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Low-power multimode-fiber projector outperforms shallow-neural-network
classifiers
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In the domain of disordered photonics, the characterization of optically opaque materials for light
manipulation and imaging is a primary aim. Among various complex devices, multimode optical fibers
stand out as cost-effective and easy-to-handle tools, making them attractive for several tasks. In this
context, we use these fibers as random hardware projectors, transforming an input dataset into a higher-
dimensional speckled image set. The goal of our study is to demonstrate that using such randomized data
for classification by training a single logistic regression layer improves accuracy compared to training
on direct raw images. Interestingly, we found that the classification accuracy achieved is higher than that
obtained with the standard transmission-matrix model, a widely accepted tool for describing light trans-
mission through disordered devices. We conjecture that this improved performance could be due to the
hardware classifier operating in a flatter region of the loss landscape when trained on fiber data, which
aligns with the current theory of deep neural networks. These findings suggest that the class of random
projections operated by multimode fibers generalize better to previously unseen data, positioning them as
promising tools for optically assisted neural networks. With this study, we seek to contribute to advancing
the knowledge and practical utilization of these versatile instruments, which may play a significant role in
shaping the future of neuromorphic machine learning.

DOI: 10.1103/PhysRevApplied.21.064027

I. INTRODUCTION

There is currently no sound understanding of the enor-
mous success of neural networks (NNs) in learning pro-
cesses and inference tasks. There is a fundamental need
to understand why such architectures, which can have
billions of parameters, do not severely overfit data, as pre-
dicted by statistical learning theory and the so-called bias-
variance trade-off (see for example Refs. [1] and [2]).
The abundance of learnable parameters, in fact, is arguably
the most universal feature in the zoo of NN architectures.
Interestingly, it is known that, given a chosen NN archi-
tecture, most of the model parameters adapt little or not
at all during the learning procedure [3,4], suggesting that
random projections may play an equally important role in
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NNs. Recent works, in fact, have shown that it is pos-
sible to train a simple two-layer model by learning only
the upper layer, interpreting the first one as a random
projection [5,6]. These results were strengthened further
by Baldassi et al. [7], who demonstrated that increasing
the dimension of the random projection leads to the pro-
duction of wide and flat regions in the loss landscape
(the function that is minimized during the training of the
model), which are related to good generalization properties
in neural networks. The generalization ability of a neural
network that has been trained over a given dataset (training
dataset) refers to its ability to display good performance
when applied to data over which it was not trained (test
dataset). In the framework of the loss-landscape descrip-
tion, an improvement in the generalization ability means
that models that lie in flat regions make fewer mistakes
when they classify previously unseen data. Finally, recent
evidence has been provided [8] indicating that the way the
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random projection is chosen is fundamental to determin-
ing the generalization properties of the upper layer of these
simple models. This suggests that different classes of ran-
dom (possibly nonlinear) projections impact differently on
the performance of the models.

In this context, we are interested in studying hard-
ware random projectors, such as those employed in the
field of photonic neuromorphic computing [9,10]. The
advantage of using optical neural networks (ONNs) is
that neurons can interact by exploiting light scattering
[11–13] and photon interference [14,15] at the speed of
light. Tools for shaping and controlling the light field [16]
are becoming so versatile that the discipline is under con-
stant development, aiming at high-speed, high-throughput
optical-based computing architectures. All-optical neural
networks [11,17] in particular have the potential to be great
tools for fast computation, though they often require an
accurate model of the optical system to perform consis-
tent back-propagation updates [18]; however, fine-tuning
of the optical parameters is challenging due to discrep-
ancies between the response of the real system and the
physical model employed to describe the architecture. This
reality gap often reduces the expected performance of the
network [19,20], requiring additional corrections at the
software level [12], training enforcement via hybrid strate-
gies [18], or the use of NNs to more accurately model the
optical response of the system [20].

In this rapidly evolving scenario, the class of ran-
dom projections realized by multimode fibers (MMF) are
promising candidates for developing ONNs. These devices
scramble the photons due to scattering events occurring
during light-field propagation, yielding to the formation
of speckle patterns that are, in fact, random projections.
Although the light transmission can be regarded as a lin-
ear process [21] in which input modes are coupled with
output modes via a complex transmission rule, interfer-
ence takes place when dealing with the measurement
of the light-field intensity. Since the detection is non-
linear, MMFs can be used [22] to classify time-domain
waveforms (using saturation effects as further nonlinear-
ity) [23], in pattern classification of two-bit sequences
[24], or for binary (human/not human) facial recogni-
tion [25]. Furthermore, when dealing with more complex
classification tasks, high-power laser pulses have been
employed to trigger the nonlinear response of the fiber
itself [26]. Due to the increasing interest in the employ-
ment of MMFs as random-projector computing devices,
we decided to study their behavior in carrying out clas-
sification tasks in a linear, low-power continuum regime.
Although our MMF-based optical neural network does
not employ feedback, we will show how its classification
performance is considerable, as in reservoir computing
systems [27–30].

