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Floquet analysis of a superradiant many-qutrit refrigerator
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We investigate superradiant enhancements in the refrigeration performance of a set of N three-level
systems that are collectively coupled to a hot and a cold thermal reservoir and are additionally subject to
collective periodic (circular) driving. Assuming the system-reservoir coupling to be weak, we explore the
regime of stronger periodic driving strengths by comparing collective weak driving, Floquet-Lindblad,
and Floquet-Redfield master equations. We identify regimes where the power injected by the periodic
driving is used to pump heat from the cold to the hot reservoir and derive analytic sufficient conditions for
them based on a cycle analysis of the Floquet-Lindblad master equation. In those regimes, we also argue
for which parameters collective enhancements like a quadratic scaling of the cooling current with N can
be expected and support our arguments by numerical simulations.
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I. INTRODUCTION

The interaction with reservoirs normally tends to destroy
the fragile properties of quantum systems, such that in
standard quantum computation applications [1], decoher-
ence and dissipation [2–4] is often seen as an enemy.
The reservoir-induced decay to the steady state may how-
ever exhibit interesting (transient) quantum features on its
own, as is known from Dicke superradiance [5–7]: the
decay characteristics of multiple open quantum systems
that are identically coupled to a common reservoir may
be substantially different from isolated ones. Studies of
open systems have also revealed that they may for mul-
tiple reservoirs also function as heat engines [8], which
has fostered the emergence of an entire research field of
quantum thermodynamics [9]. To study open systems as
heat engines, one may consider finite-stroke engines that
mimic classical thermodynamic cycles by alternatingly
coupling to different thermal reservoirs like in a quantum
Otto cycle [10]. As it may be challenging to completely
isolate such quantum working fluids from selected envi-
ronments in a controlled fashion, an alternative approach
uses setups where the working fluid is constantly cou-
pled to multiple reservoirs without additional driving [11].
Then, for setups with at least three reservoirs, it may,
e.g., be possible to cool the coldest of them [12] by
absorbing heat from the hottest. However, experimen-
tally, the realization of three reservoirs at vastly different
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temperatures coupled to the very same quantum working
fluid without direct heat flows between the reservoirs may
also appear challenging. Therefore, as a compromise, one
may imagine quantum heat engines that are subject to both
time-dependent periodic driving and are simultaneously
coupled to two reservoirs [13].

The general question of collective enhancements [14–
18] of engine performance has been addressed in these
engine types, including examples for finite-stroke engines
[19–28] and continuously operating engines [29–31]. Also,
periodically driven collective engines have been treated
with weak-amplitude master equations [32,33]. However,
for the last case, we remark that the interesting regime
of stronger driving amplitudes requires a proper Floquet
treatment that has to our knowledge only been explored
for self-commuting forms of driving in collective heat
engines [34,35]. The present paper attempts to close this
descriptive gap.

We proceed by introducing our model system below
in Sec. II, after which we briefly expose our methods in
Sec. III. We then directly discuss our results for a sin-
gle heat engine and collective enhancements in Sec. IV
before concluding. We use a standard theoretical apparatus
to analyze a collective system of qutrits, subject to peri-
odic driving and dissipative coupling to thermal reservoirs.
However, as what is considered “standard” is different
in scientific subcommunities, we provide more technical
details, e.g., on the microscopic derivation of the used
master equations specific for our model, the inclusion of
energy counting statistics, and the collective spin basis in
several appendices.
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II. MODEL

Our quantum working fluid (compare also Fig. 1) can
be described by N identical qutrits, described by states
|0/1/2〉 each, where the energy above the ground state is δ

and the energy of the second excited state is � > δ,

H 0
S = �

N∑

i=1

(|2〉〈2|)i + δ

N∑

i=1

(|1〉〈1|)i, (1)

and where we have gauged the ground-state energy to
zero. The qutrits are collectively coupled to two thermal
reservoirs held at inverse temperatures βν : a hot reservoir
(ν = h), which exclusively induces the large transition,
and a cold reservoir (ν = c), which exclusively induces the
small transition, by using the coupling Hamiltonian

H ν
I = J ν ⊗ Bν ,

where

J c =
∑

i

(|1〉〈0|)i + H.c. ≡ J +
c +J −

c ,

J h =
∑

i

(|2〉〈0|)i + H.c. ≡ J +
h +J −

h ,

with the Bν denoting generic reservoir operators (that will
later on determine the spectral coupling density or spec-
tral function of the reservoir). As the terminology suggests,
we consider cases where βc ≥ βh, but our methods do
of course also apply to the opposite case. The remaining
transition is circularly driven:

V(t) = λe+i�t
∑

i

(|1〉〈2|)i + H.c.

≡ λe+i�tJ −
w +λ∗e−i�tJ +

w (2)

with frequency � and driving strength λ. Such driv-
ings could be realized by coupling the transition to a
(spatially homogeneous) circularly polarized electromag-
netic field [36–39]. We consider cases where � < � −
δ (red detuned), � = � − δ (resonant), and � > � − δ

(blue detuned) and also explore the role of stronger driv-
ing strengths λ. Denoting the standard bosonic reservoir
Hamiltonians by H ν

B , the complete Hamiltonian of our
model universe is thus given by

H(t) = HS(t) +
∑

ν

H ν
I +

∑

ν

H ν
B ,

where HS(t) = H 0
S + V(t), which cannot be solved exactly

in general, such that we will have to use perturbative
methods. Thus, in essence, our model represents a collec-
tive generalization of a three-level maser [40–43], where

FIG. 1. Sketch of the model: a qutrit coupled to hot and cold
reservoirs via selective transitions (red and blue arrows, respec-
tively) can act as a refrigerator for the cold reservoir when
periodic driving (green wavy line) is additionally applied. For
multiple qutrits coupled and driven collectively, superradiant
enhancements may occur.

we are however primarily interested in the refrigerator
operational mode [44].

Our first question relates to the conditions under which
in the long run (discarding any initial relaxation behav-
ior) it is possible to cool the cold reservoir, i.e., whether
by investing work via the driving V(t) one can trans-
port energy out of the cold reservoir. Let us first consider
some simple cases that can be understood for N = 1.
First, in the absence of driving (λ = 0), the cold reser-
voir can only induce small excitations, but the energy
cannot be transferred to the hot reservoir as the transition
|1〉 → |2〉 is not possible in this case. The same situation
arises for finite λ but � → ∞, which allows us to per-
form a rotating-wave approximation on the Hamiltonian.
Therefore, to leading order in the coupling, the reservoirs
cannot exchange energy in these limits and the long-term
energy current must vanish, leaving no chance for cooling
functionality. Second, for � = 0 and finite λ, we obtain
an undriven system, where however the internal system
dynamics allows for coherent transitions between the two
excited states. In this case, heat flow is possible in the
long-term limit, but the second law of thermodynamics
tells us that it will always be directed from hot to cold
and thus not provide cooling functionality (corresponding
to a negative cooling current in our conventions). Third,
for λ → ∞, the eigenstates of HS(t) approach those of
V(t) with eigenstates |0v〉 = |0〉 and |±v〉 ∝ |1〉 ± e−i�t|2〉.
Fermi’s golden rule then suggests that both reservoirs trig-
ger the transitions between the system eigenstates in the
same way, |〈0|J ν |±〉|2 = 1/2, such that the energy flows
symmetrically into both hot and cold reservoirs. In this
case, we simply expect that the driving will heat up both
reservoirs. These considerations suggest that the identifi-
cation of a regime of cooling functionality deserves a more
detailed analysis.

Once such a cooling functionality is established, our
second question concerns whether collective effects (anal-
ogous to superradiance [5–7]) can improve the cooling
performance of the refrigerator: this is already the case
when the cooling current of N collectively coupled qutrits
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is larger than N times the cooling current of a single-qutrit
device, but we are also interested in the scaling behav-
ior with N . To keep the problem treatable, we therefore
assume that the complete symmetry under qutrit permu-
tations is also respected by the initial state (take, e.g.,
|0 · · · 0〉), which allows us to consider only the permuta-
tionally symmetric sector of the dynamics.

III. METHODS

Below, we introduce different levels of description,
where in the main text we mainly state their mode of
application and in the appendices we provide details on
their microscopic derivation, thermodynamic discussion,
and further implications.

A. Weak-driving Lindblad equation

The weak-driving Lindblad [45,46] equation can be for-
mally obtained by using the dissipators for λ = 0 and
replacing only the Hamiltonian by its driven version [32,
47]. In Appendix A we provide a microscopic derivation,
from which it becomes apparent that this procedure is valid
for small λ only. The explicit form of the weak-driving
master equation is

ρ̇ = −i[H 0
S + V(t), ρ] + Lcρ + Lhρ (3)

with

Lνρ = γν(+�ν)
[
J −
ν ρJ +

ν − 1
2 {J +

ν J −
ν , ρ}]

+ γν(−�ν)
[
J +
ν ρJ −

ν − 1
2 {J −

ν J +
ν , ρ}],

where the Fourier transform of the reservoir correlation
function (A4),

γν(ω) = �ν(ω)[1 + nν(ω)], (4)

can be decomposed in a spectral coupling density (or spec-
tral function) �ν(ω) (that is positive for ω > 0 and depends
on the Bν operators) and the Bose distribution nν(ω) =
1/(eβνω − 1) (that imprints the reservoir temperatures on
the dynamics) and is evaluated at the original transition
frequencies of the quantum working fluid �c = δ and
�h = �. As we chose the analytic continuation �ν(−ω) =
−�ν(+ω), it follows that γν(−�ν) = �ν(�ν)nν(�ν) ≥ 0,
making the Lindblad form explicit and also demonstrating
that the isolated dissipators Lν alone would have the sys-
tem Gibbs state of the undriven system at their respective
reservoir temperature as a steady state.

For systems subject to time-dependent driving, defining
the currents properly is in general nontrivial [48,49]. For
example, by looking at the energy balance of the bare sys-
tem H 0

S only, one can obtain energy currents entering the
system from the reservoirs as I ν

E(t) = Tr{H 0
S [Lνρ(t)]} and

the power P(t) = −iTr{[H 0
S , V(t)]ρ(t)}, which leads to a

consistent thermodynamic description [47]. Additionally,
it complies with the idea that, for small λ, the energy of the
bare system Hamiltonian H 0

S is most relevant. However,
thinking of device performance (refrigeration), what mat-
ters is not the energy balance of the (bare) system, but that
of the (cold) reservoir. Therefore, we propose to use the
counting field formalism, which upgrades Lν → Lν(χν)

with energy counting fields χν via the replacements

J −
ν ρJ +

ν → J −
ν ρJ +

ν e+i�νχν ,

J +
ν ρJ −

ν → J +
ν ρJ −

ν e−i�νχν .
(5)

We stress that these replacements actually result from a
microscopic derivation involving the statistics of reservoir
energy changes, which we sketch in Appendix D for all
the master equations we use. Within the counting field
formalism, the energy currents leaving the reservoirs (by
our conventions positive when decreasing the reservoir
energy) are then obtained as

I ν
E(t) = +iTr{L′

ν(0)ρ(t)}
= �ν[γν(−�ν)Tr{J −

ν J +
ν ρ} − γν(�ν)Tr{J +

ν J −
ν ρ}].

