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Predicting properties of large-scale quantum systems is crucial for the development of quantum science
and technology. Shadow estimation is an efficient method for this task based on randomized measure-
ments, where many-qubit random Clifford circuits are used for estimating global properties like quantum
fidelity. Here we introduce the minimal Clifford measurement (MCM) to reduce the number of possible
random circuits to the minimum, while keeping the effective postprocessing channel in shadow estima-
tion. In particular, we show that MCM requires 2n + 1 distinct Clifford circuits, and it can be realized
by mutually unbiased bases, with n as the total qubit number. By applying the Z-tableau formalism, this
ensemble of circuits can be synthesized to the −S − CZ − H− structure, which can be decomposed to
2n − 1 fixed circuit modules, and the total circuit depth is at most n + 1. Compared to the original Clifford
measurements, our MCM reduces the circuit complexity and the compilation costs. In addition, we find
the sampling advantage of MCM on estimating off-diagonal operators, and extend this observation to the
biased-MCM scheme to enhance the sampling improvement further.
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I. INTRODUCTION

Learning quantum systems is of both fundamental and
practical interests for quantum physics and quantum infor-
mation processing [1,2]. With the increase on the qubit
number in various platforms, from quantum networks to
quantum simulators and computers [3,4], it is crucial to
develop efficient tools to benchmark them [5,6], from char-
acterizing quantum noises [7] to measuring interesting
properties, such as entanglement entropy [8] and out-of-
time-ordered correlator [9]. Shadow tomography [10] is
a recently proposed framework to predict many proper-
ties of quantum objects, like quantum states and channels
with randomized measurements [11]. Compared to tradi-
tional quantum tomography aiming to reconstruct quantum
objects [12,13], the key point of shadow estimation is
to build a few classical snapshots of the original quan-
tum object [14], which are utilized to estimate many
observables in a multiplex way.

The performance of shadow estimation depends on the
applied random unitary evolution on the unknown state
and the observables to be predicted [14–16]. There are two
primary random unitary ensembles [14]. Pauli measure-
ments enabled by independent single-qubit random unitary
rotations are efficient in predicting local observables with
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a constant nontrivial support. On the other hand, Clifford
measurements using random Clifford evolution on all n
qubits, are efficient for global low-rank observables, such
as the fidelity to some entangled states. The Pauli measure-
ment and its variants are more feasible to realize [17–22],
with a few experimental demonstrations [23–25].

In contrast, the development and realization of the Clif-
ford measurement is more challenging, which is mainly
due to the complex structure of the Clifford group with an
astronomical number of about O(4n2

) of elements [26,27].
In addition, it generally needs O(n)-depth quantum circuit
with considerable sampling [28,29] and compiling efforts
[30], which further hinders the applications on the near-
term quantum platform. There are positive progresses, for
example, applying random local quantum gates sequen-
tially to approximate full Clifford measurements [15,31] or
using emergent design with the assistance of a large num-
ber of auxiliary qubits [32,33]. However, the performance
is generally guaranteed in the average case [31], and the
classical postprocessing is in an approximate and empirical
manner [15].

To accelerate the application of Clifford measurement,
in this work, we propose the minimal Clifford measure-
ment (MCM) framework for shadow estimation, to avoid
the exhaustion of the full Clifford group. More specifically,
we reduce the number of sampled Clifford circuits to its
minimum, while the postprocessing maintains the same
simple form as the original one. In particular, we prove
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that such a minimal set should contain 2n + 1 elements,
which can be realized by mutually unbiased bases (MUBs)
(Sec. III). We further give a general routine to synthesize
these Clifford circuits with the help of tableau formalism,
and the final circuit structure is in the −S − CZ − H−
form with the depth at most n + 1 (actually can be fur-
ther reduced to n/2 [30]) over the all-to-all architecture.
Even though the circuit depth still scales with n, S and
CZ gates are diagonal in the computational basis, which
may be realized simultaneously [34], potentially with the
help of an Ising-type Hamiltonian [35]. Most significantly,
the −S − CZ− part can be further decomposed to 2n − 1
fixed modules with an explicit subcircuit structure. Such
module decomposition enables the sampling and synthe-
sis of random Clifford circuits on the module level in
a unified manner, which is more feasible to benchmark
and improve experimentally [36] (Sec. IV). We give a
thorough performance analysis of MCM shadow analyti-
cally and numerically. In particular, we find our approach
shows some advantage for estimating off-diagonal observ-
ables, and relate the variance of the estimation to the
coherence of the observable (Sec. V). Furthermore, we
develop the biased-MCM protocol as a mimic of biased-
Pauli measurement [17,18] in the Clifford scenario and
demonstrate its advantages. In particular, we show that the
optimal variance of biased-MCM is directly quantified by
the stabilizerness norm [37] of the observable, which is a
useful measure of magic [38,39] that may lead to poten-
tial applications in fidelity estimation (Sec. VI). To visually
illustrate the process of our work, we refer to Fig. 1 as the
roadmap of MCM shadow estimation.

II. PRELIMINARIES FOR SHADOW ESTIMATION
AND CLIFFORD MEASUREMENTS

Here we first give a brief review [14] on the paradigm
of shadow estimation and Clifford group [40]. For the
quantum experiment, an unknown n-qubit quantum state
ρ ∈ Hd with d = 2n is evolved under a unitary U, which is
randomly selected from some ensemble E to ρ �→ UρU†.
After that, it is measured in the computational basis to get
the result b ∈ {0, 1}n. According to Born’s rule, the corre-
sponding probability is Pr(b | U) = 〈b|UρU†|b〉. Note that
both U and b are random variables and the whole process
is indeed random.

For the classical postprocessing, one “prepares”
U† |b〉 〈b| U on the classical computer, and the effective
process can be written as a quantum channel. For a fixed
U, that is, by taking the expectation first on b, we denote
the effective channel as

M(ρ | U) : = Eb U† |b〉 〈b| U

=
∑

b

tr[ρU† |b〉 〈b| U]U† |b〉 〈b| U, (1)

FIG. 1. The outline of MCM shadow estimation.

where the conditional probability Pr(b | U) is in the trace
form for later convenience. Thus the whole channel is
obtained by further taking the expectation on U,

ME(ρ) := EU∈E M(ρ | U). (2)

If the measurement is tomographically (over)complete,
i.e., one takes sufficient distinct U for evolution, the whole
information of ρ should be preserved. In other words, the
channel ME can be reversed mathematically, and one can
construct the classical snapshot as

ρ̂ = M−1
E (U† |b〉 〈b| U). (3)

It is direct to check that Eρ̂ = ρ by Eqs. (1) and (2), and
Ô := tr[ρ̂O] is an unbiased estimator of Ō := tr[ρO]. For
applications, one can construct the shadow set containing
a few of these independent snapshots {ρ̂i} to predict many
properties {Oj }.

There are two prominent unitary ensembles, that is, n-
qubit random Clifford ensemble ECl and the tensor product
of random single-qubit Clifford gate ensemble EPauli. The
Pauli measurement by the ensemble EPauli can be realized
efficiently in experiments, but it works poorly on esti-
mating global observables, such as the fidelity to some
many-qubit entangled states. Clifford measurement ECl is
good at this task, with the effective channel and its inverse
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for Clifford measurement being

MCl(A) = (2n + 1)−1[A + tr(A)I],

M−1
Cl (A) = (2n + 1)A − tr(A)I.

(4)

Every coin has two sides. Random Clifford unitary is
challenging to realize on current quantum platforms, as
it requires quite a few two-qubit gates. Current meth-
ods evenly sample and compile a Clifford to O(n)-depth
quantum circuit with time complexity O(n2) [41,42]. Note
that the synthesis of Clifford circuits is intricately tied to
the qubit connectivity of platforms. Over linear-nearest-
neighbor architecture, the upper bound of two-qubit circuit
depth is 7n − 4, while for all-to-all architectures, it sug-
gests 1.5n + O(log2(n)) [43]. In the following results,
Secs. III and IV, we aim to simplify the circuit construc-
tion of Clifford measurement to its minimal form with the
help of MUB for the all-to-all architecture.

At the end of this section, we recast the essentials of
Clifford unitary and Pauli group for later use. The Pauli
group for n-qubit quantum system is P

n = {±√±1 ⊗
{I2, X , Y, Z}}⊗n, with I2, X , Y, Z being the identity and
Pauli operators for single qubit. For convenience, we
denote the quotient group without the phase as Pn = P

n/ ±√±1, and all nonidentity Pauli operator as Pn
∗ = Pn \ I.

Clifford unitary is the normalizer of P
n, i.e., U†PU ∈

P
n, ∀P ∈ P

n, and a specific Clifford unitary is determined
by its action on U†XiU and U†ZiU for i ∈ [n], as Xi and Zi
can generate all Pauli operators. Hereafter we use Zi(Xi)

for short to denote an n-qubit operator Zi ⊗ I[n]/{i} (Xi ⊗
I[n]/{i}) with the i th qubit being nonidentity.

III. MINIMAL CLIFFORD MEASUREMENT
FROM MUTUALLY UNBIASED BASES

To simplify the full Clifford measurement in the origi-
nal shadow estimation, we raise the following task, which
aims to minimize the size of the Clifford group while
preserving the effective quantum channel MCl.

Task 1. Suppose E is a subset of the full Clifford group
ECl, the task reads

min: |E |

such that: ∀ρ,
1

|E |
∑

U∈E
M(ρ | U) = MCl(ρ),

(5)

where MCl(ρ) is the effective quantum channel shown in
Eq. (4).

First of all, we show a lower bound of |E | by introducing
a lemma that accounts for the effect of individual Clifford
unitary. After the Clifford U rotation, the final measure-
ment is conducted in the computational basis, that is, the Z

basis. As a result, we need only to care about the action of
U on the Z basis. Define the generators in the Heisenberg
picture as

gi = U†ZiU, i ∈ [n]. (6)

In other words, different Clifford U with the same (ignoring
the phase) 〈gi〉n−1

i=0 lead to the same measurement setting in
the shadow estimation, as shown explicitly in the following
Lemma 1.