We do this by comparing the performance of the physi-
cal neural network to that obtained with random Gaussian

linear projections and to that of a transmission-matrix
approach, which is the model commonly used to describe
light propagation in disordered structures [21,31]. We per-
formed our study statistically, shuffling the training set to
assess the average behavior of the optical computing under
different training and initialization conditions. Remark-
ably, a single MMF simultaneously provides two indepen-
dent (though deterministically linked) projections, at either
end of the fiber, which we studied separately using different
saturation regimes. Here, we show that the real physi-
cal MMF leads to higher accuracy than its corresponding
transmission-matrix model, highlighting the reality gap
between model theory and experimental results. To assess
the reason for this performance gap, we study the char-
acteristics of complex-valued random projections in terms
of the flatness of the local energy landscape, demonstrat-
ing that the MMF projection is more robust than those
provided by alternative datasets. Additionally, we charac-
terize the behavior of a hardware-based neural network
using optical fibers in terms of the numbers of modes
employed. We set up our study not to achieve the best
performance in classification tasks, but rather to deepen
the understanding of physical neural networks against their
physical models, giving insights into the use of MMFs for
optical computation.

II. MATERIALS AND METHODS

In a low-power regime, a generic multimode fiber trans-
ports the electromagnetic field via a linear process [21]
such that the light propagation can be described using a
simple multiplication of the input signal by a matrix that
encodes the transmission rule:

y = Tx. (1)

In this descriptive model, x is the controlled input, T

is the (complex-valued and typically unknown) transmis-
sion matrix of the medium, and y is the output field.
Despite its propagation, the way we measure the MMF
output is not linear for two reasons. First, photons carry
complex signals; i.e., the electromagnetic field associated
with each propagation mode is characterized by amplitude
and phase. Current electronic devices cannot follow the
rapid oscillation of the field, which makes measurement
of the phase information impossible. Assuming the possi-
bility that the readout is also perturbed by additive noise
ε, the camera will only see the noise-affected intensity
distribution:

|y|2 = |Tx|2 + ε. (2)

Second, the camera has a well-defined sensitivity range
that depends on each pixel’s ability to store intensity
changes. If the signal reaching a given pixel exceeds its
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sensitivity range, the measurement gets clipped at peaks
(overexposure) or at the lowest values (underexposure).
In analogy to machine-learning terminology, the measure-
ment process can be described by a nonlinear activation
function σ(·) that acts on the result of a complex-valued
linear transmission, Tx. For instance, the camera’s record-
ing process can be represented using the saturating linear
transfer function (satlin):

σ(Tx) = min
(

max
(

d, |Tx|2 + ε
)

, 2b − 1
)

, (3)

where the quantity d is the intensity threshold under which
the measure is not recorded and b is the bit depth of the
camera.

These considerations make the readout of a coherent
field nonlinear, along with its inverse transmission recov-
ery problem [21,31–36]. Such a matrix can be estimated
using the four-phases method [21], Bayesian optimiza-
tion [37], or iterative Gerchberg-Saxton schemes [38,39];
however, the characterization of the device in terms of
its transmission rule is not the main scope of this paper,
nor is circumventing the limitations of the measuring
process. Instead, we want to study the multimodal random-
projection nature of the fiber to perform optical computing.
In the neural-network framework, the fiber can be seen as
an optical analogy of a densely connected network com-
posed of a single “hidden layer” with fixed weights [40]. In
this shallow architecture, the MMF layer already contains
a particular realization of static weights (the transmission
matrix T), which depends upon the physical status of the
optical fiber. This property allows random but determinis-
tic projections to be performed at the speed of light using
a fixed transmission rule, which can be read out by the
camera. Given these considerations, MMF is a good can-
didate for performing nonlinear optical computation using
a continuous laser source, even using inexpensive and
large (thus easier to handle in a setup) optical multimode
fibers. In particular, if we let just a few modes propa-
gate into the input facet of an MMF that supports many
more, all the output modes will be activated, implying a
few-to-many mapping. In this latter case, the optical hid-
den layer (i.e., MMF and camera) can perform densely
connected random projections on a higher-dimensional
space.

The goal of this study is to carry out image classi-
fication by concatenating a software-trained linear layer
and the measured output from an MMF, as produced by
inserting a given image from a dataset into the input
edge of the fiber [see Fig. 1(a)]. We choose to approach
the Modified National Institute of Standards and Tech-
nology (MNIST) classification problem to carry out a
widely studied nonlinear task. The only parameters that
we train are those of a simple logistic regression layer,
which is known to achieve poor performance on the stan-
dard MNIST dataset, reaching a maximum classification

accuracy of 92.7% [29]. Exploiting the random projection
provided by the MMF, an optical device that is known to
be linear, we compare the results with the performances
obtained using reference datasets. In this study, we train the
parameters of the logistic classifier using six different input
datasets:

(1) Original MNIST. The standard MNIST dataset,
comprising images of l × l pixels. The accuracy perfor-
mance of this set is the baseline of our study.

(2) Upscaled MNIST. Each image at the original res-
olution is expanded by a factor L/l using a linear spline
interpolation to reach the target size of L × L.

(3) Randomized MNIST. The MNIST dataset is linearly
multiplied by a Gaussian random matrix with positive
entries. This maps the dataset into a higher-dimensional
space, producing images with a side L � l pixels.

(4) MMF α-cam. The speckled output of the MMF is
recorded with a resolution of L × L pixels using camera
α. Each speckle pattern is the result of sending a MNIST
image on the input edge of the fiber and recording the out-
put after disordered propagation. The patterns in the input
are intensity-modulated in real space, and they have a size
of l × l.

(5) MMF β-cam. The same as MMF α-cam, with the
speckles being recorded on the same input facet as that of
the light injection using camera β. A relatively small por-
tion of the light propagating forward is internally reflected
and comes back toward the input edge. This determines
a different speckle realization, which we acquire as an
independent measurement.

