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Coupled-bistable-oscillator machines have recently generated significant interest due to their observed
ability to rapidly produce high-quality solutions to nondeterministic-polynomial-time-complete optimiza-
tion problems. While the dynamics of such systems are often derived in the literature, it has hitherto been
unclear why exactly the system dynamics perform optimization so well. This paper answers this question
by presenting a complete equivalence between coupled-oscillator machines and the primal-dual method
of Lagrange multipliers. This equivalence explains how coupled-oscillator solvers implement the correct
optimization constraints and find high-quality solutions. The equivalence also provides precise mathe-
matical meaning to each system component and enables the principled design of systems that implement
more-sophisticated optimization algorithms. We simulate the system dynamics and demonstrate (1) that
its performance is competitive with performance of the best-known digital algorithms, (2) that the circuit
is robust with regard to large component variations, hinting that the traditional shortcomings of analog
computation may be less important for these applications, and (3) that the circuit consumes extremely low
amounts of power (on the order of milliwatts) and energy (approximately 100 nJ) per optimization even
for problems of 2000 variables.
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I. INTRODUCTION

Combinatorial optimization encompasses several
important problems, such as the traveling-salesman prob-
lem, the knapsack problem, integer programming, protein
folding, and many more that are of great interest to the
operations-research, computer-science, and other scientific
communities. Unfortunately, many of these problems have
been shown to be nondeterministic polynomial-time (NP)
complete [1]; consequently, it has so far proved extremely
difficult to devise fast polynomial-time algorithms to solve
them. Conventional digital algorithms are based on either
provable approximations that provide a lower bound on
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solution quality [2] or heuristics (and metaheuristics) to
search for higher-quality solutions [3].

There has been significant recent interest in the idea
that physical dynamics can possibly obtain high-quality
approximate solutions to these problems by exploiting
built-in physical maximum and minimization principles
such as least action, least time, free-energy minimiza-
tion, and minimum-entropy generation. One way of doing
this is to first establish a correspondence between the
mathematical variables and the objective function, on one
hand, and the physical variables and the properties of an
appropriate physical system, on the other; the next step
would then be to try to embed an existing or novel opti-
mization algorithm in the system’s dynamical equations.
Ideally, such a system will be both physically realizable
and capable of finding solutions of quality comparable to
or superior to solutions found by state-of-the-art digital
algorithms.

In the literature, physics-based optimization machines
have often been designed to tackle the magnetic Ising
problem, relying on the fact that any NP-complete problem
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FIG. 1. (a) The Ising problem asks for the configuration of binary spins that minimizes the quadratic Ising interaction energy of the
spins. (b) Oscillator Ising solvers represent spins by bistable oscillators that are coupled to one another to implement the Ising coupling
Jij . (c) Earlier Ising solvers such as the original coherent Ising machine [5] used a single pump to excite all the spin signal oscillators,
leading to phase bistability but amplitude heterogeneity—this is not the true bistability that the Ising problem requires. (d) In our Ising
solver, each signal oscillator is excited by its own separate pump oscillator—this yields true bistability, i.e., both phase bistability and
amplitude homogeneity. (e) In such a system, we show in this paper that the signal oscillators naturally behave as the Ising variables,
while the pump oscillators act as the corresponding Lagrange multipliers. The pumps continuously adjust themselves, through pump
depletion, to enforce the Ising optimization constraints, i.e., x2

i = 1 for all i. The evolution of both types of oscillator is determined by
the system Lagrange function.

can be reduced to the Ising problem in polynomial time [4].
The Ising problem [Fig. 1(a)] consists of a set of N inter-
acting spins, each of which has two possible orientations,
and the challenge is to find the configuration of spins x that
minimizes the total interaction energy f , given by

f (x) = −
N∑

i=1

N∑

j =1

Jij xixj , (1)

where xi = ±1 is the binary orientation of the ith spin and
Jij is the Ising interaction strength between the ith spin and
the j th spin. Ising solvers are typically benchmarked on
instances of the equivalent max-cut problem.

Published physical Ising solvers include quantum [6]
and classical [7–9] machines that use the adiabatic prin-
ciple, Hopfield/Boltzmann-machine hardware solvers that
minimize the Ising energy through simulated annealing
by performing iterative matrix operations to update the
binary variables [10–17], memcomputing [18,19], chaotic
dynamical systems [20–23], and a number of approaches
based on coupled bistable dynamical elements, such as
stochastic magnetic bits [24,25] or coupled oscillators.

Several coupled-oscillator systems have been proposed,
analyzed [26–28], and physically implemented: laser
parametric oscillators [5,29,30], injection-locked LC
oscillators [31,32], CMOS ring oscillators [33,34],
phase-transition oscillators [35], coupled multicore-fiber
lasers [36], and coupled polaritonic cavities [37]. While the
dynamics of these coupled-bistable-oscillator systems are
often derived in the literature, it has so far not been clear
what exactly those dynamics mean in terms of optimiza-
tion—why do coupled-bistable-oscillator solvers obtain
the high-quality results that they do? This paper resolves
this issue by demonstrating an exact mathematical connec-
tion between coupled-bistable-oscillator solvers and the
method of Lagrange multipliers.

In the coupled-bistable-oscillator approaches, each
oscillator is forced into bistability [Fig. 1(b)] by a physical
nonlinearity, and chooses one of the two stable states on the
basis of the strengths of its interactions with other oscil-
lators. Nonlinear parametric amplification can produce
phase-bistable oscillations at frequency ω0 via the coher-
ent interaction between a 2ω0 second-harmonic pump
oscillator and a ω0 signal oscillator. However, phase
bistability by itself is insufficient to represent Ising spins;
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one also needs amplitude homogeneity to achieve true
bistability [20].

In this paper, we show that the dynamics of general
coupled-parametric-oscillator systems map exactly onto
the differential equations of the “primal-dual” method of
Lagrange multipliers. The ω0 signal oscillator dynamics in
each spin maps exactly onto the dynamics of the Ising vari-
ables xi, also called the “primal variables,” while the 2ω0
pump oscillator dynamics in each spin maps exactly onto
the dynamics of the corresponding Lagrange multipliers λi,
also called the ‘”dual variables” [Fig. 1(e)]. In other words,
the signal oscillators implement the primal step, while the
pump oscillators implement the dual step in the primal-
dual method; these terms and the method are explained in
detail in later sections.

It is known in optimization theory that the purpose of
the dual dynamics in the Lagrange-multiplier method is to
enforce constraints, which boils down to enforcing ampli-
tude homogeneity x2

i = 1 in the case of the Ising problem
where the spins are binary by definition. Since we show
that the 2ω0 pump dynamics (also known as “pump deple-
tion”) map exactly onto the dual dynamics, this means that
the pump oscillators themselves lead to amplitude homo-
geneity, and thus to true bistability, in their associated
signal oscillators. We note that it is essential that each sig-
nal oscillator have its own corresponding pump oscillator
[Fig. 1(d)] for the equivalence to Lagrange multipliers to
hold, since each Ising variable xi has its own corresponding
Lagrange multiplier λi in the Lagrange-multiplier method.
If a global pump is used, as in Fig. 1(c), the system cannot
implement N different independent binary constraints, thus
leading to the problem of amplitude heterogeneity [5].

Vadlamani et al. [38] showed only the primal part
(that is, that the signal dynamics and primal dynamics
are equivalent) of the Lagrange-multiplier equivalence
and proposed that auxiliary hardware would be needed
to implement the dual portion. The current paper shows
that no additional hardware is needed, and that the intrin-
sic pump depletion is sufficient to implement the dual
dynamics. Moreover, the complete equivalence presented
in this paper (1) explains how coupled-oscillator solvers
implement optimization constraints and why they find
high-quality solutions, (2) provides precise mathemati-
cal meaning to each physical component in the circuit,
and (3) enables the design of circuits that map onto
more-sophisticated optimization algorithms such as the
augmented Lagrange primal-dual algorithm. Throughout
most of this paper, we use electrical LC-oscillator sys-
tems as an expository model for general coupled-oscillator
systems and to generate numerical results; it should be
noted however, that all the results, especially the math-
ematical equivalence to Lagrange multipliers, are gen-
eral and are not limited merely to the electrical case.
Numerical simulations of the equations of motion reveal
that the performance of the oscillator Lagrange-multiplier

approach on benchmark problems is competitive with
that of the best-known digital algorithms and is robust
with regard to large circuit component variations. More-
over, our simulations (with thermal noise taken into
account) reveal that the circuit consumes extremely low
amounts of power (on the order of milliwatts) and energy
(approximately 100 nJ) per optimization even for problems
of size 2000.

This paper expands on our previous theoretical work
[39] by providing full derivations of the dynamics and
noise models; detailed benchmarking on a diverse set of
combinatorial optimization problems; sensitivity analyses
to component variations, noise, and dissipative losses;
and derivation of technology requirements and scaling
trends from these results. The paper is organized as fol-
lows: Section II presents the equations of motion for
a network of electrical parametric LC oscillators, which
acts as a proxy for all the coupled-oscillator approaches,
and shows that pump depletion constrains the oscilla-
tors to fixed-amplitude binary states. Section III briefly
reviews the primal-dual Lagrange-multiplier method for
constrained optimization. Section IV presents the com-
plete equivalence between the oscillator dynamics and
the Lagrange-multiplier method, and discusses an exten-
sion to the augmented Lagrange method. In Sec. V, we
numerically simulate the circuit dynamics and compare the
results against two other algorithms on several large max-
cut problems in the Gset and BiqMac problem sets [40,41].
Section VI concludes the paper.

II. ISING-ENERGY MINIMIZATION WITH
COUPLED PARAMETRIC LC OSCILLATORS

A general degenerate parametric oscillator consists of
a signal oscillator at frequency ω0 and a pump oscillator
at frequency 2ω0. The general equations of motion for the
slowly varying amplitudes of the two oscillators are given
by Yariv and Louisell [42]:

dAs

dt
= Ps − As

τs
+ κsAsAp , (2)

dAp

dt
= Pp − Ap

τp
− κpA2

s , (3)

where As and Ap are the signal and pump oscillator ampli-
tudes, Ps and Pp represent power sources inside these
oscillators, τs and τp are the loss rates of each of the oscil-
lators, κsAsAp is the amplitude boost supplied to the signal
oscillator by the pump, and κpA2

s is the amplitude loss
caused in the pump by the signal.

For ease of analysis, throughout the rest of this paper
we use a circuit model of electrical parametric oscillators,
whose dynamics is shown to be described by the equa-
tions above. However, it should be kept in mind that all
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the results discussed in this paper transfer readily to cou-
pled parametric oscillators of any type, implemented in any
other platform.

To construct the electrical Ising solver, we map an inter-
acting ensemble of N Ising spins to a network of N resis-
tively coupled parametric LC oscillators. This system was
discussed in Refs. [38,43,44]. Parametric amplification,
enabled by a capacitive nonlinearity in the LC oscilla-
tor, ensures that each signal oscillator’s steady state is
bistable in phase, indicating that these systems can be used
to implement binary Ising spins. However, to correctly
implement ±1 spins, one also needs amplitude stability
in addition to phase bistability. We show how both these
conditions are achieved in this section.

A. Mapping Ising spins to parametric oscillators

A linear LC oscillator supports sinusoidal oscillations
A cos (ω0t + φ) of arbitrary amplitude A and phase φ

[Fig. 2(a), left], where ω0 = 1/
√

LC is the natural fre-
quency of the LC cavity. Connecting this oscillator (hence-
forth called the “signal oscillator”) to a pump oscillator
at frequency 2ω0 by means of a second-order nonlinear
capacitor induces the phenomenon of parametric amplifi-
cation and introduces constraints on the signal oscillator’s
phase and amplitude. The parametric oscillator circuit,
from Ref. [45], is shown in Fig. 2(b), where the nonlin-
ear capacitor couples the signal and pump oscillators. The
nonlinear capacitor’s characteristic is as follows:

Q = C0Vc + CN V2
c , (4)

where C0 is the linear capacitance and CN is the second-
order nonlinear capacitance. Such a nonlinear capacitance
can be implemented by common semiconductor devices
such as p-n-junction or Schottky diodes.

The signal oscillator derives voltage-amplitude gain
from the pump oscillator if the signal oscillation’s phase
is one of two particular values [separated by π radians,
represented in blue in Fig. 2(a), middle] dictated by the
pump; the signal oscillations that are in quadrature to
these special values experience loss. If this phase-sensitive
gain exceeds the signal oscillator’s resistive losses, only
the chosen quadrature survives and the oscillator becomes
phase bistable, as shown in the middle in Fig. 2(a).