(6)

Using the facts that J +
c NδJ −

c − 1
2 {J +

c J −
c , Nδ} = −J +

c J −
c

and J −
c NδJ +

c − 1
2 {J −

c J +
c , Nδ} = +J −

c J +
c , one can show

that, for the weak-driving master equation, the above
energy currents are indeed identical with the previous
definition based on the energy balance of H 0

S . Further-
more, we show in Appendix A that there exists a frame
where the generator of the weak-driving master equation
becomes time independent and that the currents defined
this way actually settle to a steady-state value. The power
at steady state can then be obtained via P̄ = −Ī c

E − Ī h
E by

invoking the first law or by using the definition above,
and we also provide in Appendix A a short discussion of
thermodynamic consistency.

B. Floquet-Lindblad equation

To investigate the region of larger driving strengths λ,
we use an exact Floquet representation of the system’s time
evolution operator [defined by U̇S = −i[H 0

S + V(t)]US(t)].
The Floquet-Lindblad master equation [39] can then be
derived microscopically (see Appendix B) under the usual
Born-Markov assumptions and a secular approximation
relying on vastly different Floquet energy differences and
driving frequency � [50]. In the system interaction picture
(denoted by bold symbols), where ρ(t) = U†

S(t)ρ(t)US(t),
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it can be written as

ρ̇ =
∑

a

γc

(
− εa + �

2

)[
J +

c,aρJ −
c,a−

1
2
{J −

c,aJ +
c,a, ρ}

]

+
∑

a

γc

(
+ εa − �

2

)[
J −

c,aρJ +
c,a−

1
2
{J +

c,aJ −
c,a, ρ}

]

+
∑

a

γh

(
− εa − �

2

)[
J +

h,aρJ −
h,a−

1
2
{J −

h,aJ +
h,a, ρ}

]

+
∑

a

γh

(
+ εa + �

2

)[
J −

h,aρJ +
h,a−

1
2
{J +

h,aJ −
h,a, ρ}

]
,

(7)

where the γν(ω) are defined in Eq. (4), but are now evalu-
ated at different transition energies, and the Lindblad jump
operators are now tilted

J −
c,a = |〈a|1〉|2J −

c +〈1|a〉〈a|2〉J −
h ,

J −
h,a = |〈a|2〉|2J −

h +〈2|a〉〈a|1〉J −
c ,

(8)

and J +
ν,a = (J −

ν,a)
†, where a ∈ {−, +} labels the eigenstates

HF |a〉 = εa|a〉 of the single-particle Floquet Hamiltonian

HF = (� − �/2)|2〉〈2| + (δ + �/2)|1〉〈1|
+ λ|1〉〈2| + λ∗|2〉〈1| (9)

with Floquet energies

ε±=δ + �

2
± 1

2

√
(� − δ − �)2 + 4|λ|2. (10)

The generator obtained this way is thus time indepen-
dent in the Floquet interaction picture, which facilitates
the computation of stationary currents. For the Floquet-
Lindblad master equation, the current leaving the reser-
voirs can be evaluated using counting fields, i.e., we can,

e.g., obtain the energy current leaving the cold reser-
voir via I c

E(t) = iTr{L′(0)ρ(t)}, when we generalize the
above Liouvillian L → L(χc) with counting fields using
the replacements (see also Appendix D for a derivation
sketch)

J +
c,aρJ −

c,a → J +
c,aρJ −

c,aei(−εa+�/2)χc ,

J −
c,aρJ +

c,a → J −
c,aρJ +

c,aei(+εa−�/2)χc .
(11)

For the current leaving the cold reservoir, this yields

I c
E(t) =

∑

a

(
εa − �

2

)[
γc

(
− εa + �

2

)
Tr{J −

c,aJ +
c,aρ}

− γc

(
εa − �

2

)
Tr{J +

c,aJ −
c,aρ}

]
. (12)

The energy current leaving the hot reservoir can be treated
analogously, and one obtains a similar expression (with
c → h and � → −�).

While representation (7) provides a fixed operator basis,
we show in Appendix B that in the collective Floquet basis
constructed by (see also Appendix E)

|M , m〉 ∝ (S+
+)M (S+

−)m|0 · · · 0〉 (13)

with S+
a = ∑

i(|a〉〈0|)i, the dynamics of the diagonal
matrix elements ρMm = 〈M , m|ρ|M , m〉 is just given by the
Pauli-type rate equation

ρ̇M ,m = +RMm
0+ ρM ,m−1 + RMm

0− ρM ,m+1 + RMm
−0 ρM+1,m

+ RMm
+0 ρM−1,m − RMm

00 ρM ,m, (14)

where

RMm
0+ =

[
γc

(
− ε−+�

2

)
cos2 α + γh

(
− ε−−�

2

)
sin2 α

]
(N − M − m + 1)m,

RMm
+0 =

[
γc

(
− ε++�

2

)
sin2 α + γh

(
− ε+−�

2

)
cos2 α

]
(N − M − m + 1)M ,

RMm
0− =

[
γc

(
+ ε−−�

2

)
cos2 α + γh

(
+ ε−+�

2

)
sin2 α

]
(N − M − m)(m + 1),

RMm
−0 =

[
γc

(
+ ε+−�

2

)
sin2 α + γh

(
+ ε++�

2

)
cos2 α

]
(N − M − m)(M + 1),

with RMm
00 determined by the trace conservation

requirement (rate matrices must have a vanishing col-
umn sum) and α denoting the rotation angle of the

Floquet states (B2). Also, the counting fields from replace-
ments (11) can be transferred to the rate equation rep-
resentation [i.e., in off-diagonal matrix elements replace

044050-4



COLLECTIVE FLOQUET REFRIGERATOR PHYS. REV. APPLIED 21, 044050 (2024)

FIG. 2. Sketch of the effective rate equation (14) arising in the
Floquet basis. Circles represent populations of states |M , m〉. The
hot (red) and cold (blue) reservoirs induce the effective small and
large transitions simultaneously. Because of the inherent periodic
driving V(t) (symbolized by the green arrows around circles), the
energies exchanged with both reservoirs (indicated on the right)
are also different along the same transition, which eventually
enables cooling along the smallest cycle linking two neighboring
states.

γν(�E) → γν(�E)eiχν�E]. The topology of this rate
equation is depicted in Fig. 2. In the absence of driv-
ing (λi → 0 and � → 0), the eigenstates and energies
fall back to the eigenstates and energies of the bare sys-
tem Hamiltonian H 0

S , and with cos2 α → 1 and sin2 α → 0
one recovers the Pauli rate equation for the undriven sys-
tem. Furthermore, for resonant driving � = � − δ or very
large amplitudes λ → ∞, we can use cos2 α → 1/2 and
sin2 α → 1/2 to simplify the prefactors. In general, one
can see that both reservoirs induce both effective transi-
tions, but transferring different energies between systems
and hot and cold reservoirs, respectively. This difference
also implies that even at equal reservoir temperatures the
stationary state will not simply be a Gibbs state of the
Floquet Hamiltonian. Apart from the significant numerical
simplification, the Floquet rate equation has advantages in
assessing conditions allowing for cooling functionality, as
we discuss below. Finally, we stress that the cycles in the
middle of the state network with M ≈ m ≈ N/2 have the
largest Clebsch-Gordon factors in the effective Pauli rate
equation (14), and their contribution to the cooling current
scales quadratically with N .

C. Floquet-Redfield equation

The Floquet-Redfield master equation relies on the same
interaction picture (bold symbols) as the Floquet-Lindblad
master equation, with the exception that no secular approx-
imation is performed (see Appendix C). Already for
undriven systems, the Redfield equation [51] is in gen-
eral not of Lindblad form, but, for weak system-reservoir
couplings, it approximately preserves the system density
matrix properties [52] and yields a thermodynamically
consistent description [53]. Indeed, artifacts arising from
the secular approximation are well known for undriven

systems (see, e.g., Refs. [54–56]), but have also been
observed for driven ones [57–60]. In the Schrödinger
picture, the Floquet-Redfield equation can be written as

ρ̇ = −i[HS(t), ρ]

−
∑

a∈±

γc(−εa + �/2)

2
{[J c, J +

c,a(�)ρ] + H.c.}

−
∑

a∈±

γc(+εa − �/2)

2
{[J c, J −

c,a(�)ρ] + H.c.}

−
∑

a∈±

γh(−εa − �/2)

2
{[J h, J +

h,a(�)ρ] + H.c.}

−
∑

a∈±

γh(+εa + �/2)

2
{[J h, J −

h,a(�)ρ] + H.c.}, (15)

where
∑

a∈± again denotes the sum over the single-particle
eigenstates of the Floquet Hamiltonian (9), but in contrast
to Eqs. (8), the tilted operators

J −
c,a(�) = |〈a|1〉|2J −

c +e+i�t〈1|a〉〈a|2〉J −
h ,

J −
h,a(�) = |〈a|2〉|2J −

h +e−i�t〈2|a〉〈a|1〉J −
c

(16)

with J +
c,a(�) = [J −

c,a(�)]† maintain a periodic time depen-
dence. In contrast to the Lindblad equations, we are not
able to find a frame where the Redfield equation generator
is time independent. However, for our model, it fortunately
has only two sidebands:

L(t) = L0 + L−e−i�t + L+e+i�t (17)

with the explicit superoperators given in Eqs. (C2) in
Appendix C. To obtain the asymptotic solution ρ̄(t) =∑

n ρ̄(n)ein�t (we use the overbar generically to denote
long-term limits), we thus have to solve the matrix-
tridiagonal equation

0 = (L0 − in� · 1)ρ̄(n) + L+ρ̄(n−1) + L−ρ̄(n+1) (18)

with some suitable cutoff in |n| (generally chosen such that
convergence is reached) for the asymptotic Fourier com-
ponents ρ̄(n), of which ρ̄(0) provides the period-averaged
density matrix. For the parameters we investigate in detail,
we found a rather quick convergence with ρ̄(0) being dom-
inated by populations and ρ̄(±1) by coherences, and higher
Fourier components vanishing rapidly with n. However,
we also observed that, for larger qutrit numbers N , the nec-
essary cutoff increased. The currents can now be obtained
by introducing counting fields (see Appendix D for a
derivation sketch) for all terms with sandwiched density
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matrix

J −
c,a(�)ρJ c → J −

c,a(�)ρJ cei(εa−�/2)χc , (19a)

J cρJ +
c,a(�) → J cρJ +

c,a(�)ei(εa−�/2)χc , (19b)

J +
c,a(�)ρJ c → J +

c,a(�)ρJ cei(−εa+�/2)χc , (19c)

J cρJ −
c,a(�) → J cρJ −

c,a(�)ei(−εa+�/2)χc , (19d)

which promotesL(t) → L(χc, t) = L0(χc) + L−(χc)e−i�t

+ L+(χc)e+i�t. The time-dependent cooling current is
then obtained by I c

E(t) = iTr{∂χL(χ , t)|χ=0ρ(t)}, and it
will thus not settle to a steady-state value. Therefore, to
compare with the other master equations, we perform a
period average [61]. In terms of the generalized superoper-
ators, the period-averaged cooling current leaving the cold
reservoir becomes

Ī c
E = (+i)Tr{L′

0(0)ρ̄(0) + L′
−(0)ρ̄(+1) + L′

+(0)ρ̄(−1)};
(20)

see Eq. (C4) in Appendix C for an explicit representation.
Since this depends only on the leading Fourier components
n ∈ {−1, 0, +1}, the cutoff required to obtain convergence
of the current was smaller than the cutoff required for
convergence of all stationary Fourier components ρ̄(n).