Lemma 1. Denote the operators generated by 〈gi〉n−1
i=0

given in Eq. (6) as Sm =∏n−1
i=0 gmi

i with m an n-bit vector,
the quantum channel M(ρ | U) defined in Eq. (1) shows

M (ρ | U) = 2−n
∑

m∈{0,1}n

tr(ρSm)Sm. (7)

The proof is left to Appendix A 1, which transforms the
summation of computational basis b to the operators Sm. In
fact, Sm are the stabilizers for the state |�0〉 = U† |0〉 with
Sm |�0〉 = |�0〉 , ∀m. gi and Sm are Hermitian operators by
definition, thus the possible phase does not affect the mea-
surement setting in Eq. (7). Hereafter, we ignore the global
phase of them, that is gi, Sm ∈ Pn.

Proposition 1. The cardinality of the unitary ensemble
E in Task 1 is lower bounded by |E | ≥ 2n + 1.

The proof given in Appendix A 2 is based on the fact
that one individual Clifford unitary acquires 2n − 1 non-
identity Pauli information as shown in Lemma 1, and
there are totally 4n − 1 ones. In this case, the Clifford
elements in E do not share nonidentity Sm, one has
|E | = (4n − 1)/(2n − 1) = 2n + 1 to cover all the Paulis
for tomographic completeness.

Definition 1. Suppose a subset of the Clifford group
denoted by Emin reaches the lower bound in Proposi-
tion 1, we call the corresponding measurement the minimal
Clifford measurement (MCM).

Note that MCM simplifies only the Clifford measure-
ment, but keeps the postprocessing. As a result, the realiza-
tion of MCM shadow estimation follows the same routine
as the original one, except the random Clifford circuit
ensemble applied before the final projective measurement.
Next, by introducing the MUBs [44–46], we find a typi-
cal set Emin = EMUB that saturates the lower bound. Here
the Clifford unitaries in EMUB are written in the form of the
stabilizer generators 〈gi〉.

Proposition 2. The MUB in Ref. [44] is an MCM, and
the generators for all 2n + 1 different Clifford unitaries are
written by the stabilizer generators as follows. The 0th
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element of EMUB is 〈Zi〉n−1
i=0 , i.e., the Z-basis measurement;

and the other 2n elements labeled by v = 0, 1, . . . , 2n − 1
are

〈
gi = √−1

αv,i,iXi

n−1⊗

j =0

Z
αv,i,j
j

〉
, (8)

with αv,i,j = [(v � 2i)M (0)
n ]j being a binary value. Here �

denotes the multiplication in Galois field GF(2n), (·) trans-
forms the number to an n-bit string, and M (0)

n is an n × n
binary matrix.

The specific definition of M (0)
n is in Appendix B 1,

and the detailed proof of EMUB being an MCM is left
to Appendix B 2. In fact, Eq. (8) offers another way to
represent the MUB previously introduced in Ref. [46].

Some remarks about the quantum design are demon-
strated as follows. Note that the measurement channel
in Eqs. (1), (2), and (7) are second-order functions of
the quantum state, so any (projective) 2-design ensemble
returns the same channel as the full Clifford measure-
ment in Eq. (4). It was shown that any covariant-Clifford
2-design of an n-qubit system reaches its minimum as an
MUB [47]. As a result, MUB leads to the same chan-
nel as the full Clifford. In some sense, our approach here
manifests this result from the perspective of the action of
individual Clifford elements via Lemma 1.

IV. EFFICIENT CIRCUIT SYNTHESIS OF MCM

In this section, we focus on the sampling and synthesis
of Clifford circuit of MCM shadow estimation, especially
for the unitary ensemble EMUB given in Proposition 2.
The synthesis applies tableau formula under the frame-
work of Gottesman-Knill theorem [40,48]. Interestingly,
as |EMUB|  |ECl|, there is possible room for further sim-
plification on the quantum circuits. Finally, we give a
unified method to sample and synthesize on the module
level, which makes the realization of MCM shadow very
efficient.

Here we first briefly introduce the simplified Z tableau
and leave more details in Appendix B 3. As shown in
Sec. III, the essential information is the stabilizer gener-
ators 〈gi〉 in Eq. (6) without considering the phase factor.
In this way, we write

g̃i =
n−1⊗

j =0

X
γij

j Z
δij
j , i ∈ [n], (9)

where γij and δij are elements of two n × n binary matri-
ces C and D, and T = [C, D] is called the Z tableau. The
action of Clifford gates Vg̃iV† on g̃i is thus recorded as
the transformation of the matrix T. As a result, our task
is to find V such that it takes all g̃i back to the original Zi,

i.e., take T to T0 = [O, I], with C = O the null matrix, and
D = I the identity matrix. We choose the basic generating
Clifford gates as the single-qubit Hadamard gate H , phase
gate S, and two-qubit controlled-Z gate CZ, with the cor-
responding update rules of tableau T listed as follows. For
all i,

• H(a): exchange γi,a and δi,a;
• S(a): δi,a := γi,a + δi,a;
• CZ(a, b): δi,a := δi,a + γi,b, δi,b := δi,b + γi,a,

on qubit a, and qubit pair (a, b), respectively [29,40].
In MCM, one needs to evenly sample a unitary from

the ensemble EMUB given in Proposition 2. For elements
in EMUB, the tableau of the 0 th element is already [O, I],
thus we do not need to synthesize; tableaus of the remain-
ing 2n ones in Eq. (8) are all in the form of [I, Dv] with v

denoting the element label, and αv,i,j = [Dv]i,j . In particu-
lar, the i th row of Dv is the vector (v � 2i)M (0)

n [46], as
shown in Proposition 2.

The circuit sampling and synthesis for all 2n tableaus in
the form of [I, Dv] is shown as follows. First we introduce a
special property for Dv to simplify the procedure. A matrix
D is said to be a Hankel matrix if Di,j = Di′,j ′ for any i +
j = i′ + j ′. We prove the following result in Appendix B 4.

Proposition 3. The matrix Dv from the tableau [I, Dv]
of the element in EMUB given in Eq. (8) is a Hankel matrix,
for all v = 0, 1, . . . , 2n − 1.

Since Dv is a Hankel matrix, it can be decomposed as

Dv =
2n−2∑

k=0

βv
k Hk, (10)

where [Hk]i,j = δi+j ,k, i.e., it only has 1’s on the k th
antidiagonal. In this way, any Dv can be written as a
linear combination of at most (2n − 1) Hankel matrices
{Hk}2n−2

k=0 , with (2n − 1)-bit vector �βv characterizing the
information of elements from Eq. (8).

Circuit sampling. Suppose v =∑n−1
i=0 vi2i, and the

binary representation shows v = {v0, . . . , vn−1}. We ran-
domly sample an n-bit string v, and actually, we need not
calculate the coefficient βv

k in Eq. (10) for each Dv one
by one, which will determine the final quantum circuit.
Denote the corresponding coefficient of each basis vector
{0, . . . , 1i, . . . , 0} with i ∈ [n] as β

(i)
k , then by linearity the

coefficient of Dv reads

βv
k =

∑

i

β
(i)
k vi, (11)

which is a matrix multiplication with the binary matrix
{β(i)

k } being (2n − 1) × n. Such sampling consumes only n
random bits, compared with O(n2) for full Clifford circuits
[29]. We also remark that it needs O(n log n) complexity
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(a) (b)

(c)

FIG. 2. An illustration of the quantum circuit structure after the synthesis for tableau [I, Dv] with Dv =∑2n−2
k=0 βv

k Hk. If βv
k = 1,

apply module Mk as shown in (a), and the module Mk and module M2n−2−k share the same quantum gates. If k is even, the construction
of the corresponding modules are shown in (b), with both S and CZ gates; if k is odd, the construction of the corresponding modules
is shown in (c), which contains only CZ gates.

to calculate Eq. (11) using fast Fourier transforming since
{β(i)

k } is a Hankel matrix [49].
Circuit synthesis. For each Hk with βk = 1 in the sum-

mation in Eq. (10), one can use a circuit module Mk
in Fig. 2 satisfying [I, H] → [I, H − Hk] to transform
the tableau from the initial [I, Dv] gradually to [I, O].
After that, by applying the Hadamard gates H⊗n, one
can transform the tableau [I, O] → [O, I] to complete the
synthesis. Hence we directly obtain a three-stage form
−S − CZ − H−, and the whole synthesis process is listed
in Algorithm 1.

Figure 2 shows the explicit circuit construction using
Algorithm 1. The module Mk may contain S and CZ gates
on the first k qubit with k < n. Mk and M2n−2−k are identi-
cal to each other but act on qubits in reverse order. There
are in total 2n − 1 modules, and the circuit depth for all
modules can be parallelized to n by combining Mk and
Mn+k to the same layer.

We provide Fig. 3 as a visual explanation of how to
eliminate the Z tableau and synthesize the corresponding
quantum circuit. Moreover, we give an example of MUB
for n = 3, starting from Eq. (8) to the synthesis of quantum
circuits, which is left to Appendix B 5.

The whole circuit can be summarized in three stages
in the form of −S − CZ − H−, by observing that S gates
and CZ gates commute. The total circuit depth can be fur-
ther reduced, by using the result that the upper bound of
the circuit depth is (n/2) + O(log2(n)) for the CZ layer
[30]. In addition, the full Clifford group followed by pro-
jective measurements can also be effectively synthesized

to a one CZ-layer form, by the canonical form of Ref. [41]
with proper mapping on the computational basis vector.
However, the modular design as shown Fig. 2 streamlines
the sampling and synthesis, and may lead to advantages
in the calibration and realization. We also remark that
the layer of intermediate CZ gates could be implemented

ALGORITHM 1. Circuit synthesis for Z tableau [I, Dv].
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FIG. 3. Illustration of the circuit synthesis in Algorithm 1
given input Z tableau [C, D] when n = 3. The D matrix of the
input Z tableau is a Hankel matrix. To eliminate the k th antidi-
agonal of the D matrix, we make use of the k th module called
Mk. Finally a fully H layer is utilized to transform the Z tableau
[I, O] → [O, I].

using one global Mølmer–Sørensen gate [50] systems like
on trapped-ion system simultaneously [51]. Finally, we
should point out that the frequent use of long-range CZ
gates in modules would hinder its application on quantum
systems with linear-nearest-neighbor architecture like the
superconducting platform.