(6) MMF α-simulated. The transmission is charac-
terized retrieving its corresponding matrix T using the
SmoothGS protocol [39]. The inferred transmission is used
to simulate the propagation of the MNIST dataset using
Eq. (1), recording the simulated speckle pattern by storing
only the squared modulus.

All the datasets are used for supervised training, in
which each image of the MNIST dataset is associated with
the number that it represents, and the speckle image is
associated with the classified number corresponding to the
MNIST image impinging onto the fiber. Further details
of the training procedure can be found in Appendix A.
To isolate any possible dependence on the problem size,
we choose to set the size of the randomized and upscaled
MNIST sets to have the same dimension as the recorded
fiber output. This implies that the same number of parame-
ters are trained while solving the classification problem for
every dataset, the only exception being the original set.

III. RESULTS AND DISCUSSION

In the following, we report the average results obtained
by running independent logistic regressions on each
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(a) (b)

(c)

Half-Wave 
Plate

Logistic RegressionCamera Readout

FIG. 1. Schematics of the shallow optical neural network with the MMF. (a) Simplified scheme of light transport through multimode
fibers. The MNIST dataset, modulated by a spatial light modulator (SLM), enters the MMF on the input facet. During propagation, the
light gets scrambled by a random but deterministic process, giving rise to the speckle pattern measured by the camera. (b) Correspond-
ing neural-network interpretation of the light-propagation scheme. The MNIST dataset constitutes the input vector of a linear complex
layer with static weights. The nonlinear operation is determined by the camera that reads the intensity of a complex field. Successively,
a linear classification layer is trained using the output of the fiber. (c) Scheme of the imaging setup.

dataset, comparing the classification accuracy on a test set
comprising 1000 numbers isolated from the original one.

A. Performance of different classes of projector

In experiment 1, we use 104 MNIST images, randomly
picking up to 9000 images for training and 1000 images
for testing, using L = 600. We repeat the parameter opti-
mization a total of T = 100 times, varying the number
of training samples for statistical purposes. To test the
robustness of our results after training, we compute the
test accuracy, which is the fraction of correctly classi-
fied data points in the test set. From Fig. 2(a), we can
see how the performances of the MNIST dataset (origi-
nal, randomized, and upscaled) are similar to one another.
The classification problem, in fact, is well known to be
a nonlinear task, and it barely generalizes using a linear
model alone. Instead, using the MMF, higher performances
are achieved, approaching 96% test accuracy on aver-
age on the largest set used (9000 training samples). We
stress that this accuracy is not high in absolute terms
because deep neural networks with convolutional layers
have been able to reach more than 99% test accuracy on
MNIST [41], with modern deep architectures even reach-
ing as high as 99.91% [42]. However, we are interested
in the study of the simplest ONN architecture, consisting

only of a hardware random-projector layer followed by a
linear classifier. With this straightforward setup, the MMF
permits substantial improvement of the results obtained
against a plain linear classifier (88% accuracy with 9000
training samples).

We point out that we did not use the entire MNIST
dataset (composed of 60 000 images for training and
10 000 for testing) but a fraction of it; the plot trend in
Fig. 2 suggests that there is room for further improve-
ment by increasing the number of training samples. After
only around 500 samplings, the gain provided by the
ONN approach starts to become evident, and with only
9000 images, we can achieve performance hitting approx-
imately 97%. To achieve the highest accuracy with the
experimental data [blue and orange dots in the plot of
Fig. 2(a)], we tested 100 independently initialized opti-
mizations. Interestingly, the performance is independent of
the microscopic MMF arrangement, as the two different
transmission rules determined by the α and β detections
perform identically. As a final note, we decided not to tune
the hyperparameters of the classifier, so we can expect
that their careful selection (mainly the l2-regularization
strength and the stopping threshold) could improve the
accuracy curves for all the datasets. In fact, we are not
interested in the absolute numbers: our scope is to high-
light the improvement determined by the physics of the
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(a)

(b)

FIG. 2. Logistic regression performance using different train-
ing datasets. (a) Experiment 1, in which the model was trained
with up to 9000 images. The original MNIST dataset (l =
28) was used as the reference performance (red line) for the
logistic regression, together with its upscaled (light green) and
randomized (green) versions. Training the classifier with MMF-
transformed speckle images (blue and orange curves) resulted
in the highest accuracy. These curves are obtained after 100
independent trainings, and with the dots we also report the cor-
responding maximum accuracy achieved per each fiber’s facet.
(b) Experiment 2, in which the model was trained using up to
3800 images. Compared to panel (a), we also include the output
of the simulated fiber. The simulation was conducted by recov-
ering the transmission matrix of the optical element and using
a complex linear transmission model. The simulated model per-
formed better than the MNIST dataset but did not reach the same
performance as its experimental counterpart.

interactions of the MMFs, and the performance gain pro-
vided by the fine tuning of the hyperparameters with
respect to each dataset would not change the main message
of our work.

