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Near-term quantum algorithms require high-performance entangling gates in a scalable quantum pro-
cessor, and Mølmer-Sørensen (MS) gates on trapped ions have achieved some of the highest entanglement
fidelities to date. However, technical noise that induces small changes in the motional frequencies of the
ion chain is a dominant error source in these gates that limits scalability. Here, we report an improved MS-
gate design that mitigates the impact of motional-frequency changes by using a class of laser waveforms
with three salient features: a spectrally compact Fourier transform, a constant frequency that balances
contributions to the MS-gate rotation angle from all motional modes, and a simple parameterization.
Together, these features suppress residual coherent displacement of the motional modes, generate robust-
ness to rotation-angle error, and provide low technical complexity and computational overhead. As a
proof of concept, we implement this gate design on a four-ion chain, achieving a <1% fidelity reduction
over a ±10 kHz range of frequency offset from the calibrated detuning. We also analyze the appli-
cability of our gate design to longer ion chains through numerical simulations of our gate design on
chains of up to 33 ions. This robustness to motional-frequency changes represents an order-of-magnitude
improvement over the more complicated waveform-shaping techniques that currently dominate the robust-
gate literature, and our simulations predict that a high level of robustness can be maintained in these
systems for longer ion chains. In addition, the robustness and simplicity of our approach promises to
accelerate the development of quantum architectures that invoke long algorithmic runtimes and frequent
calibration.
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I. INTRODUCTION

Quantum computers have the potential to perform
powerful algorithms, like digital quantum simulation
[1] and quantum error correction [2–4], and linear
chains of trapped ions provide one of the most promis-
ing platforms for quantum computation in the near
term. The application of Mølmer-Sørensen (MS) gates
[5] in these systems has produced some of the high-
est two-qubit entanglement fidelities to date, reaching
above 99.9% with two-ion chains [6–8], and encourag-
ing results have been obtained in larger systems. For
example, a fidelity of 98.5–99.3% has been achieved
on all pairs of ions in a 32-ion chain, enabling the
production of an error-corrected logical qubit [9], and
an average entanglement fidelity of 99.8% has been
achieved across four interaction regions in the quantum
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charge-coupled device (QCCD) architecture [10,11],
enabling the best measurement of quantum volume to date
(219), in a system of 120 qubits [12].

However, trapped-ion processors require more qubits
and even higher fidelities to perform near-term algorithms,
and technical noise that alters the motional frequencies
of the ions is one of biggest barriers preventing high-
fidelity MS gates at larger scales. For short chains in the
QCCD architecture, high-fidelity MS gates require calibra-
tion to the precise values of the motional frequencies in
the interaction regions, and these frequencies must be sta-
bilized over the course of an algorithm. For longer-chain
architectures, high-fidelity operations require this type of
calibration and stabilization for an increasing number of
motional modes and for each pair of ions. Moreover, the
increasing spectral density of motional modes in longer
chains increases the sensitivity to changes in the motional
frequencies.

Two different types of MS-gate error can emerge from
motional-frequency changes. The first type of gate error
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comes from residual motional displacement after the gate
(i.e., displacement error). This displacement causes the
motion of the ions to be entangled with their spin after
the gate, leading to a (mostly) incoherent gate error after
tracing out the motional degrees of freedom [13]. The sec-
ond type of gate error comes from obtaining the incorrect
value of gate rotation angle (i.e., rotation-angle error). This
error is a purely coherent gate error, which is especially
damaging to the performance of quantum algorithms that
involve many gates [14]. For example, the circuit sensi-
tivity to rotation error has been demonstrated through the
repeated application of MS gates on two-ion and four-ion
chains [15].

Consequently, researchers have attempted a range of
techniques to mitigate the effects of motional-frequency
changes. Most techniques involve modulating the laser
beams that drive the MS gate, including amplitude mod-
ulation [16–23], frequency modulation [15,24], simul-
taneous amplitude and frequency modulation [25–29],
and phase modulation [30–32]. Alternative techniques
involve the application of additional laser tones [33,34].
These techniques eliminate all gate error in ideal
experimental conditions and add various degrees of
robustness against gate errors upon motional-frequency
changes.

Nevertheless, motional-frequency changes continue to
be a dominant source of error in high-fidelity gates
[15]. This error source persists, in part, because most
approaches mitigate the effects of motional-frequency
changes by providing robustness to displacement error
[24,26,28], without explicitly providing robustness to
rotation-angle error. More recent attempts to simultane-
ously reduce both displacement error and rotation-angle
error have achieved some gains [29,35,36], but rotation-
angle error still tends to dominate over displacement error
in these approaches, leading to significant coherent gate
error.

Critically, as system sizes increase, technical compli-
cations further limit the ability to mitigate motional-
frequency changes and perform high-fidelity gates. For
short chains in the QCCD architecture, larger systems
require a greater amount of ion shuttling and recooling
that increases the total runtime of quantum algorithms,
making these systems more susceptible to motional-
frequency drift. In addition, any residual motional exci-
tation increases the sensitivity to motional-frequency
changes [13]. In longer-chain architectures, the majority
of frequency-robust gate designs require a number of opti-
mized waveform parameters that increases linearly with
the number of ions, making these techniques more diffi-
cult to implement as the length of the chain increases [24].
Some approaches limit the number of waveform param-
eters by only targeting closely spaced ions or by using
spectrally compact waveforms [22,25–27], but these tech-
niques still have strict experimental requirements that grow

with the number of ions. For example, modulated gates
on longer ion chains require larger laser powers [15,26]
and generally have a higher sensitivity to changes in the
calibrated model parameters (e.g., motional frequencies,
ion separation, laser power, and gate duration) [35]. As
a result, in both QCCD and longer-chain architectures,
larger systems are more susceptible to motional-frequency
changes, require more frequent calibration, and would ben-
efit from strongly robust gates that are easy and efficient to
implement.

Therefore, we propose an alternative MS-gate design
that mitigates the impact of motional-frequency changes
by using a class of waveforms with three salient features.
The first feature is a spectrally compact Fourier transform
that strongly suppresses displacement error in all motional
modes, as long as the detuning from each mode remains
sufficiently large. The second feature is a specific, con-
stant laser detuning that balances the contribution to the
rotation angle from all modes, providing strong robust-
ness to rotation-angle error. We choose this detuning such
that the first derivative of the gate rotation angle with
respect to detuning goes to zero, and we are free to adjust
(or calibrate) this detuning without adding significant dis-
placement error. This method of mode balancing produces
a gate that is not only first-order insensitive to detuning
but also has a significantly reduced second-order deriva-
tive with respect to detuning, as compared to many other
gate designs, resulting in broad regions of robustness to
motional-frequency changes, even for longer ion chains.
The third feature of this class of waveforms is a simple
parameterization that removes the need to optimize a large
set of waveform parameters but yet still provides broad
robustness to motional-frequency changes. With a simply
parameterized waveform, our gate design is exceedingly
simple to realize experimentally; we can optimize per-
formance by calibrating only two waveform parameters:
the constant detuning and the peak Rabi rate. As a result,
our MS gate design is quick to calibrate and has a low
classical computational overhead, facilitating its adoption
on trapped-ion quantum processors throughout the sci-
entific community and making our gate design suitable
for systems suffering from even substantial amounts of
drift.

As a proof of concept, we demonstrate the motional-
frequency robustness of our gate design on a four-ion chain
on the Quantum Scientific Computing Open User Testbed,
QSCOUT. We use qubits encoded in the hyperfine clock
states of 171Yb+ ions trapped in a linear chain above a
surface-electrode trap. Gates are site selectively driven
with an optical Raman transition. Details of the appara-
tus are described in this previous work [37]. In addition,
we analyze the robustness of our gate design to motional-
frequency changes through numerical simulations of our
gate design on chains of up to 33 ions and for various ion
separations.
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II. GATE DESIGN

A. MS gate model

We model the application of an MS gate on two ions
that are part of a linear chain of trapped ions using the
Hamiltonian,

H(t) = −�(t)
∑

k

Sy,kakeiδkt + h.c., (1)

which is in a rotating frame with respect to the internal
and motional degrees of freedom. This Hamiltonian arises
from using a system of counterpropagating laser beams
to generate two Raman tones on each target ion. For a
chain N ions, the sum over k includes 2 N radial motional
modes, for {k : 0 . . . 2N − 1} in order of increasing energy.
The operator a†

k (ak) is the raising (lowering) operator of a
harmonic oscillator that represents the kth motional mode
of the chain with angular frequency νk. As shown by the
blue (red) vertical dashed line in Fig. 1, the blue-detuned
(red-detuned) Raman tone has a detuning of δc (−δc) from
the carrier transition between the ground and excited spin
states, |0〉 and |1〉, respectively, where δc > 0. As a result,
the blue-detuned (red-detuned) tone is detuned by δk (−δk)
from the blue (red) motional sideband transition of mode k,
where δk = δc − νk. The blue (red) sideband transition cor-
responds to causing a spin flip from |0〉 to |1〉 and increas-
ing (decreasing) the motion in mode k by one phonon. For
a gate targeting ions j1 an j2 in the chain, the collective spin
operator Sy,k has the form: Sy,k = (ηj1,kσy,j1 + ηj2,kσy,j2)/2,
where σy,j is the y Pauli spin operator for the jth ion. The
Lamb-Dicke parameter ηj ,k can differ for each ion and each
motional mode, and the Rabi rate of the carrier transition
�(t) is the same for both targeted ions. In this work, �(t)
is a time-dependent parameter of the drive field, and δk is
held constant in time for each mode. For simplicity, we
have made the Lamb-Dicke approximation: eiηj ,k(ak+a†

k ) ≈
1 + iηj ,k(ak + a†

k). We have also neglected the carrier tran-
sition and far-off-resonant sideband transitions, including
those from axial motion.

