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The past decade has witnessed significant advancements in quantum hardware, encompassing improve-
ments in speed, qubit quantity, and quantum volume—a metric defining the maximum size of a quantum
circuit effectively implementable on near-term quantum devices. This progress has led to a surge in quan-
tum machine learning (QML) applications on real hardware, aiming to achieve quantum advantage over
classical approaches. This survey focuses on selected supervised and unsupervised learning applications
executed on quantum hardware, specifically tailored for real-world scenarios. The exploration includes
a thorough analysis of current QML implementation limitations on quantum hardware, covering tech-
niques like encoding, ansatz structure, error mitigation, and gradient methods to address these challenges.
Furthermore, the survey evaluates the performance of QML implementations in comparison to classical
counterparts. In conclusion, we discuss existing bottlenecks related to applying QML on real quantum
devices and propose potential solutions to overcome these challenges in the future.
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I. INTRODUCTION

Machine learning (ML) is ubiquitous, with applica-
tions spanning image recognition, healthcare diagnosis,
text translation, anomaly detection, and physics. In par-
allel, near-term quantum devices have shown potential in
addressing classically intractable problems, even with the
challenges of noise and limited qubit connectivity [1,2].
While quantum factoring algorithms, such as Shor’s [3],
remain challenging, there have been notable successes,
like the factorization of N = 15 using nuclear spins as
quantum bits with room-temperature liquid-state nuclear
magnetic resonance (NMR) techniques [4]. The combi-
nation of quantum computing [5,6] and machine learn-
ing, termed quantum machine learning (QML) [7–9], has
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become an active research area, with great advancements
being made in the last decade. Within QML, subdomains
arise based on the data and algorithm types, whether
classical or quantum. In this survey, we delve into differ-
ent aspects of QML, specifically focusing on algorithms
that leverage real quantum hardware, in either supervised
or unsupervised contexts. In addition to the paradigms
mentioned, reinforcement learning represents the third
paradigm. Although not addressed in our current survey,
we direct readers to [10–12] for a comprehensive overview
of the literature on quantum reinforcement learning.

The past decade has witnessed significant advancements
in the performance of quantum hardware, including the
number of qubits, speed, and quantum volume [13]. Con-
sequently, there has been an increase in the number of
works implementing quantum machine learning on real
hardware. The common objective of these works is to
demonstrate the advantages of utilizing quantum comput-
ers, with their unique properties, such as entanglement and
superposition, for practical machine learning tasks. To gain
a comprehensive understanding of the current performance
and limitations of near-term quantum devices in QML, it
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is necessary to conduct a thorough study. In this survey,
we aim to consolidate and analyze works that involve the
implementation of QML on real hardware to assess their
performance.

There has been a growing trend in utilizing quan-
tum computing for commercial and industrial applica-
tions, as evidenced by several studies [14–23]. In light of
these recent publications, our focus is specifically directed
toward exploring applications and techniques that hold rel-
evance for real-world scenarios. Consequently, we have
identified high-energy physics [24–26], finance [27–30],
and healthcare [31–33] as the domains of interest for
our survey. Moreover, we recognize quantum chemistry
as another promising field where QML holds substan-
tial potential. For example, a recent paper [34] claims
to be the first instance of a quantum-classical generative
model, trained on a 16-qubit IBM quantum computer, that
yields experimentally confirmed biological hits for design-
ing small molecules in cancer therapy, thereby indicating
its practical potential in drug discovery. In particular, intro-
ducing innovative methodologies for molecular simulation
[35–40] is a promising avenue. However, due to the simi-
lar nature of QML application in quantum chemistry and
high-energy physics (HEP), both primarily focused on
simulating complex quantum systems to understand their
properties, we have chosen to exclude quantum chemistry
from our current study.

Two main QML frameworks have gained widespread
use due to their ability to be implemented with relative
ease on quantum hardware, and their demonstrated capac-
ity to work on general datasets. These frameworks are
the quantum kernel methods [41–47] and the variational
quantum algorithms [47–54]. The quantum kernel method
involves building a kernel similar to the technique used
in support vector machines (SVM) [55,56]. On the other
hand, the variational quantum algorithm employs a param-
eterized quantum circuit (PQC) whose parameters must be
optimized. An overview of the present paper is given in
Fig. 1.

For a more thorough review of quantum machine learn-
ing frameworks designed to solve classification prob-
lems such as support vector machines, kernel methods,
decision tree classifiers, nearest-neighbor algorithms, and
annealing-based classifiers, we recommend referring to
Ref. [57]. That article also discusses the vulnerability of
quantum classifiers in adversarial learning.

The main aim of this present study is to comprehend
and emphasize the constraints and methods applied in var-
ious fields that use different datasets and algorithms to run
on the current ion-trap and superconducting-based quan-
tum hardware. It is noteworthy that quantum computing
includes hardware architectures beyond gate-based sys-
tems, such as D-Wave’s quantum computer that employs
quantum annealing [58–60]. However, for this study, we
will focus on gate-based architectures, as they follow the

(a)

(b)

FIG. 1. (a) Applications of QML. These are the different
subproblems identified among the papers surveyed for real-
world domains that include high-energy physics, healthcare, and
finance. (b) Outline of QML. The data can be inherently quantum
or classical depending on the application. Consequently, we per-
form quantum state preparation for classical data. Based on the
papers reviewed, we study different encoding techniques for clas-
sical data. We primarily focus on variational quantum circuit and
kernel models, and study the drawbacks and current challenges
in the field.

circuit model paradigm, which makes them different from
other approaches.

The current state of quantum machine learning [61–63]
faces numerous challenges, largely tied to quantum hard-
ware capabilities. These encompass limited qubit connec-
tivity, noise, coherence times, and errors in both state
preparation and measurement. Prolonged running times
on quantum hardware further affect the execution and
outcomes of QML algorithms. One core challenge is effi-
ciently encoding classical data into quantum features.
Alongside this, loading and storing prepared quantum
states while resisting decoherence is a significant chal-
lenge. After preparing the states, it is crucial to develop
efficient quantum algorithms. Challenges vary based on
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TABLE I. Papers that deal with QML in the field of high-energy physics, highlighting the problem type, number of qubits, quantum
hardware type, training approach, and specific QML methodologies employed in each paper.

Reference Qubits Hardware type Trained on Method

Classification
Muten et al. [64] 1 Superconducting Simulator VQC
Blance and Spannowsky [65] 2 Superconducting Simulator VQC
Terashi et al. [66] 3 Superconducting QPU VQC
Wu et al. [67] 10 Superconducting QPU VQC
Wu et al. [68] 15 Superconducting QPU Kernel
Araz and Spannowsky [69] 6 Superconducting QPU QTN
Woźniak et al. [70] 8 Superconducting QPU Kernel
Li et al. [71] 5 Superconducting QPU Kernel
Bermot et al. [72] 3 Superconducting QPU QGAN
Cugini et al. [73] 5 Superconducting Simulator VQC
Peixoto et al. [74] 5 Superconducting Simulator VQC
Lazar et al. [75] 8 Superconducting QPU Parity

Data generation
Pérez-Salinas et al. [76] 8 Superconducting Simulator VQC
Bravo-Prieto et al. [77] 3 Superconducting/Ion trap QPU QGAN
Chang et al. [78] 6 Superconducting/Ion trap QPU QGAN
Rehm et al. [79] 8 Superconducting QPU VQC

Clustering
Ngairangbam et al. [80] 4 Superconducting Simulator VQC

the type of algorithm, such as kernel-based or varia-
tional quantum circuits. For instance, variational algo-
rithms often struggle with issues like barren plateaus.
Their training, alongside the choice of optimizers and
loss functions, greatly influences efficiency. In contrast,
with kernel techniques, selecting the right feature map is
essential. Optimization, scalability, and the generalization
capabilities of QML models are crucial. It is essential for
these algorithms to scale effectively for real-world applica-
tions. Moreover, addressing the security and vulnerabilities
of QML models is vital to prevent potential adversarial
attacks.

The papers are grouped based on real-world applica-
tions, whose groups can be found in Table I for high-
energy physics, Table II for finance, and Table III for

healthcare. Additionally, we include papers using bench-
mark datasets, such as MNIST and Iris, in Table IV,
along with references to papers using quantum datasets in
Table V, and artificial datasets in Table VI. In this context,
the term “quantum data” refers to data already embed-
ded in a Hilbert space, represented as quantum states or
unitaries. This differs from classical data, which require
quantum system encoding. The tables provide a compre-
hensive overview of the included studies. They detail the
reference, the number of qubits used, and the specific prob-
lem type addressed. Moreover, we specify the type of
hardware employed (e.g., superconducting or ion-trapped)
and whether the training was done on a quantum process-
ing unit (QPU) or simulator. It is noteworthy that all tests
cited in the papers were performed on a QPU. The tables

TABLE II. Papers that deal with QML applications in finance.

Reference Qubits Hardware type Trained on Method

Data loading
Zoufal et al. [81] 3 Superconducting QPU QGAN

Classification
Ray et al. [82] 3 Superconducting QPU VQC/Kernel
Suzuki et al. [83] 4 Ion trap QPU Kernel
Thakkar et al. [84] 8 Superconducting Simulator VQC

Dimensionality reduction
Martin et al. [85] 4 Superconducting QPU QPCA

Feature selection
Zoufal et al. [86] 20 Superconducting QPU VQC
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TABLE III. Papers that deal with QML in the field of healthcare.

Reference Qubits Hardware type Trained on Method

Classification
Yano et al. [87] 2 Superconducting QPU VQC
Acar et al. [88] 4 Superconducting QPU VQC
Mathur et al. [89] 9 Superconducting QPU VQC
Ren et al. [90] 10 Superconducting QPU VQC
Moradi et al. [91] 7 Superconducting QPU Kernel
Krunic et al. [92] 20 Superconducting QPU Kernel
Azevedo et al. [93] 4 Superconducting Simulator VQC
Vasques et al. [94] 5 Superconducting QPU Kernel
Mensa et al. [95] 8 Superconducting QPU Kernel
Innan et al. [96] 4 Superconducting Simulator VQC

Inference
Benedetti et al. [97] 5 Superconducting QPU VQC

further delve into the quantum models utilized, including
quantum generative adversarial network (QGAN), varia-
tional quantum circuit (VQC), quantum tensor network
(QTN), quantum principal component analysis (QPCA),
and quantum K means (Q-K means).

The paper is organized as follows. Firstly, we present
a summary of the notation used in the paper in Sec. II.
Subsequently, we offer an overview of fundamental con-
cepts in classical machine learning in Sec. III, quantum

computing in Sec. IV, and quantum machine learning in
Sec. V. In Sec. VI, we explore the applications of quan-
tum machine learning techniques, with a specific focus on
kernel techniques and variational quantum classifiers, cat-
egorized into supervised and unsupervised learning. Then,
Sec. VII delves into the limitations related to hardware
and algorithms. We conclude with discussions on current
bottlenecks and proposing possible solutions for future
research in Sec. VIII.

TABLE IV. List of QML papers that use standard datasets such as Iris [98,99], MNIST [100], FashionMNIST [101], Titanic Survival
[102], Astronomical [103], and Wine [104].