IV. RESULTS

To understand the limitations of the used master equa-
tions, we first consider the case of a single qutrit N = 1
before continuing with the collective system. In all our
calculations, we employ a Lorentz-Drude spectral function
[2] of the form

�ν(ω) = �νωσν

σ 2
ν + ω2 (21)

with bare coupling strength �ν and width σν , which
ensures that, for all values of ω, the dissipator coeffi-
cients (4) remain upper bounded. Therefore, for small
�ν , the Redfield approach is expected to be valid. In the
absence of an exact solution, we thus use it as a benchmark
calculation.

A. Single-device performance

1. Map of cooling

For orientation, we first plot the stationary Floquet-
Lindblad cooling current (12) as a function of the driving
frequency �/δ and the driving strength λ/δ in Fig. 3.

First, one can see that along the vertical line defined
by � = 0, the cooling current is always negative: in this
limit, the cooling current becomes the heat flow through
an undriven system, which must flow from hot to cold.

Driving frequency

D
ri

vi
ng

 a
m

pl
itu

de

FIG. 3. Plot of the stationary Floquet-Lindblad current (12)
versus the dimensionless driving frequency �/δ ∈ [−3, +3]
(horizontal axis) and dimensionless driving strength λ/δ ∈
[−3, +3] with contours ranging from Ī c

E/(�cδ) = −0.15 (red)
over Ī c

E/(�cδ) = 0 (white, red contour) to Ī c
E/(�cδ) = +0.02

(blue). The blue regions of cooling can also be identified by
cycle analysis of the Pauli-type rate equation in the Floquet
basis (dashed curves). Currents along the vertical green dotted
lines correspond to the dashed red curves in Fig. 4 below. Other
parameters are �c = �h = 0.1δ, � = 2δ, βhδ = 1, βcδ = 1.5,
σc = σh = δ.

Second, along the horizontal line defined by λ = 0 we
see that the current vanishes—with the exception of a
small region near resonance, λ = 0, � = � − δ, where
the Floquet-Lindblad master equation displays artifacts.
Along this line, the current has to vanish as, for λ = 0,
the two reservoirs induce independent cyclic transitions
(compare also Fig. 1 in the absence of the wavy line),
such that no net stationary heat transfer between them is
possible.

Third, the central region of cooling (dark blue colors,
encircled by the solid red contour) is limited both in cou-
pling strength (optimal finite values) and frequency (e.g.,
near resonance), in strong contrast to the current obtained
from the weak-driving master equation (see Appendix A).
We can analytically provide sufficient conditions for cool-
ing in the region bounded by the magenta dashed curve
from the left and the orange dashed curve from the right,
as we explain below.

Fourth, we find two additional regions of cooling
operation (top and bottom left), which, for sufficiently
low temperatures, are found for � < 0 between the
orange and brown dashed curves, as we also explain
below.
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Finally, we mention that the coefficient of performance

κ

κCa
= Ī c

E�(Ī c
E)

−Ī c
E − Ī h

E

βc − βh

βh
(22)

for the Floquet-Lindblad currents is always bounded by its
Carnot value, which we demonstrate explicitly in Fig. 9 in
Appendix B. We also stress that in contrast to the the weak-
driving master equation (see Appendix A), the coefficient
of performance for the Floquet-Lindblad equation is not
constant in the regions of cooling functionality.

Figure 3 already illustrates two of our main results. The
first is that a microscopic Floquet treatment yields out-
comes that differ qualitatively from the phenomenological
approach (e.g., multiple islands of cooling functional-
ity) and agree with the latter only in very tiny regions.
The second is that—despite the complexity of the micro-
scopic Floquet description—we can find sufficient analytic
conditions for cooling.

2. Comparison of methods

One may naturally ask how the map of cooling per-
formance from Fig. 3 compares with the results from
the weak-driving master equation, which predicts cool-
ing functionality that—whenever βcδ < βh�—increases
monotonically with driving strength λ up to a maximum
value [see, e.g., Eqs. (A17) and (A19) in Appendix A].
In fact, analyzing this for near-resonant regions (along
the dotted green lines in Fig. 3), we see in Fig. 4 that
the weak-driving master equation results are only repro-
duced in the limit of small λ, where their application is
justified. Outside this region, the full Floquet-Lindblad
treatment shows a turnover and, for large driving ampli-
tudes λ, eventually leads to a loss of cooling functionality.
As confirmed by analysis of the period-averaged Redfield
current (black dashed curve), the Floquet-Lindblad treat-
ment is more applicable to the regime of nonvanishing
λ. Quite analogous to the discussion of local and global
master equations for undriven systems [62], we also stress
that one should not always favor the Floquet-Lindblad
master equation (“global”) over the weak-driving (“local”)
one: for small driving strength λ ≈ 0 and near reso-
nance � ≈ � − δ (middle panel), the Floquet-Lindblad
master equation predicts a nonvanishing current where it
should actually vanish. This exception is an artifact of
the Floquet-Lindblad master equation: the Floquet ener-
gies (10) become degenerate at this point, such that the
performed secular approximation is not applicable there.
The period-averaged Redfield current (black dashed curve)
does not suffer from this artifact and (correctly) agrees
with the weak-driving master equation in this regime.
Apart from a small region near � ≈ � − δ and λ ≈ 0 (of
which we provide a comparison in Fig. 10 in Appendix
C), Floquet-Redfield and Floquet-Lindblad currents agree

/

FIG. 4. Plot of cooling currents for a single qutrit subject to
red-detuned [top, � = 0.8(� − δ)], resonant (middle, � = � −
δ), and blue-detuned [bottom, � = 1.2(� − δ)] driving versus
the dimensionless driving amplitude, i.e., along the green dotted
lines in Fig. 3. Cooling functionality is obtained for positive cur-
rents (blue background). Lindblad master equations (MEs) only
cover a finite region of validity such as small λ (weak-driving
Lindblad ME) or nonresonant driving (for resonant driving large
λ) (Floquet-Lindblad ME) and may show unphysical artifacts
outside: the weak-driving Lindblad ME does not capture the
complete loss of cooling functionality for large λ (right) and the
Floquet Lindblad ME shows a finite cooling current at vanish-
ing λ for resonant driving (middle left). For the period-averaged
Redfield current, Fourier modes n ∈ {−1, 0, +1} were sufficient
for convergence. Other parameters are as in Fig. 3.

well in the cooling current. We conjecture that this surpris-
ingly good agreement is due to the chosen circular driving,
which leads to a Redfield generator also with just two
sidebands in the microscopic treatment.

3. Cooling conditions for the Floquet-Lindblad equation

For N = 1, the Floquet-Pauli master equation (14)
reduces to a three-dimensional rate equation for the prob-
abilities P0 = ρ0,0, P− = ρ0,1, and P+ = ρ1,0 of find-
ing the qutrit in states |0〉, |−〉, and |+〉, respectively;
see Eqs. (B14) in Appendix B. As a consequence of
the periodic driving, it has shifted detailed-balance rela-
tions (that for a single reservoir already prohibit ther-
malization [63,64]). Additionally, both reservoirs may
now trigger both effective transitions, such that already
for N = 1 two cycles between the states |0〉 ↔ |−〉 and
|0〉 ↔ |+〉 emerge. These transitions are associated with
reservoir-specific energetic exchanges: the hot reservoir
transfers energy ε± + �/2, whereas the cold reservoir
transfers energy ε± − �/2. We can analyze its cycles [65]
to find conditions under which cooling performance is
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FIG. 5. Sketch of level configurations for � > 0 and ε− −
�/2 > 0 (left panel) and for � < 0 and ε− − �/2 < 0 (right
panel) with effective excitation energies seen by the cold (blue) or
the hot (red) reservoir. For the left configuration, both cycles are
cooling operational (traversed counterclockwise) when βc(ε+ −
�/2) < βh(ε+ + �/2) holds. For the right configuration, only
the lower cycle becomes operational when βc(ε− − �/2) >

βh(ε− + �/2) (the upper cycle is then always counteropera-
tional, traversed clockwise).

guaranteed. In particular, for � > 0 and both ε± − �/2 >

0, we have a configuration as depicted in the left panel of
Fig. 5. Then, a sufficient condition for cooling function-
ality is when both cycles are more likely traversed in a
counterclockwise than in a clockwise fashion, such that
from the product of rates belonging to these trajectories
we obtain the conditions γc(−ε± + �/2)γh(ε± + �/2) >

γh(−ε± − �/2)γc(ε± − �/2). Using the facts that ε+ >

ε− and βc > βh, we see that the condition by the upper
cycle is tighter, such that we can summarize the sufficient
cooling conditions as

ε−−�

2
> 0, βc(ε+−�/2) < βh(ε++�/2). (23)

Given that identifying cooling conditions is already non-
trivial for undriven systems [66], we consider this as a
main (nontechnical) result. The above cooling condition is
well supported by our numerical findings in Fig. 3, where
the first condition denotes the region left of the orange
dashed parabola, and the second the region right of the
dashed magenta curve, and indeed the cooling current is
always positive when both conditions are fulfilled. How-
ever, on comparison with the red contour in Fig. 3 we
see that the conditions are not necessary ones as, e.g.,
cooling performance of one of the cycles may suffice. If
we increase λ strongly, at some point the lower Floquet
energy falls significantly below zero and for all reservoirs
βνε− � −1. Then, essentially only state |−〉 is occupied:
the system cannot cool and even the current vanishes com-
pletely, which is what we see after the turnover of the
Floquet curves in Fig. 4.

The functionality of the other regions for � < 0 and
larger |λ| can also be understood. Then, we have a config-
uration where ε− − �/2 < 0 (above, to the right of, and

below the orange dashed parabola in Fig. 3). The condi-
tion for the lower cycle P− ↔ P0 to cool is then derived
from similar arguments as βc(ε− − �/2) > βh(ε− + �/2)

(left of the orange dashed curve). As this is not a suffi-
cient condition (the other cycle is then counteroperational),
the area enclosed by the dashed orange and dashed brown
curves in the top and bottom left parts is larger than the
cooling region (red contour). Furthermore, this operational
window will depend not only on the ratio of the two reser-
voir temperatures, but also on the temperatures themselves.
For example, in contrast to the central cooling window,
these operational windows will vanish when the temper-
atures of both reservoirs are increased while their ratio is
kept (which is what we observed when plotting Fig. 3 for
higher temperatures; not shown).