Phase bistability is not sufficient to implement binary
spins—the oscillations must also be amplitude stable [i.e.,
all oscillators must reach the same saturation amplitude,
see Fig. 2(a), right]. When parametric gain is first intro-
duced, the signal oscillator amplitude increases exponen-
tially, drawing more and more power from the pump to
sustain its growth. This continues until the pump volt-
age Vp in Fig. 2(b) gets depleted. The signal and pump
then exchange power back and forth until both amplitudes
settle around a steady-state value. This pump-depletion

(a)

(b)

(c)

spin 1

spin 2

spin 3

spin 4

FIG. 2. (a) A linear, lossless signal oscillator (left) supports
oscillations of arbitrary phase and amplitude. A parametrically
amplified signal oscillator (middle) supports oscillations only at
two phases separated by π radians. Signal amplitude is further
constrained to a single value by depletion of the pump power
(right). (b) Parametric LC oscillators, used as bistable Ising spins,
consist of a ω0 signal oscillator and a 2ω0 pump oscillator con-
nected by a quadratic nonlinear capacitor. (c) All-to-all Ising
coupling between spins is implemented via a resistive crossbar.
The sign of Jij determines whether the red resistors or the blue
resistors are used.

mechanism makes the oscillator truly bistable [Fig. 2(a),
right].

The equations of motion for the parametric oscilla-
tor circuit in Fig. 2(b) are derived with use of Kir-
choff’s circuit equations in Appendix A. A key step
in the derivation is the use of the well-known slowly-
varying-amplitude approximation, which assumes that
the amplitude envelopes (As and Ap ) of the oscillating
voltages (Vs and Vp ) vary slowly compared with the
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frequency of the harmonic oscillations themselves. Under
this
approximation, the amplitude envelopes evolve as follows:

dAs

dt
= 1

2

[
Is

C0 + Cs
− As

Rs (C0 + Cs)
+ CN ω0AsAp

C0 + Cs

]
,

(5)

dAp

dt
= 1

2

[
Ip

C0 + Cp
− Ap

Rp
(
C0 + Cp

) − CN ω0A2
s

C0 + Cp

]
. (6)

While the equations above were derived for the specific
nonlinear-LC-oscillator circuit shown in Fig. 2(b), it is
clear that they are identical to the general equations (2)
and (3). Again, in Eqs. (5) and (6), the first term is a
power source, the second term corresponds to internal dis-
sipation, and the third term represents the exchange of
power between the pump and the signal. The signal As
has a parametric gain term that is proportional to the pump
amplitude, while the pump Ap has a loss term correspond-
ing to the transfer of energy to the signal oscillator. This
term is responsible for pump depletion, which limits the
parametric gain and the signal amplitude. In the following,
we assume that the signal oscillator does not have its own
power source—instead, Is corresponds to noise power with
a time-averaged current of zero.

B. Dynamics of dissipatively coupled parametric
oscillators

Figure 2(c) shows a scheme, also used by Wang and
Roychowdhury [31], to resistively couple the bistable
parametric LC oscillators to implement the spin-spin inter-
actions Jij in the Ising problem. For simplicity, we consider
the case where the interaction weights are binary, Jij =
±1, but the scheme can straightforwardly be extended to
any intermediate-valued weights (see Appendix B 2).

If two spins i and j are ferromagnetically coupled (Jij
= 1), a pair of straight-linking resistors [red resistors in
Fig. 2(c)] is used to connect the corresponding oscillators.
This works because, if the oscillators are not in the same
phase, the resultant voltage differences across the connect-
ing resistors will cause current flows that flip the phase
of one of the oscillators. Similarly, antiferromagnetic cou-
pling (Jij = −1) is implemented by a pair of cross-linking
connecting resistors [blue resistors in Fig. 2(c)].

The equations of motion for the full network of N
coupled identical parametric LC oscillators [Fig. 2(c)]
are derived from Kirchoff’s circuit laws in Appendix B
with use of the slow-varying-amplitude approximation. To
derive exact mathematical correspondences in the later
sections, we also make the assumption that the pump inter-
nal resistance Rp is large enough that it can be ignored
relative to the loss of pump energy to the signal oscilla-
tor; the effect of finite Rp is investigated in Sec. V and

Appendix F 2. Now, since introducing the Jij coupling
modifies only the “signal” part of the circuit, which oper-
ates at frequency ω0, the pump equation remains the same
as Eq. (6), but with Rp dropped and with the appropriate
subscripts i included:

dApi

dt
= 1

2

[
Ipi

C0 + Cp
− CN ω0A2

si

C0 + Cp

]
. (7)

The more-involved evolution equation for the ith signal
oscillator is as follows:

dAsi

dt
= −

⎡

⎣ NiAsi

4RC0s
− 1

4RC0s

∑

j :j �=i

Jij Asj

⎤

⎦

− Asi

2RsC0s
+ CN ω0ApiAsi

2C0s
, (8)

where C0s = C0 + Cs, Rs is the signal internal resistance,
R is the coupling resistance, and Ni := ∑

j :j �=i |Jij | is the
number of nonzero connections to the ith oscillator.

The form of Eq. (8) can be generalized to any coupled-
parametric-oscillator network. The term in brackets in Eq.
(8) captures the net loss that the signal amplitude Asi expe-
riences due to its connections to the other oscillators, the
middle term is the internal oscillator loss, and the last term
is the parametric gain that is supplied from the pump, as
in Eq. (5). While it is the case that the slowly-varying-
amplitude approximation is widely accepted and Eqs. (8)
and (7) have clear physical interpretations, we neverthe-
less simulated the N -spin circuit in Fig. 2(c) in LTspice,
and we compare its performance with that of the slowly-
varying-amplitude approximation for N = 5 and N = 15
in Appendix B 5.

C. Rewriting the equations of motion differently

We now re-express the system’s dynamics to better
elucidate its algorithmic functionality. First, the pump
dynamics equation (7) can be rewritten as

dApi

dt
= CN ω0

2
(
C0 + Cp

)
(
A2

sat − A2
si

)
, (9)

where we have introduced A2
sat := Ip/CN ω0.

Next, by incorporating the pump amplitude into a new
variable,

�i := CN ω0Api

2
− 1

2Rs
− Ni

4R
, (10)

we observe that the dynamics for Asi and Api can be re-
expressed as follows:

dAsi

dt
= − 1

2C0s

∂L
∂Asi

, (11)
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d�i

dt
= C2

N ω2
0

4
(
C0 + Cp

)
(
A2

sat − A2
si

) = C2
N ω2

0

4
(
C0 + Cp

) ∂L
∂�i

,

(12)

where L is defined as

L (As, �) = − 1
4R

∑

i,j

Jij AsiAsj +
∑

i

�i
(
A2

sat − A2
si

)
,

(13)

with As and � being vectors whose components are Asi
and �i, respectively. We call L the “Lagrange function”
of the problem. The above equations show that the signal
and pump amplitudes respectively perform simultaneous
gradient descent and ascent on the same function L.

Notably, the first term in Eq. (13) has the form of
the Ising interaction energy in Eq. (1), except that the
amplitudes are not strictly binary. According to Eq. (11),
the amplitudes of the oscillators evolve to minimize this
Ising-like function. However, this does not fully describe
the dynamics, due to the presence of the second term
in the Lagrange function. We will show that these equa-
tions of motion are actually an exact implementation of
the primal-dual method of Lagrange multipliers. In the
next section, we provide a brief overview of the primal-
dual method of Lagrange multipliers, and in Sec. IV, we
make the isomorphism between the circuit and the primal-
dual Lagrange-multiplier method more explicit. Before we
move on, we mention as an aside that the circuit with a
single global pump in Fig. 1(c) has a similar correspond-
ing Lagrange function L′ but this function has only one
“pump” variable �, unlike Eq. (13), which has N “pump”
variables �i, i ∈ {1, . . . , N }.

III. OVERVIEW OF LAGRANGE MULTIPLIERS

Here we provide a brief overview of the method of
Lagrange multipliers, a very-well-known procedure for
solving constrained optimization problems. This discus-
sion is primarily drawn from the textbooks by Bertsekas
[46] and Boyd and Vandenberghe [47].

Let f (x) be an objective function of N variables, and let
the point x∗ locally minimize f (x) among all x that simul-
taneously satisfy the constraints g1(x) = 0, . . . , gp(x) = 0.
Then, the theory of Lagrange multipliers tells us that one
can find numbers λ∗

1, . . . , λ∗
p , referred to as “Lagrange

multipliers,” such that

∇f (x∗) = −
p∑

i=1

λ∗
i ∇gi(x∗). (14)

Letting λ be the vector whose components are λi, and
defining the Lagrange function L(x, λ) as

L(x, λ) := f (x) +
p∑

i=1

λigi(x), (15)

we see that the constrained local minimum x∗ and its
associated multipliers λ∗ satisfy

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0. (16)

If a candidate point
(
x′, λ′) satisfies these conditions, then

x′ is a stationary point of f (x) subject to the constraints.
Equation (16) converts the search for constrained station-
ary points of f (x) into one for unconstrained stationary
points of L(x, λ).

Certain “well-structured” problems (e.g., convex prob-
lems) satisfy “strong duality”:

min
x

(
max

λ
L(x, λ)

)
= max

λ

(
min

x
L(x, λ)

)
. (17)

The point (x∗, λ∗) at which the equality holds is the global
constrained optimum of the problem (see Appendix C for
a saddle-point interpretation). The primal-dual method,
also known as the “method of multipliers” [46], finds
this optimum by iteratively solving the nested min-max
optimization problem on the right-hand side of Eq. (17).
Starting from an initial point (x(0), λ(0)), the algorithm first
holds λ fixed and minimizes L using several gradient-
descent steps in x. Then x is held fixed and one step of
gradient ascent on L is performed in the λ directions. This
alternating procedure of fast minimization and slow maxi-
mization is repeated until convergence is achieved. In the
limit of zero step size, the iterative algorithm is represented
by a pair of differential equations:

dx
dt

= −κ∇xL(x, λ), (18)

dλ

dt
= κ ′∇λL(x, λ) (19)

for appropriate step sizes κ and κ ′. Equation (18) performs
gradient descent on the Lagrange function to optimize x,
while Eq. (19) performs gradient ascent on L to optimize λ.
This procedure is also called the “primal-dual algorithm”
[48], where the descent in x is the primal step and the
ascent in λ is the dual step. Strong duality guarantees the
convergence of the algorithm to the constrained global
optimum of f . A fast maximization over λ in conjunction
with a slow minimization over x is also a valid algorithm
since it represents the left-hand side of Eq. (17).
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Most difficult problems are highly nonconvex and sat-
isfy only weak duality:

min
x

(
max

λ
L(x, λ)

)
≥ max

λ

(
min

x
L(x, λ)

)
. (20)

In this case, performing a fast maximization over λ in con-
junction with a slow minimization over x is more accurate
since the left-hand side of Eq. (20) is the required con-
strained minimum. Alternatively, one could use the more
powerful augmented Lagrangian method of multipliers
[46] when strong duality is not satisfied. The augmented
Lagrange function, Lα(x, λ), is defined as

Lα(x, λ) := L(x, λ) + α

2

( p∑

i=1

(gi(x))2

)
(21)

for a positive parameter α. Bertsekas [46] shows that if
Lα(x, λ) is used in place of L(x, λ) in Eqs. (18) and (19) and
the system is initialized close to a local optimum (x∗, λ∗)
of a weakly dual problem, the equations will converge to
(x∗, λ∗).

IV. SIGNAL DYNAMICS PERFORMS PRIMAL
STEP, PUMP DYNAMICS PERFORMS DUAL STEP

We now apply the method of Lagrange multipliers to the
Ising optimization problem, whose merit function f (x) is
given in Eq. (1), with the constraint that each of the N spins
is binary: xi = +1 or xi = −1. This binary constraint can
be written as gi(x) = 1 − x2

i = 0 for all i from 1 to N . The
Lagrange function for the Ising problem is then given by

L(x, λ) = −
N∑

i=1

N∑

j =1

Jij xixj +
N∑

i=1

λi
(
1 − x2

i

)
, (22)

where λi is the Lagrange multiplier associated with the
constraint on the ith spin. Substituting Eq. (22) into Eqs.
(18) and (19), we derive the update equations for the
primal-dual method of multipliers:

dxi

dt
= −κ

∂L
∂xi

= −2κ

⎛

⎝−
N∑

j =1

Jij xj − λixi

⎞

⎠ , (23)

dλi

dt
= κ ′ ∂L

∂λi
= κ ′ (1 − x2

i

)
. (24)

Notably, the Ising problem’s Lagrange function in Eq. (22)
is isomorphic to the oscillator-network Lagrange function
L [Eq. (13)] we defined in Sec. II. Moreover, the equations
of motion of the method of multipliers, Eqs. (23) and (24),
are in perfect correspondence with the oscillator network’s
equations of motion, Eqs. (11) and (12). More precisely,

TABLE I. Mapping of variables in the method of Lagrange
multipliers to the coupled-oscillator network.