V. PERFORMANCE ANALYSIS AND
OFF-DIAGONAL ADVANTAGE

With the synthesized quantum circuits for MUB at
hand, one can proceed the MCM shadow estimation via
Eqs. (1)–(3), using the same postprocessing scheme as the
full Clifford measurements in Eq. (4). In this section, we
analyze the performance of the introduced MCM shadow
in depth by investigating the variance for estimating some
observable O. In shadow estimation, such variance shows

VarE(Ô) = VarE(Ô0) ≤ max
ρ

Etr(O0ρ̂)2 = ‖O0‖2
s,E . (12)

Here, O0 = O − tr(O)I/d is the traceless part of O. Note
that the variance is further bounded by the square of the
shadow norm ‖O0‖s,E [14]. Shadow norm is a function of
the observable O and the unitary ensemble E , by taking
the maximization over all possible input states ρ. Another
variance quantification is called the locally scrambled
shadow norm ‖O‖ls,E ≤ ‖O‖s,E [15,31,52], by considering

the average on ρ from a 1-design ensemble, or equiva-
lently, the input state ρ = I/2n being the maximally mixed
state.

Theorem 1. For MCM shadow estimation, if one takes
the unitary ensemble EMUB determined by some MUB,
the corresponding shadow norm and locally scrambled
shadow norm can be upper bounded by

‖O0‖2
s,EMUB

≤ (2n + 1)tr(O2
0),

‖O0‖2
ls,EMUB

= 2n + 1
2n tr(O2

0).
(13)

Proof. The proof is mainly based on the 2-design prop-
erty [47] of MUB. Here, we denote the MUB state as∣∣�U,b

〉 = U† |b〉, and the density matrix as � = |�〉 〈�|.
By utilizing the inverse channel in Eq. (4), and recalling
Eq. (12), the variance can be upper bounded by

Etr(O0ρ̂)2 = Etr[O0 M−1(�U,b)]2

= (2n + 1)2
Etr[O0�U,b]2

= (2n + 1)
∑

U∈EMUB,b

tr[O0�U,b]2tr(ρ�U,b)

≤ (2n + 1)tr[O⊗2
0

∑

U∈EMUB,b

�⊗2
U,b]

= (2n + 1)tr[O⊗2
0 (S + I

⊗2)] = (2n + 1)tr(O2
0).

(14)

Here, S and I
⊗2 are SWAP and identity operators on

the 2-copy space. The inequality is due to the fidelity
tr(ρ�U,b) ≤ 1. And the final equality is because

∑
�⊗2

U,b is
a projective 2-design, thus the summation result is propor-
tional to the projection to the symmetric subspace 	sym =
2−n(2n + 1)−1(S + I

⊗2) on H⊗2
d .

For the locally scrambled shadow norm, one just takes
ρ = I/2n in Eq. (14), which contributes a 2−n to the final
result. �

Some remarks on the comparison to the original
full Clifford shadow are illustrated as follows. For the
worst case, i.e., the original shadow norm is ‖O0‖2

s,ECl
∼

O(1)tr(O2
0) and our MCM shadow is exponentially worse

than it, the average behavior of both protocols are the same
by the 2-design property ‖O0‖2

ls,EMUB
= ‖O0‖2

ls,ECl
.

On the other hand, the bound on ‖O0‖2
s,EMUB

is tight
in some sense, that is, the exponential scaling with
the qubit number n is not by mathematical derivation,
but the essence of MCM. Let us denote 〈O0〉U,b :=
tr[O0�U,b], 〈ρ〉U,b := tr(ρ�U,b) for short, the third line of
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(a) (b)

FIG. 4. The statistical variance of shadow estimation with a
total number of snapshots N = 10 000 using Pauli measurement
(blue), Clifford measurement (green) and minimal Clifford mea-
surement (red), respectively. In both (a) and (b) the state is
the standard Greenberger-Horne-Zeilinger (GHZ) state |GHZ〉 =

1√
2
(|0〉⊗n + |1〉⊗n). In (a) O = |GHZ〉〈GHZ|, and in (b) OF =

[(|0〉〈1|)⊗n + |1〉〈0|)⊗n]/2, which is the off-diagonal term of the
GHZ state. The dotted lines show the fitting curves with the
numerical values, and the numbers on the left top represent the
corresponding slopes of these curves.

Eq. (14) can be written as

VarEMUB(Ô) ≤ (2n + 1)
∑

U,b

〈O0〉2
U,b〈ρ〉U,b. (15)

Let us consider the fidelity estimation task, which is the
main application of the original shadow estimation. In this
task, O = � is some pure (stabilizer) state, and thus tr(O2

0)

is a constant, then we have the following result.

Observation 1. Suppose there is some �U,b, such that
both 〈O0〉U,b = 
(1) and 〈ρ〉U,b = 
(1), then the variance
of the MUB-based shadow would scale as 
(2n).

The observation is direct to see, as in this case one of
the terms in the summation in Eq. (15) 〈O0〉2

U,b〈ρ〉U,b =

(1). That is, if O0 and ρ both share constant overlap with
some basis state �U,b, the final result should be exponential
with n. Indeed, it is not hard to find examples to support
this observation.

Here, in the numerical simulation we take the observable
and the input state O = ρ = |GHZ〉 〈GHZ| as an example.
In this case, there exists �I,0, such that 〈O0〉I,0, 〈ρ〉

I,0 =

(1). That is, the state �I,0 is a diagonal state correspond-
ing to the 0 th element of MUB—the Z basis with U = I.
As a result, the variance should be 
(2n), which is also
manifested by the numerics in Fig. 4(a).

Observation 1 motivates us to relieve such worst-case
exponential-scaling variance of MCM by considering the
diagonal and off-diagonal part [53] of the observable
O separately, under a chosen basis determined by U ∈
EMUB from all possible (2n + 1) elements. We demonstrate

the variance for estimating only the off-diagonal part as
follows.

Theorem 2. For a given basis from one element
of MUB, i.e., {∣∣�U,b

〉} with a fixed U ∈ EMUB, con-
sider the off-diagonal part of observable O, OF =∑

b�=b′ Ob,b′
∣∣�U,b

〉 〈
�U,b′

∣∣. The variance of estimating OF
with MCM shadow is upper bounded by

VarEMUB

(
ÔF
) ≤ 2n + 1

2n Cl1(O)2, (16)

where Cl1(O) :=∑b�=b′ |Ob,b′ | denotes the l1 norm of
quantum coherence [54].

The proof is left to Appendix C 2. Theorem 2 links the
scaling variance to an intrinsic quantum resource, quan-
tum coherence [55]. In terms of applications, it guarantees
the performance of MCM via diagonal and off-diagonal
strategy when estimating the fidelity of states with a mod-
est degree of superposition, like GHZ states and W states.
As such, the variance is at most polynomial if Cl1(O) =
O(poly(n)). In practice, one can estimate the diagonal part
of O by directly selecting the measurement basis deter-
mined by some preferred U, which is easy to conduct. For
the challenging part, i.e., the off-diagonal part [16,56], one
can apply the MCM-based shadow to estimate it. Finally,
by combining the diagonal and off-diagonal results, the
whole estimation procedure is finalized.

In the example of estimating the fidelity of a GHZ
state, the chosen basis is the Z basis, i.e., U = I. OF =
1
2 (|1〉〈0|⊗n + |0〉〈1|⊗n) with Cl1(O) = 1. One can measure
OF with MCM shadow and the diagonal part with the Z-
basis measurement, respectively. The final variance would
not scale with n, which is further manifested by Fig. 4(b).

The off-diagonal advantage shown in Theorem 2 and the
showcase of GHZ state lies on the essence that we choose a
proper basis from all MUBs as the “proper” diagonal basis,
then separately measure the diagonal and off diagonal in
standard and shadow measurements. The “proper” basis is
chosen such that the constant overlap 〈O0〉U,b = 
(1) in
Observation 1 can be avoided in the shadow estimation.
In general, one would like to measure a complex observ-
able, spanning quite a few different MUBs. This situation
makes the selection of the “proper” basis frustrating, and
this motivates us to consider the biased MCM in the next
section.

VI. BIASED-MCM SHADOW ESTIMATION

In this section, we further propose the biased-MCM
scheme as an extension and enhancement of the off-
diagonal advantage discussed in the previous section.

In the off-diagonal advantage, a reference basis is cho-
sen deterministically in some sense, compared to the other
bases that are selected randomly. Here, by leveraging prior
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knowledge about the observable to be predicted, we extend
this kind of unbiased treatment to another framework that
samples MUB elements with varying probabilities. Intu-
itively, one can increase the probability of choosing some
basis if it can reveal more information about the underlying
observable. Note that there are biased schemes for Pauli
measurements [17,18], but none for Clifford measure-
ments, on account of the large cardinality of the Clifford
group. Here our MCM approach makes the biased scheme
possible for Clifford measurements.

Compared to the (uniform) MCM shadow, two modifi-
cations are made as follows. First, instead of being sampled
uniformly, now a unitary U ∈ EMUB is sampled with a
given probability PU. Second, the formula of postprocess-
ing is changed to

Ô0 = tr(O0
U†|b〉〈b|U

PU
), (17)

with the estimator of O as Ô = Ô0 + 2−ntr(O). We demon-
strate the unbiasedness of Ô in Appendix D 1.

In general, an arbitrary observable can be decomposed
into MUBs as [53,57]

O = −tr(O)I +
∑

U∈EMUB

∑

b∈{0,1}n

αU,b�U,b, (18)

where αU,b = tr(O�U,b) with �U,b = U†|b〉〈b|U. Based
on this canonical decomposition, we analytically find the
“optimal” probability distribution to conduct biased MCM.
Here optimal means that we can find a solution to opti-
mize the upper bound of the variance in the estimation. In
particular, we choose

PU = BU∑
U′∈EMUB

BU′
, (19)

with

BU : = max
b∈{0,1}n

|tr(�U,bO0)|

= max
b∈{0,1}n

|αU,b − 2−ntr(O)|. (20)

Based on the biased-MCM approach according to the opti-
mal probability for sampling unitaries in Eqs. (19) and
(20), we show the following upper bound of estimation
variance.

Theorem 3. For an observable O, if one applies the
biased-MCM shadow estimation using the sampling prob-
ability PU given in Eq. (19), the variance of estimation is

upper bounded by

Varbiased−EMUB(Ô) ≤
⎛

⎝
∑

U∈EMUB

BU

⎞

⎠
2

≤ D(O0)
2, (21)

where D(A) := 2−n∑
P∈Pn

|tr(PA)| is defined as the stabi-
lizer norm [37].