B. Collective effects

When analyzing collective effects, we are particularly
interested in enhancements of the cooling current.

1. Cooling conditions for many qutrits

When N > 1 qutrits are collectively coupled to the
reservoirs and are also driven collectively, the inherent
permutational symmetry of the Hamiltonian preserves the
symmetry of an initial condition. Mathematically, this
results in the conservation of the Casimir operators of
su(3). The subspace of complete permutational symme-
try corresponds to the subspace with maximum (quadratic)
Casimir operator eigenvalue, and has a dimension of
(N + 1)(N + 2)/2, which is much less than the 3N states
required for a description without permutational symme-
try. Representing all operators within a collective, com-
pletely permutationally symmetric basis (see Appendix E),
we show in Appendix A that in the large-N limit, the
weak-driving master equation does not enhance cooling
functionality. For finite N though, we numerically find
a superlinear scaling. For the Floquet-Lindblad master
equation, we find in full analogy to the N = 1 case a Pauli-
type rate equation for the populations of the density matrix
in the maximum symmetry sector (14), which has analo-
gous effective energy differences in its cycles. Therefore,
our sufficient conditions (23) remain just the same: when
all cycles cool individually, the collective system cools as
well. In contrast, if only a fraction of the cycles is cooling
operational (as in the right panel of Fig. 5), cooling per-
formance may depend on the number of qutrits involved,
which is also what we observe (not shown).

2. Collective enhancements

Similar to Ref. [31] for undriven qutrits, we find that
performance enhancements happen when the states with
a number of excitations that is about half the number of
qutrits (those in the central part of Fig. 2) are occupied.
This can be understood as follows: in the corresponding
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FIG. 6. Multiqutrit cooling current versus N under resonant
moderate strength driving � = � − δ and λ = 0.5δ for differ-
ent approaches (symbols). The weak-driving cooling current
(red diamonds) derived from Eq. (3) is smaller than the period-
averaged Redfield cooling current (black squares) from Eq. (15);
the latter is much closer to the Floquet-Lindblad cooling cur-
rent (orange circles) from Eq. (7) and the Floquet-Pauli cooling
current (blue dots) from the rate equation (RE) in Eq. (14) (the
last two agree exactly). Although the collective working fluid in
all approaches (symbols) outperforms N individual ones (clas-
sical scaling, red dash-dot curve) for the sizes N accessible to
us, the current never scales quadratically (dashed orange line).
To the contrary, in the Floquet approaches the initial superlin-
ear scaling quickly becomes linear, and—as an artifact of this
approach in the moderate-driving-strength regime—the scaling
of the weak-driving cooling current even becomes sublinear. For
the period-averaged Redfield current, a cutoff nc = 1 was suf-
ficient [the relative error |Ī c

E(nc = 1) − Ī c
E(nc = 2)|/Ī c

E(nc = 1)

was below 0.1% for the values of N that were used for plotting].
Other parameters are the same as in Fig. 3.

Floquet rate equation the transition rates between these
states are significantly enhanced by the Clebsch-Gordan
factors (E6), which also enhance the cooling current.

The population of these states can, for example, be
achieved by using sufficiently large temperatures [while
keeping their ratio constant, such that Eq. (23) remains ful-
filled]. Indeed, we see for rather low temperatures a linear
scaling with the number of qutrits (see Fig. 6), whereas for
higher temperatures, the scaling is first quadratic (which
for our type of model is the maximum possible scaling
[67]) and turns down to a linear scaling for larger N (see
Fig. 7). Keeping the temperatures finite and extrapolat-
ing N to infinity, we always expect a cooling performance
with linear scaling with N in the optimal cooling window
defined by Eq. (23).

Note however that, for the weak-driving Lindblad
equation (red diamond symbols), we would even find a
reduction of the cooling current for large N and any finite
temperatures as compared to the single-engine perfor-
mance (see Appendix A), and a precursor of this is already
visible in Fig. 6.

/

FIG. 7. Analogous to Fig. 6, but for higher temperatures βcδ =
0.3, βhδ = 0.2. We find for small to moderate N a region of
quadratic scaling (thin dashed orange line shown to guide the
eye), but for larger N (accessible only with the Floquet-Pauli
rate equation), it reduces to linear (dash-dotted red line shown
to guide the eye).

Whether the scaling is quadratic or linear, Figs. 6 and 7
both illustrate our third main result: the collective cooling
output (symbols) may be more than the sum of its parts
(red dash-dot line).

V. CONCLUSIONS AND OUTLOOK

We analyzed the cooling performance of an N -qutrit
working fluid that is collectively coupled to two reservoirs
and circularly driven as a function of driving frequency,
driving strength, and qutrit number. Our first main result
is that a full microscopic Floquet treatment leads to a
completely different landscape of cooling functionality as
compared to the widely used phenomenological approach
that inserts periodic driving a posteriori in the evolution
equations. The existence of analytic sufficient conditions
for cooling functionality based on a cycle analysis is
our second main result. Finally, our third main result is
that superradiant enhancements can also be achieved for
periodically driven systems at steady state.

Our first result generally poses a warning against the use
of the phenomenological periodic master equation without
an explicit microscopic derivation that highlights its lim-
its. With respect to the refrigeration ability of our system,
it shows that the region of cooling functionality accord-
ing to the Floquet master equations is limited both in
driving strength and frequency for a single-qutrit working
medium. To analyze the impact of the secular approxi-
mation, we corroborated these results with the Floquet-
Redfield equation, where, for our system, we found that
Floquet-Redfield and Floquet-Lindblad approaches yield
equivalent results—except at resonant driving � ≈ � − δ

and weak driving strength λ ≈ 0. At this delicate spot,
the secular approximation fails and the weak-driving mas-
ter equation did produce better results. We suspect that
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the presence of only a single delicate spot is due to the
fact that the Floquet-Redfield generator for our model
has only three nonvanishing Fourier components, which
strongly limits the number of situations where the secu-
lar approximation fails. For noncircular drivings like, e.g.,
V(t) = cos(�t)(J +

w + J −
w ), we therefore do not expect such

a good agreement (compare, e.g., Refs. [68,69] for driven
three-level systems). For these, the Floquet-Redfield mas-
ter equation may in principle remain the method of choice
[70], although it would certainly be interesting to analyze
Floquet versions of nonsecular Lindblad master equations
[71–74].

Regarding our second main result, we expect that cycle
analyses of the Floquet Lindblad master equations may
become a useful tool to assess useful operational modes
in general, since rate equations in the Floquet basis should
emerge generically. We also remark here that it is impor-
tant to correctly account for the heat exchanges with the
reservoir in such effective rate equations, as the energy
differences of the system alone do not contain that infor-
mation.

For our third result, we found that—although the scal-
ing reduces to linear above a temperature-dependent size
of the working fluid—the overall performance of the col-
lective device was in appropriate regimes still larger than
that of independently working refrigerators. We found in
the optimal cooling regime that, for fixed temperatures,
there is a crossover behavior as a function of qutrit num-
ber N . For small N , the cooling performance is collectively
enhanced to a quadratic scaling, since the system can pop-
ulate states with collectively enhanced transition rates. As
N grows, the finite reservoir temperatures can no longer
populate these states, and the scaling is reduced to linear.
Consistent with this observation we find that at higher tem-
peratures of both reservoirs, the transition from quadratic
to linear scaling occurs at larger N . We expect that fine-
tuned interqutrit interactions (analogous to Ref. [30]) can
in principle also be used to maintain the quadratic scaling
for larger N . Although the Floquet treatment of interact-
ing systems is challenging [75–80], the exploration of such
models may yield interesting new physics [81]. Depart-
ing from the idealized assumption of collective couplings
and driving, we expect a quick breakdown of the quan-
tum enhancements, as is known for undriven systems [31].
In this case, the permutational symmetry is no longer pre-
served and we cannot restrict our considerations to the
perfectly symmetric subspace.

On the technical side, we remark that to evaluate
(period-averaged) energy currents leaving the reservoirs,
we used a counting field formalism, which can be com-
bined with existing master equation approaches in a
straightforward way. Recent proposals even extend this
formalism to the coherent driving field [82]. In addi-
tion, the formalism can also be used to calculate cur-
rent fluctuations [59,83,84], such that thermodynamic

uncertainty relations [85] (relevant, e.g., for engine relia-
bility) can be studied. For the long-term fluctuations S̄ν

E =
limt→∞ d[〈(H ν

B)2〉 − 〈H ν
B〉2]/dt of the energy currents of

bath ν, the standard version of these relations predicts that

S̄ν
E

(Ī ν
E)2

˙̄σ ≥ 2, (24)

where ˙̄σ = −βcĪ c
E − βhĪ h

E ≥ 0 is the long-term entropy
production rate. For dissipative systems with periodic driv-
ing inserted a posteriori (equivalent to our weak-driving
Lindblad master equation), violations of the above stan-
dard bound have been predicted [86,87] and observed
[26,88,89]. While we can confirm such violations of the
standard bound (24) for the weak-driving master equation
at nonvanishing driving amplitudes λ, we do not numeri-
cally find them when using the Floquet-Lindblad approach
(where we start from a periodically driven Hamiltonian).
This shows that the investigation of such relations beyond
phenomenological or weak-driving approaches is an inter-
esting future option. Finally, we also remark that our
methods are limited to driving frequencies that are small in
comparison to the reservoir relaxation timescale. The study
of such superfast periodic drivings [90] would require us to
go beyond a Markovian Floquet description [91].
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APPENDIX A: WEAK-DRIVING MASTER
EQUATION

In this appendix, we derive—specifically for our sys-
tem—a master equation that is perturbative in the driv-
ing strength λ and the system-reservoir coupling Bν .
We recover the widely used phenomenological master
equation that one obtains by deriving the dissipators for
the undriven system and a posteriori adding the driving
term to the system Hamiltonian. We discuss the steady-
state solution and general thermodynamic features and also
address the limits of a single qutrit N = 1 and the large-N
limit.