Problem variable Physical variable

Spin variable xi (1/Asat) × Asi
Lagrange multiplier λi 4R × �i
Coupling matrix Jij Jij
Lagrange function L

(
4R/A2

sat

)× L
Step size κ 1/8RC0s
Step size κ ′ C2

N ω2
0RA2

sat/C0p

the signal equation (23) exactly corresponds to the pri-
mal equation (11), while the pump equation (24) exactly
corresponds to the dual equation (12). One needs only to
make the identifications given in Table I to complete the
correspondence. Besides Asi, �i, and L, all other physi-
cal parameters in Table I are fixed constants. Therefore,
the coupled-oscillator circuit implements the two differ-
ential equations that describe the primal-dual method of
multipliers.

The signal voltages Asi of the oscillators play the role
of the Ising variables xi, while the �i variables play the
role of the Lagrange multipliers. The �i variables corre-
spond physically to the gain supplied to each oscillator
from the pump. In Eq. (10) for �i, the term 1

2 CN ω0Api
is a negative conductance that corresponds to parametric
gain. Since the pump voltage Api is the only time-varying
component of the gain conductance, the time evolution
of the Lagrange multipliers λi is fully contained in the
dynamics of the pump oscillator voltages. Therefore, in
summary, the signal oscillator voltages Asi play the role of
the Ising variables xi, while the pump oscillator voltages
Api play the role of the corresponding Lagrange multipli-
ers λi. This fact also highlights the importance of having
a separate pump oscillator for every signal oscillator—the
circuit with a single global pump in Fig. 1(c) implements
only one Lagrange multiplier and fails to mimic the correct
Ising Lagrange function, Eq. (22), which has N Lagrange
multipliers.

Pump depletion performs the role of Lagrange-
multiplier feedback to constrain the signal voltages. When
the system reaches a steady state, all of the signal voltages
satisfy the binarization constraint such that xi = ±1. This
can also be seen in Eq. (9): in the steady state (dApi/dt
= 0), the amplitude of every oscillator is the same and
equals Asat. Therefore, pump depletion, which is equiv-
alent to the dual step in the Lagrange method, ensures
amplitude homogeneity of all the signal voltages in the
steady state. This insight supersedes our claim in an ear-
lier publication [38] that a separate feedback circuit would
be necessary to implement the λ feedback. The primal-
dual Lagrange algorithm is entirely self-contained in the
dynamics of parametric oscillators.

A comment about pump loss is in order. In the math-
ematical primal-dual method, the Lagrange multipliers λi
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change only in response to the values of the primal vari-
ables xi [i.e., dλi/dt ∝ (1 − x2

i )]; the dual evolution does
not involve the multipliers λi themselves. Intuitively, the
Lagrange multipliers evolve in a manner that applies a con-
straint exclusively on the primal variables. In the physical
system, on the other hand, since λi is encoded into the
pump amplitudes Api, a finite pump loss introduces a loss
term that depends on Api into the equation for dApi/dt, thus
causing a deviation from the primal-dual method. It was
for this reason that we set Rp = ∞ in Sec. II B just before
Eq. (7). Table II shows that Q of 5000 seems to be suf-
ficient for faithful performance, while lower values of Q
lead to performance degradation.

A. Implementing the augmented Lagrangian method

Since the Ising problem does not satisfy strong duality,
the augmented Lagrange function Lα(x, λ) provides a the-
oretically higher-quality solution. For the Ising problem,
this is given by

Lα(x, λ) = L(x, λ) + α

2

N∑

i=1

(
1 − x2

i

)2
, (25)

where L(x, λ) is from Eq. (22).
The augmented Lagrange equations of motion are as

follows:

dxi

dt
= −2κ

⎛

⎝−
N∑

j =1

Jij xj − λixi − αxi + αx3
i

⎞

⎠ , (26)

dλi

dt
= κ ′ (1 − x2

i

)
. (27)

The equations are essentially the same as before except for
an additional cubic nonlinear term that appears in Eq. (26).
This nonlinear term, in addition to offering the theoreti-
cal optimization advantages discussed in Ref. [46], also
ensures that the signal voltages remain closer to the sat-
uration amplitude than in the plain Lagrange method. To
implement this term physically, the signal resistor Rs in
Fig. 2(b) is replaced with a nonlinear resistor with charac-
teristic I = G0V + GN V3. In an electrical circuit, a simple
practical implementation is a pair of parallel p-n-junction
diodes that conduct in opposite directions.

Since the additional resistor is in the signal part of
the circuit, the pump equations remain unchanged. The
equation of motion for the signal circuit, derived in
Appendix D, is as follows:

Ȧsi =
⎡

⎣− Ni

4RC0s
Asi + 1

4RC0s

∑

j :j �=i

Jij Asj

⎤

⎦+ CN ω0Api

2C0s
Asi

− G0

2C0s
Asi − 3GN

8C0s
A3

si. (28)

This equation can be cast in the form of Eq. (26) by
rewriting it as

Ȧsi = − 1
4RC0s

⎡

⎣−
N∑

j =1

Jij Asj − 4R

×
(

�i − G0

2
− 3GN A2

sat

8

)
Asi

−3GN RA2
sat

2
Asi + 3GN R

2
A3

si

]
(29)

and making the identification

xi := Asi

Asat
, (30)

λi := 4R
(

�i − G0

2
− 3GN A2

sat

8

)
, (31)

α := 3GN RA2
sat

2
. (32)

As before, the Lagrange multiplier corresponds to the gains
supplied by the pump oscillators, but with an additional
fixed offset. Since the nonlinear resistor is in the signal part
of the circuit, the pump continues to evolve according to
Eq. (12).

V. NUMERICAL RESULTS

In this section, we present the results of the numerical
simulation of Eqs. (28) and (12) for quadratic binary opti-
mization problems (which are readily converted to Ising
instances through the simple procedures in Appendix E)
of sizes 50, 100, 250, and 500 from the BiqMac collection,
and max-cut problems of sizes 800 and 2000 from the Gset
collection.

The natural frequencies of the signal and pump oscilla-
tors were set to ω0 = 1 GHz and 2ω0 = 2 GHz, respec-
tively. The nonlinear part of the capacitor that connects
the signal and pump oscillators, CN , was chosen so that
the modulation on the capacitance is 10% of the signal
capacitance Cs at an applied voltage of 1 V. The linear
part of the connecting capacitance, C0, was assumed to be
zero because any nonzero C0 can be absorbed into Cs and
the pump capacitance Cp (made clear in the derivations
in Appendix B). The voltage saturation amplitude Asat of
the signal oscillations was set to 10 mV. Binary weights
J = ±1 were implemented according to the scheme in
Fig. 2(c) by our connecting pairs of signal oscillators with
resistors of a common value R in the appropriate configura-
tion. Values of J other than ±1 were implemented with the
use of a geometric series of resistances centered at R and
the binary expansion of J (see Appendix B 2). To ensure
that the isomorphism with Lagrange multipliers holds, the
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TABLE II. Performance of our approach on selected Gset 800-variable max-cut problems compared with the performance of other
algorithms. The oscillator Lagrange-multiplier approaches vastly outperform the Goemans-Williamson method but do not quite match
up to the method of Leleu et al. Performance improves as the pump quality factor increases. For the last five columns, the best solution
quality and the median solution quality are reported for ten independent runs, while the results for Leleu et al. [20] are for 20 runs.
UB, upper bound.

Oscillators, augmented
Lagrange method with pump

loss and thermal noise

Problem

Goemans-
Williamson

method Metric Leleu et al. [20]

Oscillators,
plain Lagrange

method

Oscillators,
augmented
Lagrange
method Qp = 100 Qp = 500 Qp = 5000

1 11 272 Best 11 624 11 580 11 613 9946 11 460 11 613
UB 12 838 Median 11 624 11 552 11 558 9931 11 416 11 570

2 11 277 Best 11 620 11 575 11 596 10 001 11 480 11 597
UB 12 844 Median 11 620 11 554 11 572 9936 11 416 11 577

6 1813 Best 2178 2143 2173 448 2019 2168
UB 3387 Median 2178 2124 2144 432 1967 2134

7 1652 Best 2006 1975 1973 283 1819 1984
UB 3224 Median 2006 1950 1955 265 1794 1966

pump is henceforth assumed to have no internal dissipative
loss, unless noted otherwise. The effect of pump resistance
and noise on the performance is discussed later in this
section and in Table II. Further details on how parameters
were chosen and their effect on the solver’s performance
are provided in Appendix F.

A. Dynamics of the solver

The slowly-varying-amplitude equations (28) and (12)
were simulated with use of MATLAB’s built-in ode45
ordinary-differential-equation (ODE) solver for a total time
of 50 µs with all the signal capacitor voltages starting at the
noise level

√
kT/Cs ≈ 5 µV and the initial pump voltages

being set such that there is gain right from t = 0.
Appendix F provides further details of the initial condi-

tions and the simulation setup. The signal and pump oscil-
lator voltage amplitudes for the first 800-vertex problem
in Gset are shown in Fig. 3. The oscillators corresponding
to spins 1, 2, and 7 are plotted to depict the diversity of
behaviors observed in the system: spin 2 starts out near the
noise level but immediately settles down to a steady state
of −10 mV (logical −1), spin 1 flips from logical +1 to
logical −1 after an initial period of evolution, and spin 7
undergoes rapid repeated flipping between −1 and +1 and
has relatively large fluctuations in its oscillation amplitude.

The time evolution of the pump voltages is shown
in the bottom panel in Fig. 3. The pump voltage indi-
cates how much parametric gain is being supplied to the
corresponding signal oscillator to maintain a steady-state
amplitude of ±10 mV. As explained previously, the pump
voltage dynamics directly tracks the time evolution of the
Lagrange multipliers. Spin 7, which has large fluctuations
in the signal voltage and thus frequent deviations from the
binary constraint, has correspondingly large fluctuations in
its pump voltage.

An important feature of the time evolution of the sig-
nal amplitudes in the top panel in Fig. 3 that needs to
be addressed is the rapid oscillations that they exhibit
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FIG. 3. Temporal dynamics of the signal (top), window time
average of the temporal dynamics that shows clamping to the
saturation amplitude (Asat = ±10 mV) (middle), and pump (bot-
tom) oscillator voltage amplitudes for spins 1, 2, and 7 in an
800-variable Gset problem. The signal voltages start from noise
before eventually settling to ±10 mV.
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about the saturation amplitudes of ±0.01 V. How is this
behavior consistent with our claim earlier that our sys-
tem possesses “amplitude homogeneity”? Close inspection
of the top panel in Fig. 3 reveals that all the spins actu-
ally do obey amplitude homogeneity in the sense that the
means of the voltage oscillations Vsi are always centered
at the saturation amplitudes ±0.01 V for all spins i. This
is seen clearly in the middle panel in Fig. 3, which depicts
a running time average of the depiction in the top panel
in Fig. 3. The key point is that there is no amplitude het-
erogeneity across spins, which was the problem in earlier
methods where different spins were settling to different sat-
uration amplitudes. On the basis of our investigations in
Appendix F 1 b, the reason for the rapidly oscillating over-
shoots and undershoots about the saturation amplitude is
the low value of Cp , the pump capacitance. We know that
the pump dynamics exert a driving force on the signal
voltages toward homogeneity (i.e., toward the saturation
amplitude Asat), thus imposing the constraints. Low Cp
leads to fast pump dynamics, and consequently, aggressive
movement toward the saturation amplitude followed by
immediate overshoots/undershoots because of insufficient
pump damping.

At each point in time, the collection of signal voltages
Asi can be converted to a binary solution vector by taking
the sign of each element. This allows the computation of
an instantaneous max-cut value, shown in Fig. 4 for two
problems: Gset problem 1, with 800 variables, and Gset
problem 22, with 2000 variables. Most of the progress
toward the best-known solution is made at early times,
with a slowdown in improvements as time progresses.
The best instantaneous objective-function value within the
50-µs simulation window is declared as the solution of
the run.