Reference Qubits Hardware type Trained on Method Dataset

Classification
Li et al. [105] 4 NMR QPU Kernel Handwritten
Grant et al. [106] 4 Superconducting Simulator TN Iris
Cappelletti et al. [107] 2 Superconducting QPU VQC Iris
Thumwanit et al. [108] 3 Superconducting QPU VQC Titanic Survival
Peters et al. [109] 17 Superconducting QPU Kernel Astronomical
Abbas et al. [49] 4 Superconducting QPU VQC Iris
Blank et al. [110] 5 Superconducting QPU Kernel Iris/Wine
Ren et al. [90] 10 Superconducting QPU VQC MNIST/FashionMNIST
Suzuki et al. [83] 4 Ion trap QPU Kernel MNIST/FashionMNIST
Koyasu et al. [111] 3 Superconducting QPU VQC MNIST/FashionMNIST
Haug et al. [112] 8 Superconducting QPU Kernel MNIST
Simoes et al. [113] 5 Superconducting QPU Kernel/VQC VLDS [114]/Iris
Chen et al. [115] 4 Superconducting QPU VQC MNIST/FashionMNIST
Melo et al. [116] 9 Superconducting QPU Kernel MNIST
Anagolum et al. [117] 10 Superconducting QPU VQC MNIST
Shen et al. [118] 11 Superconducting Simulator VQC FashionMNIST
Innan et al. [96] 4 Superconducting Simulator VQC Iris

Clustering
Khan et al. [119] 4 Superconducting QPU Q-K means Iris/MNIST
Johri et al. [120] 8 Ion trap QPU Nearest centroid Iris/MNIST

Simulation
Huang et al. [121] 5 Superconducting QPU QGAN Handwritten
Rudolph et al. [122] 8 Ion trap QPU QGAN MNIST
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TABLE V. QML papers that primarily utilize quantum data. These data can consist of intrinsically quantum information or classical
information that is transformed into a quantum feature space.

Reference Qubits Hardware type Trained on Method

Simulation
Gibbs et al. [123] 2 Superconducting QPU VQC
Bartkiewicz et al. [124] 3 Superconducting QPU VQC

Classification
Blank et al. [41] 5 Superconducting QPU Kernel
Herrmann et al. [125] 7 Superconducting QPU VQC
Ren et al. [90] 10 Superconducting QPU VQC
Gong et al. [126] 61 Superconducting QPU VQC

Data generation
Bartkiewicz et al. [124] 3 Superconducting QPU VQC

Training
Pan et al. [127] 6 Superconducting QPU VQC

Clustering
Huang et al. [128] 40 Superconducting QPU Kernel
Nakayama et al. [129] 4 Superconducting QPU Kernel

II. NOTATION

Throughout the paper, the dataset is denoted as D =
{(x1, y1), . . . , (xm, ym)}, where D represents the dataset for
supervised learning containing m samples or observations.
For unsupervised learning, the data do not contain labels
and are represented as D = {x1, . . . , xm}. Each xi repre-
sents the ith input data sample and can be understood as a
vector defined as xi = [xi

1, xi
2, . . . , xi

d], where d is the num-
ber of features in the input data. The corresponding label
or output associated with xi is represented by yi.

Moving over to the vector spaces, we represent the
N -dimensional Hilbert space as HN for a system with n
qubits such that N = 2n. The complex space is represented
using C, while the real space is denoted as R. The feature

map is denoted as φ. The quantum gates are represented
as H for the Hadamard gate, X for the Pauli-X gate, Y
for the Pauli-Y gate, Z for the Pauli-Z gate, and U for the
unitary operator. The gate parameters are denoted using θ .
The depth of the encoder part of the circuit is represented
as N in

depth, while N var
depth is used to represent the depth of the

variational part of the circuit. A list of the abbreviations
and acronyms used throughout the paper, along with their
full forms, is given in Table VII.

III. CLASSICAL MACHINE LEARNING

The field of artificial intelligence (AI) has become
omnipresent, with many practical applications, such as
automation of routine labor, speech recognition, computer

TABLE VI. Papers that use artificial datasets which are synthetically created to evaluate and benchmark QML algorithms.

Reference Qubits Hardware type Trained on Method

Classification
Havlíček et al. [47] 2 Superconducting QPU Kernel/VQC
Bartkiewicz et al. [46] 2 Photonic QPU Kernel
Melo et al. [116] 5 Superconducting QPU VQC
Simoes et al. [113] 4 Superconducting QPU Kernel/VQC
Glick et al. [130] 27 Superconducting QPU Kernel
Heese et al. [131] 3 Superconducting Simulator QGAN
Gentinetta et al. [132] 7 Superconducting QPU Kernel

Data generation
Huang et al. [133] 5 Superconducting QPU QGAN

Clustering
Johri et al. [120] 8 Ion trap QPU Nearest centroid

Regression
Kreplin et al. [134] 10 Superconducting QPU QNN
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TABLE VII. The abbreviations and acronyms used throughout
the paper, along with their expansions.

Acronym Full form

CC Classical computing
NN Neural network
NN-GD Neural network with gradient descent
QC Quantum computing
VQC Variational quantum circuit
VQC-QGD Variational quantum circuit with quantum

gradient descent
VQC-GD Variational quantum circuit with gradient

descent
QML Quantum machine learning
VQA Variational quantum algorithm
PQC Parameterized quantum circuit
QKE Quantum kernel estimation
QSVM Quantum support vector machine
FOE First-order expansion
SOE Second-order expansion
HEP High-energy physics
QAE Quantum amplitude estimation
LHC Large Hadron Collider
BDT Boosted decision tree
DNN Deep neural network
MSE Mean-square error
DRC Data reuploading-based classifier
TN Tensor networks
QTN Quantum-inspired tensor networks
TPR True positive rate
FPR False positive rate

vision, etc. To avoid depending on hard-coded knowledge,
it is essential for these AI systems to acquire knowledge
from their surroundings by solving a learning problem
[135]. Machine learning [135–137] is an evolving branch
of artificial intelligence that is essentially devoted to solv-
ing such problems where the goal is to improve some
measure of performance when executing a task, through
some type of training experience. ML models are trained
on sample data, called training data, which enables them to
learn properties of the data and make predictions or deci-
sions accordingly. In this survey, we look at supervised and
unsupervised learning.

A. Supervised learning

Here, the model is provided with labeled data. To mea-
sure the performance, the model is evaluated on unseen
data, called testing data. Two common types of supervised
learning algorithms include classification and regression.
Training involves minimizing the cost function over the
input data and adjusting its weights until the model has
been fitted appropriately. Examples of common classifiers
include linear classifiers, support vector machines, random
forest, etc. In regression-type problems, the goal is to fit

a function over the data (independent variables) to pre-
dict the output. Commonly used regression models include
linear regression, support vector regression, etc.

B. Unsupervised learning

On the other hand, unsupervised learning involves train-
ing the model to analyze and cluster unlabeled datasets
with the goal of discovering hidden patterns or struc-
ture in the data. In addition to clustering, which involves
finding structure in the data by grouping similar points
and separating dissimilar points, unsupervised learning
also includes dimensionality reduction techniques, such
as principal component analysis (PCA), autoencoders,
singular-value decomposition, etc. Here, the objective is to
reduce the dimension of the data without losing too much
information.

IV. QUANTUM COMPUTING

The phenomenon of quantum superposition and entan-
glement is what gives quantum computing an edge over
classical computing. This can translate to significant
speedup or reduced computational resources in terms of
time and space. Here, we briefly discuss the basics of quan-
tum computing. The basic unit of quantum computation is
the qubit,

|ψ〉 = α|0〉 + β|1〉,
where α,β ∈ C and |0〉, |1〉 represent the computational
basis in the two-dimensional Hilbert space H. The abso-
lute squares of the amplitudes (i.e., |α|2 and |β|2) are the
probabilities to measure the qubit in either the 0 or 1 state,
respectively, such that |α|2 + |β|2 = 1. As such, |ψ〉 as
can be rewritten as |ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉,
where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π are real numbers.

Unitary matrices (quantum gates) can be applied to
quantum states to transform them into other quantum
states to ensure that the condition on the amplitude-based
probabilities is maintained even after the transformation.
Through single-qubit quantum gates we can manipulate
the basis state, amplitude, or phase of a qubit (for exam-
ple, through the so-called X gate, the Z gate, and the
Y gate, respectively), or put a qubit with β = 0 (α = 0)
into an equal superposition: α = 1/

√
2, β = ±1/

√
2 (the

Hadamard or H gate). Multiqubit gates are often based
on controlled operations that execute a single-qubit oper-
ation only if another (ancilla or control qubit) is in a
certain state. One of the most important gates is the two-
qubit controlled-NOT (CNOT or CX) gate, which flips the
basis state of the target qubit when the control qubit is in
state |1〉. A set of arbitrary one-qubit rotation gates and
two-qubit CNOT gates is universal, which means that any
quantum operation can be implemented using a combina-
tion of these basic gates. We list typical quantum gates
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(CZ)

(CNOT)
NOT

FIG. 2. Description of quantum gates in the order of single and multiple qubits.

(along with their symbols, and their matrix forms) used in
quantum circuits for quantum machine learning in Fig. 2.

V. QUANTUM MACHINE LEARNING

A timeline trend and coverage distribution of works
related to quantum machine learning on arXiv are shown
in Fig. 3. In this study, we focus on two widely used QML

algorithms based on variational quantum circuits and quan-
tum kernel methods. In both of these approaches, we start
by encoding d-dimensional classical data so that they are
embedded as a quantum state vector in the Hilbert space.
By doing so, we can exploit the exponential dimensional-
ity of the Hilbert space, which grows with the number of
qubits, giving it a stronger representational power over the
classical feature space, which may help capture strong cor-
relation between variables. Both the models involve data
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(a)

(b)

FIG. 3. (a) Yearly plot displaying the frequency of works on arXiv, utilizing the search term “quantum machine learning” in the title
and/or abstract [138]. (b) The distribution of search terms related to various real-world applications in the titles and/or abstracts of
around 1000 papers sampled that were obtained using the arXiv API under the “quant-ph” category in the last five years. For papers
belonging to multiple domains, we include them in each of the respective categories to calculate the final distribution. We see that the
collection of physics, finance, and healthcare constitutes approximately 34% of the applications queried using the API.

encoding but differ in the way the quantum state is handled.
We look at some of the most commonly used techniques
for encoding classical data along with the different QML
models.