Since the Hamiltonian H(t) acts on each motional mode
independently, we can write the propagator U(t) as a
product over motional modes:

U(t) = �kUk(t), (2)

and the exact analytic solution for Uk(t) is [5,13],

Uk(t) = e−iBk(t)S2
y,k D(Sy,kαk(t)),

Bk(t) = i
2

∫ t

0

(
dαk(t′)

dt′
α∗

k (t
′) − αk(t′)

dα∗
k (t

′)
dt′

)
dt′. (3)

The displacement operator D(Sy,kαk(t)) =
exp

[
Sy,k(αk(t)a

†
k − α∗

k (t)ak)
]

is conditioned on the spin

ν0 ν1

}δc

−ν0−ν1 0
Detuning from Carrier Transition

} }δ0δ1

}δ2

ν2−ν2

}δ3

ν3−ν3... ...

}δc }δ3}δ2
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FIG. 1. Spectral diagram of Raman detunings (not to scale) for
an MS gate with the contributions to its rotation angle balanced
between all motional modes, while primarily targeting the two
lowest-energy modes. A chain of N ions has 2 N radial modes,
indexed here by k for {k : 0 . . . 2N − 1} in order of increasing
energy, but only four modes are shown for clarity. Mode k has
frequency νk/2π . The black vertical line represents the carrier
transition between the ground and excited spin states, |0〉 and
|1〉, respectively. The blue (red) vertical solid line at νk (−νk)
represents the blue (red) motional sideband transition of mode
k, which corresponds to causing a spin flip from |0〉 to |1〉 and
increasing (decreasing) the motion in mode k by one phonon. The
blue (red) vertical dashed line represents the detuning δc (−δc) of
the blue-detuned (red-detuned) Raman tone from the carrier tran-
sition, where δc > 0. As a result, the blue-detuned (red-detuned)
Raman tone is detuned by δk (−δk) from the blue (red) motional
sideband transition of mode k, where δk = δc − νk.

state of the targeted ions, and αk(t) describes the phase-
space trajectory of the ion chain. The phase ηj1,kηj2,kBk(t),
which governs the amount of spin entanglement accrued
during the gate, is real and positive (negative) for clock-
wise (counterclockwise) trajectories.

To gain an intuitive picture of the gate dynamics, we
express the phase-space trajectory of each motional mode
in terms of the parameters of H(t),

αk(t) = i
∫ t

0
�(t′)e−iδkt′dt′, (4)

where t = τ corresponds to the end of the gate. From this
equation, we see that αk(τ ) is proportional to the Fourier
transform of �(t) evaluated at δk, assuming that �(t) is
zero before (t < 0) and after (t > τ ) the gate [23]. This
is a key insight that will aid our choice of waveform for
frequency-robust gates, as discussed in Sec. II C.

In this study, we focus on the robustness of MS-gate
performance to a frequency offset δω/2π that is applied
to both laser tones and moves them symmetrically with
respect to the carrier transition, resulting in shifted car-
rier detunings: ±δ′

c = ±(δc + δω) and sideband detunings:
±δ′

k = ±(δk + δω). We consider values of |δω| that can
significantly alter the sideband detunings but have a negli-
gible effect on the Lamb-Dicke parameters. For this reason,
we keep the Lamb-Dicke parameters fixed in our model
but allow the sideband detunings to change with δω. This
causes δω/2π to be equivalent to a common change in the
motional frequency of each mode: ν ′

k = νk − δω, allowing
us to use δω as a proxy for motional frequency changes in
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this study. Although other error sources can affect gate per-
formance, such as laser power fluctuations and anomalous
heating [38,39], we choose to focus on motional frequency
changes due to the high sensitivity of gate performance
to this effect [13], especially in the context of longer ion
chains with many closely spaced motional modes.

B. Performance metrics

We use the state fidelity F as the figure of merit for gate
performance, which can be computed by wave-function
overlap:

F = | 〈�|(τ)〉 |2, (5)

where |(τ)〉 is the wave function of the ion chain at the
end of the gate and |�〉 is the target state. We assume
that we perfectly initialize the ions in the spin state |00〉
and laser cool them to reach the motional ground state
|0〉. The state of the ion chain after the gate is then
|(τ)〉 = �keiBk(τ )S2

y,k D(Sy,kαk(τ )) |00, 0〉, and we choose
to target the state |φ〉 = 1/

√
2(|00〉 + i |11〉) |0〉, a maxi-

mally entangled spin state and the motional ground state.
Although we will focus on the state fidelity for the initial
spin state |00〉 and report experimental measurements of
this state fidelity in Sec. III C, we note that in our sim-
ulations this metric is representative of the entanglement
fidelity, which is a measure of the average fidelity for all
initial spin states [40]. Hence, the state fidelity acts as a
sufficient metric to quantify gate performance in this paper.

For ideal gate performance (F = 1), we require the
propagator at the end of the gate (t = τ) to take the fol-
lowing form: U(τ ) = e−iσy,j1σy,j2 θ/2, where θ is the rotation
angle of the gate. For our choice of initial and final states,
the ideal gate is accomplished for,

αk(τ ) = 0 for each k, (6a)

θ =
∑

k

ηj1,kηj2,kBk(τ ) = π/2. (6b)

Although F is a sufficient metric for gate performance,
we find it illustrative for this work to decompose the state
fidelity into two contributing terms: displacement error εd
and rotation-angle error εr, which arise from inequalities in
Eqs. (6a) and (6b), respectively. In the next two sections,
we derive the contribution to the state infidelity 1 − F
from each error separately, where the sum of these errors,

εs = εd + εr, (7)

is approximately equal to the state infidelity: εs ≈ 1 − F ,
for small errors (εd � 1 and εr � 1).

1. Displacement error

Displacement error occurs when the coherent displace-
ment at the end of the gate is nonzero, αk(τ ) 	= α(0) = 0,
and leads to residual spin-motion entanglement. In the
phase-space trajectory picture, a gate with no displacement
error for a particular mode will produce a closed curve, and
any residual displacement (or open curve) contributes to
the gate error. We call this contribution the displacement
error εd,k for mode k. As accomplished in several previ-
ous works, including Refs. [21–24,32,35], we design gates
for which εd,k is robust to motional frequency changes by
shaping the laser waveform.

We derive an expression for the displacement error from
each mode by acting the displacement operator for the gate
on the initial state and computing the wave-function over-
lap with the target state: Od,k = 〈�| D(Sy,kαk(τ )) |00, 0〉.
The operator Sy,k has four eigenvalues: λ++ = (ηj1,k +
ηj2,k)/2, λ+− = (ηj1,k − ηj2,k)/2, λ−+ = (ηj2,k − ηj1,k)/2,
and λ−− = −(ηj1,k + ηj2,k)/2, corresponding to the spin
states |++〉, |+−〉, |−+〉, and |−−〉, respectively, where
{|+〉 = (|0〉 + |1〉)/√2, |−〉 = (|1〉 − |0〉)/√2}. In terms
of these eigenvalues,

Od,k = 1
4

∑

λ

e−|λαk(τ )|2/2, (8)

and the total displacement error is,

εd =
∑

k

εd,k, (9a)

εd,k = 1 −
∣∣∣∣∣
1
4

∑

λ

e−|λαk(τ )|2/2

∣∣∣∣∣

2

. (9b)

For example, if the Lamb-Dicke parameters were equal
for each ion and mode involved in the gate (ηj1,k = ηj2,k
= η), then the eigenvalues of Sy,k would be λ =
{η, 0, 0, −η}, and from Eq. (9b), we would find that εd,k ≈
η2|αk(τ )|2/2 for small errors. In addition, if we were to
adjust the magnitude of the target rotation angle from |θ | =
π/2 to |θ | = |θtarget| by scaling the magnitude of �(t), we
would find that εd ∝ |θtarget| for small errors.

