Thus, after a time of N	t, N instances

of FWM would be performed resulting in the net transfor-
mation having N 2 degrees of freedom, spanning a larger
group of operations and, hence, increasing the expressivity.
By estimating the expressivity of these compound oper-
ations as a function of matrix dimension and number of
sublayers, we see that for larger matrices, at higher sublay-
ers, the expressivity reaches unity as illustrated in Fig. 2.
This implies that by cascading multiple matrices in a single
layer, we can span the group of unitary operations.

A factor that negatively influences the expressivity is the
presence of loss, �. In the ideal case (�	t = γH	t = 0)
as shown in Fig. 2, we see that the expressivity grows
upon cascading sublayers just as in the previous case,
approaching unity. For a much more pessimistic case
where 1

2�	t = 1 (e.g., corresponding to a large cavity
loss rate � = 2 ns−1 and a control pulse resolution of
	t = 1 ns), however, there is a high sensitivity to the loss.
We observe an increase in the average fidelity upon cascad-
ing a few sublayers, beyond which the expressivity begins
to decrease due to the pulses entering the decay regime.
This arises as a result of the trade-off between losses and
the coverage of the N × N unitary group. As the number
of pump steps increases, the number of free parameters
increases, therefore allowing us to access a larger fraction
of the unitary group. However, increasing the number of
pump steps also results in increased losses in the system,
thereby restricting the group of accessible unitaries. The
result of this trade-off is the rise and then fall in expressiv-
ity values seen in the right panel of Fig. 2. As the number
of pump steps continues increasing, losses begin to dom-
inate, further restricting the group of accessible unitaries,
resulting in a drop in the expressivity. In this case, the final
expressivity, even after cascading enough layers to obtain
N 2 degrees of freedom, does not reach unity.

Transformations of the form e	tP can be realized via
three-wave mixing [57] as well, with a single pump mode
instead of two as proposed above. Solving for the transfor-
mation matrix using the coupled mode equations give us
a similar result to the one presented above—the difference
being that three-wave mixing does not give rise to cross-
coupling between different neuron modes. The Hamilto-
nian associated with the interaction of the three interacting
waves would be Ĥ = χ(p̂ âb̂†) + H.c., where p̂ is the sin-
gle pump mode. These modes obey the energy matching
condition that ωp = ωb − ωa. Experimentally implement-
ing this system via three-wave mixing, however, presents
engineering challenges in the design of the microring
resonator. The energy matching condition requires the fre-
quency of the pump mode to be equal to the difference
in frequencies of the neuron modes. This would result in
pump modes operating at frequencies much smaller than
the neuron modes, i.e., integer multiples of the FSR of the
microring resonator. This ring would therefore have to sup-
port modes over multiple octaves in order to perform these
transformations via three-wave mixing. Spanning across
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Expressivity Plot for no Internal Loss Expressivity Plot for Higher Iinternal Loss

FIG. 2. The expressivity of the active coupling transformation of the form
∏

e	tP in different parameter regimes. Each plot displays
the average fidelity as we vary the number of timesteps (the horizontal axis) for a given matrix dimension (the vertical axis). On the
left, the ideal case of no internal loss (� = γH = 0) where the expressivity reaches unity at sufficiently many timesteps. On the right,
the expressivity at higher loss ((�	t/2) = (γH	t/2) = 1) never approaches unity. Of note is that the expressivity initially climbs up
with the number of layers, until the loss becomes too significant, exponentially growing with the number of layers. Importantly, the
expressivity as defined here includes both infidelity due to missing degrees of freedom, and amplitude decay due to leakage from the
cavity.

multiple octaves gives rise to differences in refractive
indices and Q factors for modes at different frequencies.
This leads to difficulties in maintaining the resonance con-
dition and phase matching required for high-efficiency
three-wave mixing. Alternatively, pump and neuron modes
across multiple octaves could be implemented as an
electro-optic frequency comb [58]; this approach would,
however, be limited by the speed of the electronics used to
couple modes across large frequency bands.

B. Hardware resources and computational speed

As we have seen in the previous section, the rate
at which the wave-mixing interactions happen scales as
χP′P′′, where P′ and P′′ denote the pump amplitudes of the
main pump and an arbitrary secondary pump. Therefore,
the higher the pump power is, the faster the computation
can be executed, up to loading and heating constraints. The
value for χ for a given piece of hardware is derived below,
giving us realistic engineering constraints on the compu-
tational speed. From Ref. [60], we see that the nonlinear
component of the Hamiltonian is given by

Ĥ =
∫

χ(3)D̂
4

4ε3
0η

8
dr, (6)

where χ(3) is the FWM nonlinear susceptibility of the
material, ε0 and η are the vacuum permitivity and
refractive index of the material, and D̂ is the electrical
displacement field operator. The field operator D̂ is the sum

of pump or neuron modes m̂ that can be written in terms of
the eigenmode d(r) as [60]

D̂m(r) =
√

�ωm

2
m̂dm(r) + H.c., (7)

where m̂ is the creation operator for the given mode and
the normalization condition

∫ |d(r)|2dr = ε0η
2 is fulfilled.

Taking into account the energy matching conditions for
two neuron modes â1 and â2 and two pump modes p̂1 and
p̂2, and identifying with Eq. (2) gives us

�χ = 3
2

χ(3)

ε0η4VFWM

√
�4ωa1ωa2ωp1ωp2 , (8)

where we define the FWM mode volume VFWM as

1
VFWM

=
∫

nl di
a1

dj ∗
a2dk

p1
dl∗

p2
dr√∫ |da1 |2dr

∫ |da2 |2dr
∫ |dp1 |2dr

∫ |dp2 |2dr
.

(9)

The
∫

nl denotes integration over the volume of the nonlin-
ear material and i, j , k, l denote the spacial components of
the fields between which nonlinear interaction is enabled.

If we are to use a silicon nitride resonator (η = 2.02 and
χ(3) = 4

3η2n2ε0c ≈ 3.5 × 10−21(m2/V2) [61]) with good
phase matching such that the FMW mode volume VFWM is
comparable to the geometric volume (approximately equal
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to 1300 µm3 for a 115 µm radius, 2.5 µm width and
0.73 µm height) [62], we find that χ ≈ 4.2 s−1.

