
PHYSICAL REVIEW APPLIED 21, 054028 (2024)
Editors’ Suggestion

Measurement-driven neural-network training for integrated magnetic tunnel
junction arrays

William A. Borders ,1,* Advait Madhavan,2,3 Matthew W. Daniels ,1 Vasileia Georgiou,4
Martin Lueker-Boden,4 Tiffany S. Santos ,4 Patrick M. Braganca ,4 Mark D. Stiles ,1

Jabez J. McClelland ,1 and Brian D. Hoskins1,†

1
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland,

USA
2
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland, USA

3
Associate, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg,

Maryland, USA
4
Western Digital Research Center, Western Digital Corporation, San Jose, California 95119, USA

 (Received 11 December 2023; revised 5 March 2024; accepted 10 April 2024; published 14 May 2024)

The increasing scale of neural networks needed to support more complex applications has led to an
increasing requirement for area- and energy-efficient hardware. One route to meeting the budget for these
applications is to circumvent the von Neumann bottleneck by performing computation in or near memory.
However, an inevitability of transferring neural networks onto hardware is the fact that nonidealities, such
as device-to-device variations or poor device yield impact performance. Methods, such as hardware-aware
training, where substrate nonidealities are incorporated during network training, are one way to recover
performance at the cost of solution generality. In this work, we demonstrate inference on hardware-based
neural networks consisting of 20 000 magnetic tunnel junction (MTJ) arrays integrated on CMOS chips
in a form that closely resembles scalable and market-ready spin transfer-torque magnetoresistive random
access memory (STT-MRAM) technology. Using 36 dies, each containing a MTJ-CMOS crossbar array
with its own nonidealities, we show that even a small number of defects in physically mapped networks
significantly degrades the performance of networks trained without defects and show that, at the cost of
generality, hardware-aware training accounting for specific defects on each die can recover to comparable
performance with ideal networks. We then demonstrate a robust training method that extends hardware-
aware training to statistics-aware training, producing network weights that perform well on most defective
dies regardless of their specific defect locations. When evaluated on the 36 physical dies, statistics-aware
trained solutions can achieve a mean misclassification error on the MNIST dataset that differs from the
software-baseline by only 2%. This statistics-aware training method could be generalized to networks with
many layers that are mapped to hardware suited for industry-ready applications.

DOI: 10.1103/PhysRevApplied.21.054028

I. INTRODUCTION

A major drawback of contemporary neural networks
is the area and energy cost associated with the perform-
ing hardware. For conventional computing systems rely-
ing on central and graphical processing units (CPUs and
GPUs), numerous cycles of retrieving data from mem-
ory and shuttling it to the processor are required even
for the most core functions of neural networks [1–5]. For
many neural networks, the hardware spends the majority
of its time moving data back and forth [6–8], a crip-
pling factor for conventional systems known as the von

*Corresponding author: william.borders@nist.gov
†Corresponding author: brian.hoskins@nist.gov

Neumann bottleneck. Furthermore, natural language pro-
cessors such as GPT-4 using transformer-style models
show a trend of doubling in scale every two months, a
rate 24 times faster than the performance scaling of silicon
hardware predicted by Moore’s law [9,10]. While efforts
to improve GPU performance have reduced this scaling
gap, the von Neumann bottleneck—as well as the amount
of memory area required to store larger network informa-
tion—remains a difficult barrier for embedded applications
such as self-driving vehicles and drones [11–13]. This has
led to research in neuromorphic devices, circuits, and sys-
tems that can combine with CMOS to match the growing
complexity.

One approach to improving neural network hardware is
in-memory computing [14], an architecture that reduces

2331-7019/24/21(5)/054028(16) 054028-1 © 2024 American Physical Society

https://orcid.org/0000-0002-0421-5282
https://orcid.org/0000-0002-3390-4714
https://orcid.org/0000-0002-7427-3744
https://orcid.org/0000-0002-7552-9019
https://orcid.org/0000-0001-8238-4156
https://orcid.org/0000-0001-5672-5965
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.21.054028&domain=pdf&date_stamp=2024-05-14
http://dx.doi.org/10.1103/PhysRevApplied.21.054028

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

the von Neuman bottleneck’s effect by performing com-
putation in memory. The intrinsic crossbar array struc-
ture of conventional memory is highly suited to perform
vector-matrix-multiplication (VMM), a key process in
neural networks representing the network-layer output as
the multiplication of the layer input vector and a weight
matrix connecting neurons of adjacent layers. In a cross-
bar array structure, this corresponds to applying a vector of
voltages to the rows of the memory array, and measuring
the resultant currents on the columns. Approaches to in-
memory computing using conventional CMOS structures
such as static [15,16] and dynamic random access mem-
ory [17–19] show mitigation of the von Neumann bottle-
neck, thereby achieving lower area and energy consump-
tion. Demonstrations using nonvolatile resistive mem-
ory technologies potentially further improve efficiency
[20,21].

Recent research on neural networks shows that the
low classification error of fully connected networks using
high-bit precision can still be maintained on network mod-
els with sparse weight connections [22,23] or drastically
reduced weight precision [24–26]; both of these strategies
reduce the resources required for computation. Even binary
neural networks (BNNs) [27], where the activation of neu-
rons and/or the synaptic weights are represented by single
bit values, have shown equivalent performance compared
to the above methods on small datasets, with a potential for
application to larger networks [28].

A promising candidate for combining in-memory com-
puting and BNNs is an array of back-end-of-the-line-
compatible magnetic tunnel junctions (MTJs) that can
each represent two stable resistive states using the tun-
nel magnetoresistance (TMR) [29] effect. As the core
component of magnetic random access memory (MRAM)
[30,31], MTJs are a prime choice for representing weights
in a BNN, reaching embedded memory sizes greater
than 16 Mb [32], boasting high endurance, and poten-
tially replacing conventional memories for embedded
applications [33]. Recent works with passive [34,35]
or CMOS-integrated [36,37] crossbar arrays of MTJs
experimentally demonstrate BNN inference on various
datasets and show performance comparable to software
baselines.

For many hardware accelerator applications, perform-
ing inference on the hardware first involves training
a weight matrix solution offline and then downloading
trained weight values onto the hardware. In the case of
an MTJ-based BNN, a device programmed to the high
resistance state might represent an offline weight value
of zero. However, an inevitability of using physical hard-
ware in the analog domain is the potential for nonideali-
ties in devices or supporting hardware. Nonidealities such
as line resistance [34,38], device variations [39–41], bit
errors [42–44], and poor overall device yield can result

in imperfect manifestations of the offline weight matrix.
Even in conventional CMOS technology, bit faults require
methods such as burn-in testing or error-correction codes
in order to ensure consistent operation. Several stopgaps
exist to combat these nonidealities, such as hardware-
aware [45] in situ training of the network where network
error is sampled directly from the hardware [41,46], or
ex situ training where statistical models add noise to
the weight values [47,48]. Experiments and simulations
have shown that arrays of MTJs can recover classifica-
tion accuracy by implementing hardware-aware training
to compensate for device-to-device variations [39] and bit
errors [42].

In this work, we study offline training methods on non-
ideal arrays by fabricating 36 dies each containing 20 000
MTJs integrated with CMOS into a crossbar array struc-
ture, where each die represents the weights of a two-layer
BNN. These arrays are described in Sec. II A and the
network structure is described in Sec. II B. Section III A
reports that ex situ training of each die where the unique
defect characteristics of each die are considered recovers
mean classification accuracy to within 2% of the software
baseline.

One drawback to training around the unique defects
of a unit of hardware, however, is loss of generality of
the trained weight matrix. In practice, industrial manu-
facturers may produce millions of chips that could have
nonidealities in different locations, and these defects may
even change during the device’s lifetime. Therefore, in
Sec. III B we present an extension of hardware-aware
training, which we refer to as statistics-aware training,
that compensates for one of the most impactful of these
nonidealities—namely, shorted devices—regardless of the
location of these devices. To accomplish this, we train not
according to the usual loss function of the software neural
network but rather with a loss function that averages over
the defect statistics observed in hardware. We realize an
efficient training method over this defect-statistics-aware
loss function via a double-batch outer-product training
method where many parallel instances of the same net-
work have their weights in the first network layer randomly
chosen to be defective. The gradient averaged over all
instances is then used to update a single statistics-aware
weight solution. We use this method to produce 100 solu-
tions, which are tested across all dies and find that the mean
difference in classification error from the software baseline
is 2%, demonstrating a robust substrate-agnostic solution.
The value to which defective weights are set during train-
ing not only determines the software baseline classification
error, but also controls the agreement between hardware
and the performance variation between dies. Investigating
the sensitivity of the hardware network output with respect
to each weight shows the output is overall less sensitive
to changes in weights for a statistics-aware network when

054028-2

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

compared with nonrobust methods. This observation leads
to discussion regarding the balance between optimal layer
size and defect density in hardware neural networks.