A. Encoding datasets

Quantum machine learning involves learning from
either classical or quantum data. It is more likely to
obtain exponential quantum advantage in machine learn-
ing when data come from quantum-mechanical processes

[139]. Classical data are encoded in bits (0s and 1s), such
as images, text, medical records, etc. Quantum data, on
the other hand, are encoded in quantum bits called qubits,
which can represent states beyond 0 and 1. Qubits can
contain information from physical processes like quan-
tum sensing or quantum control. While classical data can
be efficiently encoded in qubits, the reverse is not true.
In QML, quantum data refer to data already in a quan-
tum state, while classical data need to be encoded into a
quantum system.
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A requisite for obtaining quantum advantage in both
VQC and quantum kernel estimation (QKE) [45] on clas-
sical datasets is that embedding or encoding the datasets
has to be efficiently implementable on quantum circuits
to avoid the so-called data-loading problem [140]. The
quantum embeddings help represent classical data as quan-
tum states in the Hilbert space, thereby allowing us to
truly harness the power of quantum systems. Some desir-
able properties of an encoder are that the number of gates
required to implement the encoder must be at most poly-
nomial in the number of qubits, and the intractability by
any classical operation to simulate it is preferred. Addition-
ally, it is ideal to have a bijective encoding such that there
is a unique quantum state ρxi for each sample xi. Finally,
the single- and two-qubit gates required to implement the
encoder should be compatible with the native gate set of
the near-term quantum devices so that the compilation of
the circuit is hardware-efficient [141]. Thus, data encoding
plays an important role as it determines the features that
quantum models represent [43,47], the decision boundaries
learnt [141], and measurements that optimally distinguish
between data classes [142].

1. Basis encoding

This is the simplest and one of the most common encod-
ings [53,143], which maps a binary string of classical data
x = x1 . . . xn into the computational basis |x〉 = |x1 . . . xn〉.
It requires n qubits to encode n bits of classical data, and is
useful to feed one sample classical bit at a time to a QML
model. The power of the quantum resource comes when
the batches of classical samples are represented as super-
positions of basis states [144]. Quantum bits can be used to
create quantum states that are a superposition of classical
datasets, i.e., quantum batches.

In the case of supervised learning, as pointed out in
Ref. [53], one can create quantum states |+1〉 and |−1〉,
each of which is a superposition of the basis encoding
of samples with label l(x) as +1 and −1, respectively,
as below (omitting ancilla and working qubits), and use
them to train a QML model on the superposition states of
real-world data:

|+1〉 = 1√
N+

∑

x: l(x)=+1

|x〉 ,

|−1〉 = 1√
N−

∑

x: l(x)=−1

|x〉 ,

where N+ and N− are, respectively, the number of samples
with label +1 and −1. It is argued in Ref. [53] that the
above quantum batches can result in training a QML model
with smoother loss fluctuation and can be more efficient in
the sample complexity for better generalization error than
individual samples.

2. Amplitude encoding

The classical data x, which is a d-dimensional vec-
tor, is encoded into the amplitude of the quantum state
[81,145–147]. Namely, for x = (x1, . . . , xd) such that∑

i |xi|2 = 1, the corresponding encoding is the quantum
state

|ψx〉 =
d∑

i=1

xi |i〉 ,

which requires only log d qubits to store x. The advantage
of this encoding is in the exponential memory saving and,
if one can design a QML model that runs in polynomial
time in the size of the number of qubits, then there are
hopes for exponential quantum advantage. In fact, many
QML models that promise quantum advantages use this
encoding combined with quantum basic linear algebras,
such as HHL [148] and others (see, e.g., [149–152]). The
main drawback is that quantum circuits that generate |ψx〉
can require quantum circuits with an exponential num-
ber of native gates [153–156], and hence the data-loading
problem [140].

To avoid exponential circuit complexity, recent works
[157,158] propose the use of unary amplitude encoding to
encode x using a d-qubit quantum state (i.e., a qubit per
feature) as

|φx〉 =
d∑

i=1

xi |ei〉 ,

where |ei〉 is the ith unary computational basis |0 . . .
010 . . . 0〉 with “1” only at the ith qubit. It is shown that the
depth of the circuit to generate unary encoding is logarith-
mic in d [158], and linear using a cascade of reconfigurable
beam-splitter (RBS) gates [157].

3. Divide-and-conquer approach

This data-loading technique is a modified version of
amplitude encoding and is introduced in Ref. [159] using
controlled-SWAP gates and ancilla qubits. As the name
suggests, this method is based on the divide-and-conquer
approach and derives motivation from Ref. [160]. The
d-dimensional input vector is loaded in the probability
amplitudes of the computational basis state with entangled
information in ancillary qubits. The results show expo-
nential time advantage using a quantum circuit with poly-
logarithmic depth and O(d) qubits. However, the reduced
circuit depth comes at a cost of increasing the circuit width
and creating additional entanglement between data register
qubits and an ancillary system.

4. Angle encoding

While the aforementioned amplitude encodings require
circuits with at least O(log d) depth, one can load x with
constant-depth quantum circuits by embedding xi ∈ R, i.e.,
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the ith element of x, as a parameter of Pauli rotational
gates RX (xi) ≡ e−ixiX /2, or RY(xi) ≡ e−ixiY/2, or RZ(xi) =
e−ixiZ/2. The data also need to be normalized or scaled
using min-max scaling in a suitable range to be evaluated
as gate angles, and the choice of this range can influence
the performance. For example, in Ref. [68], the use of
angles in the range [−1, +1] was found to be more opti-
mal than [−π , +π ]. For example, starting from the all-zero
quantum state, one can create the following n-qubit quan-
tum state (where n = d) representing x by applying RY(xi)

to the ith qubit for i = 0, . . . , d − 1:

|x〉 ≡
d−1⊗

i=0

RY(xi) |0〉d =
d−1⊗

i=0

cos
(xi

2

)
|0〉 + sin

(xi

2

)
|1〉 .

The above quantum state is a product state that can be
represented classically in O(d) computational space and
time, but, when combined with entanglement layers and
their block repetitions, the angle encoding can be used as
a building block to generate sophisticated entangled states
that are difficult to compute classically.

Also worth mentioning are the so-called first-order
encoding (FOE) and second-order encoding (SOE) as
defined in Ref. [47]. In FOE, to encode xk ∈ R, the
single-qubit gates RZ(xk) are used. This can be lifted to
a higher encoding using SOE where more parameters are
used along with entangling gates. For example, to encode
xl, xm ∈ R along with their correlation in the lth and mth
qubits, SOE utilizes the gate ei(π−xl)(π−xm)ZlZm .

When the classical data x are a bit string of length
d, which is often used to represent discrete features,
Yano et al. [87] propose to utilize the so-called quantum
random-access codes (QRAC) to obtain a constant factor
saving in the number of qubits. For example, the previ-
ous |ei〉 is known as one-hot encoding in classical machine
learning that requires d qubits. With the QRAC encoding,
the bit string x = x0 . . . xd−1 ∈ {0, 1}d can be represented
with �d/3�-qubit quantum state ρx as below:

ρx ≡ |ψx〉 〈ψx| =
d/3−1⊗

i=0

1
2

(
I + 1√

3
((−1)x3iX

+ (−1)x3i+1Y + (−1)x3i+2Z)
)

,

where for simplicity d > 0 is assumed to be divisible by
3. Notice that the value of x3i+j can be retrieved by mea-
suring the ith qubit of ρx in X, Y, or Z bases for j =
0, 1, 2, respectively. The QRAC encoding can be run with
a single-qubit gate for each qubit.

a. Data reuploading. Angle encoding applies a Pauli
rotation gate whose degree of freedom is one, say for xj ∈

R, the RZ(xj ) at the j th qubit. Meanwhile, it is known that
a general single-qubit rotation gate U(·) has three degrees
of freedom and is represented by the matrix form in Fig. 2.

First proposed in Ref. [161], the data reuploading tech-
nique utilizes the above U(·) to encode three elements of
x in a qubit. By repeating the application of U(·) each
with different three elements of x for j ∈ {0, . . . , d/3 − 1},
hence the reuploading, the whole data point x can be
encoded in a single qubit. We can easily see that the data
reuploading is the angle encoding repeated with different
parameters xj because the above U(·) can be decomposed
into a sequence of Pauli rotation gates as below:

U(x3j , x3j +1, x3j +2)

= RZ(x3j +1 + π)
√

X RZ(x3j + π)
√

X RZ(x3j +2).

The parameters of data reuploading can be linearly trans-
formed before being used in U(·) or trained to fit the
prediction [161]. This method has been used in a vari-
ety of applications, including drug discovery [162,163],
image classification of MNIST dataset [164], and varia-
tional quantum eigensolver [165]. Because of the structure
of single-qubit unitary gates, this encoding is particularly
suited for data with rotational symmetry.

5. Hamiltonian encoding

While the encoding quantum state from angle encod-
ing is obtained by transforming the all-zero quantum state
with single-qubit rotational gates which are classically
computable, Hamiltonian encoding evolves the all-zero
quantum state according to the Hamiltonian parameterized
by x to generate highly entangled states. Namely, let the
Hamiltonian be H(x) = ∑

i fi(x)hi, where fi(x) ∈ R is the
weight function and hi = ⊗n

j =1 σ
j
i for σ j

i ∈ {I , X , Y, Z}.
For a fixed t, the quantum state |ψt(x)〉 that encodes x is
obtained from the time evolution

|ψt(x)〉 = e−iH(x)t/� |0〉⊗n ,

which can be run on gate-based quantum hardware
using techniques such as Trotterization [166], variational
approaches [167–169], and linear combination of unitaries
[170,171].

Another example of encoding involving the parame-
ters of a tunable Hamiltonian is discussed in Ref. [172],
where the authors present a quantum feature map for graph
data on a neutral-atom quantum processor comprising up
to 32 qubits. The results demonstrate the ability of the
map to effectively capture local and global graph structures
while applying this quantum graph kernel to predict toxi-
city on a real-world dataset of molecules and compare its
performance against various classical kernels.
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B. Models

1. Quantum kernel estimation

The kernel trick enables one to process higher-
dimensional data without explicitly computing the feature
vector. This method is most commonly employed in clas-
sification using the support vector machine [55,56]. By
means of the kernel, every feature map corresponds to a
distance measure in input space by means of the inner
product of feature vectors [43,173]. The key highlight of
kernel tricks with quantum states, or quantum kernels,
comes from its ability to compute similarities from the
encoding of the classical data into the quantum state space
through entanglement (Fig. 8) and interference so as to
generate correlations between variables that are classically
intractable [42]. This is expected to give more expressive
feature embeddings, leading to better performance in pat-
tern recognition and classification tasks compared to the
classical counterparts. However, the true advantage does
not come from the high-dimensional space (which is also
possible using classical kernels) but rather from being able
to construct complex circuits which are hard to calcu-
late classically. Even so, while the classical kernels can
be computed exactly, the quantum kernels are subject to
small additive noise in each kernel entry due to finite sam-
pling, while classical kernels can be computed exactly. To
tackle this, error-mitigation techniques have been devel-
oped [44,174–176] for cases when the feature map circuit
is sufficiently shallow.

The following steps are key components involved in
QKE [45]:

• Quantum feature map. A feature map φ is employed
to encode the classical data x to the quantum state
space using unitary operations. For any two data
points xi, xj ∈ D, the encoded data are represented
as 
(xi) and 
(xj ), respectively.

• Inner product. The kernel entry can be obtained as
the inner product between two data-encoded feature
vectors 
(xi) and 
(xj ), i.e.,

κ(xi, xj ) = |〈
(xj )|
(xi)〉|2. (1)

The kernel entry can be estimated by recording the
frequency of the all-zero outcome 0n. This procedure
is referred to as quantum kernel estimation. Differ-
ent methods [177,178] can be employed to estimate
the fidelity between general quantum states, one of
which is the swap test.