2. Rotation-angle error

Rotation-angle error εr is the error in the amount of
entanglement accumulated at the end of the gate. In the
phase-space trajectory picture, this can be visualized as
the area enclosed by the curves. Most gate designs do not
explicitly target solutions that are robust to rotation-angle
error caused by motional frequency drift. In this work,
we utilize the contributions from multiple motional modes
in order to derive a gate for which εr is independent of
motional frequency changes to first order.
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We derive an expression for the rotation error by act-
ing the spin-entangling operator for the gate on the initial
state and computing the wave-function overlap with the
target state: Or = 〈�| �keiBk(τ )S2

y,k |00, 0〉. Since the spin-
entangling operator is independent of the motional state,
we only require that the rotation angle of the gate θ =∑

k ηj1,kηj2,kBk(τ ) is equal to π/2 to achieve an MS gate,
as shown in Eq. (6b). Therefore, any deviation of this angle
δθ = θ − π/2 results in the rotation δU = eiδθσy,j1σy,j2/2 of
the target state, up to an arbitrary global phase, and the
rotation error is,

εr = 1 − |〈�| δU |�〉|2 ≈ 1
4

|δθ |2 , (10)

for |δθ | � 1. In addition, if we were to scale the magnitude
of �(t) to adjust the target rotation angle from |θ | = π/2
to |θtarget|, we would find that εr ∝ |θtarget|2 for small errors.

C. Amplitude modulation

The robustness of our gate design to motional frequency
changes relies on a spectrally compact laser waveform.
To this end, we implement spectrally compact ampli-
tude modulation during the gate, which we describe by a
time-dependent Rabi rate �(t). From Sec. II B 1, we see
that the state infidelity grows linearly with the residual
displacement of each mode |αk(τ )|2. To reduce these con-
tributions, we note that αk(τ ) is proportional to the Fourier
transform of �(t) evaluated at δk, as seen in Sec. II A,
and we choose to perform amplitude modulation with a
truncated-Gaussian shape,

�(t) =
{

�0e−(t−τ/2)2/2z2
, if 0 ≤ t ≤ τ ,

0, otherwise,
(11)

where �0 is the peak Rabi rate, and z is the standard
deviation (i.e., Gaussian width).

To understand the effect of the Gaussian-like ampli-
tude modulation, we assume that z is sufficiently small
(z2 � τ 2) such that we can ignore the truncation of �(t)
and extend the limits of integration in Eq. (4) for α(τ) to
all times,

αk(τ ) ≈ i
∫ ∞

−∞
�′(t′)e−iδkt′dt′, (12a)

|αk(τ )|2 ≈ 2π�2
0z2e−δ2

k z2
, (12b)

where �′(t) = �0e−(t−τ/2)2/2z2
for all t. Here, we see that

the Gaussian-like modulation guarantees that the displace-
ment error from each mode will exponentially decay with
δ2

k [23]. For the appropriate choice of detuning, this can
strongly suppress contributions to εd from the modes
primarily driving the gate and almost entirely eliminate

contributions to εd from far-detuned “spectator” modes.
Despite this strong suppression of displacement errors at
the end of the gate, the maximum displacement in mode k
during the gate maxt(|αk(t)|) is only suppressed by a factor
of 1/δk when |δk|  z−1. Likewise, the contribution from
mode k to the gate rotation angle θ scales like θk ∝ �2

0/δk
for |δk|  z−1.

D. Mode balancing

Many MS-gate implementations, including the standard
gate with a constant detuning and Rabi rate [5], suffer from
the displacement error εd caused by spectator modes, and
the gate performance degrades when the detuning of the
mode primarily targeted by the gate has a similar magni-
tude as the detuning from the other modes. However, since
the Gaussian amplitude modulation strongly suppresses εd,
as discussed in Sec. II C, we have the freedom to detune
close to multiple modes without suffering from large dis-
placement errors. In this section, we take advantage of this
freedom and determine a choice of detuning δc that not
only maintains the suppression of εd but also reduces the
rotation-angle error εr.

While staying sufficiently far away from all modes
(δk  z−1) to suppress εd, we aim to balance the contri-
butions to θ from all modes, such that motional frequency
changes that increase the contribution to θ from some
modes are cancelled to first-order by the decrease in the
contribution to θ from the other modes. In general, we can
determine the detunings that balance the contributions to
θ from all modes by numerically solving the following
equation for δc:

dθ

dδc
=

∑

k

ηj1,kηj2,k
dBk(τ )

dδc
= 0, (13)

which may have multiple solutions. Since this equation is a
sum of one-dimensional integrals with a number of terms
that grows linearly with ion number, the time to numer-
ically solve this equation for tens of ions is only a few
seconds on a typical laptop.

After solving Eq. (13) for δc, we then use this value to
implement an MS gate for which εr is first-order robust to
motional frequency changes. In addition, we find that this
motional mode balancing can suppress the magnitude of
the second-order derivative |d2θ/dδ2

c | at the balance point.
As a result, this derivative can be much smaller than for
numerically optimized waveforms, which typically mini-
mize the first-order derivative at the expense of enlarging
higher-order derivatives. While some numerically opti-
mized gate designs in the literature allow one to cancel
higher-order terms, these techniques add more computa-
tional overhead and often require larger laser powers. In
contrast, the balanced-gate design suppresses higher-order
derivatives without numerical optimization nor enhanced
laser-power requirements.
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To provide intuition on the solutions to Eq. (13), we
note that the kth term in the sum becomes large near
δk = 0 and tends to dominate all other terms. Also, in the
region of δc between two neighboring modes k1 and k2, the
quantities dBk1/dδc and dBk2/dδc have the same sign. For
these reasons, a solution to Eq. (13) is likely to be found
between neighboring modes when the products ηj1,k1ηj2,k1
and ηj1,k2ηj2,k2 have opposite signs.

Although numerically solving Eq. (13) is straightfor-
ward and efficient, it may be useful to determine values
of δc experimentally. In practice, one can identify regions
where solutions are likely to exist and experimentally cal-
ibrate δc as we describe in Sec. III C. In addition, since
the solution to Eq. (13) depends on the motional frequen-
cies, small changes in these frequencies can cause a shift
in the balance point on the same scale. In this case, instead
of remeasuring the motional frequencies, one can regain
maximum frequency robustness by simply scanning the
laser frequency and finding the value at which θ (eas-
ily inferred from population measurements) is flat with
respect to frequency. Implementing this procedure takes
only a few minutes (depending on the frequency spacing
between the closest two modes), and we find approxi-
mately the same balance point as solving Eq. (13) with
the updated motional frequencies. Empirically determined
balance points of this kind have been used to generate
spin-spin Ising interactions and perform entangling gates
on trapped ions [41].

Although the contribution to the rotation angle from dis-
tant modes will be suppressed by their larger detunings, we
purposely include a sum over all modes in Eq. (13). Since
the contribution to the rotation angle from each mode has
a fairly slow decay θk ∝ 1/δk, distant modes are likely to
contribute in longer chains due to their increased spectral
density. Moreover, because θk ∝ ηj1,kηj2,k, distant modes
with larger Lamb-Dicke parameters than the closest two
modes make an enhanced contribution to θ and may play
a key role in the gate. By including all modes, our design
applies to an arbitrary mode structure, including densely
spaced and irregularly spaced spectra.

Even though Eq. (13) applies to constant frequency
offsets for each mode, δ′

k = δc − νk + δω, one can gener-
alize this equation for previously known mode-dependent
changes in the detunings, δk(s) = δc − νk + δωk(s), by
replacing δc with s. We also note that while the detun-
ing from each mode does not depend on time in this
equation, one could employ the concept of motional-mode
balancing to formulate a cost function for the design of
frequency-modulated gates that achieve the same first-
order robustness to motional frequency changes.

At least for monospecies ion chains, solutions to
Eq. (13) exist for all pairs of ions and for all chain lengths.
However, for chains with an odd number of ions, the center
ion has a zero Lamb-Dicke parameter for many modes. In
this case, the values of detuning that solve this equation can

be close to resonant with another motional mode in which
the center ion does not participate but the other ion does,
potentially adding an unacceptable amount of displace-
ment error to the gate. Hence, to address the center ion
with our gate design, it may be advantageous to increase
the chain length by one, such that all ions have a nonzero
Lamb-Dicke parameter. Alternatively, one could adjust the
trapping potential to create a balance point between modes
from orthogonal principle axes. For example, although
the spectra of orthogonal radial modes often separate into
two distinct series, one could intentionally overlap these
series and create a balance point between two modes in
which the addressed ions have strong mode participation,
but this approach would increase the spectral density and
reduce the robustness to frequency changes, as compared
to well-separated radial series.

We also find that balance points exist between modes for
which the ions have relatively large Lamb-Dicke parame-
ters (i.e., mode participation). For long chains, a particular
pair of ions can have relatively weak participation in a cer-
tain pair of modes, but there is always a pair of modes for
which a balance point exists and ion participation remains
strong. However, the pair of modes with the strongest ion
participation is not guaranteed to be the lowest-frequency
pair, and therefore the mode spacing (and robustness to
frequency changes) can be less for these ions than for ion
pairs that do participate strongly in the lowest two modes.
We discuss the relationship between mode spacing and fre-
quency robustness in greater detail in Sec. III D. Whether
it is optimal to operate with weaker ion participation vs a
smaller mode spacing depends on the exact mode spec-
tra, level of motional frequency noise, and laser-power
limitations.