II. EXPERIMENTAL SETUP

A. Design and test of 20 000 MTJs integrated with
CMOS

We design and fabricate a 2-transistor-1-resistor
(2T-1R) test vehicle capable of housing 20 000
two-terminal devices in a crossbar array architecture
shown in Figs. 1(a) and 1(b). The entire chip consists
of 100 rows × 200 columns, which are partitioned into
four subarrays of 50 columns each. A two-bit digital
signal selects the subarray, allowing for characterization
of 5000 devices at a time. The two-transistor design
acts as a pass gate circuit with an n-channel metal-
oxide-semiconductor (NMOS) and p-channel metal-oxide-
semiconductor (PMOS) transistor in parallel; a digital

enable signal determines whether the pass gate operates in
a digital or analog mode.

The choice of a 2T-1R structure as opposed to a 1T-1R
or passive-array structure was made to produce a general
test vehicle for characterizing many two-terminal alter-
native device technologies. When the device properties
call for current compliance, the PMOS can be turned off
and the NMOS can be used. For all experiments in this
work, measurements were performed in digital mode: the
gate voltage on the NMOS (PMOS) transistor is power
(ground), reducing as much as possible any series resis-
tance with the MTJ. For ideal MTJs with narrow property
distributions, a passive array is the best option for the high-
est density on chip. In a practical situation where device
properties are well characterized but nonidealities such as
sneak paths and line resistance exist, a final product of this
chip would use a 1T-1R structure to isolate sections of
the chip for measurements. The 2T-1R initial designs for
the 180-nm CMOS are fabricated in a commercial foundry

(a) (c) (d)

(e)

(f) (g)

(b)

FIG. 1. Fabrication and characterization of a CMOS-integrated array of 20 000 MTJs. (a) Schematic of a 2× 2 portion of the 2T-1R
crossbar array. Voltages are applied to the columns or rows while selecting a transistor column with enable lines. (b) Optical microscope
image of one die containing 20 000 MTJs integrated with 40 000 transistors. 403 metallized pads for contact with probecard needles
surround the array. (c) Transmission electron microscope cross-section image of an MTJ pillar patterned above TaN pads in contact
with tungsten vias. (d) Optical microscope view of top and bottom electrodes for MTJ integration. The bottom electrode (BE) is
patterned with a 3× 3 array of MTJ vias while the top electrode (TE) is patterned with a single MTJ. Patterning the MTJ via array is
an efficient process that removes extra steps during fabrication. Furthermore, the diameter of each via is 2 orders of magnitude larger
than the MTJ pillar, producing only a trivial contribution to the measured resistance of the single MTJ. (e) Representative resistance
versus voltage curve for the MTJs used in this work. (f) Gaussian fits to the histograms for filtered RP and RAP values of MTJs in each
die. (g) One example of the defect locations within a single die. Shorted devices display a constant resistance between 100 � and 1
k�, while subpar MTJs switch, but with resistances ranging between 1 and 12 k�.

054028-3

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

without the MTJs and received with the final metal layer
removed, exposing the tungsten (W) vias underneath.

Heterogenous back-end integration begins by patterning
TaN pads above the vias to control the interfacial rough-
ness on which the MTJ films are grown. These films are
deposited using magnetron sputtering and patterned into
50-nm nominal diameter pillars and 1-µm diameter via
arrays on alternating TaN pads by electron beam lithogra-
phy and Ar ion milling. Figure 1(c) shows a transmission
electron microscope cross-section image of a single MTJ
pillar in contact with the TaN pads. A final metalliza-
tion process is performed to connect the top electrode of
the MTJ to the row lines and the bottom electrode to the
transistor circuit [Fig. 1(d)]. The MTJ patterning process
is repeated 36 times across 36 dies of a 150-mm silicon
wafer.

Each array is accessed through 403 pads, which con-
nect to the row, column, transistor gate, power, and ground
lines of the crossbar. A probecard interfacing with an off-
board five-channel source-measure-unit and switch-matrix
uses 403 tungsten needles to contact the pads, one die at a
time. The probecard powers the die with 3.3 V dc, which is
used by corresponding enable lines to supply voltage to the
NMOS and PMOS transistors. Port-to-port measurements
are performed by applying a voltage on either the rows or
columns and reading current from the opposite terminal.

The MTJs used in this work consist of two ferromag-
netic layers, a fixed and a free layer, separated by an
insulating tunneling barrier. The magnetization of the fixed
layer is pinned by a synthetic antiferromagnet and the ener-
getically stable orientation for the free layer is in either
a parallel (P) or antiparallel (AP) configuration relative
to the magnetization of the fixed layer. The MTJ config-
uration can be switched by the application of a current
that induces a spin-transfer torque [49–51] on the mag-
netization of the free layer. MTJs are characterized by
their tunnel magnetoresistance (TMR), where the TMR
of the MTJ shows a low (high) resistance for the P (AP)
configuration, and the TMR ratio r is defined as

r = RAP − RP

RP
. (1)

Figure 1(e) shows a representative magnetization reversal
curve of the MTJs used in this work. The curve is obtained
by sweeping the applied voltage from 0 to 0.75 V and
back to 0 V in the positive direction, followed by the same
process in the negative direction. The MTJ shows clear
switching from the AP state to the P state around 0.5 V
and from P to AP around −0.5 V. When characterizing all
20 000 MTJs on each die, we use a single write voltage of
0.75 V to ensure switching of each device.

We apply a screening test to each die of 20 000 MTJs to
produce distributions of RP, RAP, and TMR ratio. Those
distributions then determine the yield and locations of

defective devices. MTJs first receive a write voltage of
−0.75 V to switch the configuration to the AP state, after
which a small 100-mV signal is applied to probe the resis-
tance of the device. The same process is applied with the
same magnitude but opposite polarity to write the config-
uration to the P state. Cycling through all 20 000 devices
in the array requires approximately 2 min. We determine
RP and RAP from the measured voltage and current dur-
ing the read steps. The yield for each die is determined by
the number of devices with RP ≥ 6 k�, RAP ≤ 30 k�,
and r ≥ 0.6. Across all 36 dies the median yield is 99.2%
with a standard deviation of 0.65%. Figure 1(f) shows a
Gaussian fit to the histograms of RP and RAP after fil-
tering out defective devices. The distribution for one die
exhibits a considerable offset from the trend shown by the
majority of the dies, but seeing as this offset occurs in
both distributions for RP and RAP, we expect the effect on
neural-network performance to be trivial. In general, the
variation of the mean of each distribution is less of a factor
compared to the width of each separate distribution.

After the screening process, the type of defect is sep-
arated by severity, where two types of defects exist in the
die. Most defects consist of MTJ pillars that are electrically
shorted, exhibiting resistances between 100 � and 1 k�.
The other type of defect consists of “subpar” devices that
show magnetization reversal but exhibit resistance ranges
between 1 and 12 k�. A defect map for a single die is
shown in Fig. 1(g) with shorted and subpar devices high-
lighted. Across all dies, defects are randomly distributed
with only three dies containing large areas of defective
devices due to nonidealities introduced during fabrication.

B. Neural-network architecture design and mapping
onto MTJ hardware

To test the performance of the crossbar array as a neural
network, we use the MNIST dataset [52], which includes
60 000 training and 10 000 test inputs. Each input is a
28× 28-pixel grayscale image of a handwritten digit asso-
ciated with an output target represented by a binary array of
size 10. Each pixel contains a value ranging from 0 (black)
to 1 (white) proportional to that pixel’s intensity. We con-
struct a simple two-layer feed-forward network, shown in
Fig. 2(a), that can be mapped onto our hardware array.