The proof is in Appendix D 2. Here we utilize a norm of
nonstabilizerness (magic) [37] to evaluate the estimation
variance of shadow estimation, along a similar line with
Theorem 2 about quantum coherence, is also a measure
of quantum resource [38,39,58]. In particular, for O = ρ

being some quantum state, D(O0) = D(ρ) − 1/d, where
D(ρ) serves as a lower bound of the robustness of magic,
a key measure of nonstabilizerness that quantifies the com-
plexity of classical simulation cost [38]. Therefore, any
observable with a constant or polynomial magic can be
estimated with a feasible sample complexity if utilizing
biased MCM.

For biased MCM, an additional expense for classical
computation complexity is to sample unitary U and to com-
pute the probability PU, which unfortunately tends to be
exponentially hard. However, inspired by Ref. [59], a solu-
tion to stabilizer states is given, where the unitaries U can
be efficiently sampled and PU can be efficiently calculated,
with the estimation variance being reduced to constant.
More details on efficient sampling and computing PU are
left to Appendix D 5.

We further provide the variance results for the case
where the observable O is a stabilizer state in the follow-
ing Proposition 4, by applying the interesting properties as
shown in Lemma 2.

Proposition 4. Suppose the observable is O = V†|0〉〈0|V
for any Clifford unitary V, one has

Varbiased−EMUB(Ô) ≤ 1, (22)

by applying the biased-MCM with the optimized probabil-
ity given in Eq. (19). Particularly, when the quantum state
ρ = O.

Varbiased−EMUB(Ô) = 0. (23)

The proof is left to Appendix D 4.

Lemma 2. Suppose the observable O = V†|0〉〈0|V,
where V is an arbitrary Clifford, then the element of the
canonical MUB decomposition αU,b = 〈b|UV†|0〉|2 satis-
fies

∑

U∈EMUB

max
b

αU,b = 2. (24)

Furthermore, suppose the Z tableau of UV† is TUV† =
[C, D], the distribution of αU,b for different b ∈ {0, 1}n are
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(a) (b)

(c) (d)

avg:–0.44

avg:–0.02

FIG. 5. The statistical variance of shadow estimation with the
total number of snapshots N = 10 000 using Clifford measure-
ment (green), MCM (red), and biased MCM (orange) in three
different scenarios. In (a), the quantum state ρ is parametered
as the phased-GHZ states |GHZ(θ)〉 = 1/

√
2[cos(θ/2)|0〉⊗6 +

sin(θ/2)|1〉⊗6], with θ ∈ [0.1π , 0.9π ]. And the observable O
is set to be a six-qubit GHZ state. In (b), we estimate the
fidelity of a set of Haar random states ρi = �i for i ∈ [1, 100]
with some Clifford stabilizer O = �C. The variance is the aver-
age of these 100 cases. In (c) and (d), the observable O =
[cos(θ/2)X + sin(θ/2)Z]⊗n and the state ρ = |0〉〈0|, with n = 6
and θ ∈ [0.1π , 0.9π ] in (c), and in (d) the lines representing
θ = 0.1 to 0.5 from bottom to top. The dotted lines in (d) show
the fitting curves with the numerical values, and the numbers on
the left top represent the corresponding slopes of these curves.

as follows: totally 2rU of them taking 2−rU and the remain-
ing 2n − 2rU being 0. Here rU = rankF2(C) on the binary
field.

This lemma characterizes the projection of the stabilizer
states to the MUBs, which is of independent interest. And
the proof is left to Appendix D 3.

In addition, we numerically demonstrate the variance of
estimating observables through different estimation pro-
tocols as shown in Fig. 5. Figure 5(a) showcases the
significant sampling advantage of the biased MCM by
considering the fidelity estimation of GHZ-like states. In
particular, when ρ = O = |GHZ〉〈GHZ| at θ = 0.5π , the
variance disappears. Specifically, in Fig. 5(b), we ran-
domly generate 100 quantum states E = {|�i〉}100

i=1 accord-
ing to the Haar measure, along with one Clifford stabilizer
state |�C〉. Then we estimate the fidelity with O = �C
as tr(�i�C) = |〈�i|�C〉|2 via different shadow protocols.

The experimental result as an average from these 100
experiments highlights a constant advantage of the biased
MCM over other protocols. Moreover, the estimation vari-
ance of the observable O = [cos(θ/2)X + sin(θ/2)Z]⊗n is
discussed in (c) and (d). The stabilizer norm of observables
shows D(O0)

2 = (1 + sin θ)n, and it grows exponentially
with a base of 2 when θ = 0.5π , which is supported by the
numerics in Fig. 5(d).

Note that the observable O in Eq. (18) is a linear
combination of several rank-1 projections �U,b. In this
framework, the role of projections �U,b in biased MCM
can be considered as a mimic of Pauli terms in local-biased
shadow estimation [18].

VII. CONCLUSION AND OUTLOOK

In this work, we propose the MCM shadow framework
to simplify the original Clifford measurement to the great-
est extent. By applying the canonical MUB and the tableau
formalism, we give an explicit and efficient method to syn-
thesize the random unitary ensemble, where the budgets
of both the circuit synthesizing and the experimental real-
ization are reduced. For example, the quantum circuit can
be realized in the platforms with the all-to-all architec-
tures, such as the Rydberg atoms with optical tweezers [60]
and the trapped-ion system [50]. The performance analysis
shows the limits and advantages of MCM shadow, espe-
cially in estimating off-diagonal observables. The updated
biased-MCM shadow protocol adjusts the sampling prob-
ability of the random Clifford circuit based on the target
observable, which can further enhance the performance of
the framework.

From the framework presented here, there are a few
intriguing directions to explore in the future. First, it is very
interesting to apply the MCM shadow to detect multipar-
tite entanglement [61,62], as genuine entanglement [63,64]
and more detailed structures [65–67] can be revealed by
the fidelities to some target entangled states. Second, the
quantum circuit structure is mainly determined by the Z
tableau according to the selection of MUBs. It is thus very
worth studying how different circuit architectures [68] and
ensemble definitions [69–71] would enhance the perfor-
mance of the whole shadow protocol. In addition, it is
worth exploring the performance of MCM on near-term
noisy quantum platforms using quantum error mitigation
techniques [72], such as the robust shadow method [73,74],
considering the specific structure of our quantum circuits.
Third, in the biased-MCM, we need the projection results
of the target observables to all MUBs. Consequently, it is
pivotal to develop additional adaptive or real-time meth-
ods to ease this [75,76], and find applications where the
decomposition on MUB is of polynomial terms, like the
Pauli operator summation for general Hamiltonian. Fourth,
it is possible to extend our MCM to higher-dimensional
systems, where the existence of MUB is not fully known
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[46]. Finally, the extension to boson and fermion systems
[77–79] with a similar spirit of MCM is also intriguing.
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APPENDIX
In this Appendix, we provide the proofs, additional dis-

cussions, and generalizations of the results presented in the
main text. In Appendix. A, we prove Lemma 1 and Propo-
sition 1 from the main text. Moving on to Appendix. B,
we offer further details and examples on mutually unbiased
bases and the circuit synthesis. Appendix C discusses the

variance of estimation and we also show two applications
of MCM-shadow estimation. Finally, in Appendix D, we
provide the details and proofs of the main results of biased
MCM.

APPENDIX A: MINIMAL UNBIASED CLIFFORD
SUBSET

1. Proof of Lemma 1

Proof. First, we define the matrix Zm =⊗n−1
i=0 Zi

mi with
m an n-bit binary vector. Hence

Zm =
n−1⊗

i=0

Zi
mi =

n⊗

i=1

|0〉〈0| + (−1)mi |1〉〈1|

=
∑

b∈{0,1}n

(−1)m·b|b〉〈b|, (A1)

where b is also an n-bit binary vector. Reversely, we have

1
2n

∑

m∈{0,1}n

(−1)b·mZm = 1
2n

∑

m∈{0,1}n

(−1)b·m ∑

m′∈{0,1}n

(−1)m′·m|m′〉〈m′|

= 1
2n

∑

m,m′∈{0,1}n

(−1)m·(b+m′)|m′〉〈m′|

= 1
2n

∑

m′=b,m

|m′〉〈m′| + 1
2n

∑

m′ �=b,m

(−1)m·(b+m′)|m′〉〈m′|

= |b〉〈b| + 1
2n

∑

m′ �=b

|m′〉〈m′|
∑

m

(−1)m·(b+m′)

= |b〉〈b|. (A2)

After that, we define �U,b = U†|b〉〈b|U, thus we have

�U,b = 1
2n

∑

m∈{0,1}n

(−1)b·mSm. (A3)

Now we can compute that

M(ρ | U) =
∑

b∈{0,1}n

tr
[
ρU†|b〉〈b|U]U†|b〉〈b|U

= 1
22n

∑

b∈{0,1}n

⎡

⎣
∑

m∈{0,1}n

(−1)b·mSm

⎤

⎦

⎡

⎣
∑

m′∈{0,1}n

(−1)b·m′
tr(ρSm′)

⎤

⎦

= 1
22n

∑

b∈{0,1}n

⎡

⎣
∑

m,m′∈{0,1}n

Smtr(ρSm′)(−1)(m+m′)·b

⎤

⎦
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= 1
22n

∑

m,m′∈{0,1}n

Smtr(ρSm′)
∑

b∈{0,1}n

(−1)(m+m′)·b

= 1
22n

∑

m,m′∈{0,1}n

Smtr(ρSm′)
n−1∏

i=0

[
1 + (−1)mi+mi

′]

= 1
22n

∑

m=m′
Smtr(ρSm′)

n−1∏

i=0

[
1 + (−1)mi+mi

′] = 2−n
∑

m∈{0,1}n

Smtr(ρSm). (A4)

�

2. Proof of Proposition 1

Proof. Firstly, the representation of MCl is converted to

ρ = 2n + 1
|E |

∑

U∈E
M (ρ | U) − I = 1

2n

∑

σ∈Pn

tr (ρσ) σ . (A5)

By introducing Lemma 1, we have M (ρ | U) = (1/2n)∑
m�=0

Smtr (ρSm) + (1/2n)I. Then we obtain that

2n + 1
|E |

∑

U∈E

∑

m�=0

tr (ρSm) Sm =
∑

σ∈Pn∗

tr (ρσ) σ . (A6)

Equation (A6) must be satisfied for all quantum state ρ.
If |E | < 2n + 1, there exists σ ∈ Pn

∗ that for all m �= 0
and U ∈ E , σ �= Sm. Then let ρ = (σ + I)/2n, we have
0 = σ , which is obviously a paradox! Therefore, |E | ≥
2n + 1. �

APPENDIX B: MUTUALLY UNBIASED BASES
AND CIRCUIT SYNTHESIS

1. Introduction to Galois field

The example of minimal unbiased Clifford subset
employs the construction of mutually unbiased bases.
Here, we first introduce the concept of Galois field GF(2n)
as a mathematical tool to explain Eq. (8).