B. Quality of solution

To understand how performance scales with size, we
used BiqMac benchmark problems of size 50, 100, 250,
and 500, and Gset benchmark problems of size 800 and
2000. Our problem set consisted of ten problems of each
size for a total of 60 problems. The solver was run 10
times with random independent initial conditions on each
problem and the best and median solutions obtained over
the ten runs were recorded for each problem. The results
for Gset problems 1 and 2 (800 spins, 0,1 weights) and
problems 6 and 7 (800 spins, −1, 0, 1 weights) are pre-
sented in Table II. A more-comprehensive list is provided
in Appendix F 4.

We use the performance of the Goemans-Williamson
algorithm as a baseline for comparison, as well as to pro-
vide a theoretical upper bound on the quality of the max-
cut solution. The best-known solutions to these specific
max-cut problem instances are from Leleu et al. [20]. For
our coupled-oscillator approach, we include the quality of
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FIG. 4. Temporal evolution of the max-cut objective function.
The different colors correspond to ten independent runs of the
circuit starting from random noise for each of two problems: Gset
problem 1, with 800 vertices (800-1), and problem 22, with 2000
vertices (2000-22).

the solution found without and with the nonlinear resistor,
i.e., for the plain Lagrange multipliers and the augmented
Lagrange methods, respectively. Finally, we include the
results of the coupled-oscillator network under less-ideal
conditions: the pump circuit is made lossy (parameter-
ized by the quality factor of the pump oscillator, Qp =
Rp
√

Cp/Lp ), and Johnson thermal noise is incorporated
into both the signal circuit and the pump circuit. The noise
model and the associated stochastic-differential-equation
(SDE) approach are described in Appendix B 3.

We note several key findings from Table II. First, the
coupled-parametric-oscillator network far outperforms the
basic Goemans-Williamson algorithm. Second, the phys-
ical system that implements the augmented Lagrange
method generally performs better than the plain Lagrange
method, although the difference between the two methods
is not always significant.

Introducing loss in the pump circuit leads to a reduction
in performance. This is not surprising because the addi-
tion of pump loss breaks the exact correspondence with
Lagrange multipliers as pointed out in Sec. IV. The per-
formance improves as the pump quality factor increases,
with the results for Qp > 5000, even with thermal noise
included in both the signal circuit and the pump circuit,
being similar to the results in the lossless, noiseless case.
Piezoelectric acoustic wave filters that are used in cell-
phone receivers have quality factors of this magnitude
[49,50] and could be used in physical implementations of
an electrical Ising solver.

Finally, the algorithm in Leleu et al. [20], for
which a physical implementation was recently proposed
[21], finds higher-quality solutions compared with the
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FIG. 5. Effect of error in the coupling conductance values on
solution quality. For each size N , four problems were picked
and three random faulty circuits were run per problem; the
results were normalized by the performance of error-free cir-
cuits. Medians and 25th-percentile and 75th-percentile values are
reported.

Lagrange-multiplier solver. This is possibly due to
nongradient chaotic dynamics that does not get stuck at
fixed points or limit cycles. Lagrange multipliers, on the
other hand, follow gradient-based dynamics in the form
of alternating descent and ascent. The remainder of the
oscillator results in this section (and in the appendixes) are
for the augmented Lagrange method, assuming a lossless
pump and no noise.

FIG. 6. Time to target as a function of problem size. Ten
problems were solved per problem size, and the median, 25th
percentile, and 75th percentile for the time to target are shown.
The first four points, for sizes 50, 100, 250, and 500, are for the
BiqMac problems, while the last two points, for sizes 800 and
2000, are for Gset. The number of cycles scales as 10

√
N/9.71.

C. Robustness with regard to coupling-resistance
imperfections

Sensitivity to component imperfections is one of
the long-standing criticisms of analog computers. The
present application has some built-in tolerance to these
imperfections because the problem demands binary
answers, even though the processing is done on analog
signals in continuous time. In our network of coupled para-
metric oscillators, a main source of component imperfec-
tions is the (up to) N 2 resistors connecting the oscillators
together. A connection weight Jij is proportional to the
conductance of the connecting resistors, given by Gij =
|Jij |/R. Errors in these conductance values can cause the
wrong problem to be solved by the hardware, in turn
leading to nonoptimal solutions to the original problem.

We find that, in general, the Lagrange-multiplier oscilla-
tor network is insensitive to errors in the coupling resistors,
as shown in Fig. 5. We assumed that the conductance
Gij had a Gaussian distribution with a mean given by
|Jij |/R and a standard deviation that is a certain percentage
of the mean. For each problem size, four problems were
tackled; for each problem, results were obtained for three
circuits sampled with randomized conductance errors for
each error level. The results, plotted in Fig. 5, indicate that
conductance errors as large as 10% are tolerated without
significant reduction in the quality of the solution even for
2000-spin problems. This level of precision is well within
the capability of modern programmable-resistive-memory
devices [51]. The resilience of the system performance to
pump resistance variation is discussed in Appendix F 2.

D. Time to target

Next, we extract the dependence of the time to tar-
get (TTT) on the problem size. A run of the solver on a
given problem is considered successful if the instantaneous
objective-function value breaches 97% of the best-known
value for that problem at some point during the 50-µs dura-
tion of the run. We define the TTT for a successful run
as the first time the 97% mark is crossed. For an unsuc-
cessful run, the TTT is the full 50 µs. The TTT for the
problem is then equal to the sum of the TTT of all the runs
divided by the number of successful runs. This metric mea-
sures the average time spent between two successes. Figure
6 shows how the TTT depends on the number of vari-
ables N in our problem set. Although these problems are
drawn from two different benchmark sets, the TTT, in num-
ber of ω0 oscillation cycles, scales as 100.47 × 10

√
N/9.71 =

100.47 × 1.27
√

N , which is O(2
√

N ), corroborating previ-
ous work on solvers of this type that noted similar scaling
[15,52].

E. Power consumption

Finally, one can estimate the power consumption of
our circuits by adding up the power dissipated by all the
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FIG. 7. Total power dissipation in the circuit as a function of time for different problems, obtained from stochastic-differential-
equation simulations of the circuit with the thermal noise included. The two panels on the left depict power dissipation for 800-spin
Gset problem 1 (800-1) and problem 6 (800-6) for two different pump Q values, whereas the two panels on the right depict the
corresponding results for 2000-spin Gset problem 22 (2000-22) and problem 27 (2000-27). The blue and orange curves are very close
and overlap in all the panels.

resistors in the system—the coupling resistors between
spins, and the signal and pump resistors inside each spin.
Figure 7 depicts the evolution of the total power dis-
sipation of the circuit for two 800-spin and 2000-spin
problems from Gset, for two values of the pump oscillator
Q per problem. These plots were obtained from stochastic-
differential-equation simulations in MATLAB of the circuit
equations with thermal noise included (see Appendix B 3
for the details of the noise model). The key observations
from Fig. 7 are as follows: (1) The total power dissipa-
tion is at the level of milliwatts, which is several orders of
magnitude more efficient than standard CPUs and graph-
ics processing units, which consume hundreds of watts
[53]. This fact, combined with the run time of 50 µs,
yields an energy consumption of tens of nanojoules per
optimization, making this approach to combinatorial opti-
mization highly attractive for future research and experi-
mentation. A back-of-the-envelope calculation supporting
these power-dissipation numbers is provided in Appendix
F 3. (2) The power dissipation fluctuates significantly early
on in the evolution when the system moves rapidly toward
higher-quality objective-function values (see Fig. 4 for
comparison), followed by a settling down that corresponds
to the later, slow optimization phase (Fig. 4).

VI. CONCLUSION

In this paper, we showed that coupled-parametric-
oscillator Ising solvers exactly implement the primal-dual
Lagrange-multiplier optimization algorithm. The signal
oscillator voltages represent the binary problem variables
xi, while the pump oscillator voltages represent the cor-
responding Lagrange multipliers λi. Moreover, the equa-
tions of motion of the signal oscillators match the pri-
mal (descent) equations, while the evolution equations of

the pump oscillators match the dual (ascent) equations
of the Lagrange-multiplier method. This complete equiv-
alence (1) explains why coupled-oscillator solvers find
high-quality solutions (2) and provides precise mathemat-
ical meaning to each physical component in the circuit.
Moreover, using the above-mentioned insights, we showed
that one can readily implement a more-sophisticated
algorithm—the augmented Lagrange-multiplier method.

Next, we showed that numerical simulations of the
slowly-varying-amplitude circuit equations on 800-spin
and 2000-spin problems yielded results that were signifi-
cantly better than the results obtained with the Goemans-
Williamson algorithm, and that were competitive with the
best-known Ising solvers [20]. The time to target was
found to scale as O(2

√
N ), where N is the problem size—a

result that is consistent with other work in the literature
[15,52]. Next, our simulations (with thermal noise taken
into account) reveal that the circuit consumes extremely
low amounts of power (on the order of milliwatts) and
energy per optimization (approximately 100 nJ) even for
problems of size 2000, making the system highly attrac-
tive for further research and experimentation. Finally, we
also showed that the quality of the solutions obtained by
the oscillator solvers was robust with regard to signif-
icant errors in the circuit components used to program
the Jij —an intriguing result that points to the possibility
that the traditional shortcomings of general-purpose ana-
log computation might not be a stumbling block for this
application. We note that all our theoretical and numerical
results are true for coupled-parametric-oscillator systems
of all types in general—the electrical circuit in this paper
was chosen only as a model system to illustrate the equiv-
alence and properties of such solvers more concretely.

These encouraging results suggest a promising research
direction where such circuit solvers are designed to
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implement more-sophisticated optimization algorithms for
a multitude of important problems in operations research
and machine learning, and are used as analog coproces-
sors or accelerators alongside standard digital chips. We
hope this work will instigate further bidirectional research
into the design of novel physical systems that naturally per-
form optimization (physical optimizers) of various flavors
and the construction of novel optimization algorithms from
physical dynamics.

The BiqMac and Gset problems that were used to eval-
uate the solution techniques in this paper are publicly
available at the resources listed in Refs. [40,41]. The MAT-
LAB and LTspice codes that were developed to generate the
results will be shared by the authors upon request.
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APPENDIX A: SINGLE PARAMETRIC LC
OSCILLATOR—EQUATIONS OF MOTION

Before we start the derivation, we note that the current
source in the signal circuit, Is, is just a noise source in our
system. Therefore, it can be dropped while we are con-
sidering the evolution of the system. We retain it in the
current derivation simply to obtain general expressions but
will drop it as soon as the discussion specializes to our
situation.

The circuit equations for Fig. 8 are as follows:

CsV̇s = I3 − I4, CpV̇p = I2 − I3, (A1)

Vs = Ls
(
İ4 − İ5

)
, Vp = Lp

(
İ1 − İ2

)
, (A2)

Vs = Rs (Is + I5) , Vp = Rp
(
Ip − I1

)
, (A3)

I3 = C0
(
V̇p − V̇s

)+ 2CN
(
Vp − Vs

) (
V̇p − V̇s

)
. (A4)

I3 can be eliminated by substituting Eq. (A4) into Eq.
(A1). Then, Eqs. (A1) and (A3) can be used to express I1,
I2, I4, and I5 in terms of voltages and the current sources.

FIG. 8. The signal (left) and pump (right) LC oscillators are
connected by a nonlinear capacitor.

Finally, plugging all these expressions into Eq. (A2) yields

Vs = Ls

(
C0
(
V̈p − V̈s

)+ 2CN
(
V̇p − V̇s

)2

+ 2CN
(
Vp − Vs

) (
V̈p − V̈s

)− CsV̈s − V̇s

Rs
+ İs

)
,

(A5)

Vp = Lp

(
−C0

(
V̈p − V̈s

)− 2CN
(
V̇p − V̇s

)2

−2CN
(
Vp − Vs

) (
V̈p − V̈s

)− CpV̈p − V̇p

Rp
+ İp

)
.

(A6)

In Eq. (A5), we retain only terms that oscillate at ω0 or
contribute to oscillations at ω0. Similarly, in Eq. (A6),
we retain only terms that oscillate at 2ω0 or contribute to
oscillations at 2ω0. These equations simplify to

İs = Vs

Ls
+ (C0 + Cs) V̈s + V̇s

Rs
+ 4CN V̇pV̇s

+ 2CN VpV̈s + 2CN VsV̈p , (A7)

İp = Vp

Lp
+ (

C0 + Cp
)

V̈p + V̇p

Rp
+ 2CN V̇2

s + 2CN VsV̈s.