The period of complete exchange of energy between
two neuron modes can be calculated via the coupled
mode equations derived from Eq. (2), leading to 	t =
2π/(χ〈P1〉〈P2〉), where the maximum amplitudes 〈P∗〉 are
measured in square root of average number of photons. We
use these amplitudes as a worst-case estimate of the energy
requirements for our design. As we have seen from Fig. 2,
increasing 	t� beyond unity significantly decreases the
performance of our hardware due to losses, which leads to
the requirement 〈P1〉〈P2〉 > (2π�/χ). For a modern sili-
con nitride resonator, we can expect a Q ≈ 106 and � =
γH = (ω/Q) ≈ 1 ns−1, therefore, (2π�/χ) ≈ 109. This
implies that we need of the order of 1 × 109 photons in the
main pump mode, leading to thermal heating losses from
the main pump of the order of ��ω〈P〉2 ≈ 100 mW.

To summarize, increasing the power of the pumps (∝
〈P〉2) would linearly increase the rate at which compu-
tations are performed (χ〈P〉2) and linearly increase the
power dissipated during the computation (��ω〈P〉2). For
a typical ring resonator today [59], this implies a compu-
tational speed of 1 GHz (1 × 109 sublayer matrix multi-
plications per second) at dissipation from the main pump
of 100 mW. As seen in Fig. 3, both of these figures of
merit can be drastically improved in the very near term by
employing already demonstrated techniques (higher χ(3)

in slightly more exotic materials like silicon-rich silicon
nitride or aluminum gallium arsenide and better Q factors).
Curiously, there is a lower bound for the computational
speed of our device: we need to provide enough pump
power such that the computation happens faster than the
rate of decay of the neuron modes.

In practice, the computational speed of the device can-
not be scaled arbitrarily by increasing the power of the
pumps. The upper limit of the computational speed (and,
hence, the pump power) is determined by thermal proper-
ties of the material used to fabricate the device. Knowing
the safe operating temperature is essential for ensuring that
there are no thermally induced nonlinear effects or material
damage. The rate of increase of temperature can be calcu-
lated from the power dissipated as 	T = (

��ω〈P〉2
)
/mcp,

where m is the mass and cp is the specific heat capacity
of the material. Based on the safe operating range of the
temperature, the upper limit of the pump power can be cal-
culated. Additional hardware for cooling would allow for
increased pump power and, therefore, even faster computa-
tional speeds. As mentioned above, there is a restriction on
the lower bound for the speed of the device as well. To cal-
culate this lower bound, at least one instance of FWM (of
period 	t) would have to be executed before the neurons
leak from the cavity. If the value of �	t < 1, one instance
of FWM occurs before the neurons decay. This places a
lower bound on the computational speed of the device,
given by 1/�.
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FIG. 3. Estimated computational performance of our design.
The horizontal axis is the rate at which sublayer multiplications
are performed (i.e., the rate of matrix-vector multiplications,
where the matrix is a restricted unitary matrix). The vertical axis
is an estimate of the heat dissipation expected in a single ring
due to leakage from the pump that encodes the matrix param-
eters. The top blue line represents a typical silicon nitride ring
[59] with � = 1 ns−1 and VFWM = 1300 µm3. Two near-term
evolutions are presented as well, first (in orange) using silicon-
rich material that significantly increases the χ(3) susceptibility,
and second (in green) developing higher-Q resonators. Lowering
the mode volume of the ring would provide similar performance
improvements. The curves are cut off to the left due to the con-
straint seen in Fig. 2 that the computational rate is faster than the
decay rate. The second axis shows the equivalent number of giga
operations per second (GOPS), taking into account the limited
degrees of freedom in a single instance of FWM. This is a func-
tion of the number of frequency modes N , which is set to 50 that
can be easily realized with today’s frequency combs.

To compare the throughput of DNN accelerator archi-
tectures, it is helpful to introduce the tera operations
per second (TOPS) figure of merit [63], the number
of scalar multiplication (and addition) operations implic-
itly performed by the accelerator. Recent experimental
demonstrations for optical neural networks have achieved
processing speeds approximately equal to 10–100 TOPS
[22,23,64,65], while heuristically designed state-of-the-art
digital electronic DNN accelerators operate at approxi-
mately similar speeds [66]. As we have established, a
single sublayer matrix multiplication (single instance of
FWM) modulates all the neuron modes simultaneously.
Therefore, during one FWM period of duration 	t we per-
form the equivalent of O(N ) multiply-accumulate (MAC)
operations. A general matrix-vector multiplication would
involve O(N 2) MACs, but as discussed, we need multiple
sublayer multiplications (multiple instances of FWM) to
achieve that. For a numerical performance estimate, we
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choose N = 50 since matrix multiplication can be read-
ily implemented on 50 frequency modes today [67]. With
present day hardware parameters, this scheme reaches
processing speeds of 10–100 giga operations per second
at comparatively low thermal overhead (Fig. 3). With
improved hardware parameters (such as larger quality fac-
tors, lower mode volumes, improved effective nonlinear
susceptibility) and more neurons (N in the hundreds of
modes thanks to frequency combs), such an architecture
would efficiently scale into the TOPS regime. The qual-
ity factor determines the rate at which neurons decay from
the cavity. A larger quality factor implies that the neu-
rons decay slowly from the cavity, and therefore, more
instances of FWM can be executed. While this does not
directly affect the computational speed of the device, the
lower bound of 	t is determined by it. The mode volume,
on the other hand, is directly related to the computational
speed of the device, given by Eqs. (8) and (9). In our calcu-
lations, we estimate a mode volume approximately equal
to 1300 µm3 based on the geometric volume of the res-
onator. However, photonic crystal cavities can reach mode
volumes of the order of 0.1 µm3, which is 4 orders of mag-
nitude smaller [68]. This suggests that the computational
speed can be increased by about 4 orders of magnitude,
to operate at speeds of approximately 100 TOPS. Finally,
increasing the number of neurons linearly increases the
number of multiply-accumulate operations per second as
described above. Since frequency combs can have hun-
dreds of modes, increasing the number of neurons could
potentially scale up the computational speed of the device
by another order of magnitude.