Implementing VMM with 784-pixel input images on
hardware would require more resources than our hardware
supports, so each input image is transformed by scaling
and cropping into a 10× 10 pixel array. The complete
two-layer neural-network architecture includes 100 input
neurons, 90 hidden neurons, and 10 output neurons—one
for each handwritten digit—which altogether require a
100× 90 weight matrix for the first layer and a 90× 10
weight matrix for the output layer. Weights in the net-
work are represented using two MTJs, where the weight
is proportional to the conductivity difference between the

054028-4

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

(a) (b)

(c) (d) (e)

FIG. 2. Mapping of neural network to crossbar array hardware and inference performance on the reduced MNIST dataset. (a) Visual
representation of the network architecture used for inference. Images are scaled and cropped from 28× 28 to 10× 10 pixel images and
input to a two-layer feed-forward network. Each neuron in the output layer represents one possible handwritten digit. (b) Schematic
of the neural-network mapping to the MTJ crossbar array. The hardware-equivalent neural-network function is the same color as the
corresponding function shown in (a). Each weight is determined by the difference in conductance of two MTJs in adjacent columns and
the complete network utilizes 19 800 of the 20 000 MTJs. (c) Box and whisker plot showing inference classification error of the MNIST
test dataset on 36 different crossbar array dies using 100 defect-free weight matrix solutions. White boxes represent the classification
error software baseline (defect-free solution) and colored boxes represent the same solutions emulated on the MTJ hardware. The
horizontal line within each box indicates median error and the box and whiskers represent the 25th to 75th and 5th to 95th percentiles,
respectively, for 100 unique weight matrix solutions. (d) Classification error of the defect-free solutions in (c) when defective MTJs
are replaced with the mean ON and OFF MTJ conductance of the die. (e) Classification error for 100 hardware-aware solutions for each
die where each solution is trained around the unique defects of each die.

excitatory MTJe and inhibitory MTJi. Under this repre-
sentation, network weights can take on a ternary value of
either −1, 0, or 1. Excitatory and inhibitory MTJs are con-
nected in the same row but adjacent columns; when VMM
is performed, layer outputs are calculated by subtracting
the two column currents. The complete mapping of the
network architecture onto the crossbar array is shown in
Fig. 2(b).

Network training is performed offline, using backprop-
agation and stochastic gradient descent to minimize the
cross-entropy loss of the network. During training, the for-
ward and backward passes are performed using a ternariza-
tion of an underlying collection of real-valued continuous
weights. After each weight update, the real-valued weights
are ternarized according to a threshold, which maps val-
ues to −1, 0, or 1. The network is trained to convergence
for 50 epochs after which the final ternary weights and
biases are saved to be used in the crossbar. We repeat this

training process 100 times, each with a unique random
weight initialization to produce 100 potential configura-
tions of trained weights; each configuration is defined as
a weight matrix solution of the training problem.

Under the current experimental setup, we are not able to
implement VMM in parallel on the network, which would
require 100 unique voltages sourced from 100 unique
source-measure unit channels. Work in Ref. [34] shows
that if the devices are operated in a linear regime, a full
VMM can be represented by applying a read voltage ele-
ment by element to each device and summing the resulting
currents in software. We have verified that the applied volt-
ages for this work are in this regime and our measurements
satisfy the superposition principle of linear circuits. For
this reason, the following results are labeled as hardware
emulation, because the conductances of MTJs are used in
software to determine the output currents. Furthermore,
due to the sheer volume of programming steps for 100

054028-5

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

solutions across 36 dies, we take advantage of the very low
cycle-to-cycle variation in MTJ resistance (see Appendix
C) and program solutions onto the weight matrices in soft-
ware using measured RP and RAP values obtained during
screening of the dies.

Inference classification error of the hardware emulation
is determined by first encoding the ternary weights dur-
ing training onto the MTJ array in software by converting
weights into pairs of MTJ conductances. We map ternary
matrix weights into conductance pairs such that [AP, P] ∼=
−1, [AP, AP] ∼= 0, and [P, AP] ∼= 1. VMM is emulated
by transforming the 100 pixel inputs into input voltages
through multiplication by a read voltage Vread = 100 mV
and then multiplying those voltages with the read conduc-
tance of each measured MTJ. Currents calculated for each
column are normalized into dimensionless quantities by
dividing out both Vread and a conductance-valued hyper-
parameter Gnorm. Mathematically, the VMM operation to
obtain the currents for each layer is

�youtputs =
�Icolumns

VreadGnorm
(2)

= Ĝe − Ĝi

Gnorm
· �xinputs, (3)

where �x and �y are dimensionless inputs and outputs,
Ĝe and Ĝi are the respective excitatory and inhibitory
weight matrices. A bias is applied to the 90 outputs for
layer 1 (z0, . . . , z89) and passed through a hyperbolic tan-
gent (tanh) activation function to determine layer-2 inputs
(a0, . . . , a89). Layer-2 outputs are determined in an iden-
tical manner to layer 1. During training, outputs are fed
through a softmax activation function for the target out-
put to determine the loss function. In the inference stage,
the argument of the maximum layer-2 output is compared
to the target. A tally of incorrect classifications is incre-
mented for any prediction that does not match the target
and a total classification error is defined as the ratio of
incorrect classifications divided by the size of the dataset.

III. TRAINING THE NEURAL NETWORK

In the following sections, we discuss and compare multi-
ple ways of training offline solutions for the MTJ crossbar,
referring to three types of solutions: “defect-free” solu-
tions, “hardware-aware” solutions, and “statistics-aware”
solutions. The first is the result of training the network
architecture in the conventional way with no hardware-
informed considerations; the second includes details of
a particular manifestation of a crossbar into the training
method; the last uses only general statistics of the hard-
ware to create solutions that are more universally applica-
ble regardless of specific defect configurations found on a
single die. Before reporting our results on using these three

solution methods in hardware, we briefly outline the theo-
retical relationships between these methods. Furthermore,
we refer to the classification error of the solution trained
offline as the “software-baseline” and the same solution’s
performance on hardware as the “hardware emulation.”

In the training of a typical software neural network, an
unknown true loss function �(x; W) associated with the
learning task exists, which is a function of the network
weights W and any particular input x to the neural network.
The goal is to minimize the total expected loss

L(W) =
∫

�(x; W)Dx (4)

over the real-valued parameter space for W, with measure
Dx = g(x) dx carrying some probability density g(x) that
encodes the likelihood of encountering any particular net-
work input x. Although in practice we cannot access the
true loss function, any training data set X of size NX allows
us to sample L at a finite number of points, which gives rise
to the empirical loss function

L̃(W) = 1
NX

NX∑
j=1

�(xj ; W), (5)

which is what is actually minimized by stochastic gradi-
ent descent during training. Here the distribution g(x) is
automatically encoded through the assumption that X is
a statistically representative sample of inputs. Solutions
obtained by minimizing L̃ via stochastic gradient descent
are what we refer to as defect-free solutions.

How do hardware-aware training methods fit into this
framework? When a specific defect configuration is cho-
sen—that is, when the unique details of defects in a single
die are specified—we can imagine encoding those details
as part of the function realized by the neural network. In
this case, the loss function � must be modified according to
those defects, realized in practice by manifesting the effect
of defects during the forward pass of a neural-network
training routine: we replace f (x; W) with f (x; ξ(W)) in
Eq. (4), where ξ is a function that applies defects to the
nominally programmed weights W. Realizing the partic-
ular details of ξ can be crucial for offline training; as
such, chip-in-the-loop [53] and physics-aware training [54]
methods sometimes use the hardware itself in the forward
pass to ensure that ξ is accurately captured.

This work aims to find solutions that perform robustly
regardless of which defective hardware they are used on.
We want a solution to minimize error over an ensemble of
possible realizations of the defects. To express this sensi-
tivity of training to the defect statistics, we construct an
alternative loss function,

LHW(W) =
∫

�(x; ξ(W))Dξ Dx, (6)

054028-6

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

which now contains an extra integration over possible
defect modes ξ . Given a nominal set of weights W, ξ(W)

returns a random but plausible set of effective parame-
ters realized on physical hardware, with statistical mea-
sure Dξ = f (ξ) dξ informed by measured statistics of the
actual hardware.

The primary type of ξ considered in this work is the
one that randomly maps the elements of W to the sat-
uration value representing an electrical short with some
probability, the choice of which emerges in Eq. (6) via
a strongly restricted probability density f (ξ). It is also
easy to imagine including device-to-device variation, stuck
weights, open connections, or other defect types under the
same framework of an expected value over ξ .

The remainder of this section is structured as follows. In
Sec. III A, we investigate hardware-aware methods that use
details of single-crossbar defects to optimize performance
on a specific die. Then in Sec. III B, we consider a practi-
cal implementation of the stochastic gradient descent over
the statistics-aware loss function LHW described above.
Because Eqs. (4) and (6) do not coincide in general, it is
expected that robust statistics-aware solutions will perform
worse on defect-free inference tasks than traditional solu-
tions would—and vice versa. Section III B shows that this
hypothesis is vindicated.