(A8)

At this point, we make the redefinitions Cs := C0 + Cs
and Cp := C0 + Cp for notational convenience. Next, we
perform the slowly-varying-amplitude approximation by
expressing all the currents and voltages involved as fol-
lows:

Ip = Ipc

2
e2iω0t + c.c., İp = 2iω0

Ipc

2
e2iω0t + c.c., (A9)

Is = Isc − iIss

2
ei(ω0t+φs) + c.c., İs = iω0

Isc − iIss

2
ei(ω0t+φs)

+ c.c., (A10)

Vs = As − iBs

2
ei(ω0t+φs) + c.c., V̇s = iω0

As − iBs

2

× ei(ω0t+φs) + Ȧs − iḂs

2
ei(ω0t+φs) + c.c., (A11)
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V̈s = 2iω0
Ȧs − iḂs

2
ei(ω0t+φs) − ω2

0
As − iBs

2
ei(ω0t+φs) + c.c.,

(A12)

Vp = Ap

2
ei(2ω0t) + c.c., V̇p = 2iω0

Ap

2
ei(2ω0t)

+ Ȧp

2
ei(2ω0t) + c.c., (A13)

V̈p = 4iω0
Ȧp

2
ei(2ω0t) − 4ω2

0
Ap

2
ei(2ω0t) + c.c., (A14)

where As is the cosine component of Vs and Bs is its sine
component. Plugging these expressions into Eq (A7), we
get

iω0 (Isc − iIss) = As − iBs

Ls
+ Cs

(
2iω0

(
Ȧs − iḂs

)

− ω2
0 (As − iBs)

)

+ iω0 (As − iBs) + Ȧs − iḂs

Rs

+ CN
[
2
(
2iω0Ap + Ȧp

)
(−iω0 (As + iBs)

+ Ȧs + iḂs
)

+ Ap
(−2iω0

(
Ȧs + iḂs

)− ω2
0 (As + iBs)

)

+ (As + iBs)
(
4iω0Ȧp − 4ω2

0Ap
)]

ei(−2φs).
(A15)

Equating the imaginary parts on both sides, recognizing
that 1/ω2

0 = L1Cs, rearranging terms, and setting φs =
3π/4, we have

Ȧs = Isc

2Cs
− As

2RsCs
+ CN ω0Ap

2Cs
As + Ḃs

2Rsω0Cs
− CN

2ω0Cs

× [
2ȦsȦp − 2ω0ȦpBs − 2ω0ḂsAp

]
. (A16)

The first term on the right-hand side of Eq. (A16) is
the injection from the current source, the second term
is the internal resistive loss, the third term is the gain
provided by the pump to the signal cosine component.
The fourth term can be ignored because its magni-
tude is O (loss coefficient/ω0), which is small by the
slowly-varying-amplitude approximation. The first term
in the brackets is small compared with (CN ω0Ap/2Cs)As
(again by the slowly-varying-amplitude approximation)
and can be dropped. Finally, the second and third terms
in the brackets can be dropped because they are of size
O (gain coefficient/ω0). The cosine amplitude dynamics is
then

Ȧs = Isc

2Cs
− As

2RsCs
+ CN ω0Ap

2Cs
As. (A17)

Time in number of

FIG. 9. Simulation of the slowly-varying-amplitude equations
for a single spin system—a signal oscillator connected to a
pump oscillator. The sine component decays to zero early in the
evolution.

Equating the real parts on both sides of Eq. (A15), we get
for the amplitude of the sine component

Ḃs = Iss

2Cs
− Bs

2RsCs
− CN ω0Ap

2Cs
Bs − Ȧs

2Rsω0Cs
+ CN

2ω0Cs

× [
2ḂsȦp + 2ω0ȦpAs + 2ω0ȦsAp

]
. (A18)

The third term on the right-hand side is a parametric loss
term and not a gain term, due to which the sine component
never grows to the same order of magnitude as the cosine
component—this will be verified shortly.

The equivalent of Eqs. (A16) and (A18) for the pump
circuit is

Ȧp = Ipc

2Cp
− Ap

2RpCp
+ CN

4Cpω0

(
Ȧ2

s − Ḃ2
s

)

+ CN

4Cpω0

(
2ω2

0

(
B2

s − A2
s

)+ 4ω0
(
AsḂs + ȦsBs

))
.

(A19)

Simulating Eqs. (A16), (A18), and (A19) using MATLAB’s
ode15i implicit ODE solver leads to the plots in Fig. 9,
confirming that the sine component Bs decays to zero very
early and can be ignored. It is henceforth dropped in all
our equations. Performing the slowly-varying-amplitude
approximation on Eq. (A19) and dropping terms that con-
tain Bs, we obtain the following final pump amplitude-
evolution equation:

Ȧp = Ipc

2Cp
− Ap

2RpCp
− CN ω0A2

s

2Cp
. (A20)
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ith pump circuit ith signal circuit jth signal circuit jth pump circuit

ith pump circuit ith signal circuit jth signal circuit jth pump circuit

FIG. 10. The various currents
and voltages when one focuses on
the coupling between the ith para-
metric oscillator and the j th para-
metric oscillator. The top and bot-
tom panels show the Jij = 1 and
Jij = −1 cases, respectively.

APPENDIX B: COUPLED PARAMETRIC LC
OSCILLATORS—EQUATIONS OF MOTION

In this appendix, we derive the equations of motion
for a network of N coupled parametric oscillators with
all-to-all coupling with Jij taking values ±1. The general
case of sparser/non-±1 coupling is dealt with later in this
appendix.

Let the parametric oscillators be labeled from i = 1 to
i = N . The notation we use is indicated in Fig. 10, where
we focus on the coupling between the ith parametric oscil-
lator and the j th parametric oscillator. One of the terminals
of the capacitor in the oscillator labeled i = 1 (not shown
in Fig. 10) is arbitrarily chosen as its “bottom” terminal,
and its other terminal is labeled its “top terminal.” For
each oscillator that is connected to i = 1 through a +1
connection, the terminal in that oscillator that is directly
connected to the bottom terminal of i = 1 is labeled its
“bottom terminal.” Similarly, for each oscillator that is
connected to i = 1 through a −1 connection, the terminal
in that oscillator that is directly connected to the bottom
terminal of i = 1 is labeled its “top terminal.” We continue
this process until all terminals in the circuit are labeled.
If two terminals are connected by a + connection and
one of them is the bottom terminal of its host oscillator,
the other terminal is labeled the “bottom terminal” of its
own host oscillator. If two terminals are connected by a −
connection and one of them is the bottom terminal of its
host oscillator, the other terminal is labeled the “top ter-
minal” of its own host oscillator. Through this process,we

can identify the bottom terminals of all the oscillators.
The “bottom” labeling is shown in Fig. 10 for Jij = 1 and
Jij = −1.

Let the potential at the “bottom” terminal of oscillator i
be Vbi. The current that flows out from the bottom termi-
nal of the ith oscillator into the resistor that connects it to
the j th oscillator is iij 1. Similarly, the current that flows out
from the top terminal of the ith oscillator into the resistor
that connects it to the j th oscillator is iij 0. In the ith oscil-
lator, the voltage difference between the top terminal and
the bottom terminal of the capacitor is denoted by Vi, the
current passing through the inductor from the top termi-
nal to the bottom terminal is Ili, and the current passing
through the capacitor from the top terminal to the bot-
tom terminal is Ici. All this notation is again indicated in
Fig. 10.

If we represent the set {1, 2, . . . , N } by [N ], the circuit
equations are as follows:

CsV̇si = I3i − Ili −
∑

j

Iij 0, CpV̇pi = I2i − I3i

for all i ∈ [N ], (B1)

Vsi = Lsİli, Vpi = Lp
(
İpi − İ2i

)
for all i ∈ [N ], (B2)

I3i = C0
(
V̇pi − V̇si

)+ 2CN
(
Vpi − Vsi

) (
V̇pi − V̇si

)

for all i ∈ [N ], (B3)
∑

j

Iij 0 +
∑

j

Iij 1 = 0 for all i ∈ [N ], (B4)
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Vb1 = 0, (B5)

Iijk = k
[(

Vbi − Vbj

R

)(
1 + Jij

2

)
+
(

Vbi − Vbj − Vsj

R

)(
1 − Jij

2

)]

+ (1 − k)
[(

Vbi + Vsi − Vbj − Vsj

R

)(
1 + Jij

2

)
+
(

Vbi + Vsi − Vbj

R

)(
1 − Jij

2

)]

for all i ∈ {1, 2, . . . , N }, for all j ∈ {1, 2, . . . , N }, j �= i, and for all k ∈ {0, 1}. (B6)

Equations (B1)–(B4) and (B6) are the current law, volt-
age law, and device characteristics at different places in the
circuit. Equation (B5) fixes the voltage reference by setting
the potential of the bottom terminal of the first oscillator to
zero.

Equation (B6) yields

∑

j

Iij 0 =
∑

j :j �=i

[
Vbi − Vbj + Vsi

R
− Vsj

R

(
1 + Jij

2

)]
.

(B7)

Next, plugging Eq. (B6) into Eq. (B4), we get

∑

j :j �=i

2
(

Vbi − Vbj

R

)
= − (N − 1) Vsi

R
+
∑

j :j �=i

Vsj

R
. (B8)

Finally, substituting Eq. (B8) into Eq. (B7), we get

2R

⎛

⎝
∑

j

Iij 0

⎞

⎠ = (N − 1) Vsi −
∑

j :j �=i

Jij Vsj . (B9)

We solve Eqs. (B1)–(B3) in the same way as before, retain-
ing only the ω0 and 2ω0 terms in the signal and pump
equations respectively, to obtain

− N − 1
2R

V̇si + 1
2R

∑

j :j �=i

Jij V̇sj = Vsi

Ls
+ (C0 + Cs) V̈si

+ 4CN V̇piV̇si + 2CN VpiV̈si + 2CN VsiV̈pi, (B10)

İpi = Vpi

Lp
+ (

C0 + Cp
)

V̈pi + 2CN V̇2
si + 2CN VsiV̈si.

(B11)

1. Slowly-varying-amplitude approximation

Making the substitution C0s := C0 + Cs and C0p :=
C0 + Cp and plugging into Eq. (B10) the slowly vary-
ing amplitudes from above, we get the following signal
equations:

Ȧsi − CN ω0Api

2C0s
Asi + CN

2ω0C0s

[
2ȦsiȦpi − 2ω0ȦpiBsi − 2ω0ḂsiApi

]

= 1
2C0s

⎡

⎣−N − 1
2R

(
Asi − Ḃsi

ω0

)
+ 1

2R

∑

j :j �=i

Jij

(
Asj − Ḃsj

ω0

)⎤

⎦ , (B12)

Ḃsi + CN ω0Api

2C0s
Bsi − CN

2ω0C0s

[
2ḂsiȦpi + 2ω0ȦpiAsi + 2ω0ȦsiApi

]

= 1
2C0s

⎡

⎣−N − 1
2R

(
Bsi + Ȧsi

ω0

)
+ 1

2R

∑

j :j �=i

Jij

(
Bsj + Ȧsj

ω0

)⎤

⎦ . (B13)

As before, we drop Eq. (B13) and all terms that contain Bsi in Eq. (B12), and we apply the slowly-varying-amplitude
approximation to the remaining terms in Eq. (B12) to obtain

Ȧsi =
⎡

⎣−N − 1
4RC0s

Asi + 1
4RC0s

∑

j :j �=i

Jij Asj

⎤

⎦+ CN ω0Api

2C0s
Asi. (B14)
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Equation (B11) reduces to

Ȧpi = Ipci

2C0p
− CN ω0A2

si

2C0p
. (B15)

2. Extension to cases where we do not have Jij = ±1 or all-to-all connections

So far, we have considered only J matrices in which all the entries were chosen from {−1, 1}. In this section, we
describe the modifications required to generalize the coupled-LC-oscillator circuit when the J values take on arbitrary
real values expressed in binary form . . . b2b1b0 · b−1b−2 . . .. We let the sign of Jij , positive or negative, be represented by
sij . That is, Jij = sij

∣∣Jij
∣∣. The circuit equations (B1) to (B5) carry over, while Eq. (B6) is modified to

Iijk = k
[(

Vbi − Vbj

Rij

)(
1 + sij

2

)
+
(

Vbi − Vbj − Vsj

Rij

)(
1 − sij

2

)]

+ (1 − k)
[(

Vbi + Vsi − Vbj − Vsj

Rij

)(
1 + sij

2

)
+
(

Vbi + Vsi − Vbj

Rij

)(
1 − sij

2

)]
,

for all i ∈ {1, 2, . . . , N } for all j ∈ {1, 2, . . . , N }, j �= i, and for all k ∈ {0, 1} (B16)

By our following the same procedure as before, Eq. (B8)
is changed to

∑

j :j �=i

2
(

Vbi − Vbj

Rij

)
= −

∑

j :j �=i

Vsi

Rij
+
∑

j :j �=i

Vsj

Rij
. (B17)

To implement an arbitrary Jij , we use a “common” cou-
pling resistor R, and binary multiples of it, Rm = 2mR. That
is, R−1 is R/2 and R2 is 4R. If

∣∣Jij
∣∣ is written in binary form

up to 3-bit precision as
∣∣Jij
∣∣ = b121 + b020 + b−12−1, (B18)

Jij is implemented by our setting

1
Rij

= b1

R−1
+ b0

R0
+ b−1

R1
= 1

R

∣∣Jij
∣∣ . (B19)

To see that this setting indeed does the job, we plug
this expression for Rij into Eq. (B17) and complete the
calculation to see that Eq. (B14) is changed to

Ȧsi =
⎡

⎣−
∑

j :j �=i

∣∣Jij
∣∣

4RC0s
Asi + 1

4RC0s

∑

j :j �=i

Jij Asj

⎤

⎦

+ CN ω0Api

2C0s
Asi. (B20)

The pump equation (B15) remains unchanged.