III. NONLINEAR ACTIVATION

The nonlinear activation function is indispensable to
the operation of the neural network. Previous implemen-
tations of the nonlinear activation function have relied
on the use of thermo-optic effects [14,69], hybrid optical-
electronic schemes [48,69–71], semiconductor lasers [72,
73], and saturable absorption [74,75]. The nonlinearity we
propose relies on nonlinear interactions facilitated by a
χ(2) medium, followed by controllable capture into a ring
resonator.

The nonlinearity we propose is based upon a second-
order nonlinear interaction (e.g., in a lithium niobate
waveguide, characterized by its χ(2) susceptibility coef-
ficient) [76–78]. We release the neuron mode from the
resonator in which the matrix multiplication was per-
formed into the waveguide. We aim to distort the temporal
envelope of the neuron mode via the nonlinear interaction
with an externally pumped pulse (that we term as the sub-
harmonic mode). This subharmonic mode has a frequency
of half of the neuron mode. Following the distortion,
we selectively capture [79,80] the neuron mode into the
microring resonator that forms the subsequent layer of the

FIG. 4. Schematic of the propagating “neural” pulses under-
going the activation function. Input pulses (cyan) are distorted
via second-order nonlinear interaction in the χ(2) waveguide
before being captured in the ring resonator. The controllable cou-
pling coefficient γ (t) allows us to selectively absorb pulses, with
efficiency dependent on how distorted a pulse is.

neural network. Thus, the distorted pulses are selectively
absorbed into the ring, with absorption efficiency depen-
dent on the amount of distortion. The nonlinear distortion
is stronger for higher-amplitude pulses, giving rise to a
total effective nonlinearity. Figure 4 provides a sketch of
the setup and Fig. 5 shows the realized nonlinear activation
function. To avoid interactions between different neural
modes, i.e., keep the activation function elementwise, a
waveguide segment with dispersion can be used to offset
the modes in time. The required distance between these
dispersed modes for realizing the elementwise activation
function will be determined by the optical modulators
used to generate the subharmonic modes. State-of-the-art
electro-optic modulators have been shown to reach speeds
of 40 GHz, meaning the modes will have to be separated
by at least 25 ps in time. With an appropriately dispersion-
engineered waveguide, silicon has shown to have dis-
persion coefficients of approximately 4400 ps/nm/km at
1550 nm [81]. If the neurons are assumed to be initially
spaced by 1 nm in wavelength, a waveguide approximately
5 m long will be required to separate them out by at least
25 ps in time. Alternatively, racetrack resonators with a
large dispersion coefficient (shown to reach approximately
600 ps/km/nm at 1550 nm in silicon nitride [82]) can also
be used to disperse the neuron modes.

First, we explore the envelope distortion dynamics for
a neural pulse interacting with a subharmonic pump pulse
in a waveguide. We parametrize both envelopes as En(z, t)
and Esub(z, t), where z is the spacial coordinate along the
length of the waveguide. As elaborated in the archived
simulation code, these envelopes obey [83]

∂En

∂z
+ η

c
∂En

∂t
= −κE2

sub − αEn, (10)
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FIG. 5. The “neural” activation function realized in our design. The top row of polar plots gives the phase of a neural mode post-
activation function (in color) versus the phases of an input mode (polar coordinate) and its amplitude (radial coordinate). We plot
the nonlinearity for three different values of the dimensionless parameter κz0εs ∈ {0.0, 0.1, 0.2}. The bottom row presents the output
amplitudes (vertical axis) versus the input amplitudes (horizontal axis), scaled to the fixed amplitude of the pump pulses εs. In the
absence of a nonlinear interaction, i.e., κz0εs = 0.0, we see a linear activation function. The nonlinearity of the activation function
becomes more pronounced as the rate of optical nonlinear interactions increases.

∂Esub

∂z
+ η

c
∂Esub

∂t
= κEnE∗

sub − αEsub, (11)

κ = ω

c
χ(2)s, (12)

where s is a unitless measure of the mode overlap between
the neural and subharmonic modes, ω is the frequency of
the neural mode, and α is the waveguide loss. For speci-
ficity, we consider Gaussian wave packets for the input
neural modes (released from the ring that has been per-
forming the matrix multiplication of the previous layer)
of the form En = εne−(((−(z/c)+t−t0)2)/2w2)e−iϕ0 , where w is
the temporal length of the packet, ϕ0 is the relative phase
of the neuron activation to the subharmonic field, and εn
gives the field amplitude scale. Each neuron can have a
different phase ϕ0, depending on the four-wave-mixing
process. Similarly, for the subharmonic pump, we set
Esub = εse−(((−(z/c)+t−t0)2)/2w2); however, an equally valid
option would be a continuous wave Esub = εs. The subhar-
monics are assumed to be phase matched, and maintain a
constant phase relative to each other. In an experimental
setting, the subharmonic will have to be phase locked to
a field centered at ω only once as a calibration step. We
solve for the evolution of En(z, t) numerically. The dimen-
sionless parameters that emerge as chiefly governing these

dynamics are the effective strength of the nonlinear inter-
action κεsz0 and the strength of the neural mode relative to
the fixed subharmonic mode, εn/εs. The length of the χ(2)

waveguide is denoted z0. The simulations and the neces-
sary algebraic manipulations are detailed in the interactive
archived simulation code [84].