A. Improving classification error with
hardware-aware training methods

In this section, we first present hardware emulation
results of performing inference on 100 solutions across all
36 dies when all defective devices are included. We then
show how an ideal crossbar without defects would per-
form, followed by description of a hardware-aware training
method that compensates for the defects of specific die
to improve performance. The classification error on the
MNIST test dataset for each die is plotted as a box and
whisker plot in Fig. 2(c). White boxes represent the distri-
bution of the software baseline, with a mean error of 4%,
and colored boxes show the distribution of error for the
hardware emulation on each die. The software baseline is
the same for each die and repeated to easily compare per-
formance. There is a large variation between classification
errors; some dies perform well with less than 10% error
while some show a higher error and variation. It is interest-
ing to note that these large errors occur despite the average
device yield of 99.2%.

In the following results, we address three metrics for
performance: mean error, variation of solutions on a sin-
gle die, and variation of mean error between dies. The
large variation of classification error within each die can
be attributed to the locations of defects. Due to the ran-
dom initialization of weights, the converged network is
sensitive to values of weights in certain locations. For a

portion of the 100 solutions, the locations of these sensi-
tive weights will overlap with defect locations, adversely
affecting classification error. On the other hand, the large
variation between dies is caused by a variation in the
number of defects.

To compare the performance of a defect-free solution on
defective hardware with the performance of a defect-free
solution on an ideal crossbar, defective locations in each
die are replaced with conductance values equal to the mean
AP and P conductance of the die [Fig. 2(d)]. The ideal
crossbar shows a mean error of 4.3%, only a 0.3% differ-
ence with the software-baseline. The discrepancy between
the software-baseline and those of the hardware emula-
tion is due to the variation of the ON and OFF weight state
as a result of device variation. We perform a simulation
of networks with increasing values of variation and show
that variations similar to the physical hardware match the
increase in error (see Appendix A).

To bridge the gap between these results, 100 solutions
for each die are trained while considering the properties
of the underlying substrate. During training, weights at
locations where defects exist are set to a constant value
equivalent to the weight the defect’s resistance would
induce. This can produce weights ranging from 10 to 80
for shorted devices, and 1 to 10 for subpar devices. Figure
2(e) shows the result of performing hardware-aware train-
ing for each die. Compared to Figs. 2(c) and 2(d) the
baseline software error varies between dies. This effect
arises from a different number of defects per die. The mean
classification error across all dies is 5.2%, a value only
0.9% larger than the result for ideal crossbars, demonstrat-
ing that hardware-aware training produces performance
comparable to defect-free solutions.

Several significantly poorer-performing outliers are seen
in Fig. 2(e), in particular, the ones associated with dies
13, 20, and 28. These large deviations can be traced to
large particles introduced to the wafer during fabrication,
resulting in large areas of defective devices or entire rows
of devices shorted. Since the origin of these nonideali-
ties is significantly different from random distributions of
shorts and subpar devices, the results of these three dies are
excluded from mean performance.

Further discrepancy between the defect-free solutions
and the hardware emulations is in part due to device vari-
ation inducing variation of weights around −1, 0, or 1.
In addition to device variation, an incomplete representa-
tion of the defective device’s weight could increase error.
Because each weight is represented by two MTJs, it is
impossible to know what state the nondefective device of
the pair should be during training. The impact is trivial
for shorted devices, but could be comparable for certain
subpar devices.

During hardware-aware training we observe a crippling
increase in the classification error if defects are included in
layer 2. It is unclear if the increase is because of the ratio of

054028-7

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

defects to the size of the layer or whether it depends on the
location of defects in the previous layer. For this work, we
focus our investigation on the impact of defects in a sin-
gle layer, replacing layer-2 defects with working devices
that remain in the same column. We justify this method
by observing that MTJ crossbar arrays are best used for
layers in the network where large volumes of devices and
weights are needed to gain the most benefit from area and
energy costs. Final layers are typically smaller when com-
pared to the rest of the network and due to their sensitivity
to defects, could be implemented in defect-free CMOS. In
future work, we plan to investigate more complicated net-
works with more hidden layers, and the effect that defects
in each layer has on classification error.

B. Training and validating statistics-aware solutions

One observation of the hardware-aware training method
is that solutions trained for one die do not produce the same
performance on other dies. In any practical application
where millions of dies are manufactured, training each die
would require too many resources. Furthermore, devices
could start to fail if exposed to electromagnetic fields,
radiation, extreme temperatures, or more commonly, elec-
trostatic discharge. These factors are an even larger con-
cern in environments where all the above issues commonly
exist, for example, space-based applications. In this section
we describe a robust statistics-aware training method that
performs similarly across all dies, regardless of defect con-
figuration, by attempting to minimize the statistics-aware
loss function of Eq. (6).

For a single solution to work on the exponentially large
number of possible defect configurations, the method of
training the solution must account for the variability in
defect location. This suggests that networks with a small
subset of weights dominating network performance are
also susceptible to increased error in the presence of
defects. A change in any of these weights has a large
impact on network performance. In order to train robust
solutions, the statistical properties of the defective hard-
ware must be accounted for in the training process.

In conventional stochastic gradient-descent training
methods, a batch (sometimes called a minibatch) of pos-
sible inputs are randomly chosen and used to construct
an estimator of the empirical loss Eq. (5). That is, we
construct the gradient of

L̃B(W) = 1
NB

NB∑
j=1

�(xj ; W), (7)

where B ⊆ X , of size NB, is our randomly sampled batch
from the full training dataset. The weights are then sub-
jected to an update rule W←W− η∇WL̃B for some
learning rate η. This is minibatch gradient descent, the

overwhelmingly standard basic algorithm for training deep
neural networks.

Since the goal is to minimize Eq. (6), we extend the
above notion of a batch to also include a randomly sam-
pled set of defect maps �. Statistics-aware solutions are
trained by producing a total batch given through the outer
product of the usual training batch B with our defect map
batch �, the latter sampled from a representative distribu-
tion of possible defect locations [Fig. 3(a)] informed by
measured statistics of the experimental hardware. In this
way, training proceeds by moving along the gradient of the
statistics-aware minibatch loss

L̃HW
B,�(W) = 1

NB

1
N�

N�∑
i=1

NB∑
j=1

�(xj ; ξi(W)), (8)

which can be used to update the weights in exactly the
same way as stochastic gradient descent. Although not
investigated here, we note that since all our defect statis-
tics are captured within the loss function itself, one could
nominally subject the statistics-aware loss to any mod-
ern stochastic-gradient-descent optimizer such as Adam
[55] or AdaGrad [56]. We leave questions of how defect
statistics interact with such algorithms to future work.

The training process begins from a pristine network
without defects and with weights initialized with the nor-
mally distributed Xavier initialization [57]. The weights of
this network after training represent the final solution to
be mapped onto the 36 dies for testing inference. Defect
maps are generated first by selecting a number n of total
defects sampled from a normal distribution fit to the exper-
imental characterization; the n locations of these defects
are sampled uniformly at random over all possible sites on
the crossbar. In constructing the defect maps, all defective
weights are assumed to take on the same large satura-
tion value Wsat corresponding to the large conductance
of a shorted device, though it is easy to imagine a more
complex algorithm that samples that value as well.

Because performance depends on the saturation value
Wsat, we conduct studies of 100 different statistics-aware
solutions for Wsat ranging from 0 to 20. Since the defects
are encoded in the loss, both forward and backward passes
encode defect map information over the batch of input
images and their accumulated gradients are used to update
the real-valued weights of the network. With every new
batch of training data, a new batch of defect maps is gener-
ated as well. Since each weight update operation involves
a batch of images and defects, we refer to this method as a
double-batch outer-product update.