3. Including thermal noise in the coupling resistors

Thermal noise is incorporated into the circuit by our
adding noise voltage sources V(n)

ij 0 and V(n)

ij 1 in series with
the coupling resistors Rij 0 and Rij 1, respectively. Further,

the thermal noise generated by the internal resistors of the
signal and pump LC oscillators is modeled by our adding
noise current sources I (n)

si and I (n)
pi in parallel to the two

tanks, respectively. Then the counterparts of Eqs. (B10)
and (B11) are as follows:

−
∑

j :j �=i |Jij |
2R

V̇si + 1
2R

∑

j :j �=i

Jij V̇sj − 1
2R

∑

j :j �=i

|Jij |V̇(n)

ij 1

+ 1
2R

∑

j :j �=i

|Jij |V̇(n)

ij 0 + İ (n)
si

= Vsi

Ls
+ V̇si

Rs
+ C0sV̈si + 4CN V̇piV̇si

+ 2CN VpiV̈si + 2CN VsiV̈pi, (B21)

İ (n)
pi + İpi = Vpi

Lp
+ V̇pi

Rp
+ C0p V̈pi + 2CN V̇2

si + 2CN VsiV̈si.

(B22)

The slowly-varying-amplitude approximation restricts the
above equations to small frequency windows around ω0
and 2ω0, respectively, which means that only band-pass-
filtered versions of the white-noise terms I (n)

pi , I (n)
si , V(n)

ij 0,
and V(n)

ij 1 are retained in the slowly-varying-amplitude equa-
tions. If the impulse responses of band-pass filters centered
at about ω0 and 2ω0 are hs(t) and hp(t), respectively, the
convolution operator is represented by �, and the slowly
varying cosine and sine noise amplitudes are represented
by A(n) and B(n) with the appropriate subscripts (additional
I in the superscript to represent currents), we have the
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following expressions for the filtered noise terms:

hs(t) ∗ I (n)
si (t) = A(n,I)

si − iB(n,I)
si

2
ei(ω0t+φs) + c.c.,

hs(t) ∗ v
(n)

ij 0 = A(n)

ij 0 − iB(n)

ij 0

2
ei(ω0t+φs) + c.c.,

hs(t) ∗ v
(n)

ij 1 = A(n)

ij 1 − iB(n)

ij 1

2
ei(ω0t+φs) + c.c.,

hp(t) ∗ I (n)
pi = A(n,I)

pi − iB(n,I)
pi

2
ei(2ω0t) + c.c.

Using standard formulae and assuming that A(n) and B(n)

are identically distributed but independent random pro-
cesses, the two-time correlation functions of the slowly
varying noise amplitudes are as follows:

〈A(n,I)
si (0)A(n,I)

si (τ )〉 = 〈B(n,I)
si (0)B(n,I)

si (τ )〉

= 4kT
Rs

hs(τ ) ∗ hs(−τ)

cos (ω0τ)
, (B23)

〈A(n)

ij 0(0)A(n)

ij 0(τ )〉 = 〈B(n)

ij 0(0)B(n)

ij 0(τ )〉

= 4kTRij
hs(τ ) ∗ hs(−τ)

cos (ω0τ)
, (B24)

〈A(n)

ij 1(0)A(n)

ij 1(τ )〉 = 〈B(n)

ij 1(0)B(n)

ij 1(τ )〉

= 4kTRij
hs(τ ) ∗ hs(−τ)

cos (ω0τ)
, (B25)

〈A(n,I)
pi (0)A(n,I)

pi (τ )〉 = 〈B(n,I)
pi (0)B(n,I)

pi (τ )〉

= 4kT
Rp

hp(τ ) ∗ hp(−τ)

cos (2ω0τ)
. (B26)

The slowly varying versions of Eqs. (B21) and (B22) are
then

Ȧsi = −
∑

j :j �=i

∣∣Jij
∣∣

4RC0s
Asi + 1

4RC0s

∑

j :j �=i

Jij Asj

− 1
2RsC0s

Asi + CN ω0Api

2C0s
Asi + A(n,I)

si

2C0s

− 1
4RC0s

∑

j :j �=i

|Jij |A(n)

ij 1 + 1
4RC0s

∑

j :j �=i

|Jij |A(n)

ij 0, (B27)

Ȧpi = Ipci + A(n,I)
pi

2C0p
− 1

2RpC0p
Api − CN ω0A2

si

2C0p
. (B28)

If the signal and pump band-pass filters are assumed to be
perfectly rectangular with unit real frequency response, the
impulse responses hs(τ ) and hp(τ ) satisfy

hs(τ ) ∗ hs(−τ) = hs(τ ) = 2 sin (�ωτ/2)

πτ
cos (ω0τ),

(B29)

hp(τ ) ∗ hp(−τ) = hp(τ ) = 2 sin (�ωτ/2)

πτ
cos (2ω0τ).

(B30)

Next, we introduce noise processes nsi(t) and npi(t) to
capture the noise terms in Eqs. (B27) and (B28):

nsi = 2RA(n,I)
si −

∑

j :j �=i

|Jij |A(n)

ij 1 +
∑

j :j �=i

|Jij |A(n)

ij 0, (B31)

npi = A(n,I)
pi . (B32)

Since the pump noise term (B32) is straightforward to
implement in the MATLAB sde solver, we shift our atten-
tion to the signal noise. In words, Eq. (B31) tells us that the
processes nsi, of which there are N , are linear combinations
of O(N 2) independent Gaussian noise processes. We con-
clude from standard random-process theory that the nsi are
Gaussian random processes too. This means they should
be expressible as a linear combination of N independent
Gaussian noise processes wi instead of O(N 2) of them.
This is a desirable representation because Eq. (B27) will
then take the matrix-vector form

ẋ = Px + 1
4RC0s

Qw (B33)

for some matrices P and Q. P is readily extracted from Eq.
(B27), whereas Q is such that

nsi =
∑

j

Qij wj . (B34)

Equation (B33) is a Langevin stochastic differential
equation and can readily be simulated with the use of
MATLAB’s sde function.
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We show next how to compute the matrix Q that leads
to correlations that are consistent with Eq. (B31). The two-
point correlation of nsi(t) with itself (its autocorrelation) is
as follows:

〈nsi(0)nsi(τ )〉 = 4R2〈A(n,I)
si (0)A(n,I)

si (τ )〉
+ 2

∑

j :j �=i

|Jij |2〈A(n)

ij 0(0)A(n)

ij 0(τ )〉

= 8kTR

⎛

⎝2R
Rs

+
∑

j :j �=i

|Jij |
⎞

⎠ 2 sin (�ωτ/2)

πτ
.

(B35)

The two-point correlation between nsi(t) and nsk(t) for i �=
k is as follows:

〈nsi(0)nsk(τ )〉 = −8kTR|Jik|Jik
2 sin (�ωτ/2)

πτ
. (B36)

Assuming that the processes wi have autocorrelation
2 sin (�ωτ/2)/πτ and using Eq. (B34), we get

〈nsi(0)nsi(τ )〉 =
⎛

⎝
∑

j

Q2
ij

⎞

⎠ 2 sin (�ωτ/2)

πτ
, (B37)

〈nsi(0)nsk(τ )〉 =
⎛

⎝
∑

j

Qij Qkj

⎞

⎠ 2 sin (�ωτ/2)

πτ
. (B38)

Equating the right-hand sides of Eqs. (B35) and (B37) and
those of Eqs. (B36) and (B38), we see that Q is obtained
by our performing the Cholesky decomposition of a matrix
M constructed as follows:

Mik = −8kTR|Jik|Jik if i �= k, (B39)

Mik = 8kTR

⎛

⎝2R
Rs

+
∑

j :j �=i

|Jij |
⎞

⎠ if i = k. (B40)

This completes the discussion of the signal noise.
At this point, we comment on our code implementa-

tion. Firstly, our circuit had a cubic nonlinear saturating
internal conductance I = GlinV + GnonlinV3 in the signal
circuit, so the 2R/Rs term in Eq. (B40) was replaced
with 2R

(
Glin + 9GnonlinA2

sat

)
. Secondly, we faced difficul-

ties with generating band-limited white noise with sinc
autocorrelation, which is what the wi need to be. For this
reason, we simply used pure white noise (Dirac-δ autocor-
relation) for the wi. This assumption translates to forcing
the slowly varying amplitudes to have Dirac-δ autocorre-
lation instead of the sinc autocorrelation that was derived
in Eqs. (B23)–(B26).

TABLE III. LTspice-testing circuit parameter values.

Parameter Value (N = 5) Value (N = 15)

Signal capacitance Cs
1

2π
nF 1

2π
nF

Signal inductance Ls
1

2π
nH 1

2π
nH

Pump capacitance Cp
0.5
4π

nF 0.5
4π

nF

Pump inductance Lp
2

4π
nH 2

4π
nH

Linear capacitance C0 0 0
Nonlinear capacitance CN

0.1
2π

nF/V 0.1
2π

nF/V
Saturation voltage Asat 0.1 V 0.07 V
Coupling resistance R 125 
 250 


Pump internal resistance Rp ∞ ∞
Signal internal conductance Gs 1/R 
−1 1/R 
−1

Nonlinear conductance GN
1

RA2
sat


−1 V−2 1
RA2

sat

−1 V−2

Total time T 5 µs 5 µs

4. Extension to the case of nonzero local magnetic
fields hi

In a more-general form of the Ising problem, each spin
also experiences a local magnetic field that adds to the
total energy. The Hamiltonian is then H = −∑i hixi −∑

ij Jij xixj . This expression can be interpreted as an N +
1-spin Ising Hamiltonian, where hi/2 are the Ji,N+1 connec-
tion coefficients of the first N spins to a newly introduced
N + 1th spin that is fixed to orientation +1. This viewpoint
enables us to minimize this new Hamiltonian by simply
adding an ac voltage source with phase corresponding to
+1 to the original circuit and connecting it to the other
oscillators through hi/2 resistors in a manner exactly anal-
ogous to that for the J resistors. The final signal equation
of motion is

Ȧsi =
[
−|hi|/2 +∑

j |Jij |
4RC0s

Asi + 1
4RC0s

hi

2
Asat

+ 1
4RC0s

∑

j :j �=i

Jij Asj

⎤

⎦+ CN ω0Api

2C0s
Asi. (B41)

5. LTspice versus slowly-varying-amplitude
approximation

To ascertain the reliability of the slowly-varying-
amplitude approximation vis-à-vis the performance of the
real circuit, we simulated the coupled-N -spin-parametric-
oscillator circuit shown in Fig. 2(c) using both the slowly-
varying-amplitude approximation and the circuit simulator
LTspice for three fully connected problems for each of two
problem sizes, N = 5 and N = 15. Table III lists the circuit
parameters that were used to generate the results reported
in this section.