In experiment 2, we take a different static configuration
of the fiber (i.e., characterized by another realization of T),
which we probe with an alternating sequence of random
and MNIST images. Contrasting with experiment 1, here,
we use the random patterns in the input (and the related
projection) to characterize the transmission matrix of the
fiber using the SmoothGS protocol [39]. We do this so that

we can use the inferred T to simulate the propagation of
the MNIST dataset through the fiber, obeying Eq. (2), and
compare the classification performance of the linear model
against that of the actual experimental measurements. To
make a fair comparison with the simulated data, we tune
the α-cam exposure time to avoid saturated measurements.
Interestingly, we found that training the logistic regression
with the α-simulated speckles does not perform well like
the measured data. The accuracy achieved is better than the
direct MNIST dataset but worse than that obtained using
the experimental speckles [Fig. 2(b)]. We observe, then, a
reality gap that may be due to the presence of noise and
other experimental nonlinearities, which are not included
in the way we model the physics of the system of Eq. (3) at
low power. It may be conjectured that nonlinearities, which
have also been studied in the framework of computational
optics with much more intense pulsed light [26,43], also
contribute at the lower intensities that we have been using
in our experiments. Compared to the setup used in Ref.
[26], we employed an energy density almost three orders
of magnitude lower, also determined by the fact that we
employed MMFs with large cores of 1 mm. On the other
hand, the β-cam data was intentionally strongly under-
exposed (see Appendix E). By doing this, we found that
considerable thresholding has only a marginally negative
impact on the performance. Even when the camera loses
most of its signal, the accuracy of the classifier drops by
only ∼2% when compared with the better filling of the
camera dynamic range in Fig. 2(b). This small perfor-
mance drop enforces the idea that the MMF provides a
class of random transformations that are particularly robust
for carrying out classification tasks.

B. Accuracy of random projections and behavior of
the training error

With this study, we have set a testing ground for differ-
ent random projectors used to pretrain using the MNIST
dataset, looking for those enhancing classification perfor-
mance. To understand why the best-accuracy results are
obtained with MMFs, we study a measure of the flatness
of the energy landscape (i.e., the training error) around the
different model solutions. Flatness is supposed to correlate
well with generalization properties [7,44–48], meaning
that it can provide insights into how the geometry of the
projected space influences the classification errors of new
data points. We use the method of the local energy to
measure the flatness (see Ref. [7] and references therein),
which involves adding multiplicative Gaussian noise to the
model parameters, sampling configurations with a given
noise, and eventually computing the average fraction of
misclassified data points (see Appendix B for details). Per-
forming this procedure to increase noise values yields an
estimate of the flatness of the reference configuration. In
Fig. 3, we can see that the local energy profile correlates
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FIG. 3. Local energy profiles for models trained on the dif-
ferent projected datasets. Each point corresponds to the training
error of configurations sampled with multiplicative noise around
the reference, averaged over 30 samples. The reference config-
urations are models trained on 3800 examples. The error bars
show the standard deviations of the error distribution.

well with test accuracy shown in Fig. 2: the flatter the
solutions, the better the test accuracy. The only excep-
tion to this is the upscaled dataset, which has the same
local energy profile as the simulated dataset but shows
a lower test accuracy (we discuss this point in Sec. IV).
A remarkable feature of the local energy profiles of MMF
solutions is that they appear stable up to noise of the order
of ten times the signal-to-noise ratio. This robustness to
noise might be the reason for the excellent generaliza-
tion performance on previously unseen data. This evidence
supports the idea that MMFs are promising candidates for
optical-neural-network computing. The models trained on
MMF-projected data show very low local energy variation.
On the one hand, this confirms the current idea in the lit-
erature that flatness correlates with generalization; on the
other hand, it raises the question of why MMFs exhibit
such a conceptual difference from their idealized model.
This reality gap could signal the presence of something
not yet taken into account in the theoretical description
of the physics of experimental setups with MMFs used in
low-power mode.

C. Real fiber propagation versus transmission-matrix
simulation

The MMF is typically treated as a linear complex ran-
dom projector, and its transmission rule can be estimated
by finding the transmission matrix. In the case of a good
T recovery, one would expect that the speckles simulated
given a certain input will closely match the experimentally
recorded output from the camera. Consequently, training
a classifier with the simulated output should give a per-
formance that is similar to that obtained with the real data.
However, Fig. 2(b) highlights a strong discrepancy in accu-
racy with respect to the simulations, and Fig. 3 suggest a

different local energy profile. This is a surprising fact that
is worth investigating further. For this qualitative analysis,
we use the data from experiment 2, which was specifically
designed to recover the transmission matrix.

In Fig. 4(a), we show a representative output speckle
pattern recorded by camera α. For better clarity, we restrict
our analysis to a portion of the whole speckle output, iden-
tified with a red box and shown in Fig. 4(b). The result
of the simulation is reported Fig. 4(c), which displays
the reconstructed speckle pattern originating from the ran-
dom input pattern that was included in the training set.
Another representative pattern, not included in the training,
is shown in Fig. 4(e), together with its corresponding sim-
ulated version in Fig. 4(f). For both, we observe minimal
discrepancies between the real and simulated data, which
we can quantify by plotting the difference maps between
the two [Figs. 4(d) and 4(g)]. As an additional check, we
also compute the focusing operator TT

†, which we report
in Fig. 4(h). The diagonality of the norm of this operator
is normally used for testing the fidelity of the recovered
transmission matrix [21]. In Fig. 5, we also compare the
distribution of measured and simulated speckle intensities,
computing the 2D histogram distribution [Fig. 5(a)] and
its relative marginalizations [the histograms of the inten-
sity distributions for each dataset, which are the integral
of the 2D histogram along the two directions, Figs. 5(b)
and 5(c)]. For completeness, since the 2D histogram is nor-
mally used to calculate the mutual information between the
two datasets, we also report its value. Additionally, we ana-
lyzed the average autocorrelation of the speckles both from
the measured data and the synthetic data created using the
inferred transmission matrix [Figs. 5(d)–5(f)]. From the
histogram analysis, a perfect match between the measured
and simulated data would have produced a 2D histogram
map with only diagonal entries. The fact that the diago-
nal is broadened implies that the correspondence between
the measured intensities and the simulated dataset is not
entirely captured by the recovery of the linear transmis-
sion, even if the speckles are effectively reproduced (as
shown in Fig. 4).