Quantum support vector machines use the kernel built
using QKE with a classical SVM. It was first introduced
in Ref. [144] while the proof of principle was first demon-
strated for classifying handwritten characters in Ref. [105].

The advantage of using quantum kernels is not so appar-
ent when we have large datasets where the quantum cost

scales quadratically with the training dataset size [142].
Efficient data encoding and generating useful quantum
kernels are constrained by the limited number of qubits
and heuristic characterization [45,47,68,161]. Addition-
ally, fewer measurements and large system noise necessi-
tate error-mitigation techniques requiring significant addi-
tional quantum resources [174,179]. In Ref. [180], an
indefinite kernel learning-based method is implemented
to demonstrate the advantage of kernel methods for near-
term quantum devices by suppressing the estimation error.
Recently, the work in Ref. [112] introduced a novel
approach for measuring quantum kernels using random-
ized measurements showing a linear scaling of features
based on circuit depth. The method also incorporates a
cost-free error mitigation and offers improved scalabil-
ity, with the quantum computation time scaling linearly
with the dataset size and quadratic scaling for classical
postprocessing.

a. Different types of kernels. In the previous subsection,
the quantum kernel is computed as the (non-negative)
frequency of observing the all-zero bits of running the
concatenation of the quantum circuit encoding xi with the
inverse of quantum circuit encoding xj as in Eq. (1). This
type of quantum kernel is quite powerful for classifying
artificial data derived from discrete log problems [44], and
for classifying group-structured data when the initial state
|0n〉 in Eq. (1) is replaced with optimized fiducial quantum
states computed from kernel alignment [130]. Regarding
the latter, experimental results on a 27-qubit device, when
the data are encoded with single-qubit rotational gates and
the fiducial quantum state is matched with connectivity of
qubits in the quantum device, have been demonstrated.

There are many other types of quantum kernels avail-
able whose elements are not necessarily restricted to be
non-negative. For example, the Hadamard-test classifier
(HTC), which encodes real-valued vectors with amplitude
encoding, computes the weighted sum of the inner prod-
uct between a test data vector with the superposition of
training data vectors for binary classification [146]. The
compact version of HTC has been given by Ref. [110].
While the full quantum space in Eq. (1) seems to be pow-
erful, it is pointed out in Ref. [42] that it can fail to learn a
simple function. To overcome this, the projected quantum
kernel, which projects the quantum kernel into the clas-
sical one and computes the elements of kernels from the
functions of reduced density matrices, was introduced in
Ref. [42] to obtain better quantum kernels that can also
learn the data derived from the discrete log problems in
Ref. [44].

2. Swap-test classifier

The swap-test classifier (see Fig. 4) as proposed in
Ref. [41] is implemented as a distance-based quantum
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a : |0〉 H • H

|x〉⊗n / ×
d : |0〉⊗n /

U

×
l : |0〉

m : |0〉 /

FIG. 4. Swap-test classifier. The first register is the ancilla
qubit (a), the second contains n copies of the test datum (x), the
third are the data qubits (d), the fourth is the label qubit (l), and
the final register corresponds to the index qubits (m). An operator
U creates the input state necessary for the classification protocol.
The swap test and the two-qubit measurement statistics yield the
classification outcome.

classifier where the kernel is based on the quantum state
fidelity raised to a certain power at the cost of using mul-
tiple copies of training and test data. The choice of the
quantum feature map plays a pivotal role in defining the
kernel and the overall efficiency of the classifier. The train-
ing and test data are encoded in a specific format, following
which the classifier is realized by means of the swap test
[177].

The swap test measures the similarity between the input
quantum state and the reference quantum states for each
class using measurements to compute a similarity score
that indicates the overlap between the input state and the
reference states.

3. Variational quantum circuits

These algorithms primarily focus on optimizing the
parameters of the PQC and are known to provide a gen-
eral framework that is compatible with different classes of
problems leading to different structures and grades of com-
plexity. The optimization is performed classically while
allowing the circuit to remain shallow, making it a versatile
tool for near-term quantum devices.

This basic structure of VQC involves the following three
steps:

• Quantum feature map. A nonlinear feature map φ is
employed to encode the classical data x to the quan-
tum state space (see Fig. 5). This is done by applying

q0 : Ry(x0) Rz(x3) • Ry(x6) Rz(x9)

q1 : Ry(x1) Rz(x4) • Ry(x7) Rz(x10)

q2 : Ry(x2) Rz(x5) Ry(x8) Rz(x11)

FIG. 5. The feature map (
(x)) depicted utilizes three qubits
to encode 12 parameters of the data point x. It applies rotation-Y
and rotation-Z operations to the feature values while employing
CNOT gates to establish entanglement.

|0〉

Φ(x) Wθ

|0〉
|0〉
|0〉

FIG. 6. Variational quantum classifier. The state preparation

(x) is followed by W(θ), which is the parameterized circuit
with parameters θ , and is then followed by measurement in the Z
basis.

the circuit Uφ(x) to the initial state |0〉⊗n:

|
(x)〉 = Uφ(x)|0〉⊗n.

The initial state |0〉⊗n can be replaced by any fiducial
quantum state as shown in Ref. [130]. The encod-
ing circuit Uφ(x) can also be applied more than once
and/or interleaved with the model circuit described
later.

• Model circuit. A short-depth parameterized quantum
circuit W(θ) is applied on the obtained quantum state
with layers that are parameterized by the rotational
angles for the gates that need to be optimized during
training (see Fig. 6). The optimization is performed
over a cost function.

• Measurement and preprocessing. The outcome of
the measurement results in a bit string z ∈ {0, 1}n

that is mapped to a label. This circuit is rerun multi-
ple times and sampled to estimate the probability of
observation z, which can be obtained as

〈
(x)|W†(θ)MyW(θ)|
(x)〉,
which is calculated for each of the different classes y
using the measurement operator My .

At the aforementioned quantum feature map and the
model circuit, the CZ and CNOT gates (along with
Hadamard gate) are commonly used to create entangle-
ment (Fig. 8). A common strategy to optimize the subcir-
cuit for entangling qubits is to entangle adjacent qubits,
namely, we first entangle the 2ith qubit with the (2i + 1)th
qubit, and then after this, we only entangle the (2i + 1)th
qubit with the (2i + 2)th qubit for i = 0, . . . , n. By doing
so, we can parallelize the entanglement operation and
reduce the execution dependence [181]. The circuit for this
is shown later in Fig. 8(a). Based on the depth of the cir-
cuit chosen, we can repeat the quantum feature map with
entangling subcircuit, or the model circuit with entangling
subcircuit.

a. Ansatz. The choice of the ansatz also plays a pivotal
role as the parameters θ of the circuit represented by W are
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q0 : (θ[0]) • (θ[3]) • (θ[6])

q1 : (θ[1]) • (θ[4]) • (θ[7])

q2 : (θ[2]) • (θ[5]) • (θ[8])

FIG. 7. The representation illustrates W(θ) as a hardware-efficient ansatz for a three-qubit system, employing a parameterized
quantum circuit with nine parameters.

optimized during the training (see Fig. 7). For example,
the experiments in Ref. [76] showed better performance
for the weighted ansatz (Sec. V A 4 a) in comparison
to the Fourier ansatz (inspired from Ref. [182]), which
introduces linear and logarithmic dependences to the same
gate without using tunable weights. The authors speculate
that using weights allows better representability especially
for smaller layers. The layered ansatz is another common
technique that comprises layers such that each of the lay-
ers is composed of a set of entangling gates preceded by
two alternating single-qubit rotation gates. The number of
layers is a hyperparameter.

b. Modified layerwise learning. As the name suggests,
this strategy involves training the circuit layer by layer
such that only a small set of parameters are optimized in
a single update [183]. Initially, only a small circuit with a
few starting layers is chosen such that all parameters are
set to 0. This circuit is optimized by running it for a few
epochs. The parameters are now frozen and a new set of
layers is added. Now, the new layers’ parameters are opti-
mized with the previous layers’ frozen parameters until no
more improvement is obtained in the cost function or until
the desired depth is reached. Then, the circuit depth is fixed
and a larger set of parameters is trained again. This strategy
can help avoid the barren plateau due to the small num-
ber of layers and also maintains a favorable signal-to-noise
ratio [64,183].

c. Optimizers. The work in Ref. [184] demonstrated
that gradient-free optimizers, simultaneous perturbation
stochastic approximation (SPSA) and Powell’s method,
and gradient-based optimizers, AMSGrad and BFGS, per-
formed the best in a noisy simulation, and appeared to
be less affected by noise than the rest of the methods.
SPSA appeared to be the best-performing method while
COBYLA, Nelder-Mead, and conjugate-gradient methods
were the most heavily affected by noise even with the
slightest noise levels.

In Ref. [185], the authors explored hardware-efficient
ways to optimize the ansatz using algorithms based on
tensor methods. One of the introduced methods, called
coordinatewise optimization [186–189], does not require
the use of gradient or Hessian computations. Additionally,
the authors of Ref. [190] presented a non-gradient-based

variational algorithm by introducing an unconventional
hybrid quantum-classical algorithm that utilizes the quan-
tum part only once after optimizing the circuits entirely on
a classical computer. This is in contrast to traditional meth-
ods that involve multiple uses of the quantum computer
during circuit optimization.

More recently, the work in Ref. [191] proposed a novel
approach that combines the approximated gradient from
SPSA with classical optimizers. This hybrid approach out-
performed standard SPSA and the parameter-shift rule
in regression tasks, demonstrating enhanced convergence
rate and error reduction, especially when considering
noise.

Even the choice of batch size for training affects the
convergence rate. In principle, quantum computing allows
one to encode a batch of training inputs into a quan-
tum state in superposition and feed it into the classifier,
which can be used to extract gradients for the updates
from the quantum device. However, this would extend
the time complexity of the state preparation routine for
general cases, and even worse for more sophisticated fea-
ture maps. Single-batch stochastic gradient descent, where
only one randomly sampled training input is considered in
each iteration, can have favorable convergence properties,
especially in cases where a lot of data are available [192].
However in Ref. [80], training using single data per update
led to slow convergence with volatile validation loss per
epoch, which was avoided by increasing the batch size
to 64.

Some of the major limitations associated with classical
optimizers are repeated measurements and the complex-
ity of gradient calculation [193]. Classical optimizers often
require repeated measurement of the outputs of a quan-
tum circuit and feeding them into the classical computer.
This process can lead to slower convergence rates for
the optimization algorithm. The complexity of calculating
gradients can impact the convergence of the optimization
algorithm, particularly as the feature size (d) of the input
increases. For instance, gradient-based methods like gra-
dient descent have a complexity of O(d) [194], which
can become a scalability bottleneck. To address these
limitations, researchers have proposed quantum gradient
methods [195–197] in the recent past as potential alter-
natives. These methods aim to leverage the benefits of
quantum computation to overcome the challenges associ-
ated with classical optimization. However, their practical
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implementation still faces challenges related to applicabil-
ity and complexity.

d. Parameter-shift rule. To optimize the objective, it is
useful to have access to exact gradients of quantum cir-
cuits with respect to gate parameters. The parameter update
requires computing ∇L(θ), which in turns requires com-
puting the gradient of the quantum circuit output f due to
the chain rule, since the loss function is a function of the
output of the quantum circuits. The gradient of the quan-
tum circuit output is calculated using the parameter-shift
rules [198,199] by varying the value of the gate parameters
θ slightly.