Figures 11(a)–11(c) and Figs. 11(d)–11(f) depict the
temporal evolution of the signal and pump oscillator
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(d) (e) (f)

(b)(a) (c)

Time (�s) Time (�s) Time (�s)

FIG. 11. (a)–(c) LTspice results and (d)–(f) slowly-varying-amplitude-approximation results for an N = 5 problem . Temporal evo-
lution of the (a),(d) amplitudes of the signal oscillators of all five spins, (b),(e) amplitudes of the pump oscillators of all five spins,
and (c),(f) instantaneous Hamiltonian value. The signal and pump oscillators settle to the same values in both cases, and both solvers
successfully find the global optimum (H = 12).

voltage amplitudes of a five-spin circuit obtained from
the LTspice and slowly-varying-amplitude-approximation
simulations, respectively. Figures 11(a) and 11(d) and
Figs. 11(b) and 11(e) demonstrate that the signal and
pump amplitudes both settle to the same values in both

simulations. Moreover, we see in Figs. 11(c) and
11(f) that both simulators successfully find the optimal
solution—H = 12 in this case. A significant difference
between the two simulations that is apparent from the plots
is the behavior at early times—we believe this is due to

TABLE IV. Comparison of the results of the LTspice and slowly-varying-amplitude-approximation simulations. Each problem was
run 30 times (for 5 µs) with independent initial conditions, and the best Hamiltonian value and the Hamiltonian value at the final time
step were collected for each run. The statistics of these runs are then compared against the true optimum.

How solution of a run is chosen

Best value in run Last value in run

Problem Size N
True

optimum Simulator
25th per-
centile Median

75th per-
centile

25th per-
centile Median

75th per-
centile

1 5 12 LTspice 12 12 12 12 12 12
Slowly-varying-amplitude approximation 12 12 12 12 12 12

2 5 12 LTspice 4 12 12 4 12 12
Slowly-varying-amplitude approximation 12 12 12 12 12 12

3 5 8 LTspice 8 8 8 8 8 8
Slowly-varying-amplitude approximation 8 8 8 8 8 8

4 15 74 LTspice 74 74 74 74 74 74
Slowly-varying-amplitude approximation 74 74 74 74 74 74

5 15 82 LTspice 82 82 82 74 82 82
Slowly-varying-amplitude approximation 74 78 82 74 78 82

6 15 66 LTspice 66 66 66 66 66 66
Slowly-varying-amplitude approximation 50 58 66 50 58 66
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errors arising from the large time steps that we noticed
were being chosen internally by LTspice during the simu-
lation. Attempts to force LTspice to use smaller time steps
using standard syntax did not succeed.

Table IV presents the results of the simulations on three
problems each of size N = 5 and N = 15.

Each problem was run 30 times (for 5 µs each) with
independent noisy starting conditions for the signal cir-
cuits, and two types of solution metric were recorded: (1)
the best Ising solution during each 5-µs run and (2) the
Ising solution at the last time step. For each problem, the
median and 25% and 75% quantiles of these 30 runs are
reported for both of the aforementioned solution metrics.
It is clear from the reported value that both solvers suc-
ceed in finding the true optimum for all the problems, but
with different success rates.

We believe the reason for this discrepancy is twofold:
(1) the large time steps that LTspice takes in the simula-
tions, hence losing important dynamical information, and
(2) and the use of the nonstandard parameters listed in
Table III instead of the optimal parameters listed in Table
II. We observed experimentally that the optimal parame-
ters in Table II yielded a near-100% success rate for the
slowly-varying-amplitude solver for problems of this size,
but led to tremendous numerical instabilities in LTspice.
We used the less-optimal parameters in Table III in this
section, sacrificing the performance of the slowly-varying-
amplitude solver along the way, to obtain meaningful
LTspice results and illustrate the consistency between the
methods.

APPENDIX C: DUALITY AND THE
SADDLE-POINT NATURE OF (x∗, λ∗)

Let us say we are searching for constrained global min-
ima instead of constrained local minima. The problem we
are trying to solve is as follows:

minimize f (x)

subject to gi(x) = 0, i = 1, . . . , p .

Standard optimization textbooks show that this problem
can be rewritten as

min
x: gi(x)=0 ∀i

f (x) = min
x

(
max

λ
L(x, λ)

)
, (C1)

where L(x, λ) = f (x) +∑
i λigi(x) is the Lagrange func-

tion. We have converted a constrained optimization prob-
lem into an unconstrained nested min-max optimization
problem. The well-known min-max inequality that is true
for arbitrary functions tells us that

min
x

(
max

λ
L(x, λ)

)
≥ max

λ

(
min

x
L(x, λ)

)
. (C2)

This relation holds for any optimization problem and is
also called “weak duality.” For some special optimization
problems—which include many common convex opti-
mization problems—we actually have equality:

min
x

(
max

λ
L(x, λ)

)
= max

λ

(
min

x
L(x, λ)

)
. (C3)

The above relation says that the constrained global mini-
mum x∗ of f (x) and its associated multiplier λ∗ form a sad-
dle point of L(x, λ). To see why they form a saddle point
of L(x, λ), note that (x, arg maxλ L(x, λ)) on the left-hand
side represents a “1D” curved slice of the full space that
passes through (x∗, λ∗). Moreover, L(x, λ) is minimized
over this slice at (x∗, λ∗). Therefore, as we move away
from (x∗, λ∗) along the tangent to this slice, L increases.
Similarly, the right-hand side says that, over the “1D”
curved slice represented by (arg minx L(x, λ), λ), L(x, λ) is
maximized at (x∗, λ∗). Therefore, as we move away from
(x∗, λ∗) along the tangent to this slice, L decreases.

APPENDIX D: AUGMENTED LAGRANGE
CIRCUIT USING NONLINEAR

RESISTORS—EQUATIONS OF MOTION

We insert a nonlinear resistor with the characteristic I =
G0V + GN V3 in parallel with all the signal-circuit capac-
itors in the system to implement the cubic nonlinearity
required by the augmented Lagrange equations of motion.
The circuit equations from before, Eqs. (B1)–(B6), remain
the same except for the first equation in Eq. (B1), which
changes to

CsV̇si = I3i − Ili −
∑

j

Iij 0 − G0Vsi − GN V3
si. (D1)

Solving all the equations as before, we find the counter-
parts of Eqs. (B10) and (B11) are as follows:

− N − 1
2R

V̇si + 1
2R

∑

j :j �=i

Jij V̇sj = Vsi

Ls
+ C0sV̈si + 4CN V̇piV̇si

+ 2CN VpiV̈si + 2CN VsiV̈pi + G0V̇si + 3GN V2
siV̇si,

(D2)

İpi = Vpi

Lp
+ C0p V̈pi + 2CN V̇2

si + 2CN VsiV̈si. (D3)
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Using the slowly-varying-amplitude approximation and
ignoring the sine components, we obtain

Ȧsi =
⎡

⎣−N − 1
4RC0s

Asi + 1
4RC0s

∑

j :j �=i

Jij Asj

⎤

⎦

+ CN ω0Api

2C0s
Asi − G0

2C0s
Asi − 3GN

8C0s
A3

si, (D4)

Ȧpi = Ipci

2C0p
− CN ω0A2

si

2C0p
. (D5)

APPENDIX E: TRANSLATING QUADRATIC
BINARY AND MAX-CUT INSTANCES INTO ISING

INSTANCES

1. Quadratic binary to Ising

The BiqMac collection specifies quadratic binary (0, 1)

minimization problems by listing the coefficients Qij of the
terms xixj in the quadratic objective function. The coeffi-
cients form a symmetric matrix Q. The problem is stated
precisely and recast as an Ising maximization problem
below:

x∗ = arg min
xi∈{0,1} ∀i

∑

ij

Qij xixj = arg min
xi∈{0,1} ∀i

xTQx

= arg max
xi=±1 ∀i

[
−1

4
1TQ1 − 1

4

∑

i

Qii

− 1
4

21TQx − 1
4

xTQ̃x
]

= arg max
xi=±1 ∀i

K + 1
4

hTx + 1
4

xTJ x,

where Q̃ is the same as matrix Q but with the princi-
pal diagonal zeroed out, the effective Ising matrix Jij :=
−Q̃ij , the effective Zeeman vector h := −2Q1, and the
constant K := − 1

4 1TQ1 − 1
4

∑
i Qii.

2. Max-cut to Ising

The Gset collection specifies max-cut problems by list-
ing the edges ij and their weights wij . The max-cut opti-
mization problem is stated and recast as an Ising problem
below:

x∗ = arg max
xi=±1 ∀i

1
8

∑

ij

wij
(
xi − xj

)2

= arg max
xi=±1 ∀i

1
4

∑

ij

wij + 1
4

∑

ij

(−wij
)

xixj

= arg max
xi=±1 ∀i

K + 1
4

∑

ij

Jij xixj ,

where we introduced the effective Ising matrix Jij :=
−wij and the constant K := 1

4

∑
ij wij .

APPENDIX F: NUMERICAL RESULTS AND
PARAMETER CHOICES

The slowly-varying-amplitude circuit equations were
run on the Beasley binary quadratic problems in the Biq-
Mac problem set [41] and on problems 1–10 (size 800)
and problems 22–31 (size 2000) of the Gset max-cut
problem set [40]. The Beasley binary quadratic prob-
lems involve minimizing a quadratic objective function
where the feasible set is 0/1 vectors and the func-
tion coefficients are positive and negative integers. Gset
max-cut problems 1–5 and 22–26 have only 0, 1 edge
weights, while problems 6–10 and 27–31 have −1, 0, 1
weights.

1. Parameter choices

Table V lists the circuit parameter definitions and values
that were used in the simulations. The prefixes “signal” and
“pump” are used to refer to components of the ω0 signal
and 2ω0 pump circuits, respectively.

The linear capacitance and inductance values were cho-
sen to set the natural frequency of the signal and pump
oscillators to ω0 = 1 GHz and 2ω0 = 2 GHz, respectively.
The nonlinear capacitance CN is chosen so that the mod-
ulation on the capacitance is 10% of Cs at an applied
voltage of 1 V. The linear part C0 of the nonlinear capaci-
tance is assumed to be zero because any nonzero C0 can
be absorbed into Cs and Cp (made clear in the deriva-
tions in Appendix B). The signal internal resistance Rs and
the linear part G0 of the nonlinear conductor are merged
into Gs. The voltage saturation amplitude Asat of the signal
oscillations is set to 10 mV.

Binary weights J = ±1 are implemented according to
the scheme in Fig. 2(c) by our connecting pairs of sig-
nal oscillators with resistors of a common value R in the
appropriate configuration. Values of J other than ±1 are

TABLE V. Circuit parameter definitions and values.

Parameter Value

Signal capacitance Cs (1/2π) nF
Signal inductance Ls (1/2π) nH
Pump capacitance Cp (0.01/4π) nF
Pump inductance Lp (100/4π) nH
Linear connecting cap C0 0
Nonlinear connecting cap CN (0.1/2π) nF/V
Signal saturation voltage Asat 0.01 V
Common coupling resistance R (500�/47.94) 


Pump internal resistance Rp ∞
Signal internal conductance Gs 1/R 
−1

Cubic nonlinear conductance GN (1/RA2
sat) 
−1V−2
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implemented by our using a geometric series of resistances
centered at R and the binary expansion of J (see Appendix
B 2). We use a different value of R for each problem,
set heuristically using the quantity �, which we call the
“average coordination number” of the problem:

� = 1
N

⎛

⎝
∑

i

∑

j :j �=i

|Jij | + 1
2

∑

i

|hi|
⎞

⎠ . (F1)

In the special case of 0/1 connections, � is the average
number of nonzero connections to each spin. For the first
Gset problem of size 800, we empirically found that our
setting R = 500 
 satisfied the slowly-varying-amplitude
approximation and led to good performance. This problem
has an average coordination number � of 47.94. For other
problems of average coordination number �′, we set R =(
500�′/�

)

.

To ensure that the isomorphism with Lagrange mul-
tipliers holds, the pump was assumed to have no inter-
nal dissipative loss, unless noted otherwise. The cubic
coefficient GN of the nonlinear conductor used in the
augmented Lagrangian method is chosen so that the lin-
ear and cubic conductances are equal at the saturation
voltage Asat.

a. ODE-solver and SDE-solver settings

All simulations were run for a total (circuit) time of
50 µs. The noiseless calculations were done with the
MATLAB ode45 solver while the noisy cases were run
with the sde solver. The ode45 solver adaptively picks
time steps, while a step size of 1 ns was chosen for the
sde-solver calculations.