A Galois field GF (2n) has 2n elements, which can be
represented in the row vector form or polynomial form.

a = (a0, a1, . . . , an−1) or a =
n−1∑

i=0

ai2i, (B1)

where ai is a binary number. So a GF (2n) element is
also associated with a number from 0 to 2n − 1 in the
polynomial form.

There are two operations in a Galois field GF (2n), the
addition and the multiplication. Both of them can only
be performed on two elements that belong to the same
Galois field. All binary additions below are actually the
XOR operations.

Galois-field addition is relatively simple. Let a and b be
two elements in the Galois field. The addition is defined as

a ⊕ b = (a0 ⊕ b0, a1 ⊕ b1, . . . , an−1 ⊕ bn−1)

=
n−1∑

i=0

(ai ⊕ bi)2i. (B2)

To perform Galois-field multiplication correctly and
ensure unique results, it is necessary to use irreducible
polynomials. There are several efficient algorithms avail-
able [80,81] for generating these polynomials. An irre-
ducible polynomial in binary format with (n + 1) bits is
represented by Pn = 2n +∑n−1

i=1 ci2i + 1, and the multi-
plication of the GF (2n) elements a and b is defined
as

a � b =
n−1∑

k=0

ai2i ×
n−1∑

i=0

bi2i mod Pn. (B3)

For example, an irreducible polynomial for GF (22) is
P2 = 22 ⊕ 2 ⊕ 1, then 2 � 2 = 22 mod P2 = 2 ⊕ 1 = 3.
It is easy to prove that the addition and multiplication in
a Galois field satisfy the property of commutativity and
associativity, respectively, and they satisfy the distributive
law with each other [46].

After introducing the fundamental operation of Galois
field, we introduce the definition of the matrix M (j )

n in
Eq. (8) in the main text. M (j )

n is a symmetric matrix origi-
nally introduced for easy computation of the multiplication
in the Galois field. It is originally defined to calculate
the multiplication of GF(2n) elements in the matrix form.
Generally, for GF(2n) elements a, b, we have

[a � b]j = aM (j )
n bT. (B4)

The calculation method for matrix M (j )
n is as fol-

lows. First, we define 2k mod Pn = (�k,0, �k,1, . . . , �k,n−1),
k = 0, 1, . . . , 2n − 2 and construct a (2n − 1) × n binary
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matrix �n:

�n =

⎛

⎜⎜⎜⎝

�0,0 �0,1 . . . �0,n−1

�1,0 �1,1
. . .

...

. . .
. . . . . . �n−1,n−1

�2n−2,0 . . . �2n−2,n−2 �2n−2,n−1

⎞

⎟⎟⎟⎠ . (B5)

According to the definition of �n, the first n rows of
the elements in �n is easily computed, and the n th row
of �n contains the coefficients of the irreducible poly-
nomial Pn. there exists a certain recursive relationship
between the elements in later rows, which can be listed
as follows:

�i,j =

⎧
⎪⎨

⎪⎩

δi,j i = 0, 1, . . . , n − 1
�n,j i = n
(1 − δj ,0)�i−1,j −1 + �n,j �i−1,n−1 i = n + 1, . . . , 2n − 2,

(B6)

where �n,j denotes the j th coefficient of Pn. We can extract
the elements in a certain column of �n to form a symmet-
ric matrix M (j )

n , where j is the column number, and the
elements in the matrix satisfy

[M (j )
n ]p ,q = �(p+q),j . (B7)

2. Further details on mutually unbiased bases

In fact, Eq. (8) in the main text is basically a rewrite of
the construction of the MUB in Ref. [46]. Here we give
a brief introduction to the property of this EMUB. Suppose
the first element of EMUB is I. For the next 2n element, we
define the v th element of EMUB is Uv , and Uv is generated
by 2n Paulis. Hence we define a Pauli Sm,v = U†

vZmUv ∈
Pn, where m is an n-bit binary vector, and mi represents
the i th bit of m.

Notice that Pauli matrices {Sm,v}m∈{0,1}n form a maxi-
mally commuting set (MCS) [82] and therefore can gener-
ate Clifford elements. Thus, we show an interesting fact as
follows.

Observation 2. Pn
∗ = {S | S = U†ZmU, U ∈ EMUB,

m �= 0}.

Proof. Firstly, we define X (a), Z(a), respectively, as

X (a) =
2n−1∑

k=0

|k ⊕ a〉〈k|,

Z(a) =
2n−1∑

k=0

(−1)k�a|k〉〈k|.
(B8)

If v and m =∑n−1
k=0 mk2k are viewed as two GF(2n) ele-

ments, the Pauli matrices can be specified as

Sm,v = ωv
mX (m)Z(m � v). (B9)

Equation (B9) is actually a rewrite of Eq. (2.54) in
[46], where the parameters ωv

m ∈ {±1, ±i}, and Sm,v ∈
Pn. If m1 = m2 = 0, then Sm1,v1 = Sm2,v2 , else Sm1,v1 =
Sm2,v2 = I if and only if m1 = m2 �= 0, v1 = v2. Conse-
quently, the set {Sm,v | m �= 0, v = 0, 1, . . . , 2n − 1} have
(2n − 1)2n distinct Paulis. Compared with Pn

∗, the set is
still short of 2n − 1 elements, which happen to be the
nonidentity generators of I: {Zm}m�=0. This is because
Sm,v = U†

vZmUv , Uv �= I. Hence the union of nonidentity
generators of MUB elements forms the set Pn

∗. �

Observation 3.

1
|EMUB|

∑

U∈EMUB

M(ρ | U) = MCl(ρ), ∀ ρ.

Proof. We can use Lemma 1 to decompose these Clif-
fords.

1
|EMUB|

∑

U∈EMUB

M(ρ | U)

= 1
2n + 1

∑

U∈EMUB

M (ρ | U)

= 1
2n(2n + 1)

∑

U∈EMUB

∑

m�=0

[Sm,vtr
(
ρSm,v

)+ I]

= 1
2n + 1

[
1
2n

∑

σ∈Pn

σ tr(ρσ)

]
+ I

2n + 1

= ρ + I

2n + 1
= MCl(ρ). (B10)

�

3. Introduction to the Z tableau

Here, we introduce the language of tableau [40]. An
n-qubit Clifford element can be specified with four n × n
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binary matrices (α, β, γ , δ) and two n-dimensional binary
vectors (r, s), such that

U†XiU = (−1)ri

n−1∏

j =0

X
αij

j Z
βij
j & U†ZiU

= (−1)si

n−1∏

j =0

X
γij

j Z
δij
j . (B11)

The matrix Xi, Zi are, respectively, defined as a Pauli
matrix with X applied to the i th qubit, and as a Pauli
matrix with Z applied to the i th qubit. The parameters form
a 2n × (2n + 1) binary matrix, which is called the tableau
of a Clifford element

(
[αi,j ]n×n
[γi,j ]n×n

[βi,j ]n×n
[δi,j ]n×n

[ri,j ]n×1
[si,j ]n×1

)
. (B12)

According to Lemma 1, if we substitute Clifford elements U with the parameters (γ , δ) shown above, we still have the
same M(ρ | U). Following this thread, we develop an n × 2n binary matrix called the Z-tableau matrix

⎛

⎜⎜⎜⎝

γ0,0 γ0,1 . . . γ0,n−1 δ0,0 δ0,1 . . . δ0,n−1

γ1,0 γ1,1
. . .

... δ1,0 δ1,1
. . .

...

. . .
. . . . . . γn−2,n−1

...
. . . . . . δn−2,n−1

γn−1,0 . . . γn−1,n−2 γn−1,n−1 δn−1,0 . . . δn−1,n−2 δn−1,n−1

⎞

⎟⎟⎟⎠ . (B13)

According to the Gottesman-Knill theorem [48], Clif-
ford circuits consist of three fundamental quantum gates:
the Hadamard gate, the phase gate, and the CNOT gate, and
can be efficiently simulated by classical computers in poly-
nomial time. This means that the action of the three gates
in U from U†ZiU can be expressed in terms of changes to
the elements in the Z tableau.

Now Clifford circuit I corresponds to the Z tableau
[O, I], since I

†ZiI =∏n−1
j =0 X

γij =0
j Z

δij =δi,j
j . Moreover, it can

be inferred that if a Clifford circuit U can transform the Z
tableau from [C, D] to [O, I], then it is a Clifford circuit
that satisfies the condition U†ZiU =∏n−1

j =0 X
γij

j Z
δij
j .

4. Proof of Proposition 3

Proof. We use the following three equations to demon-
strate the proposition, where the first equation is deter-
mined by the property of the irreducible polynomial, and
the next two come from the recurrence relation in Eq. (B6).

• �n,0 = 1,
• �i+1,0 = �i,n−1,
• �i+1,j = �i,j −1 + �n,j �i,n−1(j ≥ 1).