For the gates used in angle encoding, the parameter shift
can be applied as

∂f
∂θ

= 1
2

[
f

(
θ + π

2

)
− f

(
θ − π

2

)]
.

In other cases, different strategies can be applied, as
discussed in Ref. [199]. When the ansatz consists of
single-qubit rotation gates Rx(θ), Ry(θ), Rz(θ), as in
Fig. 2, the loss function can be optimized with gradient-
free optimizers using coordinate descent [186,200]. While
the gradient-based optimizers can be parallelized [201],
the gradient-free coordinate descent methods are sequen-
tial but have been shown to converge to local optima faster
[201], and can be combined with data parallelism to run
several small quantum circuits on a device with a larger
number of qubits as shown in Ref. [111]. The general-
ization of gradient-free sequential single-qubit gate opti-
mizers is derived in Ref. [202,203]. Nevertheless, within
the existing training framework for quantum neural net-
works (QNNs), it is necessary to compute gradients with
respect to the objective function directly on the quantum
device. However, this computation faces significant scala-
bility challenges and is susceptible to hardware limitations
and sampling noise inherent in the current generation of
quantum hardware [204].

In a recent study, the authors of Ref. [205] presented
an alternative training algorithm that circumvents the need
for gradient information. They introduced a novel metaop-
timization algorithm, which involves training a metaop-
timizer network to generate optimal parameters for the
quantum circuit. These parameters are carefully chosen
to minimize the objective function without relying on
traditional gradient-based approaches.

e. Quantum natural gradient. The geometry of the
parameter space plays a huge role in the efficient optimiza-
tion of the VQC parameters [206]. In Ref. [65], the authors
expect that a smaller network structure of the VQC can
lead to significant advantage, as it allows using a computa-
tionally more expensive optimization algorithm resulting

in a faster learning rate. This is also advantageous when
the training data are limited.

In vanilla gradient descent, the loss function L(θ) is
minimized in the l2 vector space by updating the network
parameter θ(t) at time t to θ(t+1) in the direction of the
steepest slope as

θ(t+1) = θ(t) − η∇L(θ).

Since each of the model parameters is updated by the same
Euclidean distance, there is a possibility of getting stuck in
a local minimum since the value of f (θ) varies at differ-
ent rates with respect to each parameter. This is tackled in
natural gradient descent where the parameter space corre-
sponds to Riemannian geometry, which is defined by the
Fisher information matrix [207,208] and is invariant under
reparameterization. The parameters are updated as

θ(t+1) = θ(t) − ηF−1∇L(θ),

where F is the Fisher information index. The calculation
of F−1 in general is computationally expensive. However,
this leads to faster convergence, and can help avoid getting
stuck in local minima [209].

For VQC parameter optimization, it has been shown
that using the standard Euclidean geometry is subop-
timal [210]. Quantum gradient descent is the quantum
version of natural gradient descent [211] which uses the
Fubini-Study metric g [212,213]. This Fubini-Study met-
ric tensor is an invariant metric tensor unique to the
space of quantum states and exploits the geometric struc-
ture of the VQC’s parameter space. The parameters are
updated as

θ(t+1) = θ(t) − ηg+∇L(θ),

where g+ is the pseudoinverse of the Fubini-Study
metric g. Faster convergence has been observed for quan-
tum gradient descent compared to the vanilla gradient
descent with a similar number of trainable parameters [65].

f. Quantum natural SPSA. The large computational costs
associated with calculating the quantum Fisher informa-
tion, which scales quadratically in the number of ansatz
parameters, limits the advantage of using quantum gra-
dient descent over standard gradients. To counter this, a
new approach is introduced in Ref. [214], called quantum
natural-simultaneous perturbation stochastic approxima-
tion (QN-SPSA), which inherits the fast convergence and
robustness of quantum natural gradient with respect to the
initial parameters, while having the computational cost
benefits of SPSA [215].

Additionally, it is worth mentioning some recent works,
such as the pure quantum gradient descent algorithm,
which was proposed in a recent study [193]. This inno-
vative quantum-based method for gradient calculation
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claims to provide a theoretical computational complexity
of O(1), in contrast to the O(d) complexity of the classical
algorithm [194].

4. Quantum principal component analysis

Principal component analysis has been used for the opti-
mal low-rank approximation of a matrix through spectral
decomposition by setting a threshold on the eigenvalues.
By doing so, we only retain the principal components of
the spectral decomposition while discarding those with
smaller eigenvalues. However, when the size of the matrix
is large, the computational costs increase, which is why we
look at quantum algorithms.

The implementation of QPCA in Ref. [216] helps con-
struct the eigenvectors and eigenvalues of the unknown
density matrix, thereby discovering their properties. The
authors assume that the matrix can be represented by a
quantum state, i.e., it is a non-negative matrix with trace
equal to 1, which covers a wide range of interesting cases.
It uses multiple copies of an unknown density matrix
to construct the eigenvectors corresponding to the large
eigenvalues of the state (the principal components) in time
O(log N ), where N is the dimension of the Hilbert space,
resulting in an exponential speedup over existing algo-
rithms. They provide novel methods of state discrimination
and cluster assignment.

5. Quantum orthogonal neural networks

Orthogonal neural networks are neural networks with
orthogonal trained weight matrices which provide the
advantage of avoiding vanishing gradients and improved
accuracies [217]. The parameterized quantum circuit for
implementing the orthogonal neural networks was first
introduced in Ref. [157] using unary amplitude encod-
ing and a pyramidal structure using only RBS gates. The
orthogonality of the weight matrix is preserved by per-
forming gradient descent on the parameters of the quan-
tum circuit. This works because a quantum circuit with
real-valued unitary gates is an orthogonal matrix, hence
the gradient descent is equivalent to updating the weight
matrix. Another feature of the circuit is one-to-one map-
ping between the parameters of the orthogonal matrix and
the quantum gates of the circuit. The circuit architec-
ture benefits from linear circuit depth and error mitigation
due to unary encoding along with nearest-neighbor con-
nectivity due to the distribution of the RBS gates. In
Refs. [89,157], the results show linear scaling of the
training runtime with respect to the number of parameters.

6. Quantum generative adversarial networks

The primary goal of a classical generative adversarial
network (GAN) [218] is to generate data by studying a col-
lection of training examples and learning the underlying
probability distribution. It typically involves an iterative

adversarial training procedure between two neural net-
works, the discriminator and the generator model. The
generator creates fake data with the goal of generating data
as close as possible to the real training dataset while the
discriminator tries to separate these fake data from the real
data.

The quantum variant of GAN (i.e., quantum genera-
tive adversarial network) was proposed independently in
Ref. [219,220], where a QNN is used as the discriminator
or generator or both. In Ref. [77], faster convergence was
noted for a classical discriminator in comparison to other
architectures. For more details refer to Ref. [221].

The research described in Ref. [222] showcased the first
proof-of-concept experimental demonstration of a QGAN
on a superconducting processor. The authors success-
fully trained a quantum-state generator through adversarial
learning to replicate quantum data with 98.8% fidelity.
However, the scalability of QGANs to noisy intermediate-
scale quantum devices was first shown in Ref. [133] by
implementing the QGAN using a programmable supercon-
ducting processor.

a. Quantum adversarial learning. Adversarial machine
learning involves assessing the vulnerabilities of machine
learning in adversarial settings and consequently imple-
menting techniques to make the models more robust to
such manipulations. In the quantum setting, Ref. [223]
shows that a quantum classifier that performs with nearly
state-of-the-art accuracy can be deceived by adding unno-
ticeable perturbations to the original samples. For more
information and discussions on the latest advancements
and key challenges in the field of quantum adversarial
machine learning, we refer the reader to Ref. [224].

7. Tensor networks

Tensor networks (TNs) are a popular method in the field
of quantum many-body problems due to their ability to
represent many-body localized systems and are already
known for their performance in the classical setting for
supervised and unsupervised learning tasks. TNs can rep-
resent both quantum states and circuits [225–227] using
VQCs with rules described in Ref. [228]. They can also
simulate strongly entangled quantum systems [229–231].
Depending on the architecture, the number of physical
qubits scales only logarithmically with, or independently
of, the input or output data sizes, which can be imple-
mented on small, near-term quantum devices using fewer
physical qubits. The work in Ref. [69] shows that classi-
cal TNs require exponentially more trainable parameters
and higher Hilbert-space mapping to perform on par with
the quantum counterparts, which makes them vulnerable
to a highly flat loss landscape. The work in Ref. [232]
explores the trainability of randomly initialized quantum
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tensor networks with a focus on the different architectures.
The conjecture suggests that classical gradient computa-
tion for quantum tensor networks could be more efficient
than their quantum counterparts. A review can be found in
Ref. [233].

8. Quantum autoencoder

The task of a classical autoencoder is to obtain a low-
level representation of a given input such that the original
data can be recovered. This has applications in dimension-
ality reduction and generative data modeling. The quantum
version of the classical encoder was first implemented in
Ref. [48] where an ansatz is trained to obtain a com-
pressed version of an ensemble of pure quantum states.
Different variants are explored in Refs. [234–236]. The
learning task involves finding unitaries that preserve the
quantum information of the input through a smaller inter-
mediate latent space. The PQC initially encodes the input
state into an intermediate latent space. Following this, the
decoder acts with the goal of being able to reconstruct
the input. A cost function is used to estimate the fidelity
(distance) between the input and output states. Recently,
quantum autoencoders have found application in quantum
error correction [237], thereby expanding the possibilities
for further research and development in the field.

VI. APPLICATIONS

The performance metric is usually measured using
AUC-ROC, which stands for “area under the receiver oper-
ating characteristic curve” [238,239]. The ROC curve is a
commonly used graph that summarizes the performance
of a classifier over all possible probability thresholds. The
AUC-ROC provides intuition about the capability of the
model to distinguish accurately between true positives and
false positives [true positive rate (TPR) on the y axis and
false positive rate (FPR) on the x axis]. The score varies
from 0 to 1, where higher score implies better distinc-
tion or performance and score 0.5 corresponds to random
guessing.

A. High-energy physics

Most of the studies focus on obtaining better perfor-
mance with limited data [240]. Among recent works, VQC
has been used widely for HEP-based applications with data
agnostic techniques for feature encoding like single-qubit
rotation gate or ZZ gate [240]. However, these meth-
ods are not suitable for HEP, as they end up incurring
large overhead on the number of qubits or gates for mul-
tidimensional data. Here we review the applications of
variational quantum circuit and quantum support vector
machine techniques in high-energy physics.

1. Classification

A prominent use case under this category is event
classification, which involves discriminating signal events
from the background events in the context of the Standard
Model of particle physics [64,66].