1. Derivation

The derivation of the weak-driving master equation can
be performed in analogy to the derivation of a local mas-
ter equation for undriven systems. That is, although V(t)
acts solely in the Hilbert space of the system, we consider
it as a perturbation. In the interaction picture with respect
to H 0

S + H c
B + H h

B (also denoted by bold symbols in this
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section), the Hamiltonian reads

H(t) = V(t) +
∑

ν

Jν(t) ⊗ Bν(t),

where

Jc(t) = J−
c (t) + J+

c (t), J±
c (t) = e±iδtJ ±

c ,

Jh(t) = J−
h (t) + J+

h (t), J±
h (t) = e±i�tJ ±

h ,

V(t) = λe+i(�−�+δ)tJ w
−+λe−i(�−�+δ)tJ w

+ ,

and it enters the von Neumann equation as ρ̇tot =
−i[H(t), ρtot(t)]. Formally integrating the von Neumann
equation and reinserting the result

ρtot(t) = ρ0
S ⊗ ρ̄B − i

∫ t

0
[H(t′), ρtot(t

′)]dt′ (A1)

only—this differs from the Floquet-Lindblad master
equation exposed in Appendix B, but is rather analogous to
the derivation of a local master equation for undriven sys-
tems [92,93]—into the terms with the reservoir coupling
yields

ρ̇tot = −i[V(t), ρtot(t)] − i
[ ∑

ν

Jν(t) ⊗ Bν(t), ρ0
S ⊗ ρ̄B

]

−
∫ t

0
dt′

[∑

ν

Jν(t) ⊗ Bν(t), [V(t′), ρtot(t
′)]

]

−
∫ t

0
dt′

[∑

ν

Jν(t) ⊗ Bν(t),

[ ∑

μ

Jμ(t′) ⊗ Bμ(t′), ρtot(t
′)
]]

. (A2)

Now, under the Born approximation ρtot(t) ≈ ρ(t) ⊗ ρ̄B +
O{λ} + O{Bν} with TrB{Bνρ̄B} = 0, we can perform the
partial trace and get a closed non-Markovian master
equation for the system density matrix ρ(t) in the inter-
action picture:

ρ̇ = −i[V(t), ρ(t)]

−
∫ t

0
dt′

∑

ν

TrB{[Jν(t)Bν(t), [Jν(t′)Bν(t′), ρ(t′)ρ̄B]]}

+ O{λ2, λBν , (Bν)3}
= −i[V(t), ρ(t)]

−
∑

ν

∫ t

0
dt′Cν(t − t′)[Jν(t), Jν(t′)ρ(t′)]

−
∑

ν

∫ t

0
dt′Cν(t′ − t)[ρ(t′)Jν(t′), Jν(t)],

+ O{λ2, λBν , (Bν)3}
= −i[V(t), ρ(t)]

−
∑

ν

∫ t

0
dτCν(+τ)[Jν(t), Jν(t − τ)ρ(t − τ)]

−
∑

ν

∫ t

0
dτCν(−τ)[ρ(t − τ)Jν(t − τ), Jν(t)]

+ O{λ2, λBν , (Bν)3}. (A3)

In the first line we used the fact that the reservoir correla-
tion functions

Cν(τ ) = Tr{Bν(τ )Bν ρ̄B}, (A4)

ρ̄B = e−βcHc
B

Tr{e−βcHc
B}

⊗ e−βhHh
B

Tr{e−βhHh
B}

,

become specific to the reservoirs due to the product struc-
ture of ρ̄B. By invoking their rapid decay, we can now
perform the Markov approximation, which corresponds to
the replacements ρ(t − τ) → ρ(t) and

∫ t
0 dt′ → ∫ ∞

0 dt′.
This yields the weak-driving Redfield-II equation

ρ̇ = −i[V(t), ρ(t)] −
∑

ν

∫ ∞

0
dτCν(+τ)

× [Jν(t), Jν(t − τ)ρ(t)]

−
∑

ν

∫ ∞

0
dτCν(−τ)[ρ(t)Jν(t − τ), Jν(t)]

+ O{λ2, λBν , (Bν)3}, (A5)

which, for off-resonant driving � �= � − δ, maintains an
explicit time dependence in the Schrödinger picture dis-
sipator (not shown). We therefore remain in the interac-
tion picture and perform a secular approximation in the
dissipator by dropping all t-oscillatory terms

[Jν(t), Jν(t − τ)ρ(t)] → [J −
ν , J +

ν ρ(t)]e−i�ντ

+ [J +
ν , J −

ν ρ(t)]e+i�ντ , (A6)

and analogously for the Hermitian conjugate term, which
allows us to separate the time dependence from the opera-
tors. Note that we keep it in the Hamiltonian term, with the
implicit assumption that near resonance, |� − � + δ| �
|δ|, |�|, the driving term V(t) oscillates considerably
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FIG. 8. Visualization of incoherent and selected coherent tran-
sitions (red, blue arrows and green arrows, respectively) in the
weak-driving master equation (3). The dissipators induce tran-
sitions between the populations (red and blue arrows for hot
and cold reservoirs, respectively, with energy differences indi-
cated on the right), but the driving V(t) couples populations in
the bare system energy eigenbasis (gray spheres) to coherences
(green spheres), which couple to further coherences along the
green lines within the fully symmetric subspace (not shown).

slower. Then, we can eventually invoke the Sokhotskij-
Plemelj theorem

1
2π

∫ ∞

0
e+iωτ dτ = 1

2
δ(ω) + i

2π
P 1

ω
(A7)

with Cauchy principal value P , to write the half-sided
integrals as

∫ ∞

0
Cν(+τ)e+i�ντ dτ = γν(+�ν)

2
+ σν(+�ν)

2
,

∫ ∞

0
Cν(−τ)e+i�ντ dτ = γν(−�ν)

2
− σν(−�ν)

2
,

(A8)

where γν(ω) = ∫
Cν(τ )e+iωτ dω is the even Fourier trans-

form of the reservoir correlation function and σν(ω) =
(i/π)P ∫

γν(ω
′)dω′/(ω − ω′) generates the Lamb-shift

terms. Back in the Schrödinger picture, we then obtain a
time-dependent Lindblad form, which, by neglecting the
Lamb-shift terms, is given by Eq. (3) in the main text.

The dissipative terms act like cold and hot reservoirs
of a quantum absorption refrigerator, but the Hamiltonian
couples populations to coherences and vice versa. The
structure of the resulting master equation within the fully
symmetric subspace (see Appendix E) is depicted in Fig 8.
The master equation is expected to be valid when both the
coupling to the reservoirs is small and the driving is weak
(e.g., λ = O{�ν}).

2. Stationary frame

With the transformation

ρr(t) = e+iXtρ(t)e−iXt, (A9)

X = δNδ + (δ + �)N�,

we find that the weak-driving master equation (3)
becomes—even for off-resonant driving—time indepen-
dent in the new frame

ρ̇r = −i[(� − δ − �)N� + λ(J +
w +J −

w ), ρr]

+
∑

ν

γν(+�ν)

[
J ν
−ρrJ ν

+−1
2
{J ν

+J ν
−, ρr}

]

+
∑

ν

γν(−�ν)

[
J ν
+ρrJ ν

−−1
2
{J ν

−J ν
+, ρr}

]
. (A10)

Therefore, we expect the system to settle to a station-
ary state ρ̄r in the rotating frame, and the (asymptotically
periodic) long-term state is then obtained by inverting
transformation (A9).

3. Thermodynamics

By looking at the energy balance of H 0
S , i.e., the bare,

unperturbed system Hamiltonian, we see that it decom-
poses into three contributions, which we can identify as
the power injected by the laser

P̄ = −i lim
t→∞ Tr{[H 0

S , V(t)]ρ(t)}
= −iTr{[H 0

S , λ(J −
w +J +

w )]ρ̄r}, (A11)

and the energy currents entering the system from the cold
and hot reservoirs

Ī ν
E = lim

t→∞ Tr{H 0
S (Lνρ(t))} = Tr{H 0

S (Lνρ̄r)}, (A12)

which all assume time-independent long-term values, as
can be seen by evaluating them in the rotating frame. By
construction, the first law of thermodynamics at steady
state

P̄ + Ī c
E + Ī h

E = 0 (A13)

is automatically fulfilled. With the definitions of the
currents, and noting that Lνρ̄ν = 0 with ρ̄ν = e−βνH0

S /

Tr{e−βνH0
S }, we can also write the entropy change of the

system as

Ṡ = −Tr
{( ∑

ν

Lνρ

)
ln ρ

}

= −Tr
{( ∑

ν

Lνρ

)
[ln ρ − ln ρ̄ν]

}
+

∑

ν

βνI ν
E

≡ σ̇i +
∑

ν

βνI ν
E , (A14)

where by Spohn’s inequality [92,94] we can infer that the
irreversible entropy production is positive σ̇i ≥ 0. Solving
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for it, and using the fact that at steady state ˙̄S = 0, we thus
obtain

˙̄σi = −
∑

ν

βν Ī ν
E ≥ 0, (A15)

which bounds the currents of the weak-driving Lindblad
master equation. This also bounds the coefficient of per-
formance—in regimes where the cold reservoir is cooled,
Ī c
E > 0—by its Carnot value

κ = Ī c
E

P̄

= βhĪ c
E

(βc − βh)Ī c
E − βhĪ h

E − βcĪ c
E

≤ βh

βc − βh

= Tc

Th − Tc

= κCa, (A16)

where we have used Eq. (A13) to eliminate P̄ and Eq.
(A15) to obtain the inequality.

The above definitions of the currents have been dis-
cussed for N = 1 before [47], invoking thermodynamic
consistency arguments. Here, we have recovered them
from a perturbative treatment of the driving strength. In
the main text we argue that within the validity region of the
weak-driving Lindblad equation, a microscopic discussion
based on energy counting fields would lead to identical
results for the currents leaving the reservoirs.

4. Case of a single qutrit

In the rotating frame, for populations ρ00
r , ρ11

r , ρ22
r and

two relevant coherences ρ12
r and ρ21

r (the other four coher-
ences vanish in the long-term limit, if not absent already
from the beginning), we get the matrix representation for
the Liouvillian,

L =

⎛

⎜⎜⎜⎝

0 0
Lpop +iλ −iλ

−iλ +iλ
0 +iλ −iλ ξ 0
0 −iλ +iλ 0 ξ ∗

⎞

⎟⎟⎟⎠ ,

where

Lpop =
⎛

⎝
−γc(−δ) − γh(−�) γc(+δ) γh(+�)

γc(−δ) −γc(+δ) 0
γh(−�) 0 −γh(+�)

⎞

⎠ ,

ξ = −γc(+δ) + γh(+�)

2
+ i(� − δ − �),

and γν(ω) is defined as in Eq. (4) with the reservoir spec-
tral functions analytically continued to negative frequen-
cies as odd functions �ν(−ω) = −�ν(+ω). From this,
e.g., steady-state solutions and cooling currents can be
evaluated in a straightforward way [47]. We find that the
cooling current rises monotonically from zero at λ =
0 to its maximum value (using the short-term notation
nc = [eβcδ − 1]−1 and nh = [eβh� − 1]−1)

lim
λ→∞

Ī c
E = �c(δ)�h(�)δ(nc − nh)

�c(δ)(1 + 3nc) + �h(�)(1 + 3nh)
, (A17)

and the weak-driving master equation predicts cooling for
nc > nh (equivalently, βcδ < βh�). However, one should
keep in mind that in the large-λ it should not be expected to
be valid. The stationary coherence vanishes at extreme val-
ues of the driving strength limλ→0 |ρ̄12| = limλ→∞ |ρ̄12| =
0, but has a finite value with a single maximum in between.
Furthermore, we note that the currents are tightly cou-
pled, such that the coefficient of performance is given by
the constant value κ = δ/(� − δ) in all regions where the
cooling current is positive (such that we also always have
κ < κCa).