The rms noise voltage across the signal capacitor in
equilibrium is given by Vnoise = √

kT/C0s ≈ 5 µV for the
C0s chosen in the main text. All the signal-circuit capacitor
voltages at t = 0 start out at this noise level in all our com-
putations with the initial condition for the ode45-solver
computations following a continuous uniform distribution
between −Vnoise and Vnoise and the sde solver initial con-
dition being chosen uniformly randomly from the discrete
set {−Vnoise, Vnoise}.

On the other hand, there was no randomness in our
choice of the initial condition for the pump voltages.
The initial pump voltage is the same for all the spins
and is chosen such that the system experiences net gain
right from t = 0. From Eq. (B20), the losses of the var-
ious oscillation modes of the circuit are proportional to
the eigenvalues of the matrix X , whose elements are
Xij = δij

(∑
k:k �=i |Jik|

)
− (

1 − δij
)

Jij , where δij is the
Kronecker δ. In the presence of a nonlinear saturating
conductor, the losses increase further. We choose the ini-
tial pump voltage to create a gain that is a factor of 1.1
times larger than the 50th least loss in the system. If

the ith eigenvalue of a matrix M is denoted by λi(M ),
and X is as defined earlier in this paragraph, our initial
pump voltage for all oscillators in all computations is as
follows:

Api(0) = 1
CN ω0

× 1.1 ×
(

λ50 (X )

2R
+ G0

)
.

The nonlinear contribution to initial loss is ignored
because all the signal amplitudes are initially at the noise
level.

b. Pump capacitance

We recall from the discussion of Lagrange multipliers
in the main text that a good heuristic method to find con-
strained minima of optimization problems that satisfy only
weak duality is to perform a fast gradient ascent in λ and a
slow gradient descent in x. Equation (D5) tells us that the
speed of gradient ascent in the Api (which are proportional
to the Lagrange multipliers) directions is inversely pro-
portional to C0p . Therefore, reducing C0p should increase
the speed of pump voltage evolution, bringing the dynam-
ics closer to the prescribed heuristic. This is demonstrated
in Fig. 12, which shows that reducing the pump capac-
itance C0p does indeed improve the solution quality. To
produce the results shown in Fig. 12, the algorithm was
run 10 times on the first Gset 800-spin problem for each
value of C0p on the x axis. The plot depicts the median
and the 25th and 75th percentiles of the ten runs for
each C0p as a fraction of the best-known solution for this
problem.
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FIG. 12. Median, 25th-percentile, and 75th-percentile perfor-
mance as a fraction of the best-known solution (henceforth called
“normalized performance quartiles”) of ten runs of the algorithm
on the first Gset problem of size 800 for different values of pump
capacitance.
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Time in number of

FIG. 13. Slow variation of signal voltage at high C0p (left) and
fast variation at low C0p (right).

Reducing the pump capacitance C0p increases the speed
with which the pump equation responds to deviations of
the signal voltage from the saturation amplitude, and this in
turn increases the speed of voltage variations in the signal
circuit itself, as shown in Fig. 13.

We used C0p = 10−11/4π in our simulations due to its
better performance. One possible danger of using too small
a C0p is that the fast variations it generates in the slowly
varying amplitude could lead to a violation of the slowly-
varying-amplitude approximation itself. Figure 14 shows
an enlargement for the C0p = 10−11/4π case and shows
that the variation is on the order of hundreds of cycles, well
within the validity regime of the slowly-varying-amplitude
approximation.

Time in number of

FIG. 14. Enlargement of the right panel in Fig. 13 showing that
the slowly-varying-amplitude approximation is still valid.
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FIG. 15. Normalized performance quartiles of ten algorithm
runs on Gset problem 6 (size 800) versus signal oscillator internal
conductance G0.

c. Effect of varying the strength of the internal
nonlinear saturating conductor in the signal oscillators

The internal signal saturating conductor that implements
the augmented Lagrange method is expressed as follows:

I = G0V + GN V3, (F2)

GN is pegged to G0/A2
sat. This ensures that, once the sig-

nal amplitude reaches Asat, the nonlinearity kicks in and
limits the voltage. Scaling G0 up increases the “steep-
ness” of the nonlinear barrier faced by the signal voltage.
Numerical simulations with G0 = 1/R, where R is the
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FIG. 16. Normalized performance quartiles of ten algorithm
runs on Gset problem 27 (size 2000) versus signal oscillator
internal conductance G0.
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common coupling resistance, yielded performance that
matched or bettered the no-nonlinearity performance for
the 800-spin and 2000-spin Gset problems—this demon-
strates that the augmented Lagrange method is indeed
better than the plain version. This is shown in Figs. 15 and
16 and also in Tables VI and VII.

In Figs. 15 and 16, the x axis shows the ratio
G0/(1/R), while the plots themselves show the median,
25th-percentile, and 75th-percentile performance over ten
runs at each x-axis point as a fraction of the best-known
solution.

d. Effect of varying the nonlinear capacitance CN

The product of CN and Api is the parametric gain of the
ith signal oscillator. Therefore, it is intuitive that varying
CN should not have much effect because the pump voltage
can compensate for the change (Fig. 17).

2. Effect of variations in the pump Q between different
spins

From the derivations provided earlier, the evolution of
the pump voltage of the ith spin, under the assumption that
the pump circuit is perfectly resistance free (infinite Q), is
given by

dApi

dt
= 1

2

[
Ip

C0 + Cp
− CN ω0A2

si

C0 + Cp

]
. (F3)

At any fixed point (steady state) of this equation, the right-
hand side is zero, implying that the ith signal amplitude
needs to satisfy A2

si = Ip/CN ω0 = A2
sat. In this case, we

achieve perfect amplitude homogeneity across spins. In
the presence of finite internal parallel pump resistance Rpi,
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FIG. 17. Normalized performance quartiles of ten algorithm
runs on Gset problem 1 (size 800) versus nonlinear capacitance
CN .

however, the equation changes to

dApi

dt
= 1

2

[
Ip

C0 + Cp
− Api

Rpi
(
C0 + Cp

) − CN ω0A2
si

C0 + Cp

]
.

(F4)

At the steady state of this equation, the modified Asat,i for
each spin i is A2

si = [Ip − (Api/Rpi)]/CN ω0 = A2
sat,i. This

formula reduces to the Asat formula in the previous para-
graph if Rpi = ∞ and gradually deviates from it as Rpi
is reduced. Moreover, if the pump internal resistances Rpi
are different for different spins i, both amplitude homo-
geneity and the equivalence of the pump evolution to
Lagrange Ising constraint imposition are disturbed. Even
if the Rpi values were equal for all i (but still finite), the
pump evolution equation would still differ from the ideal
Lagrange-multiplier dual equation dλi/dt = κ ′(x2

sat − x2
i ).

The last three columns in Table II show the impact of
a finite pump Q factor (but pump Q was the same for
all the spins i) on the performance. As expected, theper-
formance was worse for lossy pumps with low Q values
and better for high Q values, which approximate lossless
pumps.

In this section, we reported simulations of Lagrange
Ising solver circuits that had random variations in the pump
Q between spins for two 800-spin problems from the Gset
problem set (Gset problems 1 and 2). Two values of the
mean pump Qmean were chosen, 500 and 5000. Each pump
resistor in the circuit was chosen to be a Gaussian ran-
dom variable with mean Qmean and standard deviation dQ
expressed as a percentage of Qmean. The five percentages
that were picked were 0%, 5%, 10%, 20%, and 30%. For

0 5 10 15 20 25 30 35
Standard deviation of pump Q (dQ) as a percentage
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FIG. 18. Effect of pump Q variations between spins on the
performance on 800-spin Gset problems 1 and 2.
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each Gset problem, and for each mean Qmean and stan-
dard deviation dQ, three random circuits were generated.
In other words, six runs were performed in all for each
pair (Qmean, dQ). Thermal noise was taken into account,
and an SDE solver was used to obtain results after a total
time of 50 µs. The resultant performance was normal-
ized to the performance of circuits with the same Q for
all pumps (i.e., dQ = 0). The medians and quartiles of the
normalized results jointly across both problems are plotted
in Fig. 18.

It is clear that pump Q variations do not seem to mat-
ter for high mean Q (Qmean = 5000 in Fig. 18) but begin
to lead to performance degradations for lower mean Q
(Qmean = 500 in Fig. 18).

3. Back-of-the-envelope check of the power-dissipation
numbers

In this subsection, we provide a quick back-of-the-
envelope calculation of the circuit power dissipation for
800-spin Gset problem 1. The total power dissipation Ptot
is the sum of the signal Ps, pump Pp , and coupling Pc dis-
sipations. Ps is the sum of the dissipations in the linear
and nonlinear parts of the signal internal resistances across
all the spins and is given by Ps ≈ 800 × 2 × A2

sat/Rs =

1600 × (100 × 10−6)/500 = 0.32 mW. Since each spin
in Gset problem 1 is connected to approximately 48
other spins on average, the total worst-case dissipation in
the coupling resistors Pc is approximately 48 × 800/2 ×
(100 × 10−6)/500 × 2 ≈ 8 mW. Since this worst-case
estimate was obtained by our assuming that all the spin
connections in the network were frustrated (there exists
no edge for which the orientations of the spins connected
to it satisfy the edge value), the actual coupling dissipa-
tion has to be significantly lower than this. Finally, using
Qpump = 500 (the corresponding pump resistance Rp is
approximately 50 k
 for the values used in this paper)
and Vpump ≈ 0.5 V (from the bottom panel in Fig. 3),
we find the pump dissipation Pp is approximately 800 ×
0.25/(5 × 104) ≈ 4 mW. The total dissipation is therefore
upper bounded as Ptot ≤ 12.32 mW.

4. Results for more Gset problems

We present results for the oscillator Lagrange solver for
Gset problems 1–10 (size 800) and problems 22–31 (size
2000) in Tables VI and VII. While the Lagrange-multiplier
method is outperformed by the approach of Leleu et al.,
clever amalgamation of the two ideas could lead to better
hybrid algorithms in the future.

TABLE VI. Performance on Gset problems 1–10 (size 800) of the Goemans-Williamson (G-W) algorithm, the upper bound (UB) it
implies, the approach of Leleu et al., and coupled oscillators without nonlinear resistors (Osc) and with nonlinear resistors (Osc NL).
For the last two columns, the best and median values are reported for ten independent runs, while the results for Leleu et al. are taken
from Ref. [19]. The ratio of the G-W-algorithm performance and the G-W UB is not 88% in rows 6–10 because of the presence of
negative weight edges in those problems.

Problem G-W algorithm G-W UB Metric Leleu et al. Osc Osc NL

1 11 272 12 838 Best 11 624 11 580 11 613
Median 11 624 11 552 11 558

2 11 277 12 844 Best 11 620 11 575 11 596
Median 11 620 11 554 11 572

3 11 289 12 857 Best 11 622 11 588 11 586
Median 11 622 11 560 11 562

4 11 301 12 871 Best 11 646 11 611 11 641
Median 11 646 11 586 11 590

5 11 293 12 862 Best 11 631 11 591 11 578
Median 11 631 11 568 11 562

6 1813 3387 Best 2178 2143 2173
Median 2178 2124 2144

7 1652 3224 Best 2006 1975 1973
Median 2006 1950 1955

8 1667 3243 Best 2005 1966 1992
Median 2005 1948 1961

9 1704 3278 Best 2054 2010 2043
Median 2054 1991 2006

10 1646 3218 Best 2000 1956 1979
Median 2000 1940 1955
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TABLE VII. Performance on Gset problems 22–31 (2000 ver-
tices) of the approach of Leleu et al. and coupled oscillators
without nonlinear resistors (Osc) and with nonlinear resistors
(Osc NL). In the column headed by “Leleu et al.,” three center
dots are used to indicate values that could not be deduced from
Ref. [19].

Problem Metric Leleu et al. Osc Osc NL

22 Best 13 359 13 191 13 255
Median · · · 13 176 13 231

23 Best 13 342 13 178 13 277
Median 13342 13151 13228

24 Best 13 337 13 166 13 259
Median 13 337 13 150 13 232

25 Best 13 340 13 170 13 263
Median 13 340 13 154 13 228

26 Best 13 328 13 155 13 252
Median · · · 13 142 132 28

27 Best 3341 3171 3275
Median 3341 3156 3237

28 Best 3298 3132 3230
Median 3298 3112 3185

29 Best 3405 3221 3328
Median 3405 3206 3302

30 Best 3413 3252 3332
Median · · · 3226 3287

31 Best 3310 3144 3223
Median · · · 3125 3203
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