To further restrict the reason for this discrepancy, we
analyzed the average speckle autocorrelation of the mea-
sured [Fig. 5(d)] and simulated [Fig. 5(e)] datasets. We
notice that the overall autocorrelation shape is very sim-
ilar, and the profile plot in Fig. 5(f) confirms the close
matching between the datasets. Since the autocorrelation
is directly connected with the average size of the coher-
ence region of a single speckle grain, having the same
autocorrelation implies that the two speckle patterns have
the same statistical spatial distribution, meaning they could
accommodate a comparable number of optical modes. As
an additional check, we decided to simulate the speckle
output using a random-phase [flat distribution ∈ [0 − 2π)],
complex-valued transmission matrix (keeping the modulus
as retrieved in the experiments) and test its classification
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(a) (b)

(e) (f) (g)

(c) (d) (h)

FIG. 4. (a) MMF α-cam speckle output after fiber propagation in experiment 2. The red box highlights a subregion magnified in
panel (b) taken from the training dataset. (c) Simulated speckle output after transmission-matrix recovery, and (d) absolute difference
between real and simulated speckle patterns. Using Eq. (E1), we can compare the average similarity of the measured and simulated
speckles of all seen random modes, obtaining ρtrain = 0.865 ± 0.082. (e) Speckle output recorded from the test set (not used for
training), (f) corresponding simulated output using the recovered transmission, and (g) absolute difference between real and simulated
data. Similarly, the average similarity of all unseen random modes is ρtest = 0.775 ± 0.059. (h) Focusing operator calculated using the
recovered transmission of the output channels involved in the formation of the speckle in the red box.

performance. This new dataset performs similarly to the
randomized MNIST (see supplementary code in the online
repository), not reaching the experimental results.

D. Influence of the number of modes

As a last analysis, we evaluate the effect of the num-
ber of output modes in two different ways. In Fig. 6(a),
we evaluate the effect of downscaling the MMF output of
experiment 2 and, in Fig. 6(b), cropping it to a smaller
window of increasing size. The effect of these operations
is that we vary the size L of the output dataset used to
train the classifier and, accordingly, the total number of
output modes N = L2. For both camera detections, reduc-
ing the number of modes has a negative impact on the
performance, with the effect of the cropping operation
being more drastic than that of rescaling. At around L =
400 pixels, however, both operations have similar effects,
with performance nearly identical to the full-resolution
image but with reduced numerical complexity. The fact
that the output downscaled by a factor of around 2 has
similar performance to the full-resolution dataset seems in
agreement with the fact that the spatial correlation of the
speckle pattern is wider than a single pixel in the detected
image, thus introducing redundant information that can
be compressed. We report, however, that this also hap-
pens with the cropped version of the output, which still
shares the same spatial properties of the average speckle
size. Remarkably, we also register that the fiber simula-
tion does not perform equally well, with the only exception
being at very small sizes (up to L = 36), when the accu-
racy is still low and of no practical use. Furthermore, we
notice that the other datasets (randomized and upscaled)
still perform worse compared to the hardware fiber after
L = 54, even though the accuracy obtained in this regime

is relatively low. Additionally, from Fig. 6(a), we observe
that upscaling the original MNIST data has a negative
impact on the performance, possibly due to overfitting, as
the ideal dimension of the dataset sits at around L = 18–32
(local maximum of the curve). This also explains the lower
performance registered in Fig. 2. On the other hand, in
Fig. 6(b), the same dataset has a dramatic dependence on
cropping. This is to be expected because by cropping we
are restricting the observation window down to a small
feature of the number image and not capturing its entire
shape. Among these options, we can operatively conclude
that best way to improve classification accuracy is by using
a hardware MMF projector.

IV. PERSPECTIVES

In this work, we used MMFs to realize random trans-
formations of the MNIST dataset showing that a linear
classifier has better accuracy on the MMF-transformed
dataset than on the original one. Complementary to high-
intensity pulsed excitation [26], this transformation (MMF
and camera detection) is nonlinear, even in the continu-
ous low-power regime, and it increases the dimension of
the data, but those characteristics alone are not enough
to explain the improved accuracy. In fact, data upscaling
(which increases the dimension), random matrix multipli-
cation (which projects on random space), and the MMF
simulation did not reach performances similar to the trans-
formation provided by the physical MMF. As noted in
Sec. III, our goal was not to compete with the accuracy
of more sophisticated architectures, but rather to show
that MMFs are simple—yet robust—hardware solutions
for optical computing. For example, convolutional neu-
ral networks exploit spatial correlations in the data and
work particularly well for image datasets. Instead, our
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(a)

(b)

(c)

(d) (e) (f)

FIG. 5. (a) Bidimensional intensity histogram between mea-
sured and simulated speckles. The diagonal is the ideal histogram
map when the simulation perfectly matches the measured data.
Instead, one can notice that dispersion occurs, quantified by a
mutual information value of 0.812, cf. Eq. (E2). (b) Histogram
plot of the measured speckle intensities, projection along the ver-
tical axis of the 2D histogram. In orange, we superimpose the
plot of the histogram of the simulated speckles. (c) Intensity
histogram of the simulated speckles, 2D histogram projection
along horizontal axis. (d) Average autocorrelation of the mea-
sured speckles, and (e) autocorrelation of the simulated speckle
pattern using the inferred T. (f) Autocorrelation difference (dark
image in the background) and central-profile plot of the two func-
tions, demonstrating practically identical average speckle sizes
recovered after the transmission characterization.

approach is closer to that of a fixed-weight densely con-
nected network, leaving room for applicability to a variety
of different data types; however, in contrast to general ran-
dom transformations (which destroy spatial correlations),
the fiber output presents a correlation property determined
by the average size of the speckle patterns.