By the definition of Hankel matrix, the linear com-
bination of Hankel matrices is also a Hankel matrix.
Considering that a GF(2n) element v can be represented
as v =∑n−1

i=0 vi2i, if a matrix Di is a Hankel matrix with
its j th row vector being (2i � 2j )M (0)

n , then Dv is also
a Hankel matrix. This is evident from the fact that Dv =∑n−1

i=0 viDi. The matrix Di is defined such that its j th
row vector corresponds to the (i + j ) th row vector of
the matrix �nM (0)

n . Consequently, if �nM (0)
n is a Hankel

matrix, all Di s are also Hankel matrices.
Let Mn = �nM (0)

n . The first n rows of Mn are equiva-
lent to M (0)

n , which is a Hankel matrix. We need to prove
that Mi,j = Mi−1,j +1, j = 0, 1, . . . , n − 2 for the remaining
elements. When i = n, we have

Mn,j =
n−1∑

k=0

�n,kM (0)

k,j =
n−1∑

k=0

�n,k�k+j ,0 =
n+j −1∑

k=n

�n,k−j �k,0

= �n,n−j +
n+j −1∑

k=n+1

�n,k−j �k,0

= �n,n−j +
n+j −1∑

k=n+1

�k,k−j − �k−1,k−j −1

= �n+j −1,n−1 = �n+j ,0 = Mn−1,j +1, (B14)
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when i ≥ n + 1, we have

Mi,j =
n−1∑

k=0

�i,kM (0)

k,j =
n−1∑

k=0

�i,k�k+j ,0 =
n+j −1∑

k=n

�i,k−j �k,0

=
n+j −1∑

k=n

�i−1,k−j −1�k,0 +
n+j −1∑

k=n

�n,k−j �i−1,n−1�k,0

= Mi−1,j +1 + �n+j ,0�i−1,n−1 + �n,n−j �i−1,n−1 +
n+j −1∑

k=n+1

�n,k−j �k−1,n−1�i−1,n−1

= Mi−1,j +1 + �n+j ,0�i−1,n−1 + �n,n−j �i−1,n−1 + �i−1,n−1(�n+j −1,n−1 − �n,n−j )

= Mi−1,j +1. (B15)

Therefore, we demonstrate that Mn is a Hankel matrix, then
by definition, the matrix Dv is also a Hankel. �

5. The n = 3 example of MUB

In this part, we give an example of EMUB in the n = 3
case, where the total number of elements is 9. The 0th ele-
ment of EMUB is undoubtedly I, and the rest of the eight
elements are constructed with the help of the Z-tableau
language. Suppose the Z tableau of the v th element is
[I, Dv], where v = 0, 1, . . . , 7. Equation (8) in the main text
shows that the j th row of matrix Dv is (v � 2j )M (0)

n . Since
v =∑2

i=0 vi2i, Dv can be rewritten as Dv =∑2
i=0 viDi,

where the j th row of matrix Di is (2j +i)M (0)

3 . Moreover,
considering (j + i) = 0, 1, . . . , 4. The binary matrix �n in
Eq. (B5) can be used to compute Di easily.

Here is an example for the case of n = 3, where P3 =
23 ⊕ 2 ⊕ 1. First, we compute �3 according to Eq. (B6)

�3 =

⎛

⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1

⎞

⎟⎟⎟⎠ . (B16)

FIG. 6. Illustrations of all nonidentity MCM circuits for n = 3,
with P3 = 23 ⊕ 2 ⊕ 1.

And M (0)

3 can be constructed from the first row of �3

M (0)

3 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ . (B17)

Therefore, we have the matrix

M3 = �3M (0)

3 =

⎛

⎜⎜⎜⎝

1 0 0
0 0 1
0 1 0
1 0 1
0 1 1

⎞

⎟⎟⎟⎠ , (B18)

and Di consists of the elements from the i th to (i + 2) th
row of matrix M3. Finally, we can conduct that

D0 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ D1 =
⎛

⎝
0 0 1
0 1 0
1 0 1

⎞

⎠

D2 =
⎛

⎝
0 1 0
1 0 1
0 1 1

⎞

⎠ , (B19)

and every Z-tableau matrix Dv can be decomposed as
Dv =∑2

i=0 viDi for v =∑2
i=0 vi2i. Notice that the choice

of Z tableau can also be variant considering the choice
of irreducible polynomials, and the transformation from Z
tableau to the Clifford circuit can be easily implemented
with a three-stage computation of −S − CZ − H−. The
corresponding Clifford circuits are illustrated in Fig. 6.

APPENDIX C: PERFORMANCE ANALYSIS OF
MCM SHADOW ESTIMATION

1. Variance of the estimation

First, we give a brief introduction to the variance of
shadow estimation. In this paper, when calculating the
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variance, we consider only the linear physical properties
and do not take into account the median-of-means method
in quantum shadow tomography. Let O be a fixed observ-
able, and ρ be the quantum state. After quantum shadow
tomography, the classical snapshot is denoted as ρ̂. And
the desired property Ô = tr(Oρ̂) should satisfy E(Ô) =
tr(Oρ). Let O0 = O − (tr(O)/2n)I, one can calculate its
variance as

Var(Ô) = E

[
(Ô − E(Ô))

2] = E

[
(tr(Oρ̂))

2
]

− (tr(Oρ))2

= E

[
(tr(O0ρ̂))

2
]

− (tr(O0ρ))2

= Etr[O0M−1(�U,b)]2 − (tr(O0ρ))2. (C1)

Note that (tr(O0ρ))2 is a fixed value, thus does
not require detailed discussion. On the other hand,
Etr[O0M−1(�U,b)]2 is related to the specific measurement
method, including the random measurement set E and the
channel function M,

Etr[O0M−1(�U,b)]2

= EU∈U
∑

b∈{0,1}n

〈b|UρU†|b〉〈b|UM−1(O0)U†|b〉2
.

(C2)

Here, we briefly introduce the theoretical upper limits of
the variance under two conventional methods, i.e., the
Clifford measurement and the Pauli measurement. The spe-
cific derivation can be found in Ref. [14]. For Clifford
measurement,

Etr[O0M−1(�U,b)]2 ≤ 3tr(O2). (C3)

And for Pauli measurement,

Etr[O0M−1(�U,b)]2 ≤ 4locality(O)||O||2∞, (C4)

where || · ||∞ is the spectral norm (or operator norm) of a
matrix, and locality(O) represents the number of nonunit
observables of each qubit in the observable O. Meanwhile,
it is noteworthy that for Clifford measurement, the average
upper bound is

EU∼ECl,ρ∼E tr[O0M−1(�U,b)]2

= 2n + 1
2n + 2

Eρ∼E(tr(ρ)tr(O2
0) + 2tr(ρO2

0))

= 2n + 1
2n + 2

(tr(O2
0) + tr(O2

0)/2n−1) = 2n + 1
2n tr(O2

0).

(C5)

And for Pauli measurement, define O = Õ ⊗ I
⊗n−k to

emphasize the local observables, and Õ =∑p αpPp where
Pp ∈ {I, X , Y, Z}⊗k, |p| denote the number of nonidentity

Paulis in Pp. The average upper bound is

EU∼E ,ρ∼EPauli tr[O0M−1(�U,b)]2 =
∑

p

α2
p3|p|. (C6)

2. Off-diagonal fidelity

In this section, we discuss four specific cases for the per-
formance of MCM and give proof for Theorem (2) in the
main text. After that, we use the example of fidelity estima-
tion to illustrate the connection between the off-diagonal
observables and the original observables. Here we provide
more details on the observation of the off-diagonal fidelity.
The four specific cases are listed as follows.

For U ∈ EMUB and b ∈ {0, 1}n, 〈ρ〉U,b = tr[ρ�U,b] ≥ 0,
〈O0〉U,b = tr[O0�U,b] �= 0. In the following discussion, if
there exists no extra clues, we assume 〈ρ〉U,b, 〈O0〉U,b =
O(2−n).

• Case I: There exists U ∈ EMUB and b ∈ {0, 1}n such
that both 〈ρ〉U,b, 〈O0〉U,b = 
(1). Then the upper
bound is Etr[O0M−1(�U,b)]2 = 
(2n).

• Case II: There exists U ∈ EMUB and b ∈ {0, 1}n,
such that 〈ρ〉U,b = 
(1), but 〈O0〉U,b = O(2−n).
Then the upper bound is Etr[O0M−1(�U,b)]2 =

(1).

• Case III: There exists U ∈ EMUB and b ∈ {0, 1}n,
such that 〈O0〉U,b = 
(1), but 〈ρ〉U,b = O(2−n).
Then the upper bound is Etr[O0M−1(�U,b)]2 =

(1).

• Case IV: For all U ∈ EMUB and b ∈ {0, 1}n,
〈O0〉U,b = O(2−n) as well as 〈ρ〉U,b = O(2−n). Then
the upper bound is Etr[O0M−1(�U,b)]2 = 
(1).

These four cases are based on the hypothesis that tr(O2
0)

is constant, which is satisfied when estimating fideli-
ties. The proofs of the four cases are demonstrated as
follows.

Case I:

Proof. We set a1 ≤ 〈ρ〉U,b ≤ b1,a2 ≤ 〈O0〉U,b ≤ b2.

Etr[O0M−1(�U,b)]2

= (2n + 1)
∑

U∈EMUB

∑

b∈{0,1}n

tr[O0�U,b]2tr[ρ�U,b]

≥ (2n + 1)a2
2a1. (C7)

Since the upper bound is generally O(2n), then it is neces-
sarily 
(2n). �
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Case II:

Proof. We set 〈O0〉U,b ≤ (a/2n) for all U, b,

Etr[O0M−1(�U,b)]2

= (2n + 1)
∑

U∈EMUB

∑

b∈{0,1}n

tr[O0�U,b]2tr[ρ�U,b]

≤ (2n + 1)
∑

U∈EMUB

a2

4n

∑

b∈{0,1}n

tr[ρ�U,b]

= (2n + 1)2a2

4n ∼ O(1). (C8)

�

Case III:

Proof. We set 〈ρ〉U,b ≤ (b/2n) for all U, b,

Etr[O0M−1(�U,b)]2

= (2n + 1)
∑

U∈EMUB

∑

b∈{0,1}n

tr[O0�U,b]2tr[ρ�U,b]

≤ b(2n + 1)

2n

∑

U∈EMUB

∑

b∈{0,1}n

tr[O0�U,b]2. (C9)

Now the equation is at the same scale with the average
upper bound of minimal Clifford measurement. �

Case IV:

Proof. The conclusion is easy to proof since the scale of
the upper bound in this case is certainly smaller than that
of both case II and case III. �

Here is the proof of Theorem 2.