The distorted neuron envelopes are then actively cap-
tured into the next ring via a controllable ring-waveguide
coupling γ (t). The dynamics of the capture without inter-
actions from the pump modes is governed by [55,79,85,86]

dA
dt

= − (γ (t) + γH)

2
A +

√
γ (t)Sin, (13)

Sout = Sin +
√

γ (t)A, (14)

where Sin(t) = En(0, t) is the incoming neural mode’s
envelope, Sout is the outgoing (not captured) signal, and A
is the neuron mode amplitude captured in the resonator. By
fixing Sout = 0 we can solve for the γ (t) that would com-
pletely capture a given envelope Sin. The analytical solu-
tion for a Gaussian wave packet is given in the archived
simulation code. However, high neural activations would
lead to strong envelope distortions, which in turn cause the
mode to not be fully captured, thus providing for the equiv-
alent of a nonlinear elementwise activation function in our
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neural network architecture. Importantly, this implementa-
tion naturally supports negative and complex activations,
unlike the vast majority of optical approaches.

From the numerical experiments we see that κεsz0 ≈ 0.2
provides for a saturating activation function. For a waveg-
uide of length z0 = 1 cm, with good mode overlap s ≈ 1,
in lithium niobate with χ(2) = 31 (pm/V) we obtain εs =
160 (kV/m). Such a field strength amplitude corresponds
to a peak power of approximately ε0

√
ηcε2

s a = 20 µW for
a waveguide with a cross section of a = 0.2 µm2. Such
pump powers are easy to achieve and should pose no prob-
lem for the realization of our device. This device could be
constructed using a material with only a large χ(2) coef-
ficient. As mentioned above, this would require the linear
operations to be performed with three-wave mixing which
poses difficulties in maintaining the resonance and phase-
matching conditions. Alternatively, the whole device could
be realized using a single material with a large χ(3) coeffi-
cient. The nonlinear activation in this case will have to be
performed using four-wave mixing. Since the strength of
the χ(3) coefficient is generally lower than the χ(2) coef-
ficient, significantly higher pump powers will be required
to realize a similar distortion in the temporal waveform of
the neurons. Depending on the platform, especially if one
wants to avoid heterogenous integration, other materials
with a high χ(2) such as gallium arsenide [87], aluminium
gallium arsenide [88], and silicon carbide [89] can be
used. Such materials with both high χ(2) and χ(3) coef-
ficients would allow the entire device to be integrated
into a single material platform with appropriately rescaled
pump powers. [90,91]. Methods to ensure good coupling
between heterogeneously integrated materials require adi-
abatically transitioning the optical mode from one platform
to another. Experimentally, silicon nitride and lithium nio-
bate waveguides have been coupled using a terracelike
structure, where coupling losses of the order of 0.8 dB have
been reported [92]. Alternatively, high-efficiency coupling
among different material platforms has also been achieved
using tapered waveguides. Experimentally, tapered waveg-
uides coupled to optical fibers have also achieved high
coupling efficiencies of approximately 97% [93]. With
the appropriate inverse design, simulations suggest that
materials with a large index contrast can be coupled with
efficiencies >99% [94]. Coupling efficiencies on that order
would suggest that networks that are approximately 35
layers deep would lose approximately 50% of the input
power solely because of transmission from one material
to another.

The nonlinear activation function can also be used to
circumvent losses experienced in the ring resonators dur-
ing the four-wave-mixing process. Particularly, by using
the second-harmonic pumps instead of the subharmonic,
the nonlinear interactions can be engineered to provide
an activation function with a slope greater than 1. In this
case, the energy lost during the FWM process can be

compensated for, by transferring energy from the second-
harmonic pumps into the neurons. An example of such an
activation function is discussed in Appendix D.

IV. CASE STUDY: IMAGE CLASSIFICATION

We benchmark the performance of the proposed hard-
ware designs in a simulated neural network for image
classification. Each layer of the network is implemented
through the method of active coupling, followed by a non-
linear activation function discussed in the previous section.
The results of the simulations performed are provided for
the MNIST [52] classification task. The preprocessing of
these images involved low-pass filtering with a window
size N = 8 and is identical to the procedures followed in
Ref. [95]. The network we train consists of two layers—the
first of size 64 (as a result of the chosen window size,
recast into a vector), with a variable number of timesteps
and the second layer of size 10 (corresponding to the 10
output classes). These vectors are encoded into the initial
complex amplitudes of the modes of the simulated micror-
ing resonator, i.e., the input layer of the neural network.
The digital differentiable model was trained with the stan-
dard Adam [96] optimizer and mean-squared error loss
function.

In our simulations, we test the performance of the net-
work in different loss regimes while varying the number of
timesteps, i.e., the piecewise constant steps of the pumps.
In previous sections we observed that expressivity initially
grows with the number of sublayers, until losses due to the
prolonged operations become detrimental. This observa-
tion is confirmed in Fig. 6 where we show the classification
accuracy of our model versus the various hardware param-
eters: some minimum number of sublayers is required
to reach sufficiently good accuracy, after which accuracy
degrades due to losses. We find that under ideal condi-
tions, where � = 0, the network reaches approximately
90% classification accuracy after just 3 pump steps, and
further increases to a peak accuracy of approximately 95%.
This performance is similar to that achieved by other opti-
cal neural networks on the MNIST dataset. Since a fully
expressive network has O(N 2) degrees of freedom that
can be trained, this architecture is also expected to per-
form similar to other optical neural network architectures
on other datasets. Increasing the size of the network is
expected to further increase the performance of the net-
work [97,98]. On the other hand, in the more practical
case using a state-of-the-art cavity with � = 0.2 ns−1, the
peak accuracy of approximately 90% is reached after about
five instances of FWM, after which the performance of
the network drops. As the cavities get increasingly lossy,
we see a similar trend—an increase in the performance of
the network for a small number of pump steps, followed
by a precipitous drop in the accuracy. As discussed in
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Power of neuron mode for incorrect classification
Power of neuron mode for correct classification