As a physical neural network, an MMF is cheap, can
be flexibly mounted to deliver light to a user-defined posi-
tion, and offers a different set of random projections each
time it is repositioned (thus requiring independent train-
ing of the output layer). Indeed, we still need an SLM and
at least one camera to record the speckled projection, but

(a) (b)

FIG. 6. Training accuracy trade-off when reducing the number
of output fiber modes in experiment 2. We study the perfor-
mances obtained using demagnified camera measurements as
a function of their output size (blue and orange plots). With
the dots, we report the same study performed with simulated
speckle patterns. The bright and olive green, respectively, show
the results for the upscaled and randomized MNIST datasets.
In (a), the study is done by resizing the output patterns, and in
(b), a similar study is done by cropping windows smaller than
the original dimension down to different sizes L (thus excluding
peripherical speckles). Along the x axis, we report the maximum
number of optical modes allowed after resizing and cropping,
N = L2. For both, we notice that performances remain stable
down to a substantial reduction of the number of modes used
in the training set (around 400 pixels, 80% fewer pixels than the
full-resolution dataset).

these are almost unavoidable in any ONN configuration.
To the best of our knowledge, the current state of the art
is achieved using field-programmable gate array hardware
in conjunction with data augmentation, reaching 98% test
accuracy [49]. Another approach using disordered opti-
cal media exploits polaritons to reach 96% accuracy [50],
which is comparable with average optimizations obtained
using the MMF approach. These results strengthen the
notion that MMFs are promising tools for neuromorphic
computing, with the additional advantage of their simplic-
ity and ease of use. Further, we believe that our results
could be relevant for the theoretical understanding of deep
neural networks: in the spirit of random-feature models
[5–7], we showed that the class in which we sample the
random features plays important role in the accuracy, as
suggested in Ref. [8]. In fact, while taking a Gaussian ran-
dom matrix already improves the accuracy somewhat, the
transformation implemented by an MMF makes a much
bigger difference. Further investigation is needed to under-
stand why the specific hardware transformation provided
by the MMF is so effective. In particular, the local energy
profiles suggest that this effectiveness could be explained
by studying the wide flat regions in the loss landscape, in
the same spirit as in Ref. [7]: to do so, the authors use a
quantity called local entropy, which is only approximated
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(a) (b)

FIG. 7. Intensity distributions of the speckle patterns mea-
sured in cameras α and β during two independent experiments.
Given a stable laser output, we modify the camera exposure time
to force a certain amount of nonlinearity (in the form of a record-
ing threshold) in the measurement process. (a) In experiment 1,
the dynamic range of camera α fits the intensity distribution of
the speckle images recorded well, whereas camera β underex-
poses around 7% of the signal. (b) In experiment 2, camera α

has a similar trend to that of experiment 1, but in camera β, we
strongly underexpose the images, cutting out 37% of the light
intensity reaching the sensor.

by the local energy that we discussed here (this might
explain the discrepancy between the local energy profile
of the upscaled dataset in Fig. 3 and its test error in Fig. 2).

Here, we put forward some conjectures based on the
present study. First, the fact that the accuracy gap between
the physical MMF data and its simulation (Fig. 2) is
reflected in the local energy profile (Fig. 3) makes us con-
fident that the two approaches indeed belong to different
classes of random transformation. The fact the physical
MMF transformation is so robust to perturbations is con-
sistent with the great redundancy of the data that emerges
from Figs. 6 and 7, in which we see that we can delete
the majority of the signal before losing accuracy. We con-
jecture that the random transformation realized by MMFs
leads to well-separated projections in the high-dimensional
space, which allow for good classification accuracy that
is also resistant to noise in a way that is reminiscent of
error-correcting codes. All these considerations highlight
the need to further investigate how MMF devices can be
modeled and exploited, particularly in the design of optical
neural networks.

The code to reproduce the results in Fig. 2 is freely
downloadable from GitHub at Ref. [51], and the relative
datasets are available from FigShare [52].
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APPENDIX A: NEURAL-NETWORK
ARCHITECTURE AND TRAINING PROCEDURE

Our classification model involves a potentially fully
connected layer (in the sense that we do not restrict mode
couplings of any intensity) that linearly maps the 28 × 28
image space into a higher-dimensional N = 900 × 900
output space. On the output space, we build a linear classi-
fication model using the LogisticRegression func-
tion provided by the Python library RAPIDS AI [53], the
GPU equivalent of the scikit-learn implementation. Given
an input pattern {ξi}i=1,...,N the LogisticRegression
function performs a weighted average of the N input chan-
nels, producing a score zj = ∑N

i=1 wjiξi for each of the ten
classes corresponding to each type of digit. The scores are
then transformed to probabilities with

pj = ezj

∑10
j ′=1 ezj ′

(A1)

and plugged into a cross-entropy loss function that is a sum
of the contributions coming from all of the P input patterns
that we are using to train the model:

L(w) = −
P∑

μ=1

log(pj ∗), (A2)

where j ∗ is the index of the correct class of each input
pattern. The cross-entropy loss L(w) is then minimized
with a gradient-descent-related strategy to find the con-
figuration of the weights w∗ that has the highest classi-
fication accuracy. The classification accuracy is defined
as the fraction of correctly classified entries divided by
the total number of training (or test) images. To com-
pute this after the parameter optimization, we make use of
the sklearn.metrics.accuracy_score function
of the scikit-learn library.