E. Gate comparison

To demonstrate the robustness to motional frequency
changes of the balanced Gaussian gate, we simulate MS
gates with three different gate designs subject to the sym-
metric frequency offset δω/2π , which corresponds to a
common shift of each motional frequency: ν ′

k = νk − δω,
and we compute the contributions to the simulated state
infidelity from displacement error εd and from rotation-
angle error εr for each gate. We compare the balanced
Gaussian gate, which has a detuning that solves Eq. (13),
with an unbalanced Gaussian gate – which has a detun-
ing that does not solve Eq. (13) – and with a square gate,
which has a constant Rabi rate during the gate and the same
detuning as the unbalanced Gaussian gate. In this compari-
son, both the unbalanced Gaussian gate and the square gate
are detuned below the lowest motional mode. The duration
of each gate is 250 µs and the Gaussian width for each
modulated gate is z = 33.1 µs. Being a small fraction of
the gate duration, this choice of z creates Gaussian-like
amplitude modulation with small truncation effects.
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We provide a concrete example for this compari-
son by simulating each gate on the inner ions of a
four-ion chain with an inner-ion separation of approx-
imately 4.12 µm and motional mode frequencies
of νrb/2π = {2.14, 2.23, 2.30, 2.35} MHz and νra/2π =
{2.39, 2.47, 2.53, 2.57} MHz, in the orthogonal radial-b and
radial-a directions, respectively. These motional frequen-
cies are typical for a surface trap used in the QSCOUT
device. In this order of modes (i.e., increasing energy), the
Lamb-Dicke parameters for the two center ions (j1 = 0,
j2 = 1) are,

η0,krb = {−6.27, 4.56, −1.91, 4.44} × 10−2, (14a)

η1,krb = {6.27, 4.56, 1.91, 4.44} × 10−2, (14b)

η0,kra = {−5.94, 4.33, −1.82, 4.24} × 10−2, (14c)

η1,kra = {5.94, 4.33, 1.82, 4.24} × 10−2. (14d)

We also assume the laser k vector is aligned at a 45◦ angle
between the two radial directions, and we neglect any exci-
tation of the axial motional modes, which will have a large
detuning compared to the radial modes during the gate and
are orthogonal to the k vector of the laser.

We choose to perform the balanced Gaussian gate by
primarily targeting the lowest two radial modes. In this
case, the lowest two modes are the k = 0 and k = 1 radial-
b mode, which have a frequency spacing of �ν10/2π =
(ν1 − ν0)/2π = 88.5 kHz. The targeted ions have Lamb-
Dicke parameters that are equal and opposite in the k = 0
mode, while being equal in the k = 1 mode, such that the
products η0,0η1,0 and η0,1η1,1 have opposite signs and are
approximately equal in magnitude. We then solve Eq. (13)
in the region between these modes and obtain a balanced
detuning of δ0/2π = 51.2 kHz above the k = 0 mode.
Also, because the sign of θ happens to be negative in this
case, we impose a differential laser phase of π between
the two ions to achieve the gate defined by positive val-
ues of θ . We model this change in phase by σy,1 → −σy,1,
which modifies the handedness of the phase-space trajec-
tories and has the same effect on the propagator U(τ ) =
e−iσy,0σy,1θ/2 as θ → −θ .

In order to provide the most straightforward comparison
of the balanced Gaussian gate to an unbalanced Gaussian
gate and to a square gate, we use a similar magnitude of
optimal detuning for all gates. For the unbalanced Gaus-
sian and square gates, we choose a detuning of δ0/2π =
−52 kHz. We match the optimal detuning parameters in
our comparison because the sensitivity to motional fre-
quency changes strongly depends on the detuning from the
nearest motional mode. For this reason, the rotation error
of the unbalanced Gaussian gate has the same sensitivity
to a symmetric detuning offset as the square gate in this
example. We also note that this choice of δ0 causes the ions
to traverse n = δ0τ/2π = 13 phase-space loops during a

square gate, which corresponds to a relatively low sensi-
tivity to frequency changes as compared to a single-loop
gate with the same duration.

As a final step, we select the peak Rabi rate �0 for
each gate separately to guarantee |θ | = π/2 at the cho-
sen detuning. The peak Rabi rates in our simulations of
a four-ion chain are �0/2π = 130 kHz for the square gate,
�0/2π = 268 kHz for the unbalanced Gaussian gate, and
�0/2π = 178 kHz for the balanced Gaussian gate. We
have set the value of these peak Rabi rates to achieve the
same target rotation angle θ = θtarget = π/2 for each gate,
at zero-frequency offset δω = 0. Given this constraint, the
rotation-angle error εr is proportional to |θtarget|2 and does
not explicitly depend on �0.

Figure 2 shows the simulated values of εd and εr for
the three different gate designs as a function of the detun-
ing δ0/2π from the k = 0 mode. In this figure, each large
peak in the errors corresponds to a detuning that is resonant
with a motional mode, and as the detuning approaches each
mode the errors are strongly dominated by contributions
from that mode. As shown in Fig. 2(a), the Gaussian gates
(dashed orange and solid blue) strongly suppress displace-
ment error as long as the gates are performed sufficiently
far from all motional modes. Truncating the Gaussian
amplitude modulation leaves some small amount of abrupt
turn-on and turn-off effects (i.e., square-gate character),
giving rise to the sinclike oscillating floor. The height of
the floor is set by the amount of truncation. Because z � τ

here, the truncation effect is small, and the floor of εd is on
the 10−7 level. By contrast, the square gate (solid green)
has narrow minima, and relatively high displacement error
persists at all detunings in the range displayed.

Figure 2(b) shows the equivalent sensitivity of rotation
error for the unbalanced Gaussian gate and for the square
gate. In this figure, the dashed orange and solid green lines
represent the rotation error of the unbalanced Gaussian and
of the square gate, respectively, which are perfectly over-
lapped near their optimal detuning of δ0/2π = −52 kHz.
These gates have relatively narrow dips in rotation-angle
error and thus have a small detuning range over which
the target rotation angle of θ = π/2 is approximately
achieved. By contrast, a broad dip in the rotation-angle
error is apparent for the balanced Gaussian gate (solid
blue) when dθ/dδc = 0. An intuitive explanation for this
robustness against rotation error is that as the detuning
moves in one direction away from the optimal point the
contributions from some modes become smaller while the
contributions from the other modes become larger.

To demonstrate the improved robustness to motional fre-
quency changes when performing the balanced Gaussian
gate, Fig. 3 shows the simulated state infidelity εs for each
gate design over a range of experimentally relevant sym-
metric detuning offsets δω/2π , which are defined relative
to the optimal value of δ0/2π for each gate. This figure also
shows the contributions to εs from εd and εr, demonstrating
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FIG. 2. (a) Displacement error εd and (b) rotation-angle error
εr for a four-ion chain with three different gate designs. From
bottom to top at most detunings, the curves correspond to a
balanced Gaussian gate designed for a symmetric detuning of
δ0/2π = 51.2 kHz (solid blue), an unbalanced Gaussian gate
designed for δ0/2π = −52 kHz (dashed orange), and a square
gate designed for δ0/2π = −52 kHz (solid green). The detun-
ing δ0 = 0 is resonant with the lowest frequency motional mode,
and the detuning δ0/2π = 88.5 kHz is resonant with the second
lowest motional mode, corresponding to the peaks in both error
metrics. Vertical dash-dotted lines are drawn at δ0/2π = −52
kHz (orange) and δ0/2π = 51.2 kHz (blue).

that εs is strongly dominated by εr at small detuning off-
sets for the Gaussian gates, when εs � 10−7. The vertical
black dashed-dotted line at δω = 0 indicates the optimal
symmetric detuning for all gates, corresponding to both the
blue and orange vertical lines in Fig. 2.

In this example, the distant modes have a nearly neg-
ligible effect on our design and simulations. The detun-
ings from the motional modes are |δ0|/2π = 51.2 kHz,
|δ1|/2π = 37.3 kHz, |δ2|/2π = 106 kHz, and |δ3|/2π =
154 kHz. Hence, |δ2/δ1| ≈ 2.84, and the ion participa-
tion is smaller for mode k = 2 than for mode k = 1,
|η0,2η1,2|/|η0,1η1,1| ≈ 0.176. As a result, |θ2| is about 16
times smaller than |θ1|, and mode k = 2 makes a small con-
tribution to the rotation angle of the gate. Likewise, since
|δ3/δ1| ≈ 4.11 and since mode k = 3 has approximately
the same ion participation as mode k = 1, we see that |θ3|
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FIG. 3. The simulated state infidelity εs = εd + εr for a four-
ion chain with three different gate designs. The bold curves
correspond to εs for a balanced Gaussian gate (solid blue), an
unbalanced Gaussian gate (dashed orange), and a square gate
(solid green). The lighter curves correspond to the contributions
εd (dashed blue) and εr (dashed-dotted blue) to εs, showing that
εr dominates when εs � 10−7 for the Gaussian gates. The sym-
metric detuning offset δω/2π is defined relative to the optimal
value of δ0/2π for each gate. The vertical black dashed-dotted
line at δω = 0 indicates the optimal symmetric detuning for all
gates, corresponding to both the blue and orange vertical lines in
Fig. 2.

is approximately 4 times smaller than |θ1|. However, this
example also implies that distant modes can make a large
contribution to the rotation angle if they have relatively
large Lamb-Dicke parameters compared to the two closest
modes.