FIG. 6. The classification performance of an all-optical neural net against the MNIST dataset depending on optical losses, effective
waveguide nonlinearity, and network size. We use a varying number of 64-neuron sublayers (as depicted on the horizontal axis)
followed by ten 10-neuron layers. In the top row we have classification accuracy (vertical axis) versus the number of sublayers,
i.e., distinct piecewise constant steps in the control pumps (horizontal axis). The three top facets depict different decay rates �, e.g.,
(�	t/2) = 0.25 corresponds to � = 0.5 ns−1 for a step duration of 	t = 1 ns. The insets in each of these facets enlarge the trend of the
classification accuracy for the first 10 pump steps. The strength of the nonlinear interaction in the waveguides between ring-resonators
is depicted in the color of the marker. While, initially, increasing the number of sublayers improves the performance thanks to the higher
expressivity of the encoded operation, a further increase is detrimental as it causes nonunitary behavior and a decrease in expressivity.
In the third facet one can additionally observe the precipitous drop in performance when, due to the increasing losses, the shot noise
starts dominating the measurement result. The bottom plot shows histograms of the power carried by the output neural modes. For
various number of sublayers (horizontal axis) and various loss rates (annotated with dashed lines), we plot the distribution of energy
per neuron mode (histograms with respect to the vertical axis). The blue histograms correspond to the “incorrect class” neurons, while
the red are the “correct class” neurons (which are fewer). The energy carried by the “correct class” neurons is consistently higher,
indicating effective classification. Moreover, at high expressivity the red histogram has noticeably smaller spread. The zero decibel
reference corresponds to a maximum of 106 photons per mode.

previous sections, the presence of loss reduces the expres-
sivity of the network. On other datasets, the accuracy
achieved by the network depends on the expressivity, and
whether the optimal solution can be realized by the group
of operations that can be expressed by the network. For
larger networks in the presence of loss, we expect to see
a similar trend as that shown in Fig. 6—increasing per-
formance for a small number of pump steps followed by
a faster precipitous drop. To explicitly illustrate this loss
regime, we also plot histograms of the energy carried by
each neuron mode at the output of the neural network.
Unsurprisingly, the energy of the neurons decays exponen-
tially as we increase the number of sublayers. Even before
measurements become shot-noise limited, the performance

of the network drops. For a state-of-the-art cavity (� =
0.2 ns−1) and control pulse resolution of 	t = 1 ns, we
obtain excellent classification performance and less than
5 dB of loss. However, for larger networks, the pumping
schemes discussed in previous sections would be crucial
for the reliable performance of the system.

V. DISCUSSION AND CONCLUSION

This work presents a novel architecture for an all-
optical coherent artificial-neural-network processor that
relies solely on coherent nonlinear optical processes. The
proposed scheme encodes information in the complex
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amplitudes of frequency states and are modulated via four-
wave mixing in a χ(3) medium, that enables the process of
matrix multiplication. This scheme can be realized experi-
mentally on a chip requiring only microring resonators.

The proposed neural network processor has multiple
advantages over previous implementations of optical and
electronics neural networks. As opposed to digital matrix-
vector multiplication that typically take O(N 2) timesteps
(where N is the size of the vector), the proposed model
has a time complexity of only O(N ). An added benefit is
that the speed of a single linear operation is a constant that
depends on the parameter 	t and not on the number of
neurons. This arises as a result of the parallel nature of
the FWM process. The number of on-chip components is
also very low, as all neural modes occupy the same res-
onator. Another feature of the architecture we propose is
that the speed of the operations is directly proportional to
the power of the pumps, letting us freely increase the com-
putational speed, to limits imposed by heating and leakage
from the hardware. Since a practical device would be
trained to accelerate inference on a specific dataset requir-
ing only one set of weights, the same sequence of pumps
can be recirculated, significantly lowering power require-
ments, up to the need for amplification to guard against
optical losses.

A particularly exciting benefit of the processor design
is the fully reversible (unitary) dynamics realised by our
accelerator. This opens up many future avenues for ultra-
fast, low-energy computing and the possibility of in situ
on-chip training [99]. One application is the possibility of
executing Hamiltonian-echo backpropagation [50], which
is an extremely efficient form of analog gradient descent.
Successfully realizing this scheme would result in self-
learning devices that converge to the ground state of a
given Hamiltonian. Other types of computational acceler-
ators like reservoir computers [27–30,53] and Ising [100]
machines could also be studied on this hardware. Even
more crucially, given the extreme similarities in hard-
ware requirements, this computational architecture can
be used as near-term proving grounds for technologies
that would enable room-temperature quantum computa-
tion: in Ref. [51] a multimode cavity is used to encode
information in the occupation numbers of each frequency
mode; programmable unitary operations including entan-
gling gates can be executed by a three-wave-mixing pro-
cess with an optimally controlled pump pulse. Moreover,
to implement universal quantum computing and measure-
ment free error correction, the only hardware required by
Ref. [51] is a pair of multimode resonators. The archi-
tecture proposed in this paper encodes information in
the complex amplitudes of frequency modes of a res-
onator. Programmable linear transformations (as well as
the nonlinear activation) are performed by time-dependant
four-wave mixing. Finally, to implement the entire neu-
ral network processor, we need only a set of cascaded

multimode resonators. These similarities suggest that the
proposed design is a potentially less demanding version of
a future room-temperature, nonlinear optics-based quan-
tum computational device.

Experimentally realizing such all-optical hardware
would undoubtedly be challenging. However, our esti-
mates for hardware parameters such as pump powers, qual-
ity factors, and effective nonlinear susceptibility lie within
the range of what has been achieved experimentally. The
high degree of control required gives rise to fabrication
and system integration-based complications. The genera-
tion of the pumps will also factor into the power budget
and space requirements of the device. Off-the-shelf mul-
tichannel electro-optic or acousto-optic modulators have
been used to generate such time-dependent signals. Typ-
ically, the Vπ rating of these modulators is of the order of
several volts, and the driving current required is several
milliamperes. This places the power requirements to gen-
erate a single pump in the range of 1–10 mW [101,102]. A
full system with hundreds of pumps of the order of 1 W,
which is orders of magnitude lower than traditional digital
electronic architectures such as graphical processing units.
These challenges in realizing the proposed architecture are,
however, not fundamental roadblocks. With the prospects
of self-learning machines, reversible computing, simula-
tions in synthetic dimensions, and room-temperature quan-
tum computing that can be explored with such a device,
investments to experimentally realize such a device would
enable returns in a multitude of computational domains.