5. Large-N limit

In the fully symmetric subspace, the collective ladder
operators responsible for the transitions between the states
|M ; m〉 can be represented by two effective bosonic modes
(compare Appendix E)

J +
h = a†

�

√
N − a†

�a� − a†
δaδ ≈

√
Na†

�,

J +
c = a†

δ

√
N − a†

�a� − a†
δaδ ≈

√
Na†

δ ,

J +
w = a†

�aδ ,

which correspond to the number of small and large exci-
tations present in the system. From this, we see that
in the many-qutrit limit, N � 〈a†

�a�〉, 〈a†
δaδ〉, the master

equation in the rotating frame given in Eq. (A10) becomes
quadratic in the annihilation and creation operators of these
effective bosonic modes,
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ρ̇r = −i[(� − δ − �)a†
�a� + λ(a†

�aδ + a†
δa�), ρr] + Nγc(+δ)

[
aδρra

†
δ− 1

2 {a†
δaδ , ρr}

]

+ Nγc(−δ)
[
a†

δρraδ − 1
2 {aδa†

δ , ρr}
] + Nγh(+�)

[
a�ρra

†
�− 1

2 {a†
�a�, ρr}

]

+ Nγh(−�)
[
a†

�ρra� − 1
2 {a�a†

�, ρr}
]
, (A18)

such that it can be solved by looking at the equations of motion, which at resonance � = � − δ become

∂t〈a†
�a�〉 = −iλ(〈a†

�aδ〉 − 〈a†
δa�〉) − N [γh(+�) − γh(−�)]〈a†

�a�〉 + Nγh(−�),

∂t〈a†
δaδ〉 = +iλ(〈a†

�aδ〉 − 〈a†
δa�〉) − N [γc(+δ) − γc(−δ)]〈a†

δaδ〉 + Nγc(−δ),

∂t〈a†
�aδ〉 = N

2
[γc(−δ) + γh(−�) − γc(+δ) − γh(+�)]〈a†

�aδ〉 − iλ(〈a†
�a�〉 − 〈a†

δaδ〉),

and analogously for 〈a†
δa�〉. We can solve for the

steady-state expectation values and then from this eval-
uate the cooling current I c

E = Nδγc(−δ)[1 + 〈a†
δaδ〉] −

Nδγc(+δ)〈a†
δaδ〉 in the steady-state limit [we use the

short-term notation γc(+δ) = �̃c(1 + nc), γc(−δ) = �̃cnc,
γh(+�) = �̃h(1 + nh), and γh(−�) = �̃hnh]:

Ī c
E = 4Nδ�̃c�̃h(nc − nh)λ

2

(�̃c + �̃h)(�̃c�̃hN 2 + 4λ2)
. (A19)

Unfortunately, although the cooling condition is the same
as before, it seems that the cooling current only grows lin-
early and even decays for large N . In the main text, this
turnover to sublinear scaling is already visible in Fig. 6
(red diamond symbols). Even when the driving is infinitely
strong, we recover at best a linear scaling.

APPENDIX B: FLOQUET-LINDBLAD MASTER
EQUATION

In this appendix, we provide a derivation of the Lindblad
master equation for our system that is perturbative in the
system-reservoir coupling strength only. We discuss gen-
eral thermodynamic features of this master equation and
make formulas explicit for the case N = 1.

1. Derivation

The system time evolution operator can always be
decomposed based on Floquet theory. Because of the
circular driving employed in our particular model, this is
possible in closed form (for simplicity, just for one qutrit):

US(t) = Ukick(t)e−iHF t (B1)

with
Ukick(t) = e+i�t/2[|1〉〈1|−|2〉〈2|]

and the Floquet Hamiltonian given by Eq. (9). The
decomposition above is not unique, we could, e.g.,

shift the exponential in the first factor (kick operator) by
�t/2(|1〉〈1| + |2〉〈2|) to make it periodic in the driving and
modify the Floquet Hamiltonian (9) and its energies (10)
accordingly (which would not alter our final results). For
real valued λ, the eigenstates can be written as

|−〉 = cos(α)|1〉 − sin(α)|2〉,
|+〉 = sin(α)|1〉 + cos(α)|2〉, (B2)
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FIG. 9. Analogous to Fig. 3, but plotting the renormalized
coefficient of performance for cooling (22) instead, with con-
tours in steps of 0.05. The maximum coefficient of performance
is bound by its Carnot limit. Regions of maximum coefficient
of performance do not coincide with regions of maximal cur-
rent. In contrast, the weak-driving master equation would yield a
constant value 1/2 throughout the plotting region.
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where the rotation angle α obeys

tan(α) = � − � + δ +
√

4λ2 + (� − � + δ)2

2λ
. (B3)

For weak (λ → 0) and red-detuned (� < � − δ) driv-
ing, we thus have |−〉 → |1〉 and |+〉 → |2〉, whereas, for
weak and blue-detuned driving, these just exchange |−〉 →
−|2〉 and |+〉 → |1〉. In the limits of strong driving (λ →
+∞) or also resonant driving (� = � − δ) with finite
amplitude (λ > 0), we have ε± → (� + δ)/2 ± λ and
|±〉 = [|1〉 ± |2〉]/√2.

From the above, it follows that the collective general-
ization of the kick operator just provides a phase to the
reservoir coupling operators:

U†
kick(t)J

±
c Ukick(t) = e∓i�t/2J ±

c ,

U†
kick(t)J

±
h Ukick(t) = e±i�t/2J ±

h .
(B4)

With this, we now perform the derivation of the Floquet
master equation. That is, we now use an interaction pic-
ture with a perturbative treatment of H c

I + H h
I , where the

Hamiltonian reads

HI (t) =
∑

ν

Jν(t) ⊗ Bν(t) (B5)

with Bν(t) = e+iHν
BtBνe−iHν

Bt, Jν(t) = U†
S(t)J

νUS(t), and
where the Hamiltonian enters the von Neumann equation
via ρ̇tot = −i[HI (t), ρtot(t)]. After the standard steps (Born
approximation using a product state of two thermal reser-
voirs and two Markov approximations), this leads to the
Floquet-Redfield equation, analogous to Eq. (A5),

ρ̇ = −
∑

ν

∫ ∞

0
dτCν(+τ)[Jν(t), Jν(t − τ)ρ(t)] + H.c.,

(B6)

where the difference however is that the interaction picture
is meant with respect to the full time-dependent system
Hamiltonian HS(t), such that the Hamiltonian term is con-
sistently missing. The correlation functions are as given in
Eq. (A4).

To perform a secular approximation, one can make the
time dependence explicit:

Jc(t) =
∑

a∈±
e−i(εa−�/2)t[|〈a|1〉|2J −

c +〈1|a〉〈a|2〉J −
h ]

+
∑

a∈±
e+i(εa−�/2)t[|〈a|1〉|2J +

c +〈2|a〉〈a|1〉J +
h ]

=
∑

a∈±
(e−i(εa−�/2)tJ −

c,a+e+i(εa−�/2)tJ +
c,a),

Jh(t) =
∑

a∈±
e−i(εa+�/2)t[|〈a|2〉|2J −

h +〈2|a〉〈a|1〉J −
c ]

+
∑

a∈±
e+i(εa+�/2)t[|〈a|2〉|2J +

h +〈1|a〉〈a|2〉J +
c ]

=
∑

a∈±
(e−i(εa+�/2)tJ −

h,a+e+i(εa+�/2)tJ +
h,a).

When inserting the above and the analogue for Jν(t − τ)

into the Floquet-Redfield equation, we get a double sum-
mation over Floquet energies, where one can now use the
fact that, for sufficiently strong driving (e.g., at resonance)
or also for moderate λ and strong detuning, the Floquet
energies ε± are sufficiently distinct, such that the contri-
butions for different a are always negligible, and those
for equal a are only nonvanishing when exactly counter-
rotating, leading to the Floquet-Lindblad master equation
with one summation only,

ρ̇ = −
∫ ∞

0
dτCc(+τ)

∑

a

e−i(εa−�/2)τ [J −
c,a, J +

c,aρ]

−
∫ ∞

0
dτCc(+τ)

∑

a

e+i(εa−�/2)τ [J +
c,a, J −

c,aρ]

−
∫ ∞

0
dτCh(+τ)

∑

a

e−i(εa+�/2)τ [J −
h,a, J +

h,aρ]

−
∫ ∞

0
dτCh(+τ)

∑

a

e+i(εa+�/2)τ [J +
h,a, J −

h,aρ] + H.c.,

(B7)

which, when we insert the Fourier transforms of the
reservoir correlation functions, then use the Sokhotskij-
Plemelj theorem (A7) and neglect the Lamb shift, directly
transforms into Eq. (7) in the main text. The above
master equation can be analyzed with counting fields in
a thermodynamically consistent way [50]. Furthermore,
some rewriting shows that, for a ∈ ±, the tilted collec-
tive operators actually mediate transitions between eigen-
states of the collective Floquet Hamiltonian that are just
rotated compared to the original collective eigenstates,
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i.e.,

J −
c,a = 〈1|a〉

∑

i

(|0〉〈a|)i ≡ 〈1|a〉S−
a ,

J −
h,a = 〈2|a〉

∑

i

(|0〉〈a|)i ≡ 〈2|a〉S−
a ,

(B8)

and analogously for J +
ν,a. We can thus alternatively write

the Floquet-Lindblad equation (7) with raising and lower-
ing operators between collective Floquet eigenstates:

ρ̇ =
∑

a

[
γc

(
− εa + �

2

)
|〈a|1〉|2 + γh

(
− εa − �

2

)
|〈a|2〉|2

][
S+

a ρS−
a −1

2
{S−

a S+
a , ρ}

]

+
∑

a

[
γc

(
+ εa − �

2

)
|〈a|1〉|2 + γh

(
+ εa + �

2

)
|〈a|2〉|2

][
S−

a ρS+
a −1

2
{S+

a S−
a , ρ}

]
. (B9)

Evaluating this equation in the energy eigenbasis of the
Floquet Hamiltonian leads to Eq. (14) in the main text.

2. Thermodynamic discussion

From the previous subsection we also see that the dis-
sipator of the Floquet Lindblad master equation ρ̇ = Lρ

additively decomposes into hot and cold reservoir contri-
butions, with each dissipator leading to local thermaliza-
tion at a shifted steady state ρ̄ν :

L = Lc + Lh, Lνρ̄ν = 0, ρ̄ν = e−βνHν
S

Zν

,

H h
S ≡

(
ε++�

2

) ∑

i

(|+〉〈+|)i +
(

ε−+�

2

) ∑

i

(|−〉〈−|)i,

H c
S ≡

(
ε+−�

2

) ∑

i

(|+〉〈+|)i +
(

ε−−�

2

) ∑

i

(|−〉〈−|)i.