III. GATE IMPLEMENTATION

A. Gate parameter selection

In addition to choosing the correct detuning to balance
the contributions of multiple motional modes, the width z
of the truncated-Gaussian amplitude modulation is a free
parameter that may be tuned to optimize the gate perfor-
mance. This may be done numerically or empirically given
sufficient intuition about the contributions to gate error. In
particular, we find that optimal value of z for robustness to
frequency changes depends on the detuning from the clos-
est two motional modes. On the one hand, the truncation of
the Gaussian modulation creates some square-gate char-
acter with an abrupt amplitude turn on. When z is much
smaller than τ , the truncation effect can be seen as the sin-
clike oscillating floor in the plot of εd in Fig. 2(a). Even
though the truncation effect is small in this example, the
contribution to εd from the truncation effect can be large
when the Gaussian width is comparable to the gate dura-
tion (z ≈ τ ). On the other hand, εd can also be large when
z is small enough such that e−δ2

k z2
is significant and fails to

suppress the displacement error from mode k. This effect
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can be understood as Fourier broadening of the ampli-
tude modulation as the Gaussian shape becomes narrow in
time. To optimize robustness, one can choose a value of z
that balances the infidelity contribution from cutoff effects
and Fourier broadening over a chosen range of frequency
changes.

One must also take into consideration that as z is
reduced, the peak intensity of the amplitude modulation
can become an experimental challenge because the Rabi
rate must be scaled up (by increasing �0) to achieve the
proper rotation angle of θ = π/2. For Gaussian amplitude
modulation, we find that the gate rotation angle θ scales
like z�2

0. As a result, �0 must scale like 1/
√

z to maintain
a constant θ as z changes. Likewise, since θk ∝ 1/δk, �0
must scale like

√
δk to maintain a constant θk as δk changes.

Additionally, the choice of modes targeted by the gate
plays a role in its robustness to frequency changes. In
general, a larger frequency spacing �νk2,k1/2π = (νk2 −
νk1)/2π between motional modes k1 and k2 provides more
robustness of both εd and εr to frequency changes. A larger
frequency spacing allows for larger detunings (δk1 and δk2)
through which εd is strongly suppressed. Likewise, these
larger detunings reduce the magnitude of dθ/dδc away
from its zero crossing, reducing the sensitivity of εr to fre-
quency changes. For typical ion chains in a harmonic well,
the lowest two modes have the largest frequency spac-
ing and therefore the maximum robustness to frequency
changes.

Because the gate parameters δc, z, and �0 depend on the
specific distribution of motional modes, we provide a con-
crete example of optimal parameter selection for the model
of a four-ion chain described in Sec. II E, which targets the
inner ions and the lowest two radial modes. To determine
the optimal gate parameters and assess their robustness for
this model, we numerically vary the Gaussian width z for
a fixed gate duration of τ = 250 µs and show the perfor-
mance of the gate over a range of δω = ±10 kHz in Fig. 4.
At large values of z in this plot, the amplitude modula-
tion is approximately constant during the gate, resembling
a square gate and creating and a strong truncation effect.
In this regime, we recover an infidelity proportional to
sinc(δωτ), as we expect for the Fourier transform of a con-
stant amplitude. Toward the lower end of z on the plot, the
amplitude modulation resembles a Gaussian with a small
truncation effect, and we find that there is a broad region of
z and δω where the gate performs well. For example, the
simulated state infidelity εs remains below 10−3 over the
range: −8.80 kHz ≤ δω/2π ≤ 7.94 kHz for z = 23.8 µs
and over the range: 12.3 µs ≤ z ≤ 61.5 µs for δω = 0.

In addition to Gaussian amplitude modulation, we have
also simulated balanced MS gates with amplitude modu-
lation of other spectrally compact shapes, including trape-
zoid amplitude modulation, and we found that the specific
Gaussian shape was not necessarily better than other
shapes whose Fourier transform falls off quickly with

FIG. 4. Simulated state infidelity εs as a function of the Gaus-
sian width z and symmetric detuning offset δω for a truncated,
balanced Gaussian MS gate on a four-ion chain. As the gate dura-
tion is τ = 250 µs, the shape of amplitude modulation varies
from a δ function to a constant function, from left to right.

sideband detuning. As demonstrated by the set of Eq. (12),
amplitude modulation can eliminate displacement error as
long as the Fourier transform of the time-dependent Rabi
rate evaluated at the detuning of each mode is sufficiently
small (i.e., creates a displacement error that is smaller than
all other errors). In the Gaussian case, Fig. 4 demonstrates
the scale over which the Gaussian width can be modified
without considerably affecting the robustness to frequency
changes. Since the Fourier transform of a Gaussian ampli-
tude decays exponentially with the square of the detuning,
this region is broader and deeper than it would be for
a trapezoid amplitude, e.g., but even a trapezoid ampli-
tude could effectively eliminate displacement error for a
sufficiently wide trapezoid or sparse motional mode spec-
tra. Despite slightly increasing the displacement error for
certain systems, one may still choose to use amplitude
modulation with a higher ratio of pulse area to peak Rabi
rate (like a trapezoid amplitude) to overcome experimental
limitations in laser power or to decrease the gate dura-
tion for the same maximum laser power. In fact, within
our balanced-gate scheme, one could develop more com-
plicated amplitude shapes through numerical optimization
to gain some other potential benefit, as long as the require-
ments on the Fourier transform of the amplitude that
guarantee small displacement error are met.

While our system is limited by the maximum power of
our 355-nm laser, other systems may not be as limited
in laser power. We find that with only a modest increase
in laser power, we could significantly decrease the dura-
tion τ of our balanced Gaussian gate. Since reducing τ

while maintaining a fixed pulse area does not increase the
sensitivity of rotation error to motional-frequency changes
δω, we can maintain a fixed level of robustness (in the
sum of rotation and displacement error) by increasing the
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peak Rabi rate �0 and decreasing the Gaussian width z to
avoid significant cutoff effects from the shorter gate, until
the displacement error due to Fourier broadening becomes
dominant. In our simulations of the balanced Gaussian gate
on the four-ion chain described above, we can decrease
the gate duration to τ = 50 µs and maintain a minimum
fidelity of 98.7% over a ±10 kHz range of δω. For this
faster gate, we use z = 13 µs and �0/2π = 279 kHz,
which is only a factor of 1.59 times greater than the peak
Rabi rate for τ = 250 µs and z = 33.1 µs. While main-
taining δω/2π = ±10 kHz of robustness limits our gate
duration to τ ≥ 50 µs in this case, this gate may be suf-
ficiently fast if algorithmic runtimes are limited by other
processes, like ion shuttling and recooling, for example.

Moreover, we could achieve faster gates by decreas-
ing the ion separation to increase the frequency spacing
between motional modes. This would allow for smaller
Gaussian widths (or similar shapes) and even faster gates
before the robustness is limited by Fourier broadening.
However, even with less restrictive power limitations,
crosstalk effects become relevant at small enough ion sep-
arations and require additional compensation techniques.
Ultimately, given practical limitations in laser power and
crosstalk effects, maintaining this large level of robustness
within our gate design is likely limited to gate times on
the order of 10 µs. While even the 50-µs gate duration
would be significantly faster than the majority of two-qubit
gates in state-of-the-art trapped-ion systems [12,36], much
faster gates on trapped ions have been achieved using
considerably different techniques [25].

B. Experimental implementation

We implement the derived gate on a chain of
N = 4 171Yb+ ions to measure robustness to symmetric
detuning offsets. We use the hyperfine ground, “clock”
states as the qubit levels: |F = 0, mF = 0〉 ≡ |0〉 and
|F = 1, mF = 0〉 ≡ |1〉. In all experiments, all ions are ini-
tialized in |0〉 and the gate under study is applied to two
target ions. A global, single-qubit π/2 rotation is then
applied in parity scan measurements (described in Sec.
III C). Finally, in all measurements, the population of each
qubit state is determined by fluorescence detection, where
population in state |i〉 is revealed by the probability of
detecting that state (ρi ≈ P(i)), up to a small measurement
error. The relevant two-ion state is labeled as Trc,d(|a〉 ⊗
|b〉 ⊗ |c〉 ⊗ |d〉) ≡ |ab〉 where a and b are the states of the
two target ions; c and d are the states of the “spectator”
ions in the chain, which are ignored.

We set the principal axes of the trap to be at a 45◦ angle
from the effective Raman k vector to allow for Raman
sideband cooling on all radial modes, and thus observe a
total of 2N radial motional frequencies. For the fidelity
measurements presented here, we have radial motional
frequencies of νrb/2π = {2.142, 2.230, 2.298, 2.347} MHz

and νra/2π = {2.388, 2.467, 2.528, 2.573} MHz, and an
axial center-of-mass frequency of νaxial, COM/2π = 0.45
MHz. As modeled previously, we operate the gate between
the lowest two radial modes.