The performance of the statistics-aware solution is
shown in Fig. 3(b). For each Wsat we plot the mean clas-
sification error for 100 solutions on each die as well as
the overall mean classification error. With a larger Wsat,
the classification error for both the software baseline and

054028-8

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

(a) (b)

FIG. 3. Training of statistics-aware solutions. (a) Visual representation of training a statistics-aware solution. For each batch of input
images, an identical size of defect maps are randomly generated. In this work, both the input image batch size and the defect map batch
size is 100. (b) (Top) Classification error of all 36 dies for Wsat ranging from 0 to 20. Each circle represents the mean error of 100
solutions for one die assuming a single Wsat. Yellow squares represent the mean across all dies, while the dotted line represents the
mean software-baseline classification error. Bold dots signify the best (blue) and worst (red) performing dies. (bottom) �, defined as
the difference in error between the software-baseline and the emulated hardware (yellow circles), and 1/α, defined as the inverse of the
coefficient of variation for hardware emulation (red circles). Error bars represent the one standard deviation width of the distribution
of 36 dies. Both values are determined by ignoring the outliers shown in the above plot.

the hardware emulation converges to 10%. At the same
time, the variation in performance between dies improves
at higher Wsat. Looking closer at the performance of each
die, some dies perform well even at low Wsat and pro-
ceed to perform worse when trained with stronger defect
maps, while poorer performing dies show less difference
in error with the software-baseline. This behavior implies
that for any given defect configuration with a given number
of shorted and subpar devices, there is an optimal Wsat.

Determining an optimal value for this system would not
be likely to apply to other hardware and network sizes.
Instead, we focus on the trends of performance—in partic-
ular, the difference in classification error between hardware
emulation and software baselines, and the variation of per-
formance between dies. The lower plot of Fig. 3(b) shows
that at higher Wsat the mean difference between the hard-
ware emulation and the software baseline converges to
between 0.01 and 0.02 and the variation between these dif-
ferences shrinks. This improvement in variation between
dies comes at the cost of a higher overall software baseline
classification error. This is depicted in the bottom panel of
Fig. 3(b), which shows that the inverse of the coefficient of
the variation (α) of the mean error on all dies increases.
In a similar fashion, the variation in classification error
between solutions on a single die also shrinks at higher
Wsat (see Appendix B). If a hardware application requires
lower overall error and removal of poorly performing dies

is acceptable, then a lower Wsat may be preferable. If
variation between dies is a concern but some performance
loss is tolerable, then a larger Wsat is preferred.

C. Analysis of network sensitivity

To clarify the underlying factors determining the robust
solution performance, we investigate the sensitivity of the
network to weight variations. We define the sensitivity I
of the network to changes in each weight as

I(wij) =
〈(

∂�(x; W)

∂wij

)2
〉

x

, (9)

where wij is the weight located in column i and row j , W
encodes the network weights, x represents an individual
input to the network, �(x; W) represents the loss function
of the network on that input x, and the angle brackets
indicate the expected value averaging over x at fixed W.

For both the defect-free and the statistics-aware solu-
tion, there are two quantities to compute to characterize
the statistics-aware training process. The first is calculat-
ing the sensitivity, I , when evaluated with the defect-free
loss function. The second is to evaluate both solutions
in the presence of defects. To do this, we extend I to
include defect-map averaging in a way similar to what
was done when passing from Eqs. (4) to (6), giving a

054028-9

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

defect-statistics-aware sensitivity

IHW(wij) =
〈(

∂�(x; ξ(W))

∂wij

)2
〉

x,ξ

(10)

that correctly captures the geometry of the statistics-aware
loss function used to train the statistics-aware solution.
We consider both of these approaches to computing sen-
sitivity below. To estimate IHW, the trained solutions are
copied 100 times and for each copy defects with Wsat = 20
are randomly dispersed throughout their first layers. We
average the mean squared gradients over the 100 defective
networks. This process is repeated for each of the 100 solu-
tions. We compute the sensitivity to each of the 100× 90
weights in the first layer and accumulate their statistics.

Figure 4 shows the histograms for I and IHW of weights
in the first layer calculated using the method described
above. Four curves are shown: an software-baseline trained
solution without defects (defect-free loss), an defect-free
solution with defects (statistics-aware loss), a statistics-
aware solution without defects (defect-free loss), and
a statistics-aware solution with defects (statistics-aware
loss). Each curve represents a mean sensitivity for each
weight averaged over 100 different solutions and error
bands denote the uncertainty in the mean. The inset shows
a box-and-whisker plot of the resultant classification error
for the same set of solutions. The defect-free trained solu-
tions perform better than the statistics-aware trained solu-
tions when evaluated with no defects, but perform worse
when evaluated in the presence of defects.

The computed sensitivities are consistent with the over-
all performance. For the case where the sensitivity I of
both the defect-free and statistics-aware solutions are cal-
culated on L, the defect-free solution case exhibits a lower
overall sensitivity and error. The correlation between sen-
sitivity and error is expected on the grounds that stochastic
gradient descent is known to seek out generalizable solu-
tions, that is, solutions in flat basins of the loss function
[58]. By contrast, the same two sets of solutions swap their
relative error and sensitivities when evaluated in the pres-
ence of defects. In the case of a statistics-aware loss where
defects are present during training, the solution trained to
be statistically aware shows a lower mean IHW compared
to the defect-free case.

The differences between curves within a single-
evaluation scheme (i.e., I or IHW) can be understood when
considering that the sensitivity function describes the loss
curvature of the network with respect to the weights. The
converged weights in either training scheme are close to
a minimum of the defect-free loss function, typically in a
flat basin [58]. This results in low overall sensitivity since
the gradient of the loss function is very small. The fact
that solutions trained to minimize L and LHW each show

FIG. 4. Histograms of I and IHW among the layer-1 weights
across 100 pure software solutions and 100 statistics-aware solu-
tions evaluated on the training dataset. Light blue and orange
curves represent the defect-free (DF) and statistics-aware (SA)
solutions, respectively, determined with L (defect-free loss).
Navy blue and red curves represent the defect-free and statistics-
aware solutions, respectively, determined from LHW (statistics-
aware loss). Each curve represents the mean of 100 solutions for
each bin in the histogram and the uncertainty in the mean at each
value. The uncertainty in the mean for each curve is negligble,
causing the mean curve and the error bands to overlap each other.
All histograms are binned in an identical manner. (Inset) Result-
ing classification error for the four histograms shown, plotted on
a logarithmic scale. Boxes and whiskers represent the 25th to
75th and 5th to 95th percentiles, respectively. It is worthwhile to
note the high classification error for the solutions evaluated on
the statistics-aware loss is the effect of choosing a value of 20 for
Wsat. Actual dies contain a distribution of defect values and thus
show improved performance.

superior generalizability under evaluations of I and IHW,
respectively, is an expected result in that sense.

We can gain a more intuitive understanding of how the
evaluation of IHW differs from I by visualizing the calcu-
lation of IHW as a statistical averaging of I over a cloud
of different weight configurations {ξj (W)}j centered about
W. During the statistics-aware double-batch training, the
loss is minimized over this point cloud, not over the sin-
gle point W. This implies that whatever region in weight
space that best minimizes a single point (the minimiza-
tion of L) may not be the same region that minimizes this
cloud-averaged loss (the minimization of LHW).

If stochastic gradient descent has indeed found a (com-
paratively) generalizable solution for LHW, then we would
expect the local curvature to be (comparatively) flat at
many points in the defect map ensemble. But there is no
reason to expect this in the minimization of L; evaluating
IHW on the pure software solution means sampling appar-
ently random loss function derivatives far from the W in a
fashion that the network was never exposed to during the
training process, leading to a higher IHW for the software
weights.

054028-10

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

To gain a qualitative understanding of the loss around
the minima for each case listed above, we perform calcula-
tions to visualize the loss landscape. We do so by choosing
two randomly determined directions in the parameter space
of the first-layer weights, scaling them, and shifting the
parameters in the solution by the scaled amount [59].
We define another configuration θ at which the loss is
calculated as

θ = θ* + α
δ

‖δ‖ + β
η

‖η‖ , (11)

where θ* represents the initial parameter configuration, α

and β are both scalar values ranging from −30 to 30, and
δ and η are two randomly chosen unit vectors in parameter
space. Unit vectors are generated by sampling a Gaussian
random variable with mean 0 and standard deviation 1. For
each combination of the scalar values α and β, we assess
the loss of the network and repeat this process for each case
studied in Fig. 4. A useful note to make here is that the loss
landscapes are generated by only applying δ and η to layer
1. We justify this choice based on the fact that we focus
on the impact that strongly defective devices in a single
layer have on the output of the network. Thus the objective
of viewing the loss landscape is to investigate the impact
defects have on the local characteristics of the landscape.