However, the ground-state energies of the bare Hamilto-
nian ε0 = 0 remain untouched. This means that the H ν

S are
not just shifted versions of the collective Floquet Hamilto-
nian, and the reservoir-specific steady states ρ̄ν are not just
Floquet-Gibbs states [63,64]. Comparing with the count-
ing field-based energy current (12), one could therefore
alternatively define the heat currents by using the effective
reservoir-specific Hamiltonians

I ν
E = Tr{H ν

S (Lνρ)}, (B10)

and the power at steady state by invoking the first law P̄ =
−Ī c

E − Ī h
E . With this definition, for the entropy change of

the system, we can write

Ṡ = −Tr
{( ∑

ν

Lνρ

)
ln ρ

}

= −Tr
{( ∑

ν

Lνρ

)
[ln ρ − ln ρ̄ν]

}
+

∑

ν

βνI ν
E

≡ σ̇i +
∑

ν

βνI ν
E , (B11)

where by Spohn’s inequality [94] we can infer that the irre-
versible entropy production is positive σ̇i ≥ 0. Solving for
it, we thus find the usual form for the entropy production
rate, i.e.,

σ̇i = Ṡ −
∑

ν

βνI ν
E

t→∞→ −
∑

ν

βν Ī ν
E ≥ 0, (B12)

which at steady state bounds the currents of the Floquet-
Lindblad master equation. Eventually, this also bounds the
coefficient of performance of our device by its Carnot
value, analogous to the discussion in Appendix. A 3. For
the parameters in Fig. 3, we demonstrate this by showing
the renormalized coefficient of performance (22) in Fig. 9,
which is always below one. In contrast, for the weak-
driving master equation, the coefficient of performance
is constant δ/(� − δ), as discussed in Appendix A 3. As
usual, regions of maximum cooling current do not coin-
cide with regions of best coefficient of performance, such
that finding the optimal operational regime is a trade-off
between these properties.

However, if, in addition, the standard thermodynamic
uncertainty relation (24) is also respected, the coefficient
of performance can be bound tighter,
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κ = Ī c
E

−Ī c
E − Ī h

E
= βhĪ c

E
˙̄σi + (βc − βh)Ī c

E
≤ βhĪ c

E

2(Ī c
E)2/S̄c

E + (βc − βh)Ī c
E

= κCa
1

1 + 2Ī c
E/S̄c

E(βc − βh)
, (B13)

below the Carnot coefficient of performance.

3. Case of a single qutrit

For a single qutrit, Eq. (14) reduces to

Ṗ0 =
[

cos2(α)γc

(
ε−−�

2

)
+ sin2(α)γh

(
ε−+�

2

)]
P−

+
[

sin2(α)γc

(
ε+−�

2

)
+ cos2(α)γh

(
ε++�

2

)]
P+−[· · · ]P0, (B14a)

Ṗ− =
[

cos2(α)γc

(
− ε−+�

2

)
+ sin2(α)γh

(
− ε−−�

2

)]
P0 − [· · · ]P−, (B14b)

Ṗ+ =
[

sin2(α)γc

(
− ε++�

2

)
+ cos2(α)γh

(
− ε+−�

2

)]
P0 − [· · · ]P+, (B14c)

where the diagonal [· · · ] terms are fixed by the probability
conservation—rate matrices must have vanishing column
sum. This rate equation system hosts two cycles shown in
Fig. 5 with effective transition energies that do not com-
ply with the Floquet energies, such that, under appropriate
conditions, one may reach cooling of the cold reservoir.

APPENDIX C: FLOQUET-REDFIELD MASTER
EQUATION

In this appendix, we consider a non-Lindblad master
equation for our system obtained from a perturbative treat-
ment of the system-reservoir coupling strength Bν . We
show how the asymptotically periodic long-term solution
and resulting period-averaged current can be obtained and
in particular discuss the difference between the Floquet-
Redfield and the Floquet-Lindblad currents, making for-
mulas explicit for the case N = 1.

1. Derivation

Starting from Eq. (B6), we avoid the secular approxi-
mation and directly switch back to the Schrödinger pic-
ture by introducing the t- and τ -dependent operator J̃ ν

tτ ≡
US(t)U

†
S(t − τ)J νUS(t − τ)U†

S(t). This yields

ρ̇ = −i[HS(t), ρ] −
{∑

ν

∫ ∞

0
dτCν(+τ)[J ν , J̃ ν

tτ ρ] + H.c.
}
,

(C1)

and by writing US(t) = e−iH0
S tŨS(t) with ˙̃US(t) = −ie+iH0

S t

V(t)e−iH0
S tŨS(t) one finds with J̃ ν

tτ = e−iH0
S τ J νe+iH0

S τ

+ O{λ} that the above equation would for small driv-
ing strengths λ also yield a Redfield version of the
weak-driving master equation discussed in Appendix A.
However, the collective time evolution operator can be
computed for all driving strengths λ, which leads to

J̃ c
tτ =

∑

a∈±
e+i(εa−�/2)τ [|〈1|a〉|2J −

c +〈1|a〉〈a|2〉e+i�tJ −
h ]

+
∑

a∈±
e−i(εa−�/2)τ [|〈1|a〉|2J +

c +〈2|a〉〈a|1〉e−i�tJ +
h ],

J̃ h
tτ =

∑

a∈±
e+i(εa+�/2)τ [|〈2|a〉|2J −

h +〈2|a〉〈a|1〉e−i�tJ −
c ]

+
∑

a∈±
e−i(εa+�/2)τ [|〈2|a〉|2J +

h +〈1|a〉〈a|2〉e+i�tJ +
c ].

Then, we can insert the Fourier transform of the cor-
relation functions Cν(τ ) = 1/(2π)

∫
γν(ω)e−iωτ dω, per-

form the
∫

dτ integrations, and invoke the Sokhotskij-
Plemelj theorem (A7) while neglecting the Lamb shift
1/(2π)

∫ ∞
0 e+iωτ dτ ≈ 1

2δ(ω), to arrive at Eq. (15) in the
main text.

In the Schrödinger picture, we thereby obtain a time-
dependent generator, and its Fourier components are
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FIG. 10. Analogous to Fig. 3 (in color coding and param-
eters), but plotting the period-averaged Redfield current (C4)
around the region where the Floquet-Lindblad description fails,
�/δ ∈ [0.5, 1.5] and λ/δ ∈ [−0.5, +0.5]. Dashed orange con-
tours correspond to the Floquet-Lindblad contours and differ
from the Floquet-Redfield contours (black) only near resonance,
� ≈ � − δ and λ ≈ 0. The Redfield current vanishes identically
along the line λ = 0 (the associated horizontal red contour line
has been removed to improve visibility).

L0ρ = −i[H 0
S , ρ]

−
∑

a

γc(−εa + �/2)|〈a|1〉|2
2

{[J c, J +
c ρ] + H.c.}

−
∑

a

γc(+εa − �/2)|〈a|1〉|2
2

{[J c, J −
c ρ] + H.c.}

−
∑

a

γh(−εa − �/2)|〈a|2〉|2
2

{[J h, J +
h ρ] + H.c.}

−
∑

a

γh(+εa + �/2)|〈a|2〉|2
2

{[J h, J −
h ρ] + H.c.},

(C2a)

L+ρ = −i[λJ −
w , ρ]

−
∑

a

γc(−εa + �/2)〈1|a〉〈a|2〉
2

[ρJ −
h , J c]

−
∑

a

γc(+εa − �/2)〈1|a〉〈a|2〉
2

[J c, J −
h ρ]

−
∑

a

γh(−εa − �/2)〈1|a〉〈a|2〉
2

[J h, J +
c ρ]

−
∑

a

γh(+εa + �/2)〈1|a〉〈a|2〉
2

[ρJ +
c , J h],

(C2b)

L−ρ = −i[λ∗J +
w , ρ]

−
∑

a

γc(−εa + �/2)〈2|a〉〈a|1〉
2

[J c, J +
h ρ]

−
∑

a

γc(+εa − �/2)〈2|a〉〈a|1〉
2

[ρJ +
h , J c]

−
∑

a

γh(−εa − �/2)〈2|a〉〈a|1〉
2

[ρJ −
c , J h]

−
∑

a

γh(+εa + �/2)〈2|a〉〈a|1〉
2

[J h, J −
c ρ].

(C2c)

Using a matrix representation of the superoperators, the
asymptotic periodic state is then found as the (trace-
normalized) nullspace of the infinite-dimensional matrix

⎛

⎜⎜⎜⎜⎜⎝

. . . . . .
L+ (L0 + i�1) L−

L+ (L0) L−
L+ (L0 − i�1) L−

. . . . . .

⎞

⎟⎟⎟⎟⎟⎠
,

(C3)

where, in general, a suitable cutoff (in the example above
indicated by the lines as ncut = ±1) has to be chosen such
that convergence is ensured. Based on the replacements
(19), the period-averaged current (20) then becomes

Ī c
E =

∑

a

εa − �/2
2

|〈a|1〉|2

× [γc(−εa + �/2)Tr{(J cJ +
c +J −

c J c)ρ̄(0)}
− γc(+εa − �/2)Tr{(J cJ −

c +J +
c J c)ρ̄(0)}]

+
∑

a

εa − �/2
2

〈1|a〉〈a|2〉

× [γc(−εa + �/2)Tr{J −
h J cρ̄(−1)}

− γc(εa − �/2)Tr{J cJ −
h ρ̄(−1)}]

+
∑

a

εa − �/2
2

〈2|a〉〈a|1〉

× [γc(−εa + �/2)Tr{J cJ +
h ρ̄(+1)}

− γc(εa − �/2)Tr{J +
h J cρ̄(+1)}]. (C4)
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When we plot this in analogy to Fig. 3 in the main text, we obtain a quite similar result; see Fig. 10. The difference
however is that the Redfield equation also applies to the case where the secular approximations fail, such that we indeed
find a vanishing current along the line λ = 0, in contrast to Fig. 3 in the main text.