The Gaussian amplitude modulation is approximated
by a natural cubic spline with 13 amplitude knots that
are passed to our custom Radio Frequency System-on-
Chip (RFSoC) hardware, “Octet” [37]. Octet generates
the rf waveforms that drive the acousto-optic modula-
tors (AOMs), which perform the required RF to optical
transduction. The spline knots are equally spaced along
the square root of a Gaussian shape and applied to both
the individual addressing beams and counterpropagating
global beam AOMs, thus producing a Gaussian temporal
profile in the two-photon Raman Rabi rate during the gate.
The first and last knots of the spline are nonzero, and trun-
cate parts of the infinite Gaussian lying outside of the gate
duration.

We choose to implement a gate with z/τ = 33.1 µs/
250 µs ≈ 0.13 on the experiment to empirically minimize
the effects of heating, truncation, and Fourier broaden-
ing while maintaining experimentally feasible Rabi rates
(low enough to achieve both the balanced gate and an
unbalanced gate at similar magnitude detuning for fair
comparison). The balance-point detuning δc, as defined by
Eq. (13), is found by scanning the symmetric detuning
and finding the point of zero slope in the |11〉 population,
and the peak Rabi rate �0 is set by varying the scal-
ing of the Gaussian amplitude modulation and finding the
point of equal |00〉 and |11〉 populations. For the balanced
Gaussian gate demonstrated here on the center pair of
ions, δ0/2π = 52 kHz (where δ0 = δc − ν0) and �0/2π ≈
180 kHz.

We emphasize that these calibrations are fast and
straightforward to implement in hardware, imposing low
calibration overhead compared to numerically solved opti-
mal waveform alternatives with many parameters. In addi-
tion, because we only require that the laser waveform
has a spectrally compact Fourier transform, there is no
need to account for small differences in the designed and
experimentally produced waveforms. This is particularly
beneficial in the case of AOM-driven waveform shaping,
where the diffraction efficiency is frequency dependent and
nonlinear in rf power when operated near peak efficiency.
Therefore, our method avoids much of the painstak-
ing calibrations of AOM frequency and power response
that are often required for other numerically optimized
waveforms.

Although the wavelength (355 nm) of the Raman laser
is chosen to approximately balance the ac Stark shift on
the qubit transition, there remains a residual differential
ac Stark shift on the order of 1 kHz. To compensate for
this shift, we dynamically apply a virtual frame rotation at
a rate proportional to the intensity of the laser applied to
each ion. The magnitude of the frame rotation is found by
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preparing in the |00〉 state, applying two MS gates back to
back, and maximizing the resultant population in the |11〉
state.

C. Experimental results

We measure the performance of the balanced Gaus-
sian MS gate and compare it to the unbalanced Gaussian
and square MS gates. While out-of-model technical noise
appears to limit the fidelity of the balanced gate, there is
a clear difference in the response to intentionally applied
symmetric detuning offsets for each gate. At several points
in the measured range of detuning offsets, we measure both
the even parity population after an MS gate on its own and
the parity contrast resulting from a single-qubit π/2 gate
with variable phase on both ions following the MS gate.
We then estimate the fidelity (F ) according to [41–44],

F = 1
2
(ρ00 + ρ11) + 1

2
Aπ , (15)

where ρab is the population of the |ab〉 state after the MS
gate and Aπ is the measured contrast of a parity oscillation.

We apply the gates to the inner two ions in a four-ion
chain, operating between the k = 0 and k = 1 modes, and
we present the gate performance in Fig. 5. In a scan of the
symmetric detuning offset, we prepare the ions in |00〉; the
gate is applied; and the populations are read out. The even-
parity populations serve as an indicator for gate angle and
show that the correct gate angle is achieved in a range of
approximately ±10 kHz centered around δ0/2π = 52 kHz
relative to the k = 0 mode, when ρ00 ≈ 0.5 ≈ ρ11. The
odd-parity population (ρ01 + ρ10) is an indicator of dis-
placement error, and shows good performance (population
is near zero) as long as the detuning is sufficiently far from
the motional modes.

We then estimate the fidelity of the gate at various
symmetric detuning offsets by taking both a parity mea-
surement with 2000 shots at both the top and bottom of
a parity curve (π/4 and 3π/4 phase offset between the
MS gate and subsequent single-qubit π/2 gate) and a pop-
ulation measurement with 4000 shots at each detuning.
We find that the infidelity of the balanced Gaussian MS
gate increases by <1% over δω/2π ≤ ±10 kHz, indicat-
ing broad robustness to symmetric detuning offset. In this
range, the infidelity experiences a flat noise floor, over
which all data points are within uncertainty of each other.
As all other gate designs in the literature demonstrate a
<1% infidelity increase over a range of � ± 1 kHz, our
demonstration represents an order-of-magnitude improve-
ment in the robustness to frequency changes. The square
gate shown here has the same gate duration and (approxi-
mate) detuning as the Gaussian gates, causing the ions to
traverse 13 loops in phase space during the gate. We find
this gate to be a more fair comparison than a single-loop
square gate because using the same detuning and duration
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FIG. 5. Balanced Gaussian gate performance measurements.
(a) A symmetric detuning scan between two motional modes
(nearest modes are at 0 kHz and approximately 88.5 kHz) shows
a broad region around δ0/2π = 52 kHz where the balanced
Gaussian gate performs well (shaded region). Lines top to bot-
tom at δ0/2π = 30 kHz are the detection probabilities P(11)

(solid blue), P(00) (solid green), and P(01) + P(10) (dotted red)
after preparing in |00〉 and applying the gate. (b) Measured entan-
gling gate infidelity (1 − F ) as a function of symmetric detuning
offset for the square (triangles), unbalanced Gaussian (squares),
and balanced Gaussian (circles) gates. Lines for the square gate
are a guide to the eye. The fidelity (F ) is calculated according
to Eq. (15) using the parity scan results and population mea-
surements. Uncertainties markers are 95% confidence intervals
numerically calculated by assuming a binomial distribution for
each measurement.

produces a more similar interaction strength and maximum
displacement during the gate.

We also use the population measurements to calcu-
late the gate angle according to θ = arcsin [ρ11/(1−
(ρ01 + ρ10))]. For the balanced Gaussian gate, we find
that there is a clear cancellation of first-order gate-angle
dependence on the symmetric detuning [see Fig. 6(a)]
and a corresponding insensitivity to rotation error [see
Fig. 6(b)]. By contrast, for the comparable unbalanced
Gaussian gate using the same magnitude detuning from the
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FIG. 6. (a) Measured (points) and calculated (lines) rotation
angle as a function of symmetric detuning offset (δω) for both
the balanced (solid blue) and unbalanced (dashed orange) Gaus-
sian gates shows the cancellation of first-order dependence of
rotation angle on detuning near the balance point. Target rotation
angle is π/2. (b) Measured rotation error as calculated by the
approximate form of Eq. (10). Uncertainty markers are derived
by propagating Wilson score intervals from population measure-
ments through all calculations. The theory curves, which have
no free parameters, show good agreement with the experimental
data.

lowest radial mode with the opposite sign (δ0/2π = −52
kHz), we instead see an approximately linear dependence
of gate rotation angle on symmetric detuning. Since the
unbalanced gate predominantly uses only one mode, it also
requires increasing the laser power to achieve θ = π/2.

We note that the peak fidelity of our experimental
implementation of the balanced Gaussian gate is only
98.5 +0.5

−0.7%. We contribute the cause of the approximately
1.5% infidelity floor to technical noise that is not included
in our theoretical model. For the purpose of this article,
the good agreement between theory and experiment in
our measurement of θ and εr as a functions of symmet-
ric detuning offset in Fig. 6 demonstrates the robustness
of our gate design to this single error source. Given this
agreement, the demonstrated robustness should remain
for high-fidelity experimental implementations of the bal-
anced Gaussian gate as well. We will provide estimates of

TABLE I. Empirically determined balanced Gaussian gate
detuning (δk, relative to mode index k) and performance for all
six pairs of ions in a four-ion chain. Ions indices (j1, j2) from
left to right in the chain are {−1, 0, 1, 2}. �εs,max(%) is the maxi-
mum decrease in fidelity at δω/2π = ±3 kHz compared to at the
fidelity (F0) at the calibrated detuning (δk).

j1 j2 k δk/2π (kHz) F0 (%) �εs,max(%)

0 1 0 52 98.7 +0.3
−0.3 0.4

0 −1 1 42 98.1 +0.4
−0.4 0.4

1 −1 0 37 98.4 +0.4
−0.4 0.5

0 2 0 37 97.5 +0.4
−0.5 0.6

1 2 1 37 98.0 +0.4
−0.4 0.4

−1 2 1 30 98.0 +0.4
−0.4 0.5

the fidelity impact due to small motional frequency errors
through simulations of high-fidelity balanced Gaussian
gates in Sec. III D.