APPENDIX A: METHOD OF PASSIVE COUPLING
FOR PROGRAMMABLE LINEAR

TRANSFORMATIONS

The main text of this paper covers the method of active
coupling. Using this scheme, it is possible to execute a
single linear layer of the neural network using a single
microring resonator. However, it requires active control
of the coupling coefficient γ (t), and places stringent con-
trol and fabrication requirements on the hardware. Similar
dynamics can be realized using an alternative scheme,
which we term as the method of passive coupling. In
this method, the coupling between the resonator and the
waveguide is constant γ , with the neurons and pumps
being allowed to propagate past the resonators. Following
absorption into the microring resonators, the neuron and
pump modes interact via FWM. We consider similar con-
ditions for the FWM as done in the case of active coupling,
i.e., the pumps are much stronger than the neurons, are
nondepletive, and obey the energy matching conditions.
To understand the time dynamics of the neuron modes, we
consider four modes—two neural modes and two pumps
modes. The Hamiltonian of the interaction is given as
Ĥ = �χ

(
p̂1p̂†

2 â1â†
2

)
+ H.c.. Using coupled mode theory,
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the Heisenberg equations of motion can be written as

Ṗi = 0 = −�

2
Pi − √

γ Sin,Pi (A1)

dA1

dt
=
(

−�

2
+ iχ |P1|2 + iχ |P2|2

)
A1

+ (
χP1P∗

2

)
A2 − √

γ Sin,1, (A2)

dA2

dt
=
(

−�

2
+ iχ |P1|2 + iχ |P2|2

)
A2

− (
χP∗

1P2
)

A1 − √
γ Sin,2, (A3)

Sout,i = Sin,i + √
γ Ai, (A4)

where just as in the main text, Ai and Pi are the ampli-
tudes of the neurons and pumps inside the resonator. The
encoded data is introduced into the system via the input
waveguide mode, denoted by Sin,i and the output neuron
modes after interacting with the resonators are denoted by
Sout,i.

This formalism can be extended to N neurons, and just
as in the case of active coupling, pumps, and neurons
with the same frequency difference can give rise to cross-
coupling effects. The updated coupled amplitude equation
for the neuron modes is now

dAi

dt
=
(

−�

2
+ iχ

N∑
m=1

|Pm|2
)

Ai − χ

⎡
⎣

N∑
j >i

j −1∑
k=1

(
PkP∗

k+j −i

)
Aj −

i−1∑
j <i

j∑
k=1

(
P∗

k Pk+i−j
)

Aj

⎤
⎦− √

γ Sin,i. (A5)

If we make the assumption that the first pump P1 is much stronger than the other pumps, the cross-coupling terms can
be neglected, leading to

dAi

dt
=
(

−�

2
+ iχ |P1|2

)
Ai − χ

⎡
⎣

N∑
j >i

(
P1P∗

j

)
Aj −

i−1∑
j <i

(
P∗

1Pj
)

Aj

⎤
⎦− √

γ Sin,i, (A6)

which together with Eq. (A4) lets us rewrite the system of
coupled mode equations in a matrix form:

�Sout = �Sin + √
γ
[
P−1

(
�̇A + √

γ �Sin

)]
. (A7)

Here the matrix P is the same Toeplitz matrix of pump
amplitudes defined by Eq. (4). A similar procedure can be
followed to derive the coupled amplitude Eq. (4) in the
case of active coupling. A deep neural network would typ-
ically consist of several layers, which in our case would be
implemented by cascading multiple microring resonators
consecutively. To enable repeated application of such a
transformation, we need to ensure that the temporal enve-
lope of the pulse does not vary significantly as it undergoes
transformations through FWM. Assuming the Sin pulses to
have a Gaussian temporal envelope, we can preserve the
Gaussian shape of the output pulses Sout if the pulses are
much longer than 1/γ . For pulses with a large enough
duration, we can make the adiabatic elimination �̇A = 0,
allowing us to work in the steady-state regime. We illus-
trate this approximation in Fig. 7 by comparing the solu-
tion of the steady-state model with the solution of the full
dynamics. As the length of the input pulses increases, the
steady-state model begins to closely resemble the model

of the full dynamics. This approximation allows us to sim-
plify Eq. (A7) into �Sout = (

IN + γ P−1) �Sin = T�Sin, where
IN is the N -dimensional identity matrix.

In this case as well, we see that the linear transformation
matrix T has only N degrees of freedom, as opposed to N 2

FIG. 7. Comparison of the steady-state model and the full
model for the pulse with the Gaussian envelope of different dura-
tions. The right column illustrates the correct profile of Sout, while
the left column show the profile as predicted by a steady-state
model. For pulses much shorter than 1/γ , we see the breakdown
of the steady-state model.
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FIG. 8. Quantifying the expressivity of the transformation
∏

T in different parameter regimes of the passive coupling scheme. Each
plot displays the average expressivity as we vary the number of sublayers (the horizontal axis) for a given matrix dimension (the
vertical axis). On the left, the expressivity at no internal loss (�/γ = 1) reaches unity at sufficiently many sublayers. On the right, the
expressivity at high loss (�/γ = 5) is consistently lower.

degrees of freedom that the weights of a fully connected
deep neural network would have. Just as in the case of
active capture, a single instance of FWM would be limited
in its expressivity. To solve this problem, we introduce the
concept of sublayers, i.e., a layer would be implemented by
several noncommuting cascaded matrices of the form T.
Each sublayer can be understood as performing the same
function as a single timestep in the case of active coupling,
i.e., an instance of FWM. Physically, this would require
multiple subsequent ring resonators, one per sublayer. By
cascading multiple sublayers, the number of free param-
eters increases and, therefore, would be expected to span
larger groups of unitary operations. To quantify the group
of operations that can be spanned by matrices of the form
T, we perform expressivity calculations as done in the case
of active capture, with the expressivity measure defined by
Eq. (5). Figure 8 illustrates that in the case where there is
not internal loss (�/γ = 1, i.e., γH = 0), upon cascading
a sufficient number of sublayers, we can span the entire
group of unitary matrices. In the more pessimistic case of
high internal loss (�/γ = 5, i.e., γH = 4γ ), the expressiv-
ity saturates under 1, thus spanning only a fraction of the
unitary group.