Figures 5(a) and 5(b) plot the defect-free and statistics-
aware trained solutions, respectively, evaluated with L.
Two main differences can be seen. One is the apparent
flatness of the statistics-aware training method compared
to the defect-free training. The second is the shift of the
absolute minimum away from the initial parameters θ∗.
Both observations are expected: training a network with
the statistics-aware method will on average create a flat-
ter landscape due to the statistics of many defect maps
used to train the network. A shift implies that evaluat-
ing the statistics-aware solution on an defect-free loss is
a poor match, simply because the solution is trained with
large saturated weights. In contrast, the defect-free and
statistics-aware solution evaluated on LHW show opposite
characteristics. Compared to the defect-free loss, a defect-
free trained solution evaluated in the presence of defects
shows an order of magnitude higher minimum and a signif-
icant shift away from the origin [Fig. 5(c)]. Conversely the
statistics-aware solution in the presence of defects shown
in Fig. 5(d) retains most of its flatness with a minimum
very close to the origin.

The two plots shown in Figs. 5(c) and 5(d) are evaluated
on a single defect map to show the agreement of the train-
ing method and the underlying hardware when considering
a single defective die. We also investigate the loss land-
scape averaged over 100 randomly generated defect maps
and plot them in Figs. 5(e) and 5(f). While the difference
in minima and flatness remain, the minima appear nearly
at the origin. This is simply an artefact of averaging many

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Relative-loss landscapes for defect-free and statistics-
aware training cases, evaluated on the training dataset. (a),(b)
The relative-loss landscape calculated for a defect-free trained
solution (a) and a statistics-aware trained solution (b) evalu-
ated on the defect-free loss, L. The relative loss is defined as
the difference between the loss at each point and the absolute
minimum loss obtained in each case. (c),(d) The relative loss
landscape for the defect-free and statistics-aware solutions, eval-
uated in the presence of defects, LHW. (c),(d) consider only the
effects of one unique defect map. (e),(f) The relative-loss land-
scape for the defect-free and statistics-aware solutions, evaluated
in the presence of defects, plotted as an average across 100 ran-
domly generated defect maps. White dots represent the location
of the absolute minimum and labels represent the value at the
minimum. The same two random directions δ and η defined in
Eq. (11) are used for each of the six plots. Within each train-
ing method, we also evaluate the loss landscape on an identical
weight solution.

unique landscapes with minimum close to the origin. The
key observation is that for 100 different defect maps, the
statistics-aware solution will produce a flatter and overall

054028-11

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

lower magnitude loss landscape, demonstrating a solution
that is less sensitive to weight perturbations.

IV. SUMMARY AND OUTLOOK

In this work, 36 dies each containing a crossbar array
of 20 000 CMOS-integrated MTJs are used to character-
ize the performance of a hardware emulation of a binary
neural network on the MNIST dataset. We investigate
the effect of strongly defective devices on the hardware’s
classification error in a context where large variation in
performance between dies is observed. By implementing
a hardware-aware training method that compensates for
defective device locations by strengthening the weights in
other information pathways, we show that the error for
each die can recover to levels comparable to that of an
ideal, defect-less crossbar.

We venture beyond hardware-aware training of partic-
ular dies toward statistics-aware training for the entire
population of dies, implementing a robust training method
that accumulates the network gradient of many defective
networks onto a single solution to efficiently represent
the parameter space. Statistics-aware solutions where the
defective weights are saturated to large values during train-
ing show performance closest to software baselines, at the
cost of increased misclassification rates. One key observa-
tion is that the variation between dies at high Wsat is an
order of magnitude smaller than for smaller values. Inves-
tigating the local geometry of the loss function for weights
in the first network layer shows that, in statistics-aware
solutions, the overall sensitivity of weights to perturba-
tions is reduced compared to the defect-free case. This
suggests that a single solution trained with this method
is less sensitive to the location of defects than a naïvely
trained software solution and can produce reliable and
robust performance across multiple different dies.

One factor to consider regarding these results is how
they impact hardware at the scale of practical applica-
tions. The two-layer network we investigated here is one
of the simplest implementations for neural networks; in
practice, deep neural networks contain many layers with
varying sizes, architectures, and significance. Investigating
the performance impact of defects across multiple lay-
ers and establishing the optimal ratio of defect density to
layer size—possibly as a network-specific hyperparame-
ter—remain open questions.

Regarding the proposed double-batch training algorithm,
more questions of parameterization remain. Of immedi-
ate relevance is identifying optimal batch sizes for defect
maps. A longer-term theoretical question is whether there
exists a critical capacity for the number of defect maps
“learned” by a single layer. Unlike training data, which
is highly structured and generally contains most of its
significant information in a small (compared to the input
dimensionality) number of singular vectors, the defect

maps we consider are highly random and are expected to
have comparatively flat spectra. This change in the infor-
mation geometry of the “data” presented to the network
could have far-reaching theoretical consequences for the
training algorithms used to guide and optimize stochastic
gradient descent for statistics-aware loss functions. Refine-
ments of our existing algorithm and the adaptation of more
complex training algorithms to the statistics-aware loss
may have the potential to improve training performance
beyond what has been presented here.

This experimental work uses MTJs to represent weight
values, but the observations made on hardware-aware
training, statistics-aware solutions, and weight sensitivity
may translate to any crossbar array consisting of resistive
devices. While MTJs carry the benefit of fast write speeds,
low operating voltages, high endurance, and market readi-
ness, their ON-OFF ratios are much smaller compared to
other resistive memory technologies. A lower ON-OFF ratio
translates to a smaller maximum size of the crossbar
array, ultimately determined by the line resistance of the
substrate.

As technology progresses, defective devices in hardware-
based neural networks will remain an inevitability. This
work suggests that at least for binary systems, there are
methods for training networks to improve the fidelity of
the hardware to comparable levels with software, even in
the presence of nonperturbative defect modes, taking full
advantage of the significant area and energy savings of
in-memory computing schemes over software-based von
Neumann approaches.

ACKNOWLEDGMENTS

W.A.B. and A.M. contributed equally to this work. We
thank Thomas Boone for fruitful discussions. This work
was funded by the National Institute of Standards and
Technology. A.M. acknowledges support under the Coop-
erative Research Agreement Award No. 70NANB14H209
through the University of Maryland and NSF Grant No.
CCF-CISE-ANR-FET-2121957.

APPENDIX A: DEVICE-TO-DEVICE VARIATION
IMPACT ON CLASSIFICATION ERROR

We investigate the effect that device-to-device variation
has on the classification error of the hardware emulation. In
the main text, it is stated that the discrepancy between the
performance of the hardware emulation and the defect-free
solution for the hardware-aware training method is due to
device-to-device variations inducing a distribution around
the ternary weights. To show this, we simulate the MTJ
substrate having various levels of variation in resistance.
For each simulation, a crossbar is generated by sampling
normal distributions with mean equal to the mean P and
AP resistance states of the experimentally measured hard-
ware and standard deviation determined by the coefficient

054028-12

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

FIG. 6. Simulation results of inference classification error on
the test data set using MTJ resistance values sampled from a dis-
tribution with increasing variation. Each point in the plot shows
the results of inference for a defect-free solution when tested on
hardware with a certain coefficient of variation in resistance.

of variation, defined as σ = α × μ, where σ is the stan-
dard deviation, α is the coefficient of variation, and μ is
the mean. This generated crossbar is then used in the same
manner as the other results presented in this paper.

Figure 6 shows the classification error of the test dataset
for 100 pure software solutions (without defects) each on
a crossbar with increasing levels of variation. As expected,
at 0% variation, the error does not differ from the soft-
ware performance since there are only two values that the
MTJs can represent. However as the variation increases,
the discrepancy with the defect-free performance begins to

FIG. 7. Standard deviation of classification error of each die,
plotted as a function of Wsat.

FIG. 8. Coefficient of variation for each MTJ gathered from
100 cycles of the screening process described in the main text.
Results for die 1 and die 36 are shown to demonstrate the uni-
formity across the entire wafer. At these levels of variation,
nondefective device’s P-state resistance varies by only 200 �.
This resistance change is at the same scale of the electrically
shorted devices, producing the seemingly larger varying devices
is shown in red.

diverge. It is worth noting that at 8% variation, the dis-
crepancy of the simulated hardware with defect-free per-
formance is of the same level as that of the hardware-aware
results shown in Fig. 2(e).