APPENDIX B: MEASURE OF LOCAL ENERGY

Given a loss (namely energy) function L that depends
on a set of parameters w, we define the local energy as the
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expectation value

Llocal(σ ) = Eηij ∼N (0,σ)L({wij ηij }), (B1)

where {ηij } is a set of independent and identically dis-
tributed random Gaussian variables with zero mean and
variance σ that multiply element-wise the set model
parameters {wij }. The local energy Llocal(σ ) still depends
on the variance σ of the Gaussian noise. As explained in
the main text, we are interested in studying how quickly
the local energy increases when we increase σ : from the
literature (see main text), we know that a slower increase
is correlated with a higher test accuracy. For Fig. 3 of the
main text, we choose L as the fraction of misclassified data
points in the training set.

APPENDIX C: EXPERIMENTAL SETUP

A sketch of the experimental setup is shown in Fig. 1(c).
In the experiments, we use a continuous Melles Griot He-
Ne laser (632.8 nm) as the light source. The emitted beam
is magnified 15 times through a 5 : 75-cm telescope before
being imprinted on a Hamamatsu SLM in polarization con-
figuration (model LCOS-SLM x10488 series, pixel size:
20 µm). The real-space plane of the SLM is then recre-
ated on the entrance facet of the optical fiber using a pair
of 50 : 7.5-cm focal lenses after the spatially modulated
beam profile has been collected. A Thorlabs FT1000EMT,
NA = 0.39, 1-m long, 1-mm core multimode optical fiber
is used. We indicate the facets of the MMF with the let-
ters α and β. Two IDS cameras (UI-5370CP-M-GL and
UI-5480CP-M-GL) with pixel sizes of 5.5 and 2.2 µm,
respectively, are used to collect the counter-polarized (with
respect to the laser) reflection from the injection surface as
well as the transmission signal. To achieve the same spatial
resolution of 1.1 µm /pixel on both cameras, the magnifi-
cations are set to 5× and 3×, respectively. The MNIST
handwritten digits and random masks are sent to the SLM
in alternated sequences and are encoded in the same way.
In practice, for each of these, we send an image (random or
MNIST) having a size of 28 × 28 pixels, focusing it so that
it is inscribed on the input facet of the optical fiber. Each
pixel uses grayscale values ranging from 0 to 10. The ran-
dom patterns are sent for the sole purpose of characterizing
the fiber transmission, and they are not used for training of
the classification layer. The light propagating through this
disordered optical device reaches both edges and produces
a seemingly random interference pattern of intensities (the
speckles).

APPENDIX D: NUMBER OF OPTICAL MODES

The fiber used (FT1000EMT, Thorlabs) has a diam-
eter of d = 1 mm with NA = 0.39. Thus, the maxi-
mum theoretical number of supported modes is Nmodes =
(πdNA/λ)2/2, which gives around 1.871 × 103 modes.

For the experimental realization, the number of optical
modes is influenced by the number of camera pixels used
to record the fiber’s output and the average physical size
of the speckles. In our case, the average full-width half
maximum of the speckles is 1 pixel, and using a squared
portion of the central core of the fiber having L = 600
determines a maximum total number of imaged modes
equal to L2 = 360 × 103 modes. This is a reduced fraction
of the total number of imaged modes of the entire facet,
consisting of about 635 × 103 modes.

APPENDIX E: UNDEREXPOSURE, CAMERA
SATURATION, AND MEASUREMENT STABILITY

When setting the exposure time of the camera, we are
implicitly acting on the way it records the signal. If the
exposure time is fast enough with respect to the inten-
sity delivered, the camera underexposes the signal, i.e., it
does not detect the signal in a particular region. The oppo-
site effect, overexposure, happens when the intensity is too
high for a long exposure of the image. In both cases, a
nonlinear threshold is introduced in the detected signals.
To try to assess the effect of this on the classifier accu-
racy, we tried to explore several intensity distributions of
the datasets recorded in the camera.

In experiment 1, Fig. 7(a), α-cam provides an opti-
mal dynamic range, with both low underexposure (0.1%)
and overexposure (1%). Instead, β-cam recorded the sig-
nal underexposing 7% of the total pixels in the image. In
experiment 2, Fig. 7(b), α-cam correctly samples the inten-
sities, whereas β-cam is set to cut off 37% of the pixels.
Additionally, we report the intensity distribution obtained
with the simulation of the light propagating through the
fiber and detected by α-cam. We notice a substantial dif-
ference between the intensity distributions of the recorded
and simulated data: this could explain the different perfor-
mances achieved by the two datasets.