To demonstrate the generality of our design, we empiri-
cally calibrate a balanced Gaussian gate on all six pairs of
ions in a four-ion chain. For this data, τ = 125 µs gate time
is used to slightly improve gate performance, while 250
µs was used for the Fig. 5 data to allow for a sufficiently
low Rabi rate to perform the unbalanced comparison gate.
In all cases, z/τ is held constant. For each pair, we scan
the symmetric detuning offset and find detunings where
the rotation angle is flat with respect to frequency and
the interaction strength is relatively large (i.e., a low laser
power is required). The resulting operating detunings rel-
ative to mode k are listed in Table I. We then scan the
Rabi rate to achieve θ = π/2 and compensate for the ac
Stark shift as described in Sec. III B. These calibrations
are fast (roughly 2 min per pair) and require no a priori
calculations. Because our gate design is robust to small
changes in motional spectra, we also note that we could
further expedite recalibrations by scanning over a smaller
range of symmetric detuning and peak Rabi rate. Finally,
we perform a “spot check” of the robustness of each of
these gates against motional frequency error by measuring
the maximum increase in infidelity (εs,max) at δω/2π = ±3
kHz and find εs,max < 1% in all cases.

D. Extension to larger numbers of ions

We extend our numerical simulations to explore the per-
formance of the balanced Gaussian gate on ion chains of
variable length from N = 2 up to N = 33. While our sim-
ple model leaves out many experimental details important
to long chains, we still expect our simulations to accurately
estimate the impact of motional frequency changes on MS-
gate performance, including the effects from an increased
density of motional spectra. In addition, we expect our sim-
ulations to provide accurate estimates of the peak Rabi rate
required to perform our gate on long ion chains.
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FIG. 7. The sensitivity to frequency changes, as quantified by the maximum state infidelity εs,max over a range of ±3 kHz from the
minimum of εs vs δω for odd N from 3 to 33. The motional frequency spacing �ν10/2π decreases monotonically with increasing N .
From light to dark in each plot, the ion separation is �x0 = 3 µm to 4.5 µm in steps of 0.5 µm. The green diamonds indicate N = 3
for each ion separation. These plots show that the balanced Gaussian gate can remain robust to frequency changes as the chain length
grows and that �ν10 is a good predictor of the sensitivity to motional frequency changes for the range of parameters considered in this
work. The Appendix discusses these simulations for even N .

As described in Sec. III A, we choose to target the lowest
two motional modes (k = 0 and k = 1) of the N -ion chain
because we expect to achieve more robustness to motional
frequency changes by targeting the neighboring modes
with the largest frequency spacing. In the region between
these modes, we find a detuning δc that solves Eq. (13)
and balances the contributions to θ from all modes, which
is possible when the products ηj1,0ηj2,0 and ηj1,1ηj2,1 have
opposite signs. Our simulations in this section also include
all modes, but similar to our four-ion example discussed
above, the contributions from the nearest two modes dom-
inate both εd and εr in these simulations.

To maintain consistency in the sign and magnitude of
the Lamb-Dicke parameters between chains of different N ,
we target the ions to the immediate left and right of cen-
ter, for which we find a solution to Eq. (13) in each case.
The targeted ions are the two center ions of the chain for
even N and the two ions next to the center ion for odd
N . For this choice of ions, targeting the lowest two modes
leads to a balanced gate with a value of δc that solves
Eq. (13); however, θ has the opposite sign for even N
versus odd N . To maintain the same target gate in our sim-
ulations for both even and odd N , we impose a differential
laser phase of π between the two ions for even N , as we
did in the four-ion example, and we set this phase to zero
for odd N .

As N grows, we relax the strength of a harmonic poten-
tial in the axial direction such that, for all N , the separation
between the equilibrium positions of the two center ions
(the center ion and its neighbors) for even (odd) N is a
fixed value, �x0. We make this choice to maintain consis-
tency with an experimental apparatus designed for a fixed
individual addressing beam separation. At the same time,
we keep the strength of harmonic potentials in the radial

directions fixed as we increase N , maintaining consistent
center-of-mass frequencies in the radial directions. As a
result, the radial sideband spectrum becomes increasingly
dense as N grows because the spacing of radial modes is
set by the ratio of the axial to radial confinement. While
we will refer to �x0 as the ion separation, we note that
the precise separation of each neighboring pair of ions
will increase from the center to the edge of the chain for
any particular N , as we model a simple harmonic poten-
tial in the axial direction. The use of anharmonic potentials
to keep the ion spacing constant within a chain has been
considered in other works [45–47], but we deem the imple-
mentation of a nonharmonic potential to be outside the
scope of this investigation.

In this section, we use the same waveform parameters as
in our main four-ion example: τ = 250 µs and z = 33.1 µs
for each N and �x0. However, for the radial center-of-
mass frequencies in our experiment, the series of radial-a
and radial-b modes would overlap for the small values of
�x0 and small N that we explore in this section. Although
one can implement balanced Gaussian gates with overlap-
ping spectral series, for simplicity, we slightly decrease
the radial-b motional frequencies to ensure that the two
radial series do not overlap for all N and �x0 explored
in this section. Here, we use νN−1/2π = 2.24 MHz and
ν2N−1/2π = 2.57 MHz for the radial center-of-mass fre-
quencies.

While our simulations indicate that the balanced MS
gates have similar performance on chains of even and odd
N , slight differences in ion participation in the lowest two
modes cause our simulated infidelity for even N to be
slightly worse than for odd N of a similar magnitude. In
order to simplify our discussion of the sensitivity to fre-
quency chances as a function of N , we choose to focus
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FIG. 8. The sensitivity to frequency changes, as quantified by the bandwidth δωmax for which a minimum state infidelity of εs is
maintained, for odd N from 3 to 33 with �x0 = 3 µm. The bandwidth is measured relative to the minimum of εs vs δω, and is
displayed separately for increasing values of the minimum εs from light to dark. The motional frequency spacing �ν10/2π decreases
monotonically with increasing N . The green diamonds indicate N = 3 for each εs. The Appendix discusses these simulations for
even N .

on our simulations for odd N in this section. We discuss
our simulations for even N and how they differ from our
simulations for odd N in the Appendix.

To quantify the sensitivity to motional frequency
changes for each N , we compute the maximum state infi-
delity εs,max over a ±3 kHz range from the symmetric
detuning offset that minimizes εs. Figure 7 shows this mea-
sure of sensitivity for odd N and for an ion separation
of �x0 = 3 µm to 4.5 µm. The same values of εs,max
are plotted vs N and vs �ν10/2π , the frequency spac-
ing between the lowest two motional modes. The green
diamonds indicate N = 3 for each ion separation. From
Fig. 7, we see that εs,max exceeds 10−2 around N = 11 for
�x0 = 4.5 µm, and we see that this measure of sensitiv-
ity decreases dramatically with decreasing �x0, allowing
εs,max to remain below 10−4 for all (odd) N in this study
when �x0 = 3 µm.

As shown in Fig. 7(b), εs,max is approximately a func-
tion of only the frequency spacing between the lowest
two modes �ν10/2π for each ion separation, despite the
different motional frequencies, Lamb-Dicke parameters,
number of ions N , and waveform parameters δc and �0.
Note that the value of �ν10 decreases with larger N (for
fixed ion separation) and increases for smaller ion sepa-
ration (at fixed N ), shifting the plots vs �ν10/2π to the
left for increasing ion separation. Since �ν10 appears to be
a good predictor of balanced Gaussian gate performance
in these simulations, we note that designs of new experi-
ments intending to implement these gates should consider
the mode spacing when choosing an ion separation and
chain length.

The approximate correspondence between εs,max and
�ν10 arises because εs is dominated by the contribution
from εr for the chains we have considered. When εd makes
a significant contribution to εs, �ν10 becomes a worse

predictor of gate performance. In our simulations, this
situation arises for even N and small �ν10 (large N ). We
show the contributions of εd and εr to εs and discuss the
breakdown of the �ν10 predictor in the Appendix.

While we do not have experimental verification of the
robustness of our gate design for fidelities higher than
F = 98.5%, our simulations predict the bandwidth of δω

over which higher fidelities can be maintained. Figure 8
shows the predicted bandwidth for an ion separation of
�x0 = 3 µm, where the total state infidelity is approxi-
mately equal to εs = εr + εd. As this figure includes a large
bandwidth for high-fidelity gates, including relatively long
chain lengths, these results indicate that our gate design
may be useful in future devices with much higher fideli-
ties than achieved in our proof-of-principle experiment.
For example, our simulations predict a state fidelity of
F ≥ 99.99% for all odd N in our study with a bandwidth
requirement of only δω/2π � ±3 kHz.