In Ref. [66], the data are encoded using first-order
encoding and a variational part based on a simplified ver-
sion of Ref. [47] with depth 1. A combination of three
variables is determined using a deep neural network with
AUC-ROC and run on an IBM Quantum device [241]
with three qubits. The cross-entropy cost function is opti-
mized using COBYLA. Results showed a higher cost
function with more fluctuations for the real device com-
pared to the simulator, but both showed consistent AUC
(around 0.80) within the standard deviation. Additionally,
second-order encoding was employed, but no improve-
ment was observed on a real quantum computer. This may
be attributed to the 60% increase in single- and two-qubit
gates when transitioning from FOE to SOE, resulting in
increased hardware noise due to gate errors.

In Ref. [64], an improvement over this method is shown
using data reuploading and modified layerwise learning
with only one qubit and five layers. However, training
is performed on the PennyLane simulator, optimizing the
MSE cost function with the Adam optimizer [243]. Infer-
ence tests on Rigetti’s 32-qubit superconducting quantum
processor obtained an AUC of 0.830, surpassing that of
Ref. [66] while using fewer qubits. Training and testing
AUC using 2000 samples demonstrate that data reupload-
ing generalizes well without overfitting or underfitting.

To compare the performance of variational circuit-based
and kernel-based methods on the same dataset, we refer to
Refs. [67,68], which use VQC and QSVM, respectively.
Both works employ PCA [243,244] for data preprocessing,
matching the number of encoded variables with the avail-
able qubits of the IBM Quantum device [241], followed by
angle encoding.

The ansatz in Ref. [67] uses parallelized entangling CZ
gates with linear qubit connectivity [Fig. 8(a)]. For training
on real hardware, the feature map and variational circuit
depth were set to 1. SPSA was used for optimization,
and the results were benchmarked against classical SVM
[55] and binary decision tree [245]. The simulator perfor-
mance was comparable to classical methods (AUC around
0.82). To minimize readout errors, only half the qubits
were observed after pairing them with CZ gates. The per-
formance on real quantum hardware was similar (AUC >

0.80) to that on the simulator. However, the authors note
the long training time on quantum hardware (200 h) for
500 training iterations on 100 events.

For the QSVM-based approach in Ref. [68], a par-
allel entangling circuit was constructed using 15 qubits
of the IBM Quantum device, similar to Ref. [67], to
obtain a short-depth circuit for execution on real quan-
tum hardware. To reduce statistical uncertainties, 8192
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measurement shots were performed for each kernel entry.
The hardware performance approached that of the noise-
less simulator for small training samples of size 100
(average AUC 0.831).

Testing the model on an IBM Quantum device showed
good performance, with an AUC of approximately 0.78.
The authors attribute the faster learning rate, despite the
computationally expensive optimization algorithm, to the
small structure of the VQC.

In Ref. [128], the authors note that data obtained
from quantum-enhanced experiments can achieve quan-
tum advantage for learning tasks of a physical state
and a physical process from a perspective of sampling
complexity. Quantum-enhanced experiments consist of
quantum sensors, quantum memory, and quantum comput-
ers. In quantum-enhanced experiments, quantum informa-
tion is directly stored in quantum memory, while classical
experiments require measurements to store classical data
in classical memory. Quantum-enhanced experiments pre-
serve the quantumness of quantum data until performing
entanglement measurements on pairs of copies of data in
quantum memory. It is expected that research utilizing the
power of quantum data will become increasingly active in
the future.

2. Regression

a. Simulation. The use of different variants of QGAN
architectures in HEP can be seen in Refs. [77,78] for sim-
ulation. For example, in Ref. [78], the proposed QGAN
contains a classical discriminator and two parameterized
quantum circuit generators for generating images. The per-
formance was measured via relative entropy and individual

(a) (b)

(c) (d)

FIG. 8. Different types of entanglement: (a) parallel, (b) all-to-
all, (c) circular, and (d) linear.

relative entropy. The model was trained using a simula-
tor, while the inference results of the pretrained model on
superconducting chips and ion-trap machines showed low
standard deviation and error rates indicating the feasibility
of dual-PQC training for superconducting chips. However,
the authors note the vulnerability of the training process to
fall into mode collapse [218] where the model reproduces
only a low variety of samples. They also suggest tech-
niques such as increasing the training set size and adding
an additional term to the loss function as possible solutions
to ameliorate the problem.

In contrast, the QGAN in Ref. [77], named style-
QGAN, was implemented using a QNN generator and
a classical NN discriminator. The data were encoded
using angle encoding, and the cross-entropy loss function
was optimized for both using Adadelta [246]. While ear-
lier implementations of QGAN provided the prior noise
distribution to the generator via the first input gates,
the work in Ref. [77] embeds it on every layer of sin-
gle qubit and entangling gate in the circuit. The results
showed an improvement over the state of the art with shal-
low circuits on both the three-qubit superconducting and
ion-trapped architectures, implying potential hardware-
independent viability. Additionally, both quantum hard-
ware variants are able to capture the correlations even on
small sample set.

B. Healthcare

A few applications of quantum machine learning in
healthcare include healthcare diagnostics and treatment,
cancer detection, prediction of different stages of diabetes,
and even the security of sensitive information such as
healthcare data.

Given the sensitivity of these applications, the cost of
any incorrect predictions may have huge negative con-
sequences and hence requires utmost carefulness. In this
regard, binary classification of magnetic resonance images
using a VQC is performed in Ref. [90] to check the vulner-
ability of quantum learning systems in healthcare diagnos-
tics. To prepare highly entangled multiqubit quantum state,
interleaved block encoding [161,247,248] was used on 10
qubits. The variational parameters are fixed for adversar-
ial perturbations, and the results show that the originals
differ from the adversarial images by a small amount of
perturbations. The results show that the quantum classifier
predicts the legitimate states accurately while mispredict-
ing all (half) of the adversarial examples, highlighting
the vulnerability aspect. Additionally, experiments were
performed on quantum data as well with the quantum clas-
sifier, reaching perfect accuracy in about 30 epochs on both
training and test datasets.

In Ref. [89], QNN and quantum orthogonal neural net-
works are used for healthcare image classification on the
RetinaMNIST dataset and PneumoniaMNIST [249]. The
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images were preprocessed using PCA and followed by
unary amplitude encoding. A series of experiments was
performed on the real hardware using five and nine qubits.
The results show comparable accuracies for the majority of
the classification experiments performed on real quantum
hardware to those of their classical counterparts. However,
the hardware limitations come into the picture for more
difficult tasks. Additionally, circuit optimization based on
the hardware and translation of the RBS gates into native
hardware gates was performed to reduce the overall gate
count. The results show better performance for five-qubit
results in contrast to the nine-qubit experiments, where the
hardware performance seems to diverge from the simulator
performance. The authors note the unstable performance
of the quantum hardware due to the randomness in the
training or inference making it incapable of performing
healthcare image classification on par with the classical
models.

To analyze the advantage of using quantum machine
learning in terms of sample complexity, the authors of
Ref. [92] conducted experiments using QSVM on a small
dataset of size 200–300 training samples with kernel tech-
niques for prediction of six-month persistence of rheuma-
toid arthritis. The experiments were conducted on different
configurations of features and data sizes to identify cases
where quantum kernels could provide advantage. A new
metric, empirical quantum advantage, is proposed to quan-
titatively estimate the accuracy of the model performance
as a function of the number of features and sample size.
The estimation of the custom kernel turns out to be the
most computationally expensive task. The authors claim to
be the first to use geometric difference to analyze the rel-
ative separation between classical and quantum features.
They note that kernels are noisy and that quantum advan-
tage expressed in terms of the generalization error vanishes
with large datasets, fewer measurements, and increased
system noise.

C. Finance

Some applications of ML operations applicable to
finance include regression for asset pricing [250–252],
classification for portfolio optimization [253–258], clus-
tering for portfolio risk analysis and stock selection
[259–263], generative modeling for market regime iden-
tification [257,264–266], feature extraction for fraud
detection [267–273], reinforcement learning for algorith-
mic trading [274–277], and natural language process-
ing for risk assessment [278,279], financial forecast-
ing [280–285], and accounting and auditing [279,286,
287].

In a similar vein, QML has been used for different
applications, such as feature selection for fraud detection
in Ref. [86], where a PQC was trained on a subset of
good features selected based on their performance using

a predefined metric. The use of QN-SPSA showed good
convergence for training on 20 qubits with potential for
deeper circuits. The results on hardware were compara-
ble to state-of-the-art classical methods in certain aspects,
while in others it showed the potential to find better sub-
sets. The authors of Ref. [86] note that a model run on an
IBM Quantum device was able to outperform traditional
methods without using error mitigation.

A recent study [288] introduced an innovative method
for quantum reservoir computing (QRC) and applied it
to the foreign exchange market. The approach accurately
depicted the stochastic evolution of exchange rates com-
pared to classical methods. In QRC, input signals are
transformed into a complex quantum superposition in a
high-dimensional space, after which the transformed sig-
nals are connected to the desired output through a basic
neural network. The study highlights the learning per-
formance and potential of QRC to be run on near-term
quantum devices.

Another application of QML was explored in Ref. [85]
to reduce the number of noisy factors for pricing
interest-rate financial derivatives using a QPCA. The
experiments were performed on a five-qubit IBM Quan-
tum device for 2 × 2 and 3 × 3 cross-correlation matrices
based on historical data for two and three time-maturing
forward rates. However, this method showed difficulty in
scaling to larger datasets.

We direct the interested reader to Ref. [289] for a more
comprehensive summary of the state of the art of quantum
computing for financial applications.

VII. LIMITATIONS

The current quantum hardware is susceptible to noise
resulting in a very low qubit coherence time of the order
of a few hundred microseconds. Common sources of noise
include: (1) crosstalk due to simultaneous gate execution
in quantum algorithms that allow parallel operations; (2)
quantum decoherence; (3) single-qubit rotation and two-
qubit gate error rate due to imperfect implementation;
and (4) shot noise from measurements on quantum states.
Additional limitations due to qubit count and gate fidelity
prevent the use of quantum error correction. The use of
VQCs provides a framework to enable practical applica-
tions of noisy quantum hardware. Here, we briefly look at
some of the limitations associated with the current QML
approaches.

A. Hardware limitations

The common causes of error rates are the state prepara-
tion and measurement error rate (SPAM) and gate errors.
The SPAM measures the correctness of the initial cali-
bration settings and the final readout measurement and
is indispensable for scaling to hundreds or thousands
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of qubits. A general strategy to counter the noise in
quantum hardware is to increase the number of mea-
surements to help reduce the generalization error [180].
However, this may also be counterproductive due to the
readout error during measurement. For example, the pre-
diction accuracy dropped on increasing the number of
shots from 500 to 1000 in Ref. [120]. The authors note
that the experiment was already dominated by system-
atic noise, which was prone to change every time the
system was calibrated, indicating the variability in the
calibration of the system. Other options include using
shot-frugal optimizers [290–293], which use a stochas-
tic gradient-descent-based approach while adapting the
number of shots (or measurements) needed at each itera-
tion.