Proof. For observable O0 = OF =∑b1 �=b2
Ob1,b2∣∣�U,b1

〉 〈
�U,b2

∣∣, Eq. (C2) can be written as

Etr[O0M−1(�U′,b)]2 = (2n + 1)
∑

U′∈EMUB,b

tr[O0�U′,b]2tr(ρ�U′,b)

= (2n + 1)
∑

U′∈EMUB,b

tr

⎡

⎣
∑

b1 �=b2

Ob1,b2

∣∣�U,b1

〉 〈
�U,b2

∣∣�U′,b

⎤

⎦
2

tr(ρ�U′,b)

= (2n + 1)
∑

U′∈EMUB,b

∑

b1>b2

[
Ob1,b2〈�U′,b|�U,b1〉〈�U,b2 |�U′,b〉

+ Ob2,b1〈�U′,b|�U,b2〉〈�U,b1 |�U′,b〉
]2 tr(ρ�U′,b). (C10)

After reviewing the definition of MUB [46], we have

〈�U′,b|�U,b1〉 =
⎧
⎨

⎩

δb,b1 , U′ = I

1√
2n

eiθb,b1 , U′ �= I
, 〈�U′,b|�U,b2〉 =

⎧
⎨

⎩

δb,b2 , U′ = I

1√
2n

eiθb,b2 , U′ �= I
, (C11)

where θb,b1 , θb,b2 are phases for certain U, U′. Then,

Ob1,b2

〈
�U′,b

∣∣�U,b1

〉 〈
�U,b2

∣∣�U′,b
〉+ Ob2,b1

〈
�U′,b

∣∣�U,b2

〉 〈
�U,b1

∣∣�U′,b
〉

= 1
2n

[
Ob1,b2ei(θb,b1−θb,b2 ) + Ob2,b1ei(θb,b2−θb,b1 )

]

≤ 1
2n

(|Ob1,b2 | + |Ob2,b1 |
)

. (C12)

Now since
∑

b∈{0,1}n tr(ρ�U′,b) = 1, we can conclude that
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Etr[O0M−1(�U′,b)]2

≤ 2n + 1
(22n)

∑

U′ �=I

∑

b∈{0,1}n

⎛

⎝
∑

b1 �=b2

|Ob1,b2 |
⎞

⎠
2

tr[ρ�U′,b]

= 2n + 1
2n (Cl1(O))2, (C13)

where Cl1(O) =∑b1 �=b2
|Ob1,b2 | denotes the l1 norm of

quantum coherence [54]. Therefore, the scale of the the-
oretical upper bound is no larger than that of the norm if
the norm remains a constant level. �

Finally, we introduce the off-diagonal fidelity as the
observable in our numerical simulation. We define the
observable O(a) = a(|0〉〈1|⊗n + |1〉〈0|⊗n) + (1 − a)(|0〉
〈0|⊗n + |1〉〈1|⊗n). It shows that when a = 0, O(a) turns
to the off-diagonal fidelity, and when a = 0.5, O(a) turns
to the fidelity of the GHZ state. Therefore, we build a
connection between the fidelity and off-diagonal fidelity.

As is shown in Fig. 7, the fitting curve in a ≥ 0.2 is
approximately straight, with a slope of 0.5. However in
a = 0, the variance can be considered as a constant. The
sudden transformation of the variance with the parameter a
demonstrates the tremendous impact of the diagonal terms
on the variance itself, especially when the qubit number
increases. This is because the diagonal terms of the observ-
able make an exponential contribution to the variance with
the qubit number. Hence the significance of dividing the
off-diagonal part is demonstrated.

3. Example 1: Estimating local observables with MCM

In this example, we focus on the observable being a
k-local operator Ok = O(θ)⊗k ⊗ I

⊗(n−k), where O(θ) =
cos(θ)Z + sin(θ)X , and the processed state ρ = (|0〉 〈0|)⊗n

with the qubit number n = 8. We compare numerically
the performance of estimating such an observable using
our MCM approach with the Clifford and Pauli measure-
ment as shown in Fig. 8. Note that each experiment repeats
N = 10 000 trials.

We find that the performance of the MCM protocol
behaves almost the same as the Clifford measurement.
Specifically, the estimation variance of Pauli measurement
grows exponentially with the locality number k, while
the other two remain constant. Figure 8(c) shows that the
intersection point of these three approaches lies in around
k = 5. Moreover, the variance of single Pauli observables
in our approach can be theoretically computed. Gener-
ally, we have O = O0 = P, where P is a nonidentity Pauli
matrix. For any MUB, there exists a Clifford element V and
an n-bit binary vector b′ such that V†Zb′V = P. Thus, we

Qubit number

FIG. 7. The statistical variance of shadow estimation with
N = 10 000 using MCM with different parameters a.

have

Etr[O0M−1(�U,b)]2 = (2n + 1)

⎛

⎝
∑

U �=V

+
∑

U=V

⎞

⎠

×
∑

b∈{0,1}n

(〈b|UPU†|b〉)2〈b|UρU†|b〉. (C14)

After reviewing Eq. (A1) and knowing that b′ �= 0, we
have

〈b|UPU†|b〉 = 〈b|UV†Zb′VU†|b〉

= 1
2n

∑

l∈{0,1}n

(−1)l·b′ 〈b|UV†|l〉〈l|VU†|b〉

=
{

0, U �= V
(−1)b·b′

, U = V.
(C15)

Therefore, Eq. (C15) can be converted to Etr[O0M−1

(�U,b)]2 = 2n + 1, which grows exponentially with the
qubit number. On the other hand, the theoretical bound
of the Clifford variance is at a scale of tr(O2), which is
also O(2n). The theoretical result shows that the variance
of both approaches grow with the same scale of the qubit
number, and the numerical result shows that at a wider
range, the performance of the Clifford measurement and
the MCM are almost the same.

4. Example 2: Haar random fidelities

In this example, we utilize the random fidelities
to access the average performance of different ran-
dom measurements. The procedure for the simulation
experiments is as follows. First we randomly generate 100
quantum states, denoted as E = {|�i〉}100

i=1 on the Haar mea-
sure, then we select the first state as the observable to esti-
mate the fidelity |〈�1|�i〉|2 through shadow tomography.
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(a) (b) (c)

(d) (e) (f)

FIG. 8. The statistical variance of estimating local observable through Pauli measurement (blue), Clifford measurement (green), and
our MCM approach (red), respectively, with N = 10 000. In (a)–(d), we investigate the dependence of log2

√
Var with the phase factor

θ in the observable Ok, with locality k = 1, 3, 5, 7, respectively. In (e),(f), we show the dependence of the estimation variance with the
locality k, with θ = 0, π/2, respectively. The dotted lines in (e),(f) show the fitting curves and the corresponding slopes of these cases.

This process is repeated 10 000 times, and the logarithmic
variance is calculated to evaluate the performance of the
random measurements. Due to the property of Haar mea-
sure, the expectation Eρ∼E = I/2n, which indicates that the
variance of our approach in estimating random quantum

Qubit number

FIG. 9. The statistical variance of shadow estimation with
N = 10 000 using Pauli measurement (blue), Clifford measure-
ment (green), and MCM protocol (red), respectively. The dotted
lines show the fitting curves and the corresponding slopes of the
logarithmic variance of these cases.

states is on the same scale as the Clifford measurement.
This is illustrated in Fig. 9.

APPENDIX D: BIASED-MCM SHADOW
ESTIMATION

1. The unbiasedness of the estimator

In this section, we prove the unbiasedness of the esti-
mator shown in the main text. Here we assume that all
the probability PU �= 0 for all possible U ∈ EMUB. By
definition,

EU,bÔ0 =
∑

U∈EMUB,b

〈O0〉U,b

PU
· PU · 〈ρ〉U,b

=
∑

U∈EMUB,b

〈O0〉U,b〈ρ〉U,b

= tr(O0ρ) + tr(O0)tr(ρ) = tr(O0ρ), (D1)

where in the third line we apply the 2-design of MUB as
that for Eq. (14) in the main text. It is clear that Ô = Ô0 +
2−ntr(O) is also unbiased by some constant shift.
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2. Proof of Theorem 3

Here we calculate the variance of the estimator in this
section. By definition,

Varbiased−EMUB(Ô) = Varbiased−EMUB(Ô0)

= EÔ0
2 − Ō0

2
. (D2)

By maximizing on possible unknown state ρ, the first term
is bounded by

EU,bÔ0
2 ≤ max

ρ
EU,bÔ0

2

= max
ρ

EU,b
〈O0〉2

U,b

PU
2

= max
ρ

∑

U

∑

b

〈O0〉2
U,b

PU
2 × PU × 〈ρ〉U,b

= max
ρ

∑

U

∑

b

〈O0〉2
U,b〈ρ〉U,b

PU
. (D3)

Considering the constraint that
∑

b 〈ρ〉U,b = 1, for a fixed
U, one can further bound it using the maximal term of
〈O0〉2

U,b, and finally has

Varbiased−EMUB(Ô) ≤
∑

U∈EMUB

maxb∈{0,1}n 〈O0〉2
U,b

PU
. (D4)

And our optimization problem on this upper bound is as
follows:

min PU :
∑

U∈EMUB

maxb∈{0,1}n 〈O0〉2
U,b

PU
,

such that:
∑

U∈EMUB

PU = 1.
(D5)

Using the Lagrange dual method, the solution to
this problem is (

∑
U∈EMUB

BU)2, and the correspond-
ing PU = BU/

∑
U′∈E BU′ , with BU being short for

maxb∈{0,1}n |〈O0〉U,b|. For the observable that is decom-
posed in the canonical form in Eq. (18) in the main text,
one has 〈O0〉U,b = αU,b − 2−ntr(O).

The optimal solution can be further simplified to the
following form:

∑

U∈EMUB

BU =
∑

U∈EMUB

max
b∈{0,1}n

|tr(O0�U,b)|

=
∑

U∈EMUB

max
b∈{0,1}n

∣∣∣∣∣∣
2−n

∑

m∈{0,1}n

(−1)b·mtr(SmO0)

∣∣∣∣∣∣

≤
∑

U∈EMUB

2−n
∑

m∈{0,1}n

|tr(SmO0)|

= 2−n
∑

P∈P∗
n

|tr(PO0)| =: D(O0). (D6)

Here in the second line, we express the state �U,b by its sta-
bilizers using Eq. (A3), and the third line is by the fact that
MUBs can cover all the Paulis, and also tr(IO0) = 0. The
final line we use the definition of stabilizer norm [37]. As
a result, the optimal solution is upper bounded by D(O0)

2.
We also remark that D(O0) = D(O) − |tr(O)|/d.

Some remarks on the possibility of PU = 0. Suppose for
some U, PU = 0 and we have maxb∈{0,1}n |〈O0〉U,b| = 0.
That is, 〈O0〉U,b = 0, ∀b under this U. Let us denote the
set with PU �= 0 as E ′ ⊂ EMUB. We show as follows that
the possibility of PU = 0 does not affect the unbiasedness
proved in Appendix D 1. In particular, for Eq. (D1), we can
rewrite its second line by only summing the unitary in E ′,

EU,bÔ0 =
∑

U∈E ′,b
〈O0〉U,b〈ρ〉U,b

=
∑

U∈EMUB,b

〈O0〉U,b〈ρ〉U,b = tr(ρO0), (D7)

where in the second line we extend the range of summation
on U by the fact that when U ∈ EMUB/E ′, 〈O0〉U,b = 0, ∀b.