For the simulations presented in Fig. 8, we have reduced
the ion separation to �x0 = 3 µm to increase �ν10 and
improve the performance of MS gates at experimentally
relevant frequency changes for large N . Although this
improves the robustness of our simulated gates, a reduc-
tion in �x0 could have detrimental effects on quantum
circuit performance that are not included in our simula-
tions by, for example, increasing the level of crosstalk
between neighboring qubits [48]. While we do not explic-
itly include crosstalk in our simulations, an ion separation
of �x0 = 3 µm remains experimentally relevant in modern
trapped-ion devices. In addition, even smaller ion separa-
tions remain an interesting avenue for future research, as
there has been promising research on applying spin-echo
pulses to cancel out the effects of crosstalk when individual
ions cannot be perfectly resolved [49]. Alternatively, one
could decrease the radial motional frequencies to increase
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�ν10, but one needs to balance this increased robustness to
frequency changes with the additional amount of anoma-
lous heating experienced by lower frequency motional
modes.

The relatively large range of frequency changes
explored in this paper is set by the frequency spacing of
the radial modes in our four-ion experiments. As shown
in Figs. 7 and 8, reducing the frequency spacing comes
at the expense of some robustness, but at the same time, a
reduction in the frequency spacing can significantly reduce
power requirements. As the contribution to gate rotation
angle θ from mode k scales like θk ∝ �2

0/δk for δk  z−1,
the optical power (∝ �2

0) may be reduced approximately
linearly with detuning (set by the mode spacing) to main-
tain constant θ . In practice, one can engineer the frequency
spacing to achieve the desired parameters in the power-
robustness trade space by, for example, adjusting the ratio
of the axial to radial confinement.

Depending on the ion pair used in the gate, targeting the
lowest two modes requires increasingly challenging laser
powers as the length of the chain increases, due to poor
ion participation in these modes. However, one can reduce
power requirements by targeting modes with relatively
strong ηi,k for those ions. The laser-power requirement
is further reduced due to the smaller frequency spacing
between modes, at the expense of some robustness. For
example, a chain of length N = 5 with an ion separation
of �x0 = 4.12 µm (approximately corresponding to the
ion separation in our experiments) has a lowest-mode fre-
quency spacing of �ν10/2π = 83.5 kHz. When targeting
the outermost ions and the lowest two modes in this chain,
the balanced Gaussian gate has detuning from the lowest
mode of δ0/2π = 36.3 kHz and requires a max Rabi rate
of �0/2π = 665 kHz. We can reduce this requirement by
addressing the k = 2 and k = 3 radial modes as the main
contributors to the balanced Gaussian gate, which have
comparable ηi,k to the next-to-center ions in the lowest two
modes. The balanced detuning for this gate is δ2/2π =
24.6 kHz, and the frequency spacing between the near-
est two modes is �ν32/2π = 52.4 kHz, leading to strong
robustness to frequency changes. Yet, this gate requires
only �0/2π = 148 kHz, which is less than the peak Rabi
rate of �0/2π = 185 kHz required to perform the bal-
anced gate between these two modes on the next-to-center
ions.

For longer ion chains, we still expect the fast and sim-
ple calibration routine for our gate design to benefit these
systems. Because some ion-participation factors decrease
for longer ion chains, which can lead to large laser-power
requirements, one may want to target different modes for
each pair of ions. While this strategy slightly complicates
the calibration routine, as compared to targeting the same
modes for each ion pair, the calibration time should be the
same for each strategy. In addition, while larger ion chains
may suffer from irregular drift in the motional spectra,

the optimal parameters for our gate design (symmetric
detuning offset and peak Rabi rate) remain robust to
small—but arbitrary—changes in motional spectra.

IV. CONCLUSION AND OUTLOOK

In summary, we have designed an MS gate that is
strongly robust to motional frequency changes, address-
ing a key error source in trapped-ion entangling gates
that limits the scalability of both QCCD and longer-chain
architectures. Our design employs a class of spectrally
compact laser waveforms that strongly suppress coherent
displacement errors. These waveforms also have a specific,
constant laser frequency that balances the contributions
to rotation angle from all motional modes, generating a
broad robustness to rotation-angle errors. Further, these
waveforms have a simple parameterization that removes
the need to optimize a large set of waveform parame-
ters, providing low computational overhead and technical
complexity.

Our proof-of-concept implementation of this gate design
on a four-ion chain maintained a <1% reduction from
the peak fidelity over a ±10 kHz range of an applied
frequency offset (used to mimic motional-frequency
changes), an order-of-magnitude improvement over state-
of-the-art techniques. Our numerical simulations of the
gate design predict that a high-level of robustness can be
maintained for longer ion chains. Additionally, the combi-
nation the robustness and the low technical complexity of
our design suggests a dramatic benefit for QCCD architec-
tures, where efficient, long-lasting calibration is pivotal for
scaling to larger numbers of ions and for performing longer
quantum algorithms. Finally, the simplicity of our gate
design allows the immediate adoption of our technique
on contemporary trapped-ion systems. Together, these fea-
tures promise that our gate design will be valuable for
accelerating the development of next-generation quantum
computing architectures.
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FIG. 9. The sensitivity to frequency changes, as quantified by the maximum state infidelity εs,max over a range of ±3 kHz from the
minimum of εs vs δω for even N from 2 to 32. The motional frequency spacing �ν10/2π decreases monotonically with increasing N .
From light to dark in each plot, the ion separation is �x0 = 3 µm to 4.5 µm in steps of 0.5 µm. The green diamonds indicate N = 2
for each ion separation. These plots show a similar but slightly worse robustness to frequency changes, as compared to these same
plots for odd N in Sec. III D. We also see that �ν10 is a worse predictor of the sensitivity to motional frequency changes for even N ,
as compared to odd N , due to the larger contribution to εs from εd for even N .
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APPENDIX: SIMULATIONS OF A BALANCED
GAUSSIAN MS GATE FOR EVEN N

Here, we discuss our simulations of the balanced Gaus-
sian gate for chain lengths of even N , and we explore when
�ν10 breaks down as a good predictor of motional fre-
quency robustness. Using the same model parameters as
in Sec. III D, Figs. 9 and 10 show a similar but slightly
worse performance of the balanced MS gate for even N ,
as compared to the simulations for odd N of a similar

magnitude shown in Sec. III D. We also see that �ν10
becomes a worse predictor of gate performance for large
N and small �ν10. For example, Fig. 9(b) shows that, for
small �ν10, a relatively small ion separation of �x0 =
3 µm (lightest curve) has an increased value of εs,max com-
pared to chains with larger ion separations (darker curves)
for similar values of �ν10. Likewise, Fig. 10(b) shows that
the bandwidth |δωmax| has a stronger dependence on �ν10

at small �ν10 (large N ) than for odd N .
This slight reduction in the robustness for even N arises

because the Lamb-Dicke parameters of the lowest two
modes for each chain cause the value of δc that solves
Eq. (13) to lie much closer to the k = 1 mode for even
N than for similar values of odd N , leading to a larger
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FIG. 10. The sensitivity to frequency changes, as quantified by the bandwidth δωmax for which a minimum state infidelity of εs
is maintained, for even N from 2 to 32 with �x0 = 3 µm. The bandwidth is measured relative to the minimum of εs vs δω, and is
displayed separately for increasing values of the minimum εs from light to dark. The motional frequency spacing �ν10/2π decreases
monotonically with increasing N . The green diamonds indicate N = 2 for each εs. These plots show a similar but slightly worse
robustness to frequency changes, as compared to these same plots for odd N in Sec. III D.
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FIG. 11. (a),(c) The simulated displacement error εd and (b),(d) the simulated rotation-angle error εr vs the symmetric detuning
offset δω for an ion separation of �x0 = 3.0 µm. The curves correspond to (a),(b) even N from 2 to 32 and to (c),(d) odd N from 3 to
33, from light to dark in steps of 6. For most N shown here, εr dominates as the main limiting factor for gate robustness to motional
frequency changes. For larger N , εd eventually lifts off the Gaussian truncation floor as the motional modes bunch closer together and
significantly reduce error suppression from the factor of e−δ2

k z2
in Eq. (12b).

contribution from εd and a higher sensitivity to frequency
changes for even N . Moreover, the approximate correspon-
dence between εs,max and �ν10 arises when εr is the domi-
nant contribution to εs. When εr strongly dominates εd, the
sensitivity depends only on the magnitude of d2θ/dδω2 at
δω = 0, which is set by �ν10. This approximate correspon-
dence breaks down when εd becomes significant, as εd is
set by the detunings δ0 and δ1, not �ν10. In such scenarios,
εs,max can be substantially different for chains with different
ion separation but the same �ν10.

Figure 11 shows the simulated values of εd and εr over
a broad range of δω/2π , for both even N and odd N . We
see that εr strongly dominates εd when N � 20 (for even
N ) and when N � 27 (for odd N ), except in the small
region near δω ≈ 0 where εr is below the 10−7 floor in
εd. As a result, �ν10 determines εs,max for these values of
N . However, for N greater than these values, δ1 becomes
small enough that εd makes a significant contribution to
εs, and the one-to-one correspondence between �ν10 and
εs,max breaks down. Likewise, the crossover point in δω

at which εd = εr can be estimated from Fig. 11. In gen-
eral, the crossover point depends on the frequency spacing

between the nearest two modes and on the detuning from
the nearest mode.
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