A popular noise mitigation technique is zero-noise
extrapolation to first order for gate-error mitigation
described in Ref. [174,294], which can be implemented
in software without requiring any prior knowledge of the
quantum computer noise parameters. Factors such as qubit
lifetime and coherence time are affected by decoherence.
Decoherence, characterized by uncontrolled interactions
between a quantum system and its environment, poses
a significant challenge in quantum computing, result-
ing in the loss of quantum behavior within the quan-
tum processor, nullifying any potential advantages offered
by quantum algorithms. The decoherence time limitation
significantly restricts the number of operations that can
be performed in a quantum algorithm. Additionally, the
development of high-fidelity qubits poses another critical
hardware challenge. To tackle these issues, an effective
approach is to treat qubits as part of an open environment
and leverage classical simulation software packages during
the design phase.

Superconducting QPUs have a coherence time of around
100 µs while certain trapped ions have extended that to
50 s. The gate speed along with decoherence need to make
sure that the gates are applied before the system deco-
heres. Superconducting and photonic systems generally
have the fastest gate speeds. The qubit connectivity, which
is the general layout of the qubits, dictates the interaction
between a given qubit and its neighbors. Because of lim-
ited connectivity, SWAP gates can be inserted but can result
in additional overhead and subsequent error rates. While
some devices offer all-to-all connectivity, long-range gates
are generally more noisy. The delay between submitting a
circuit to the Cloud and receiving a result, without clarity
on the calibration timings, can lead to significant statistical
errors [295], as it is unclear as to how these errors influ-
ence circuit performance between runs on all systems. The
lack of information on aspects such as qubit assignment,
compiler and/or transpiler methods, component drift rate,
and time since last calibration also affect the analysis, as
noted in Ref. [295].

B. Long running time

Often, studies require a large number of samples and
qubits (20 qubits or more), which necessitates a large
amount of computational power for quantum computer
simulations. Long running times have been noted in
Refs. [67–69,92,296] on current quantum hardware, even
when using small data samples, likely due to the ini-
tialization, queuing, execution, and measurement time in
the current quantum hardware. For example, the study in
Ref. [67] took around 200 h to run 500 training iterations
on 100 events on quantum hardware. This poses a serious
limitation for real-world applications such as HEP, which
generally require large training data. In terms of the model
performance, using small sample size often leads to sig-
nificant variance and poor performance. Furthermore, the
limited access to QPU resources makes it infeasible to
conduct validation on multiple sets [92].

In Ref. [297], the authors propose measuring the speed
using circuit layer operations per second (CLOPS) by con-
sidering the interaction between classical and quantum
computing. The CLOPS benchmark consists of 100
parameterized templated circuits and takes into account
various factors such as data transfer, runtime compila-
tion, latencies, gate times, measurements, qubit reset time,
delays, parameter updates, and result processing. How-
ever, CLOPS focuses mainly on the quantum computing
aspect and considers classical computation as an auxiliary
to quantum computing. Furthermore, factors such as qubit
quality and gate operations are not captured in the met-
ric. Experimental results indicate that the execution time of
quantum circuits constitutes a small proportion (less than
1%) of the total execution time [297,298].

Another proposed solution to improve the training time
is quantum federated learning (QFL), which uses dis-
tributed training across several quantum computers. Fed-
erated learning consists of several clients or local nodes
learning on their own data and a central node to aggregate
the models collected from those local nodes. A frame-
work for federated training was presented in Ref. [299]
using hybrid quantum-classical machine learning models.
Their simulation results show faster convergence com-
pared to the non-federated training and the same level of
trained model accuracies. Other works include Ref. [300]
where the authors introduce slimmable QFL (SlimQFL),
a dynamic QFL framework which has been shown to
achieve higher classification accuracy than the standard
QFL.

In contrast, ensemble learning involves the combination
of multiple individual models, referred to as base mod-
els or weak learners, to create a more accurate and robust
predictive model. These base models can be of the same
type or different types, and their predictions are aggregated
using methods such as voting, averaging, or weighted
averaging. Ensemble learning aims to improve overall

067001-19



GUJJU, MATSUO, and RAYMOND PHYS. REV. APPLIED 21, 067001 (2024)

performance and accuracy by leveraging the strengths of
multiple models.

On the other hand, federated learning is distinct from
ensemble learning in that it enables collaborative training
across distributed entities without sharing raw data, ensur-
ing privacy and security. While ensemble learning focuses
on model aggregation, federated learning emphasizes the
distributed nature of training.

Some works that explore ensemble learning in the con-
text of quantum machine learning include Refs. [301–306].

C. Inefficient data loader

Being able to load classical data as quantum states effi-
ciently is a bottleneck that has often been sidelined in
works that discuss speedup using QML algorithms. Given
a classical data point, the job of a data loader is to read the
data once and output a PQC that prepares an appropriate
quantum representation. The encoding part of input data
generally consumes a significant portion of the coherence
time, often leaving little time for the actual algorithm to
process the data [240]. Several proposals for more efficient
data loading have been made in this regard. For example,
the work in Ref. [120] tries to tackle this by describing
ways to load a classical data point with logarithmic-depth
quantum circuits while using the same number of qubits
as the feature dimension. Another technique is described
in Ref. [89], where a shallow parallel data loader is imple-
mented for d-dimensional data points using d qubits, d − 1
RBS gates, and circuits of depth only log d. However,
the viability of this approach is limited by connectivity
requirements beyond those supported by the hardware.

The idea of quantum random-access memory (QRAM)
[144,308–310] has been proposed for the long-term stor-
age of the state of quantum registers and can be considered
to be a specific hardware device that can access classical
data in superposition natively, thus having the ability to
create quantum states in logarithmic time. Despite chal-
lenges in implementation, alternative proposals with sim-
ilar functionality have emerged. In Ref. [311], a circuit
with O(d) qubits and O(d) depth was described to perform
the bucket brigade architecture with proven robustness to
a certain level of noise.

D. Barren plateau

Flat optimization landscapes, where the gradient vari-
ance diminishes exponentially with the number of qubits,
are commonly encountered in variational quantum algo-
rithms. Similar to classical machine learning, quantum
loss landscapes are susceptible to numerous local min-
ima. Recent studies [312,313] have demonstrated that
overparameterization can help alleviate barren plateaus by
utilizing more parameters than necessary for a given prob-
lem. This allows the quantum neural network to explore

all relevant directions in the state space. However, fac-
tors such as ansatz architecture [314,315], cost function
[316], and parameter initialization contribute to encounter-
ing barren plateaus [86]. For instance, a highly expressive
ansatz [317] or an ansatz with exhaustive entanglement
[318–320] can result in exponentially flat landscapes as the
number of qubits increases [321].

Addressing these challenges involves employing adap-
tive initialization methods or informed parameter initial-
ization, problem-dependent ansatz design, circuit pruning,
utilizing density matrices and random features for distri-
bution estimation, concurrent optimization of parameters
and rotation generators, as well as the incorporation of
global optimization techniques like genetic algorithms for
enhancing gate or structural optimization. The work in
Ref. [322] focuses on supervised learning with quantum
feature maps optimized using a genetic algorithm which
designs feature map circuits with high accuracy, general-
ization, and minimal size, demonstrated through diverse
benchmarks, suggesting potential for hybrid quantum-
inspired machine learning strategies.

Limiting entanglement in the ansatz [323] can help over-
come exhaustive entanglement-induced barren plateaus
[318–320]. The choice of observables to define the loss
function also influences the presence of barren plateaus.
Using global observables that require measuring all n
qubits simultaneously [316] can lead to barren plateaus,
whereas employing local observables that compare quan-
tum states at the single-qubit level [316,324] can avoid
this issue. Recent research [325] has shown that local cost
functions encounter barren plateaus when learning random
unitary properties. Furthermore, local noise in the hard-
ware [326] can affect the optimization process. Techniques
such as error mitigation [174,327] can help reduce the
impact of local noise. Different ansatz designs, including
variable ansatz [178,328], Hamiltonian variational ansatz
[329–331], or hardware-efficient ansatz, which aim to
reduce gate overhead [332,333], can be utilized and opti-
mized using quantum-specific optimizers [291,334] for
training.

Gradient-based methods are generally preferred for
large parameter spaces [198]. However, gradient-free
methods have also been utilized for optimization, as shown
in Ref. [335], where Nelder-Mead was employed for
quantum variational eigensolver optimization. However,
scaling results in Ref. [321] indicate that deep versions
of randomly initialized hardware-efficient ansatzes suffer
from exponentially vanishing gradients. As an alterna-
tive, one can opt for barren-plateaus-immune ansatzes
[316,336–338] instead of hardware-efficient ansatzes.
Additionally, using shallow circuits with local cost func-
tions [316,328] can help mitigate the presence of barren
plateaus. In Ref. [316], an alternating layered ansatz is pro-
posed, which was later proven to have sufficient express-
ibility [339]. The results in Ref. [316] demonstrate that the
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barren plateau phenomenon extends to variational quan-
tum algorithms with randomly initialized shallow alternat-
ing layered ansatzes and establish a relationship between
locality and trainability of VQCs. They also show that,
despite using a shallow circuit, defining a cost function
using global observables leads to exponentially vanish-
ing gradients. Among other techniques, the initialization
strategy using identity blocks described in Ref. [340] and
layerwise training can be employed to mitigate barren
plateaus.

The researchers in Ref. [341] developed a scalable
method to calculate the gradient and its variance by
proving that randomly initialized circuits can be exactly
mapped to a set of simpler circuits that can be efficiently
simulated on a classical computer.

The study in Ref. [342] highlights the potential of geo-
metric quantum machine learning for addressing barren
plateaus and overfitting where quantum models are cus-
tomized to reflect image symmetry. The results show an
improvement in accuracy compared to generic models
while using amplitude encoding. The issue of overfitting
in VQCs has also been addressed in Ref. [301], where
the authors implemented boosted ensembles of quantum
support vector machines on HEP datasets. The ensemble
classifier was found to double the efficiency of a single
QSVM, which the authors claim is highly susceptible to
overfitting.

VIII. OPEN QUESTIONS

The key objective in the field of quantum machine
learning is to demonstrate quantum advantage, surpassing
classical methods in data science applications in terms of
either sample complexity or time complexity. This requires
a flexible and exploratory approach to identify the areas
where QML can have the greatest impact. Although there
are claims of polynomial and exponential speedups in
QML, empirical evidence establishing a clear advantage
over classical algorithms is still limited. Furthermore, pro-
viding a robust theoretical foundation for quantum advan-
tage poses significant challenges in the field. It remains
unclear whether the observed performance improvements
are solely attributed to careful hyperparameter selection,
benchmarks, and comparisons, or if there is a fundamen-
tal structural advantage [63]. It can be observed that QML
as a field is moving toward becoming an empirical sci-
ence. The theoretical aspect of proving concepts is antic-
ipated to be challenging, and the emphasis is increasingly
placed on practical demonstrations. This trend is partic-
ularly notable as the number of qubits and circuit depth
surpasses 100 × 100. There is a possibility that an efficient
classical algorithm exists for a given learning problem
that can achieve comparable results to quantum learning
algorithms. This is exemplified in Ref. [47], where the

variational circuits can be replaced by a classical support
vector machine if the encoding is classically tractable.