This method of passive capture shares the same architec-
tural benefits as the method of active capture—the speed
of the computation scales with the power of the pumps,
and the FWM across neuron modes is still parallel. The
lower bound of computational speed applies in this case
as well, because the pumps need to be strong enough for
the FWM to occur before the neurons leak out of the
resonators. Interestingly, too large of a Q factor would

also pose limitations in the pulse-capture efficiency, due to
the resonator’s inherent decoupling from the environment.
This is not an issue in the case of active capture due to the
tunable coupling coefficient.

APPENDIX B: EXPRESSIVITY OF THE
REALIZED TRANSFORMATIONS

In Secs. II A and II B we studied the expressivity of the
linear transformations realized in our proposed hardware.
We do this by randomly sampling M unitary matrices, each

FIG. 9. Distribution of the fidelity of the optimized “passive
coupling” transformations depending on the number of sublayers
utilized.
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FIG. 10. Distribution of the fidelity of the optimized “active
coupling” transformations depending on the number of sublayers
utilized.

denoted by Ui, and for each one of them attempting to
realize it in our hardware. The average overlap between
target and realization, also known as fidelity, also known
as expressivity is defined by Eq. (5). Here we present more
detailed statistics over the sample of M = 1000 matrices,
by giving a histogram of the single sample (single Ui)
fidelities, instead of just their averages seen in Figs. 8
and 2.

For the case of passive coupling, transformations are
given by matrices of the form

∏
T. Figure 9 shows the

distribution of the number of matrices with the aver-
age fidelities increasing as the number of sublayers are
increased. We specifically chose small 4 × 4 matrices, as
the behavior is easier to depict at that scale. Similar results
can be seen for transformations of the type

∏
e	tP realised

by the active coupling method, as seen in Fig. 10.

APPENDIX C: DETERMINISTIC ACTIVE
CAPTURE OF A PULSE INTO A RESONATOR

The dynamics of a incoming pulse Sin being captured
into a resonator mode A is described by Eqs. (13) and (14),
where Sout is the outgoing pulse envelope. To ensure the
entirety of the pulse is captured, we can rearrange the
equations as

Sout = 0 =⇒
√

γ (t) = Sin

A
, (C1)

dA
dt

= −γH

2
A + S2

i

2A
. (C2)

We can solve this differential equation for an arbitrary
incoming envelope. The analytical solution for an incom-
ing pulse with a Gaussian envelope Sin = S0e−(((t−t0)2)/2w2)

FIG. 11. The controllable coupling coefficient γ (t) for the cap-
ture of an incoming pulse of a Gaussian envelope (in dashed grey
line, on the right vertical axis).

is
√

γ (t) = ((S0e−(((t−t0)2)/2w2))/A), where

A(t) = S0

(
√

πwe
γH
2

(
γHw2

2 +2t0−2t)
)

×
(

1 + erf
(
− γHw2

2 − t0 + t
))

2

⎞
⎠

1
2

. (C3)

For other envelopes, a numerical solution, either through
solving the differential equation, or through an optimiza-
tion problem minimizing Sout is also possible. Figure 11
illustrates the agreement between the analytical solution
for γ (t) in Eq. (C3) and that obtained via a generic
numerical optimization.

APPENDIX D: NONLINEAR ACTIVATION
FUNCTION WITH SECOND-HARMONIC PUMP

USED FOR AMPLIFICATION

The proposed nonlinear activation function in the main
text uses a subharmonic mode that interacts with the
neuron modes. This subharmonic mode operates at fre-
quencies that are at half of the frequencies of the neuron
modes. However, constraints such as the transparency of
the material and the availability of high-efficiency sources
at required frequencies could present experimental difficul-
ties. Hence, we discuss an alternative nonlinear activation
function, where we allow the neuron modes to interact with
pumps that are at the second harmonic. Similarly to the
main text, the interaction can be modeled by the same sys-
tem of partial differential equations, in which we permute
the neuron and pump modes:

∂Esec

∂z
+ η

c
∂Esec

∂t
= −κE2

n − αEsec, (D1)
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FIG. 12. The alternative nonlinear activation function based on a nonlinear interaction with a pump at the second harmonic. This
activation function provides reliable (nonlinear) amplification over the majority of input phases and amplitudes, circumventing losses
that might have been experienced elsewhere in the circuit.

∂En

∂z
+ η

c
∂En

∂t
= κEsecE∗

n − αEn. (D2)

Here, En is the neuron mode and Esec is the second-
harmonic pump mode.

A set of numerical solutions can be seen in Fig. 12.
These nonlinear activation functions can be used in order
to amplify the neuron modes and circumvent losses.

APPENDIX E: EQUATIONS OF MOTION IN A
WAVEGUIDE WITH THREE-WAVE MIXING

Here we explicitly derive the equations of motion used
in the main text. Consider the “neuron” and “subharmonic”
fields:

En = f p
n (x, y)En(z, t)ei(ωt−kz) + c.c., (E1)

Es = f p
s (x, y)Es(z, t)ei 1

2 (ωt−kz) + c.c.. (E2)

Here f p
∗ (x, y) describes the profile of the waveguide mode

and E∗(z, t) describes the shape of the wave packet. Of
note is that we keep track of the complex conjugate part as
we have nonlinear processes. Given Maxwell’s equations
in matter and the typical parameterization of nonlinear
susceptibility we have the nonlinear wave equation

(
∇2 − n2

c2

)
E = 1

ε0c2 ∂2
t PNL = 1

c2 χ(2)EE, (E3)

where E = En + Es and we have approximated ∇ · E = 0.

The linear version of the above equation provides an
eigenvalue problem defining the shape of the waveguide
modes:

(
∂2

x + ∂2
y

)
f p
n (x, y) =

(
−(ik)2 + (iω)2 n2

c2

)
f p
n (x, y),

(E4)

(
∂2

x + ∂2
y

)
f p
s (x, y) =

(
−
(

i
k
2

)2

+
(

i
ω

2

)2 n2

c2

)
f p
s (x, y).