3. Proof of Lemma 2

First, we prove the first property as follows.

Proof.

αU,b = 〈0|VU†|b〉〈b|UV†|0〉

= 1
2n

∑

m∈{0,1}n

(−1)m·b〈0|VU†ZmUV†|0〉. (D8)

According to Observation 2, we have
⋃

U∈EMUB

{U†ZmU}m�=0 = Pn
∗. And by the definition of Clifford,

rotate a Clifford and we have
⋃

U∈EMUB
{|VU†ZmUV†|}m�=0

= Pn
∗. Also, the intersection of any two sets {|VU†Zm

UV†|}m�=0 is ∅.
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Suppose VU†ZmUV† = (−1)pU,mSU,m, where pU,m is a
binary indicator of phases, and SU,m is a Pauli string. Then

〈0|VU†ZmUV†|0〉 = (−1)pU,m × 1{SU,m � Z⊗n}. (D9)

A � Z⊗n [17] means that the Pauli string A consists of
solely I and Z. For example, IZ, ZI , ZZ � ZZ and XI � ZZ.
Generally αU,b can be rewritten as

αU,b = 1
2n

∑

m∈{0,1}n

(−1)m·b+pU,m × 1{SU,m � Z⊗n}

≤ 1
2n

∑

m∈{0,1}n

1{SU,m � Z⊗n}. (D10)

The inequality holds if and only if m · b + pU,m = 0 for
all m : {SU,m � Z⊗n}. Since m that satisfies these solutions
can form a group, where the solution for b must exist.
Therefore

max
b∈{0,1}n

αU,b = 1
2n

∑

m∈{0,1}n

1{SU,m � Z⊗n}

= 1
2n + 1

2n

∑

m�=0

1{SU,m � Z⊗n}. (D11)

And
∑

U∈EMUB

max
b∈{0,1}n

αU,b = 2n + 1
2n + 1

2n

∑

S∈Pn∗

1{S � Z⊗n} = 2.

(D12)

�

Next, we prove the second property as follows.

Proof. In the beginning of the proof, we consider the Z
tableau of UV† : TUV† = [C, D]. We call several rowsum
operations in Ref. [40] to perform Gaussian elimination on
the matrix C. The result of the Gaussian elimination is the
Clifford W, whose matrix C is turned to the row simplest

form

(
C

′
rU×n

O

)
.

A plain conclusion is that call rowsum of Z tableau will
change only the order of summation in Eq. (D8), not the
value of αU,b. Therefore,

αU,b = 1
2n

∑

m∈{0,1}n

(−1)m·b〈0|W†ZmW|0〉

= 1
2n

∑

m′∈{0,1}n−rU

(−1)m′·b〈0|W†Zm′W|0〉. (D13)

The vector m′ = [0, . . . , 0, mrU , . . . , mn−1]. The equation
holds true because 〈0|W†ZmW|0〉 = 0 for all W†Zm′W that

is composed of more than {I, Z}, which is {W†Zm′W �

Z⊗n}. In this scenario, the first rU bits of m cannot be all
zero. Since W†Zm′W now consists of solely Z Paulis, we
set W†Zm′W =∏n−1

j =rU
(−1)pj mj Z

mj
j . Hence

〈0|W†Zm′W|0〉 = 〈0|
n−1∏

j =rU

(−1)pj mj Z
mj
j |0〉. (D14)

A special property for arbitrary Z-Pauli matrices Z1, Z2
is that 〈0|Z1Z2|0〉 = 〈0|Z1|0〉〈0|Z2|0〉. Hence the upper
formula can be further simplified to

〈0|W†Zm′W|0〉 = 〈0|
n−1∏

j =rU

(−1)pj mj Z
mj
j |0〉

=
n−1∏

j =rU

(−1)mj ·(pj +
∑n−1

k δjk), (D15)

where δjk is the element of matrix D in the Z tableau of W
(after Gaussian elimination). Now as a summarization,

αU,b = 1
2n

∑

m′∈{0,1}n−rU

(−1)m′·b〈0|W†Zm′W|0〉

= 1
2n

∑

m′∈{0,1}n−rU

(−1)m′·b
n−1∏

j =rU

(−1)mj ·(pj +
∑n−1

k δjk)

= 1
2n

∑

m′∈{0,1}n−rU

n−1∏

j =rU

(−1)mj ·(pj +
∑n−1

k δjk+bj )

= 1
2n

n−1∏

j =rU

1 + (−1)bj +pj +
∑n−1

k δjk

=

⎧
⎪⎨

⎪⎩
2−rU , bj + pj +

n−1∑

k

δjk = 0 for all j,

0, otherwise.

(D16)

Therefore, for any b ∈ {0, 1}n, αU,b has 2rU in 2−rU and the
remaining 2n − 2rU in 0. �

4. Proof of Proposition 4

Proof. Suppose for a single shot, the unitary rota-
tion is U ∈ EMUB and the measurement outcome is |b〉.
Before calculating the variance, we discuss the property
of the probability PU. According to the definition, PU =
BU/

∑
U′∈EMUB

BU′ . By introducing Eq. (D12), we conclude
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that
∑

U′∈EMUB

BU′ =
∑

U′∈EMUB

(max
b

αU,b − 2−n) = 1 − 2−n.

(D17)

By applying Eq. (21) in the main text, we calculate the
variance

Varbiased−EMUB(Ô) ≤
⎛

⎝
∑

U′∈EMUB

BU′

⎞

⎠
2

≤ 1. (D18)

A specific example is that for ρ = O are Clifford stabiliz-
ers, the variance is zero. Here we prove it.

Also according to Eq. (D16), maxb αU,b = 2−rU . Thus,
∑

U∈EMUB

2−rU = 2. (D19)

In this task, the result of each snapshot for U and b is
defined as

Ô = 〈O0〉U,b

PU
+ tr(O)

2n . (D20)

Hence the estimation is of no variance. Since O = ρ is a
stabilizer state, the result of αU,b has two options: 2−rU and
0, which also equals the probability of the result b being
measured. This means that the only possible result of αU,b
is 2−rU . As a result,

Var[Ô] = EU,b(Ô − 1)2

=
∑

U∈EMUB

PU

∑

b∈{0,1}n

〈ρ〉U,b

[ 〈O0〉U,b

PU
+ 2−n − 1

]2

=
∑

U∈EMUB

PU

∑

b∈{0,1}n

αU,b

[
αU,b − 2−n

BU/
∑

U′ BU′
+ 2−n − 1

]2

=
∑

U∈EMUB

PU

∑

b∈{0,1}n

αU,b

[
αU,b − 2−n

| maxb αU,b − 2−n| (1 − 2−n) + 2−n − 1
]2

=
∑

U∈EMUB

PU

∑

b∈{0,1}n

αU,b

[
αU,b − 2−n

| maxb αU,b − 2−n| (1 − 2−n) + 2−n − 1
]2

=
∑

U∈EMUB

PU2rU2−rU

[
2−rU − 2−n

2−rU − 2−n (1 − 2−n) + 2−n − 1
]2

= 0. (D21)

�

ALGORITHM 2. Find U ∈ EMUB for Pauli operator P with P � U.

(D22)
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5. Efficient sampling of PU for stabilizer states

The main content of this subsection is to introduce
a method to efficiently sample unitary U ∈ EMUB with
respect to PU defined in Eqs. (19) and (20) in the main
text for stabilizer states.

Initially, we give an algorithm to identify the unique U ∈
EMUB for a given Pauli operator P ∈ P∗

n, such that there
exists m ∈ {0, 1}n satisfying U†ZmU = P. And we denote
this relation as P � U.

Equation (D22) is indeed an explicit form of Dva = b
via Eq. (11), where a and b are vectors of parameters
{ai} and {bi}. The algorithm requires O(nω) (with ω <

2.375512) [83] complexity for solving a system of linear
equations [84].

After introducing Algorithm 2, we illustrate how to effi-
ciently sample Clifford stabilizers. For a stabilizer state
O = V†|0〉〈0|V, the sampling probability is

PU = BU∑
U′∈EMUB

BU′

= maxb∈{0,1}n αU,b − 2−n

1 − 2−n

= 1
2n − 1

∑

m�=0

1{VU†ZmUV† � Z⊗n}

= 1
2n − 1

∑

m�=0

1{U†ZmU � V} (D23)

on account of the definition of PU and Eq. (D11). There-
fore, the sampling protocol is as follows. First, sample a
nonidentity stabilizer PV of O with equal probability. Sec-
ond, find the sole MUB element U so that PV � U using
Algorithm 2.

Third, compute the probability

PU = 2−rU − 2−n

1 − 2−n (D24)

by Eq. (D16). Here rU = rankF2(C) on the binary field, and
the Z tableau of UV† is TUV† = [C, D].

In conclusion, the classical computation complexity for
each sampling process is O(n3).
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On mutually unbiased bases, Int. J. Quantum Inf. 8, 535
(2010).

[47] H. Zhu, Mutually unbiased bases as minimal Clifford
covariant 2-designs, Phys. Rev. A 91, 060301 (2015).

[48] D. Gottesman, in Proceedings of Symposia in Applied
Mathematics, Vol. 58 (2002), p. 221, https://arxiv.org/pdf/
quant-ph/0004072.pdf.

[49] G. Beliakov, On fast matrix-vector multiplication with a
Hankel matrix in multiprecision arithmetics, arXiv:1402.
5287.

[50] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D.
Zhu, D. Maslov, and C. Monroe, Parallel entangling oper-
ations on a universal ion-trap quantum computer, Nature
572, 368 (2019).

[51] S. Bravyi, D. Maslov, and Y. Nam, Constant-cost imple-
mentations of Clifford operations and multiply-controlled
gates using global interactions, Phys. Rev. Lett. 129,
230501 (2022).

[52] K. Bu, D. E. Koh, R. J. Garcia, and A. Jaffe, Classical shad-
ows with Pauli-invariant unitary ensembles, npj Quantum
Inf. 10, 6 (2024).
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