Furthermore, due to finite sampling noise, none of the
heuristic quantum learning algorithms have been proven to
solve a classically hard learning problem [44]. These inher-
ent limitations imply that the current benefits of quantum
algorithms can only be realized under certain circum-
stances. Specifically, only a few variational quantum-based
algorithms have shown an apparent advantage in a con-
strained situation [343]. Recently, the authors in Ref. [134]
investigated the impact of finite sampling noise and sub-
sequently introduced a technique called variance regular-
ization based on the expressivity of QNNs to reduce the
variance of the output.

To shed light on the current state of quantum machine
learning, several research directions and areas of investi-
gation are now identified.

A. Establishing standardized benchmarks

In order to effectively evaluate the superiority of QML
algorithms compared to classical ones, it is crucial to
establish standardized benchmarks. Currently, standard
classical data benchmarks such as MNIST, Iris, etc. are
used (as shown earlier in Table IV). The lack of stan-
dardized quantum datasets highlights the need for easily
preparable quantum states to serve as benchmarks for
evaluating QML models [139]. We note that open-source
software and standard datasets for benchmarking standard
QML models for binary classification tasks addressing
the claims of QML superiority over its classical counter-
parts are provided in Ref. [344]. Furthermore, a proposal
to develop practically meaningful quantum datasets using
quantum circuits or states where quantum methods are
expected to excel compared to classical methods has been
addressed in Ref. [129].

B. Quantum data preparation

While achieving a quantum advantage with classical
data is challenging, QML models utilizing quantum data
show more promise. Finding the most optimal encoding
technique for a given dataset is another crucial challenge
that needs to be addressed. These embedding techniques
necessitate having features that are classically hard to sim-
ulate with practical usefulness. Identifying datasets that
can take advantage of quantum computing for computing
kernels is an important avenue of research. Some recent
work [345] shows that, when the classical data follow cer-
tain patterns, the quantum states can be represented using
an efficient approximation leading to quantum circuits
where the number of gates grows linearly with the number
of qubits rather than exponentially, making them more fea-
sible. Currently, there is a lack of efficient QRAM capable
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of encoding and reliably storing information as a quan-
tum state. This presents a significant hardware challenge
in quantum computing.

C. Error mitigation and quantum error correction

Error mitigation and error correction are crucial for the
long-term viability of fault-tolerant quantum computers.
However, the implementation of quantum error correc-
tion introduces overhead that can reduce the speedup of
quantum computations [139]. Therefore, finding efficient
quantum error-correcting codes and developing methods
to generate ground states using QML models are important
areas of research.

Recently, studies have investigated the potential of
QML, particularly quantum autoencoders (QAEs), for
error correction in quantum memory [237]. QAEs offer
promise in autonomously correcting errors and extend-
ing logical qubit lifetimes, potentially streamlining error-
correction processes. Future research should explore the
fault tolerance of QAEs and their integration into broader
error-correction frameworks. Various error-mitigation
techniques, including ensemble-learning approaches that
combine multiple variational quantum circuits (VQCs), are
employed to enhance the precision of classifiers for both
classical and quantum datasets. One such study [346] pro-
poses two ensemble-learning error-mitigation methods for
VQCs: bootstrap aggregating and adaptive boosting. These
methods can be applied to classification, kernel learn-
ing, and regression, and can even be extended to QSVM.
Importantly, their ensemble-learning VQCs are designed
to be compatible with near-term quantum devices, dis-
tinguishing them from other ensemble-learning proposals
that rely on resource-intensive hardware implementations
involving multiqubit controlled unitaries and complex
quantum subroutines such as quantum phase estimation
[152,347], Grover search [348,349], and quantum mean
estimation [350–352].

D. Ansatz selection and scalability

Ansatz selection plays a crucial role in preventing bar-
ren plateaus and achieving efficient scalability. Despite the
theoretical work done to demonstrate provable advantage
on synthetic datasets [353], more research is needed to
understand the impact of entanglement in the model ansatz.
Developing efficient methods to adjust parameter values
and train quantum circuits to minimize specific loss func-
tions in VQCs is an active area of research. Parameter
initialization strategies for large-scale QNNs need to be
explored to improve their scalability. To comprehend the
scalability of QML methods for large problems, analyz-
ing trainability and prediction error is necessary. Access
to reliable quantum hardware is also crucial. In QML,
training the model involves minimizing a loss function
to find the optimal set of parameters. Quantum landscape

theory explores the properties of this loss function land-
scape, focusing on challenges like local minima and barren
plateaus [139]. Recently, there has been an active line of
research, with open-source software, on quantum circuit
selection tailored to underlying quantum devices [115,117]
that partially addresses this question.

E. Backpropagation and scalability

Backpropagation plays a crucial role in the success of
deep neural networks by efficiently computing gradients
using the computational graph. This computational advan-
tage allows for the training of deep networks. Recent appli-
cations like ChatGPT [354] utilize backpropagation during
training for the efficient calculation of gradients for batches
of input-output pairs which enables scalability in handling
large datasets. This technique allows for parallel compu-
tation and parameter updates, contributing to the model’s
ability to handle increased complexity. However, when
it comes to parameterized quantum circuits, backpropa-
gation is significantly less efficient compared to classical
circuits. This inefficiency directly impacts the trainability
of quantum models. The existing gradient methods used
in parameterized quantum models lack the scaling prop-
erties of backpropagation, raising questions about their
computational complexity.

Addressing this issue, a recent study [204] highlights the
need to explore alternative architectures and optimization
methods to improve the scalability of quantum models.
The authors suggest that backpropagation may not be the
appropriate optimization method for quantum models and
propose an alternative while emphasizing the importance
of finding optimization methods that can effectively han-
dle the computational complexity of parameterized quan-
tum circuits to enhance the trainability and scalability of
quantum models.

F. QML model security

The current state of QML lacks privacy-preserving
features, raising concerns about the potential exposure
of sensitive information in machine learning datasets
[355–358]. To address this issue, it is crucial to implement
privacy-preserving algorithms in QML, such as differen-
tial privacy, which minimizes the influence of individual
data points on the training process. However, the applica-
tion of differential privacy in the context of QML requires
further study and exploration to ensure effective privacy
protection in machine learning models. Recently, Watkins
et al. [356] demonstrated the first proof of principle of
privacy-preserving QML.

Additionally, another study [359] highlights the robust-
ness of VQCs against adversarial attacks, even outper-
forming classical neural networks in this regard. The
authors propose that combining the outcomes of both
quantum and classical networks can have significant

067001-22



QUANTUM MACHINE LEARNING ON NEAR-TERM. . . PHYS. REV. APPLIED 21, 067001 (2024)

implications for enhancing security and reliability in
applications like autonomous vehicles, cyber security, and
surveillance robotic systems, thereby opening up new pos-
sibilities for addressing security by leveraging the power
of quantum and classical models together. Recent work in
Ref. [96] investigates quantum federated learning in the
context of secure data handling and sharing in distributed
settings and cooperative learning.

G. Toward explainable QML models

Realizing explainable AI (XAI) is a challenging yet cru-
cial research field that provides insights into the decision-
making process of machine learning models, addressing
aspects such as fairness and security, especially in domains
like medical research [360,361]. An organic extension to
QML also necessitates studying the fundamental aspects
of QML [63,131,362,365]. Given this context, exploring
explainability in QML, called explainable QML (XQML),
aims to provide humanly understandable interpretations of
QML systems, similar to classical ML. Currently, the field
of XQML remains relatively unexplored; however, it holds
great potential for yielding fundamental insights, partic-
ularly given that QML is still in its early stages. Certain
aspects of XQML, such as intuitively explaining quantum
feature spaces and understanding the behavior of QML
models in relation to QPUs through transformations and
operations, go beyond the scope of classical XAI. Address-
ing these aspects may require the development of entirely
new approaches to explainability or interpretability. The
exploration of XQML, in conjunction with the prospect of
improved hardware, may be considered more promising
than solely focusing on identifying quantum advantages
[63,131].

H. Hyperparameter choices and transparency

The lack of extensive discussions on hyperparameter
choices in current quantum machine learning studies poses
challenges to transparency, interpretability, and progress in
the field. Many studies that demonstrate promising results
on benchmark datasets often fail to provide open-source
reference implementations of their competitive algorithms.
This lack of accessibility hinders the reproducibility of
results and raises concerns about potential positive bias,
where only a selected set of experiments showing favor-
able model performance are reported, while others are
disregarded.

Furthermore, reproducibility can be challenging when
working with open-source projects like Qiskit [366], which
undergo regular updates and improvements to enhance
functionality, address bugs, and introduce new features.
These updates can lead to deprecated features and code
incompatibility, affecting the ability to reproduce results.

To address this issue, researchers should prioritize
providing comprehensive documentation that includes

detailed information on hyperparameter selection. This
documentation should offer insights into the decision-
making processes behind choosing specific hyperparam-
eters and discuss the potential implications of different
selections. By sharing this information, researchers can
enhance transparency and enable others to replicate and
build upon their work effectively. Furthermore, the provi-
sion of open-source reference implementations is crucial
for fostering collaboration, promoting rigorous evalua-
tion, and advancing the field collectively. Accessible and
reproducible code allows researchers to validate and com-
pare different approaches, facilitating the identification of
strengths and weaknesses in quantum machine learning
algorithms.

Reproducibility in experiments on quantum hardware
can be challenging due to noise, limited access, calibra-
tion issues, and algorithmic variability. To address these
challenges, researchers should thoroughly document the
experimental setup, share the source code, use standard-
ized benchmarks, and promote collaboration and open
science practices.

I. Federated learning and quantum boosting

Thoroughly studying the use of federated learning to
distribute computational tasks among limited-capability
quantum machines, coupled with investigating the poten-
tial of quantum boosting classifiers, can significantly
enhance the scalability and utilization of available near-
term noisy devices [299,365,366]. These research direc-
tions hold promise for leveraging the collective power of
distributed quantum resources and improving the overall
performance of quantum machine learning systems.

The challenge of scalability in quantum algorithms
and its impact on real-world applications is a critical
issue that requires further investigation. Recent findings
[367] demonstrate the successful measurement of accurate
expectation values for large circuit volumes using a noisy
127-qubit quantum processor, highlighting the potential of
quantum computing in a pre-fault-tolerant era. However,
it is important to acknowledge that the error mitigation
techniques discussed in Ref. [367] suffer from exponen-
tial computational time as the number of qubits increases.
Moreover, comparing these techniques to “brute-force”
classical methods may not be entirely fair, as it fails
to acknowledge the significant advancements made by
classical methods in simulating quantum dynamics.

To advance the field, it is crucial to establish a shared
community consensus on identifying problems that are
both interesting for practical applications and genuinely
challenging to simulate classically. This requires acknowl-
edging the progress made by classical methods and not
solely equating high entanglement with classical simula-
tion difficulty. It is necessary to continue the development
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and exploration of both quantum and classical approxi-
mation methods, as they provide valuable benchmarks for
each other’s capabilities. By addressing these challenges
and fostering collaboration between quantum and classical
approaches, we can drive the field forward and unlock the
full potential of quantum computing.
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Lemr, and F. Nori, Experimental kernel-based quantum
machine learning in finite feature space, Sci. Rep. 10, 1
(2020).
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