(E5)

The nonlinear perturbation leads to the following
equation of motions for the wave packet envelopes. In its
derivation we take into account that they are slowly vary-
ing functions for which ∂z � k and ∂t � ω. Therefore, we
have the following coupled equations of motion:

(
∂z + n

c
∂t

)
En(z, t) = −κE2

s (z, t), (E6)
(
∂z + n

c
∂t

)
Es(z, t) = κEn(z, t)E∗

s (z, t), (E7)

where κ is

κ
c
ω

=
∫

χ(2)f p∗
n f p

s f p
s dxdy∫

f p∗
n f p

n dxdy
= −

∫
χ(2)f p∗

s fnf p∗
s dxdy∫

f p∗
s f p

s dxdy
.

(E8)
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These two expressions for κ have to be equal for energy to
be conserved in the equations of motion. For mode overlap
of the order of unity, we have κ(c/ω) ≈ χ(2).

APPENDIX F: AMPLITUDE SCALES

Throughout the main text we treated the physics of the
two components of the neural network architecture inde-
pendently. One one hand, we have the physics of the matrix
multiplication enabled through four-wave mixing. While
the control pump powers in that setup were extremely
important (they set the time scales for the multiplication
operations and they were the main source of heating in
the hardware), there were no significant constraints of the
powers (or amplitudes) of the neural modes. The neural
modes need only be much weaker than the pump powers
in order to ensure we can assume quasistatic pumps (and
this assumption is not of fundamental importance, rather it
is done to simplify the modeling).

On the other hand, we have the physics of the elemen-
twise activation functions realized during the propagation
in a waveguide. The amplitude scales of both the neural
modes and the control pumps need to be carefully cali-
brated in order to perform the desired activation function.
Realistic values for these scales are presented in the main
text.

Lastly, there is the question of deriving the time-
dependent coupling coefficient γ (t) necessary for the com-
plete capture of traveling pulses into the resonators. As
seen in the previous section, that coefficient is independent
of the strength of the pulses.

Nonetheless, it would be instructive to know how to
convert between the two scales (of stationary modes inside
the resonators and of traveling modes in the waveguides).
The simplest way to do that is to relate these scales to
absolute energy carried by the given mode.

1. Inside the resonators

In the main text it was never necessary to specify an
absolute scale for the amplitudes of the neural modes while
being inside the FWM resonators. Any such scales can-
celed out in all dynamical equations as all time scales were
governed only by pump powers (thanks to the nondeplet-
ing pump assumption we made). We had only specified the
pump powers. If necessary, a convenient way to parame-
terize the neuron modes, i.e., the standing waves inside of
the resonators, would be

Ering = fring(x, y)A sin (mθ) eiωt + c.c, (F1)

where fring(x, y) is a unitless mode profile as given by
the mode eigenvalue problem (with some prescribed nor-
malization), and A is the mode amplitude (measured in
field strength units). For the given ring resonator, the
cross-sectional coordinates are x and y, the polar angle

coordinate is θ , and m is the order of the standing wave.
The corresponding mode energy Uring or average num-
ber of photons (Uring/�ω) can be found by integrating the
energy density:

Uring = εring|A|22πR
∫

fringdxdy, (F2)

where R is the radius of the ring, and the integral is over the
cross section of the ring, and εring is the ring permittivity.

2. Free propagation in the waveguide

In the main text and the rest of this appendix we have
used the following form for a propagating Gaussian pulse
in the waveguide:

Ewg = fwg(x, y)E(z, t)ei(ωt−kz) + c.c.. (F3)

Here E = εe−(((−(z/c)+t)2)/2w2) is the wave packet envelope,
fwg is a unitless mode profile (with some prescribed nor-
malization), z is the coordinate along the length of the
waveguide, w specifies the duration of the packet, and ε

(measured in units of field strength) is the amplitude by
which we parameterize the propagating modes. Integrating
the energy density gives us the energy of such a pulse:

Uwg = εwg|ε|2cw
√

π

∫
fwgdxdy. (F4)

Here εwg is the permittivity of the waveguide material and
c is the speed of light in that material.

These two expressions, together with conservation of
energy, and the previously presented pulse-capture dynam-
ics permit us to connect the parameterizations of all stages
of our architecture.

FIG. 13. Recent progress in third-harmonic generation and
four-wave mixing experiments. Numerical labels are linked to
the corresponding publications listed in the table below.
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Year Publication

1 2022 High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the singlemode regime
2 2020 Third-harmonic generation enhancement in an ITO nanoparticle-coated microresonator
3 2020 High efficiency cascaded third-harmonic generation in a quasi-periodically poled KTiOPO4 crystal
4 2020 Coherently enhanced third-harmonic generation in cascaded microfibers
5 2019 Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics
6 2019 Microcavity nonlinear optics with an organically functionalized surface
7 2019 Efficient, broadband third-harmonic generation in silicon nanophotonic waveguides spectrally shaped by

nonlinear propagation
8 2018 Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings
9 2018 Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength

conversion
10 2018 Boosting third-harmonic generation by a mirror-enhanced anapole resonator
11 2016 Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics
12 2016 Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide

microresonators
13 2016 Frequency comb generation in the green using silicon nitride microresonators
14 2016 Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals
15 2016 Cascaded third-harmonic generation with one KDP crystal
16 2015 Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via

third-harmonic conversion
17 2014 Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator
18 2014 Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators
19 2013 New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics
20 2012 Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation
21 2012 Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation
22 2012 Broadband third harmonic generation in tapered silica fibres
23 2011 Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength

conversion
24 2011 Harmonic generation in silicon nitride ring resonators
25 2009 Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million
26 2009 Green light emission in silicon through slow-light enhanced third-harmonic generation in

photonic-crystal waveguides

APPENDIX G: EXPERIMENTAL PROGRESS

In Fig. 13 we track recent experimental progress in the
creation of high-efficiency FWM hardware.
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