Analogous considerations for the hot reservoir lead to

Ī h
E =

∑

a

εa + �/2
2

|〈a|2〉|2[γh(−εa − �/2)Tr{(J hJ +
h +J −

h J h)ρ̄(0)} − γh(+εa + �/2)Tr{(J hJ −
h +J +

h J h)ρ̄(0)}]

+
∑

a

εa + �/2
2

〈1|a〉〈a|2〉[γh(−εa − �/2)Tr{J hJ +
c ρ̄(−1)} − γh(εa + �/2)Tr{J +

c J hρ̄(−1)}]

+
∑

a

εa + �/2
2

〈2|a〉〈a|1〉[γh(−εa − �/2)Tr{J −
c J hρ̄(+1)} − γh(εa + �/2)Tr{J hJ −

c ρ̄(+1)}]. (C5)

2. Case of a single qutrit

For a single qutrit, we can obtain from Eq. (15) in the main text coupled equations for the matrix elements of the
system density matrix. From their structure (in the Schrödinger picture and the original basis) we already see that the trace
is conserved, ρ̇11 + ρ̇22 + ρ̇33 = 0, and that the density matrix remains Hermitian throughout:

ρ̇00 = −(L0→1 + L0→2)ρ00 + L1→0ρ11 + L2→0ρ22 + (L↓c + L↓h)e−i�tρ12 + (L∗
↓c + L∗

↓h)e
+i�tρ21,

ρ̇11 = L0→1ρ00 − L1→0ρ11 − (L↓c − iλ∗)e−i�tρ12 − (L∗
↓c + iλ)e+i�tρ21,

ρ̇22 = L0→2ρ00 − L2→0ρ22 − (L↓h + iλ∗)e−i�tρ12 − (L∗
↓h − iλ)e+i�tρ21,

ρ̇12 = (L∗
↑c + L∗

↑h)e
+i�tρ00 − (L∗

↓h − iλ)e+i�tρ11 − (L∗
↓c + iλ)e+i�tρ22 − (L1→0/2 + L2→0/2 − i� + iδ)ρ12,

ρ̇21 = (L↑c + L↑h)e−i�tρ00 − (L↓h + iλ∗)e−i�tρ11 − (L↓c − iλ∗)e−i�tρ22 − (L1→0/2 + L2→0/2 + i� − iδ)ρ21,

with

L1→0 =
∑

a

|〈a|1〉|2γc(εa − �/2), L0→1 =
∑

a

|〈a|1〉|2γc(−εa + �/2),

L2→0 =
∑

a

|〈a|2〉|2γh(εa + �/2), L0→2 =
∑

a

|〈a|2〉|2γh(−εa − �/2),

L↓c =
∑

a

〈2|a〉〈a|1〉/2γc(εa − �/2), L↑c =
∑

a

〈2|a〉〈a|1〉/2γc(−εa + �/2),

L↓h =
∑

a

〈2|a〉〈a|1〉/2γh(εa + �/2), L↑h =
∑

a

〈2|a〉〈a|1〉/2γh(−εa − �/2).

The Hamiltonian part of this equation, defined by �, δ, and λ, naturally already agrees with the weak-driving master
equation (3). When λ → 0, one can show that the other parts also fall back to that under the secular approximation: for
small λ, the eigenstates of the Floquet Hamiltonian approach the eigenstates of the undriven system Hamiltonian, and
we get L1→0 → γc(δ), L0→1 → γc(−δ), L2→0 → γh(�), L0→2 → γh(−�), whereas the other matrix elements vanish,
L�ν → 0. However, a Taylor expansion of the dissipative terms to first order in λ shows that the above single-qutrit
Redfield equation and the weak-driving master equation (3) are not fully equivalent. They become equivalent when we
drop the oscillatory terms in the dissipators (equivalent to the secular approximation).

For a single qutrit, for the current leaving the cold reservoir, we obtain

Ī c
E = −

∑

a∈±
(εa − �/2)γc(εa − �/2)|〈a|1〉|2ρ̄(0)

11 −
∑

a∈±
(−εa + �/2)γc(−εa + �/2)|〈a|1〉|2ρ̄(0)

00

−
∑

a∈±
(εa − �/2)

γc(εa − �/2)

2
[〈1|a〉〈a|2〉ρ̄(−1)

21 + 〈2|a〉〈a|1〉ρ̄(+1)

12 ], (C6)

044050-19



DMYTRO KOLISNYK et al. PHYS. REV. APPLIED 21, 044050 (2024)

which is defined positive in the regime of cooling
functionality.

APPENDIX D: FULL COUNTING STATISTICS

We are interested in the flow of energy out of or into the
reservoirs and therefore we sketch the microscopic deriva-
tion of the counting field formalism from Ref. [95] specific
to the statistics of energy exchanges here. The method can
be used to also extract higher moments like noise, but we
are most interested in the current here. Furthermore, we
consider just one reservoir here, but the method can be
extended to multiple ones in a straightforward way. Also,
generalizations to other observables than the bath energy
like the particle number or spin are possible, the only
requirement being the assumption that the bath observable
commutes with the bath Hamiltonian.

The scheme employs a two-point measurement scheme,
where at time t = 0 we measure the energy of the reser-
voir, leading to outcome E�, after which—with the spectral
representation HB = ∑

� E�|�〉〈�|—the reservoir density
matrix is projected onto

ρ̄B → |�〉〈�|ρ̄B|�〉〈�|
P�

≡ ρ̄
(�)
B

P�

, (D1)

where P� = Tr{|�〉〈�|ρ̄B} = 〈�|ρ̄B|�〉 is the probability of
obtaining this initial outcome. In the subsequent evolution,
the energy content of the reservoir changes with respect to
this initial value, and an exact moment-generating function
(MGF) for the change of the reservoir energy, averaged
over all initial outcomes �, can be given as

M (χ , t) =
∑

�

Tr{eiχ(HB−E�)U(t)ρ0
S ρ̄

(�)
B U†(t)}, (D2)

where we have used an interaction picture (denoted by bold
symbols) with respect to HB, such that the observable does
not pick up any time dependence, and where U denotes
the full time evolution operator. By performing derivatives
(−i∂χ)k and setting χ → 0 afterwards one thus obtains
moments of the energy changes in the reservoir.

The MGF can be rewritten as

M (χ , t) = Tr{U+χ/2(t)ρ0
S ⊗ ρ̄BU†

−χ/2(t)}, (D3)

where we have used
∑

� ρ̄
(�)
B = ρ̄B and introduced a gen-

eralized time evolution operator U+χ/2(t) = e+iHBχ/2U(t)
e−iHBχ/2, which is just the solution to U̇+χ/2(t) =
−iHχ/2

I (t)U+χ/2(t), with the tilted interaction Hamiltonian
(we assume for brevity a single-operator decomposition

HI = S ⊗ B like used in the main text)

Hχ/2
I (t) = e+iHBχ/2HI (t)e−iHBχ/2

= S(t) ⊗ e+iHBχ/2B(t)e−iHBχ/2. (D4)

Accordingly, the time dependence of the reservoir cou-
pling operators is just shifted, and by applying a per-
turbative scheme on top (like, e.g., the microscopic
derivations discussed before), one can obtain a pertur-
bative approximation to the tilted system density matrix
ρ(χ , t) = TrB{U+χ/2(t)ρ0

S ⊗ ρ̄BU†
−χ/2(t)} and the derived

MGF M (χ , t) = TrS{ρ(χ , t)}. The tilted density matrix
ρ(χ , t) falls back to the standard system density matrix
for χ = 0, but, in addition, now allows us to extract
(approximations to) the desired moments of the reser-
voir energy changes via performing suitable derivatives
〈�Ek

B〉 = (−i∂χ)kTr{ρ(χ , t)}|χ=0. To second order in the
system-bath interaction, the modification of the bath cou-
pling operators will only affect terms where the system
density matrix is sandwiched by two system coupling oper-
ators: there, one of them is transformed with +χ , whereas
the other is transformed with −χ , which gives rise to the
shifted correlation functions

TrB{B(t + χ/2)ρ̄BB(t′ − χ/2)} = C(t′ − t − χ),

TrB{B(t′ + χ/2)ρ̄BB(t − χ/2)} = C(t − t′ − χ),
(D5)

whose Fourier transforms are therefore multiplied by a
phase γ (ω) → γ (ω)e+iωχ . In the terms where ρ is not
sandwiched, the bath coupling operators are transformed
with the same χ , such that the counting field cancels and
one obtains the standard correlation function. Following
the very same procedures as in the microscopic deriva-
tions outlined before, this eventually leads to the suggested
replacements in Eqs. (5), (11), and (19) of the main text.

The energy current entering the reservoir is nothing but
the time derivative of the first moment

IE,B = d
dt

(−i∂χ)Tr{ρ(χ , t)}|χ=0

= (−i∂χ)Tr{L(χ , t)ρ(χ , t)}|χ=0

= −iTr{[∂χL(χ , t)|χ=0]ρ(0, t)}, (D6)

where have we used the fact that L(0, t) is trace conserv-
ing. In the main text we merely changed the sign of the
above current formula to align with the convention that
the cooling current should count positive when decreasing
the reservoir energy. Also, simplified formulas for higher
moments can be obtained for driven systems [59,84].

APPENDIX E: COLLECTIVE BASES

To acknowledge the exact permutational symmetry of
our system for many qutrits, we also work in a permuta-
tionally symmetric basis. The matrix elements in this basis
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can be expressed with nonstandard Clebsch-Gordan coef-
ficients that can be obtained from bosonization techniques
of the Holstein-Primakoff type [96,97]. We mainly state the
action of the ladder operators here, but more information
can be found in the appendices of Ref. [31].

We define the normalized permutationally symmetric
states of N qutrits with M large and m small excitations
as

|M ; m〉 ∝ (J +
h )M (J +

c )m|0 · · · 0〉, (E1)

where |0; 0〉 = |0 · · · 0〉 is the state without any excitations,
|N ; 0〉 = |2 · · · 2〉 is the state with all qutrits in their most
excited state, and |0; N 〉 = |1 · · · 1〉 is the state with all
qutrits in their first excited state; see also Fig. 8. In the fully
symmetric subspace, these two excitations can be directly
mapped to two bosonic modes [96], from which we get the
relations

J +
h |M ; m〉 =

√
(N − M − m)(M + 1)|M + 1; m〉, (E2a)

J −
h |M ; m〉 =

√
(N − M − m + 1)M |M − 1; m〉, (E2b)

J +
c |M ; m〉 =

√
(N − M − m)(m + 1)|M ; m + 1〉, (E2c)

J −
c |M ; m〉 =

√
(N − M − m + 1)m|M ; m − 1〉, (E2d)

J +
w |M ; m〉 =

√
(M + 1)m|M + 1; m − 1〉, (E2e)

J −
w |M ; m〉 =

√
M (m + 1)|M − 1; m + 1〉. (E2f)

As the eigenstates (B2) of the single-particle Floquet
Hamiltonian (9) are just rotations of the original basis
states, we may likewise introduce the collectively rotated
ladder operators

S−
− =

∑

i

(|0〉〈−|)i = cos(α)J −
c − sin(α)J −

h ,

S−
+ =

∑

i

(|0〉〈+|)i = sin(α)J −
c + cos(α)J −

h ,
(E3)

which can be used to construct the collective permutation-
ally symmetric Floquet eigenstates (which we denote by a
comma instead) from the state with no excitations

|M , m〉 ∝ (S+
+)M (S+

−)m|0 · · · 0〉; (E4)

see also Fig. 2. By construction, these obey the eigenvalue
equation

H coll
F |M , m〉 = (Mε++mε−)|M , m〉 (E5)

with the collective Floquet Hamiltonian H coll
F =∑

i(HF)i = �
∑

i(|2〉〈2|)i + δ
∑

i(|1〉〈1|)i and Floquet
energies (10).

With this, the matrix elements in the collective Floquet
eigenbasis can also be conveniently evaluated by using the
conventional ladder operator properties (E2), e.g.,

〈M , m − 1|S−
−|M , m〉 = 〈M ; m − 1|J −

c |M ; m〉
=

√
(N − M − m + 1)m, (E6)

which is used to calculate the matrix elements occurring in
the Floquet-Pauli rate equation (14).
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