APPENDIX B: VARIATION OF
STATISTICS-AWARE SOLUTION

PERFORMANCE WITHIN EACH DIE

Here we discuss the variation of the statistics-aware
solution performance within each die. In Fig. 3(b) the clas-
sification error for statistics-aware solutions are plotted as a
function of Wsat. Each dot plotted represents the mean error
of that die gathered from 100 uniquely trained solutions.
Figure 7 plots the standard deviation of the 100 solutions
for each die. Similar to the trend shown before where the

054028-13

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

FIG. 9. Defect maps of the 36 dies used in this work. Axis labels have been removed for ease of viewing. Each die has been filtered
to show locations of electrically shorted devices (red) and subpar devices (blue).

variation between dies shrinks, the variation of error within
each die converges to less than 2% (ignoring outliers). This
trend of reducing variability between solutions confirms
the validity of the trend seen in Fig. 3(b), demonstrating
that the statistics-aware training method does in fact reduce
the variability of performance between dies.

APPENDIX C: YIELD STATISTICS OF ALL DIES
AND CYCLE-TO-CYCLE VARIATION OF MTJ

RESISTANCE

In this Appendix, we first show cycle-to-cycle vari-
ability of the resistance of each MTJ within a single die
followed by a plot of heat maps showing the device yield
of each die. As mentioned in the main text, inference is
performed by emulating the 36 experimentally measured
dies. Performing inference on each solution uses identi-
cal values for resistance, where in a completely hardware
implementation, resistance values will vary. To investigate
the levels of resistance variation of the dies in this work,
we perform 100 cycles where each MTJ is passed through
the screening test mentioned in Sec. II A. Figure 8 plots
the coefficient of variation (defined as the standard devi-
ation divided by the mean) for the P-state resistance αR
plotted for each of the 20 000 MTJs. This cycle-to-cycle

variation test is performed for die 1 and die 36, radially
on opposite ends of the wafer, to show the uniformity of
variation. While only P-state resistance variation is shown
here, AP-state resistance shows similar levels of variation.
In 100 cycles, the resistance of the MTJ varies less than
5%, suggesting this variation has a trivial contribution to
any variation in performance of inference.

Figure 9 plots the 36 dies used in this work, show-
ing electrically shorted locations (red) and subpar devices
(blue). A large number of defects can be seen in dies 13,
20, and 28. These are due to nonidealities introduced dur-
ing fabrication that have shorted pads on the outside of the
die, which are used to source voltage. The large area in die
28 is due to similar effects but located in a central region
of the die.

[1] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M.
Martina, and M. Shafique, Hardware and software opti-
mizations for accelerating deep neural networks: Survey of
current trends, challenges, and the road ahead, IEEE Access
8, 225134 (2020).

[2] A. Canziani, E. Culurciello, and A. Paszke, in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS)
(IEEE, New York, 2017), p. 224.

054028-14

https://doi.org/10.1109/ACCESS.2020.3039858

MEASUREMENT-DRIVEN NEURAL-NETWORK TRAINING. . . PHYS. REV. APPLIED 21, 054028 (2024)

[3] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, A
domain-specific architecture for deep neural networks,
Commun. ACM 61, 50 (2018).

[4] S. Bianco, R. Cadene, L. Celona, and P. Napoletano,
Benchmark analysis of representative deep neural network
architectures, IEEE Access 6, 64270 (2018).

[5] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and
Y. Shi, Scaling for edge inference of deep neural networks,
Nat. Electron. 1, 216 (2018).

[6] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N.
Andrew, in International Conference on Machine Learning
(PMLR, Atlanta, Georgia, USA, 2013), p. 1337.

[7] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos, in
2018 IEEE International Symposium on Workload Charac-
terization (IISWC) (IEEE, Raleigh, North Carolina, USA,
2018), p. 111.

[8] D. Moolchandani, A. Kumar, and S. R. Sarangi, Acceler-
ating CNN inference on ASICs: A survey, J. Syst. Archit.
113, 101887 (2021).

[9] D. Amodei, and D. Hernandez, AI and compute, https://
openai.com/research/ai-and-compute (May 16, 2018).

[10] A. Mehonic and A. J. Kenyon, Brain-inspired computing
needs a master plan, Nature 604, 255 (2022).

[11] A. Arnautović and E. Teskeredžić, in 2021 20th Inter-
national Symposium INFOTEH-JAHORINA (INFOTEH)
(IEEE, East Sarajevo, Bonsia and Herzegovina, 2021),
p. 1.

[12] A. D. Vita, D. Pau, C. Parrella, L. D. Benedetto, A. Rubino,
and G. D. Licciardo, in 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems
(AICAS) (IEEE, Genova, Italy, 2020), p. 291.

[13] A. Nicosia, D. Pau, D. Giacalone, E. Plebani, A. Bosco,
and A. Iacchetti, in 2018 IEEE International Conference on
Consumer Electronics (ICCE) (IEEE, Las Vega, Nevada,
USA, 2018), p. 1.

[14] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh,
and E. Eleftheriou, Memory devices and applications
for in-memory computing, Nat. Nanotechnol. 15, 529
(2020).

[15] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y.
Bengio, Quantized neural networks: Training neural net-
works with low precision weights and activations, J. Mach.
Learn. Res. 18, 1 (2018).

[16] A. Biswas and A. P. Chandrakasan, CONV-SRAM: An
energy-efficient SRAM with in-memory dot-product com-
putation for low-power convolutional neural networks,
IEEE J. Solid-State Circuits 54, 217 (2019).

[17] F. Gao, G. Tziantzioulis, and D. Wentzlaff, in Proceedings
of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (ACM, Columbus OH USA, 2019),
p. 100.

[18] T. Yoo, H. Kim, Q. Chen, T. T.-H. Kim, and B. Kim, in 2019
IEEE/ACM International Symposium on Low Power Elec-
tronics and Design (ISLPED) (IEEE, Lausanne, Switzer-
land, 2019), p. 1.

[19] Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma, Z. Sun, Q.
Sun, L. Chen, H. Zhu, J. Wan, Z. Xu, D. W. Zhang,
P. Zhou, and W. Bao, An in-memory computing archi-
tecture based on two-dimensional semiconductors for
multiply-accumulate operations, Nat. Commun. 12, 3347
(2021).

[20] T. P. Xiao, C. H. Bennett, B. Feinberg, S. Agarwal, and M.
J. Marinella, Analog architectures for neural network accel-
eration based on non-volatile memory, Appl. Phys. Rev. 7,
031301 (2020).

[21] M. Le Gallo et al., A 64-core mixed-signal in-memory com-
pute chip based on phase-change memory for deep neural
network inference, Nat. Electron. 6, 680 (2023).

[22] S. Han, H. Mao, and W. J. Dally, Deep compression:
Compressing deep neural networks with pruning, trained
quantization and Huffman coding, ArXiv:1510.00149.

[23] B. D. Hoskins, M. W. Daniels, S. Huang, A. Madhavan,
G. C. Adam, N. Zhitenev, J. J. McClelland, and M. D.
Stiles, Streaming batch eigenupdates for hardware neural
networks, Front. Neurosci. 13, 793 (2019).

[24] A. Trusov, E. Limonova, D. Slugin, D. Nikolaev, and V.
V. Arlazarov, in 2020 25th International Conference on
Pattern Recognition (ICPR) (IEEE Computer Society, Los
Alamitos, 2021), p. 9897.

[25] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui,
S. Venkataramani, K. El Maghraoui, V. V. Srinivasan, and
K. Gopalakrishnan, in Advances in Neural Information
Processing Systems (Curran Associates, Inc., Vancouver,
Canada, 2020), Vol. 33, p. 1796.

[26] Y. Wu, Y. Wu, R. Gong, Y. Lv, K. Chen, D. Liang, X.
Hu, X. Liu, and J. Yan, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(Seattle, Washington, USA, 2020), p. 6866.

[27] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y.
Bengio, Binarized neural networks: Training deep neural
networks with weights and activations constrained to+1 or
−1, ArXiv:1602.02830.

[28] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe,
Binary neural networks: A survey, Pattern Recognit. 105,
107281 (2020).

[29] M. Julliere, Tunneling between ferromagnetic films, Phys.
Lett. A 54, 225 (1975).

[30] A. D. Kent and D. C. Worledge, A new spin on magnetic
memories, Nat. Nanotechnol. 10, 187 (2015).

[31] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D.
Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H.
Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic
tunnel junction, Nat. Mater. 9, 721 (2010).

[32] T. Y. Lee et al., in 2022 International Electron Devices
Meeting (IEDM) (IEEE, San Fransisco, California, USA,
2022), p. 10.7.1.