Over the entire duration of the experiment, we contin-
uously monitor the fiber stability by sending an identical
image to the SLM. When the fiber is sufficiently stable,
the speckle patterns produced at the facets must always be
identical to those recorded at the beginning of the experi-
ment. Keeping the camera frame τ = 0 as a reference for
both cameras, we compute the normalized scalar product
against the speckle image at a given time τ ′:

ρ
(
τ , τ ′) = s{α,β}

τ · s{α,β}
τ ′∣∣∣s{α,β}

τ

∣∣∣
∣∣∣s{α,β}

τ ′
∣∣∣
, (E1)

where s is the recorded speckle pattern at each time. Using
this metric, ρ ≈ 1 means the measurements are highly
correlated, whereas ρ ≈ 0 implies that the system is decor-
related during the measurement. Figure 8 shows a stability
study across the entire duration of experiment 1. We notice
that α-cam remains highly correlated (96% minimum)
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FIG. 8. Measurement stability during experiment 1. Keeping
the initial probing frame, we compute the normalized scalar prod-
uct against the output of the same frame at different times for both
cameras. The upper half of the plot is the α-cam correlation sta-
bility (hence how similar the output looks when the same input
is sent again during the experiment) and the bottom half shows
that for β-cam. In both cases, the correlation is higher than 90%.

compared to β-cam (90% minimum). Despite the lower
correlation stability and 7% underexposed pixel values, the
β-cam results are as accurate as the α-cam results during
the classification of the test set (Fig. 2).

In Fig. 5 we compare the output speckles correspond-
ing to the same input through the real MMF and through a
synthetic MMF whose transmission matrix is that inferred
from the data by phase retrieval. The two do not appear to
be the same, that is, their scatter plot is not exactly diag-
onal. We quantify their mutual difference by means of the
mutual information

I(real|synth) ≡
256∑
i=1

Preal(yi) log
Preal(yi)

Psynth(yi)
, (E2)

where 256 is the number of intensity bins. A perfect match
would yield I = 1, whereas in Fig. 5(a) we find I = 0.812.
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[26] Uğur Teğin, Mustafa Yıldırım, Christophe Moser, and
Demetri Psaltis, Scalable optical learning operator, Nat.
Comput. Sci. 1, 542 (2021).

[27] Alaa Saade, Francesco Caltagirone, Igor Carron, Lau-
rent Daudet, Angélique Drémeau, Sylvain Gigan, and
Florent Krzakala, in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP)
(IEEE, 2016), p. 6215.

[28] Chao Du, Fuxi Cai, Mohammed A. Zidan, Wen Ma, and
Seung Hwan Lee, and Wei D. Lu, Reservoir comput-
ing using dynamic memristors for temporal information
processing, Nat. Commun. 8, 1 (2017).

[29] Dario Ballarini, Antonio Gianfrate, Riccardo Panico,
Andrzej Opala, Sanjib Ghosh, Lorenzo Dominici, Vin-
cenzo Ardizzone, Milena De Giorgi, Giovanni Lerario,
Giuseppe Gigli, et al., Polaritonic neuromorphic computing
outperforms linear classifiers, Nano Lett. 20, 3506 (2020).

[30] Tao Chen, Jeroen van Gelder, Bram van de Ven, Sergey
V. Amitonov, Bram De Wilde, Hans-Christian Ruiz Euler,
Hajo Broersma, Peter A. Bobbert, Floris A. Zwanenburg,
and Wilfred G. van der Wiel, Classification with a dis-
ordered dopant-atom network in silicon, Nature 577, 341
(2020).

[31] Daniele Ancora and Luca Leuzzi, Transmission matrix
inference via pseudolikelihood decimation, J. Phys. A:
Math. Theor. 55, 395002 (2022).

[32] Elbert G. van Putten and Allard P. Mosk, The information
age in optics: Measuring the transmission matrix, Physics
3, 22 (2010).

[33] Sébastien Popoff, Geoffroy Lerosey, Mathias Fink, Albert
Claude Boccara, and Sylvain Gigan, Image transmission
through an opaque material, Nat. Commun. 1, 81 (2010).

[34] Jochen Aulbach, Bergin Gjonaj, Patrick M. Johnson, Allard
P. Mosk, and Ad Lagendijk, Control of light transmission
through opaque scattering media in space and time, Phys.
Rev. Lett. 106, 103901 (2011).

[35] S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and
H. Cao, Coherent control of total transmission of light
through disordered media, Phys. Rev. Lett. 112, 133903
(2014).

[36] Stefan Rotter and Sylvain Gigan, Light fields in complex
media: Mesoscopic scattering meets wave control, Rev.
Mod. Phys. 89, 015005 (2017).

[37] Angélique Drémeau, Antoine Liutkus, David Martina,
Ori Katz, Christophe Schülke, Florent Krzakala, Sylvain
Gigan, and Laurent Daudet, Reference-less measurement
of the transmission matrix of a highly scattering material
using a DMD and phase retrieval techniques, Opt. Express
23, 11898 (2015).

[38] Guoqiang Huang, Daixuan Wu, Jiawei Luo, Liang Lu,
Fan Li, Yuecheng Shen, and Zhaohui Li, Generaliz-
ing the Gerchberg–Saxton algorithm for retrieving com-
plex optical transmission matrices, Photonics Res. 9, 34
(2021).

[39] Daniele Ancora, Lorenzo Dominici, Antonio Gianfrate,
Paolo Cazzato, Milena De Giorgi, Dario Ballarini, Daniele
Sanvitto, and Luca Leuzzi, Speckle spatial correlations aid-
ing optical transmission matrix retrieval: The smoothed
Gerchberg–Saxton single-iteration algorithm, Photonics
Res. 10, 2349 (2022).

[40] The underlined network is one layer deep because it can be
described by a single matrix multiplication, as in Eq. (1).

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc. IEEE
86, 2278 (1998).

[42] Sanghyeon An, Minjun Lee, Sanglee Park, Heerin Yang,
and Jungmin So, An ensemble of simple convolutional
neural network models for MNIST digit recognition,
arXiv:2008.10400.

[43] Ilker Oguz, Jih-Liang Hsieh, Niyazi Ulas Dinc, Uğur
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