[33] D. C. Worledge, C. Safranski, G. Hu, J. Z. Sun, P. Hashemi,
S. L. Brown, L. Buzi, C. P. D’Emic, M. G. Gottwald,
O. Gunawan, H. Jung, S. Karimeddiny, J. Kim, and P. L.
Trouilloud, in 2022 IEEE 33rd Magnetic Recording Con-
ference (TMRC) (IEEE, Milpitas, California, USA, 2022),
p. 1.

[34] J. M. Goodwill, N. Prasad, B. D. Hoskins, M. W. Daniels,
A. Madhavan, L. Wan, T. S. Santos, M. Tran, J. A. Katine,
P. M. Braganca, M. D. Stiles, and J. J. McClelland, Imple-
mentation of a binary neural network on a passive array
of magnetic tunnel junctions, Phys. Rev. Appl. 18, 014039
(2022).

[35] P. Zhou, A. J. Edwards, F. B. Mancoff, D. Houssamed-
dine, S. Aggarwal, and J. S. Friedman, Experimental
demonstration of neuromorphic network with STT MTJ
synapses, ArXiv:2112.04749.

054028-15

https://doi.org/10.1145/3154484
https://doi.org/10.1109/ACCESS.2018.2877890
https://doi.org/10.1038/s41928-018-0059-3
https://doi.org/10.1016/j.sysarc.2020.101887
https://openai.com/research/ai-and-compute
https://doi.org/10.1038/s41586-021-04362-w
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1038/s41467-021-23719-3
https://doi.org/10.1063/1.5143815
https://doi.org/10.1038/s41928-023-01010-1
https://arxiv.org/abs/1510.00149
https://doi.org/10.3389/fnins.2019.00793
https://arxiv.org/abs/1602.02830
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1016/0375-9601(75)90174-7
https://doi.org/10.1038/nnano.2015.24
https://doi.org/10.1038/nmat2804
https://doi.org/10.1103/PhysRevApplied.18.014039
https://arxiv.org/abs/2112.04749

WILLIAM A. BORDERS et al. PHYS. REV. APPLIED 21, 054028 (2024)

[36] S. Jung and S. J. Kim, in 2022 International Electron
Devices Meeting (IEDM) (IEEE, San Francisco, CA, USA,
2022), p. 33.4.1.

[37] S. Jung, H. Lee, S. Myung, H. Kim, S. K. Yoon, S.-W.
Kwon, Y. Ju, M. Kim, W. Yi, S. Han, B. Kwon, B. Seo,
K. Lee, G.-H. Koh, K. Lee, Y. Song, C. Choi, D. Ham, and
S. J. Kim, A crossbar array of magnetoresistive memory
devices for in-memory computing, Nature 601, 211 (2022).

[38] Y. Jeong, M. A. Zidan, and W. D. Lu, Parasitic effect analy-
sis in memristor-array-based neuromorphic systems, IEEE
Trans. Nanotechnol. 17, 184 (2018).

[39] Z. Xiao, V. B. Naik, S. K. Cheung, J. H. Lim, J.-H. Kwon,
Z. Ren, Z. Wang, and Q. Shao, in 2022 International Elec-
tron Devices Meeting (IEDM) (IEEE, San Francisco, CA,
USA, 2022), p. 10.5.1.

[40] T. Gokmen and Y. Vlasov, Acceleration of deep neural
network training with resistive cross-point devices: Design
considerations, Front. Neurosci. 10, 333 (2016).

[41] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, A
variation-tolerant in-memory machine learning classifier
via on-chip training, IEEE J. Solid-State Circuits 53, 3163
(2018).

[42] T. Hirtzlin, B. Penkovsky, J.-O. Klein, N. Locatelli, A. F.
Vincent, M. Bocquet, J.-M. Portal, and D. Querlioz, in 2019
IEEE/ACM International Symposium on Nanoscale Archi-
tectures (NANOARCH) (IEEE, Qingdao, China, 2019),
p. 1.

[43] M. Boniardi and D. Ielmini, Physical origin of the resis-
tance drift exponent in amorphous phase change materials,
Appl. Phys. Lett. 98, 243506 (2011).

[44] S. Buschjäger, J.-J. Chen, K.-H. Chen, M. Günzel,
K. Morik, R. Novkin, L. Pfahler, and M. Yayla, Bit
error tolerance metrics for binarized neural networks,
ArXiv:2102.01344.

[45] M. J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli, F.
Odermatt, N. Li, S. R. Nandakumar, P. Narayanan, H. Tsai,
G. W. Burr, A. Sebastian, and V. Narayanan, Hardware-
aware training for large-scale and diverse deep learning
inference workloads using in-memory computing-based
accelerators, Nat. Commun. 14, 5282 (2023).

[46] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J.
Yang, and H. Qian, Fully hardware-implemented memristor
convolutional neural network, Nature 577, 641 (2020).

[47] J. Doevenspeck, P. Vrancx, N. Laubeuf, A. Mallik, P.
Debacker, D. Verkest, R. Lauwereins, and W. Dehaene, in
2021 International Joint Conference on Neural Networks
(IJCNN) (IEEE, Shenzhen, China, 2021), p. 1.

[48] N. Laubeuf, J. Doevenspeck, I. A. Papistas, M. Caselli,
S. Cosemans, P. Vrancx, D. Bhattacharjee, A. Mallik, P.
Debacker, D. Verkest, F. Catthoor, and R. Lauwereins,
Dynamic quantization range control for analog-in-memory
neural networks acceleration, ACM Trans. Des. Autom.
Electron. Syst. 27, 46 (p. 1) (2022).

[49] J. Slonczewski, Current-driven excitation of magnetic mul-
tilayers, J. Magn. Magn. Mater. 159, L1 (1996).

[50] L. Berger, Emission of spin waves by a magnetic multilayer
traversed by a current, Phys. Rev. B 54, 9353 (1996).

[51] A. Brataas, A. Kent, and H. Ohno, Current-induced torques
in magnetic materials, Nat. Mater. 11, 372 (2012).

[52] L. Deng, The MNIST database of handwritten digit images
for machine learning research, IEEE Signal Process. Mag.
29, 141 (2012).

[53] S. M. Tam, B. Gupta, H. A. Castro, and M. Holler, in
1990 IEEE International Conference on Systems, Man, and
Cybernetics Conference Proceedings (IEEE, Los Angeles,
California, USA, 1990), p. 701.

[54] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T.
Schachter, Z. Hu, and P. L. McMahon, Deep physical neu-
ral networks trained with backpropagation, Nature 601, 549
(2022).

[55] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, ArXiv:1412.6980.

[56] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient
methods for online learning and stochastic optimization,
JMLR 12, 2121 (2011).

[57] X. Glorot and Y. Bengio, in Proceedings of the Thir-
teenth International Conference on Artificial Intelligence
and Statistics (JMLR Workshop and Conference Proceed-
ings, Sardinia, Italy, 2010), p. 249.

[58] Y. Feng and Y. Tu, The inverse variance–flatness rela-
tion in stochastic gradient descent is critical for finding
flat minima, Proc. Natl. Acad. Sci. 118, e2015617118
(2021).

[59] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein,
in 32nd Conference on Neural Information Processing
Systems (Montreal, Canada, 2018).

054028-16

https://doi.org/10.1038/s41586-021-04196-6
https://doi.org/10.1109/TNANO.2017.2784364
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/JSSC.2018.2867275
https://doi.org/10.1063/1.3599559
https://arxiv.org/abs/2102.01344
https://doi.org/10.1038/s41467-023-40770-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1145/3498328
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1103/PhysRevB.54.9353
https://doi.org/10.1038/nmat3311
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1038/s41586-021-04223-6
https://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.2015617118

	I. INTRODUCTION
	II. EXPERIMENTAL SETUP
	A. Design and test of 20000 MTJs integrated with CMOS
	B. Neural-network architecture design and mapping onto MTJ hardware

	III. TRAINING THE NEURAL NETWORK
	A. Improving classification error with hardware-aware training methods
	B. Training and validating statistics-aware solutions
	C. Analysis of network sensitivity

	IV. SUMMARY AND OUTLOOK
	ACKNOWLEDGMENTS
	A. APPENDIX A: DEVICE-TO-DEVICE VARIATION IMPACT ON CLASSIFICATION ERROR
	B. APPENDIX B: VARIATION OF STATISTICS-AWARE SOLUTION PERFORMANCE WITHIN EACH DIE
	C. APPENDIX C: YIELD STATISTICS OF ALL DIES AND CYCLE-TO-CYCLE VARIATION OF MTJ RESISTANCE
	. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

