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As the quantum computing community gravitates towards understanding the practical benefits of quan-
tum computers, having a clear definition and evaluation scheme for assessing practical quantum advantage
in the context of specific applications is paramount. Generative modeling, for example, is a widely
accepted natural use case for quantum computers, and yet has lacked a concrete approach for quantifying
success of quantum models over classical ones. In this work, we construct a simple and unambiguous
approach to probe practical quantum advantage for generative modeling by measuring the algorithm’s
generalization performance. Using the sample-based approach proposed here, any generative model, from
state-of-the-art classical generative models such as generative adversarial networks (GANs) to quantum
models such as quantum circuit born machines, can be evaluated under the same conditions on a concrete
well-defined framework. In contrast to other sample-based metrics for probing practical generalization, we
leverage constrained optimization problems (e.g., cardinality-constrained problems) and use these discrete
datasets to define specific metrics capable of unambiguously measuring the quality of the samples and the
model’s generalization capabilities for generating data beyond the training set, but still within the valid
solution space. Additionally, our metrics can diagnose trainability issues such as mode collapse and over-
fitting, as we illustrate when comparing GANs to quantum-inspired models built out of tensor networks.
Our simulation results show that our quantum-inspired models have up to a 68 times enhancement in gen-
erating unseen unique and valid samples compared to the GANs explored here, and a ratio of 61:2 for
generating samples with better quality than those observed in the training set. We foresee these metrics as
valuable tools for rigorously defining practical quantum advantage in the domain of generative modeling,
where finding a winning model remains an ongoing challenge as new architectures are developed.
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I. INTRODUCTION

Outstanding efforts have been made in recent decades
in the search for quantum advantage, and reaching this
milestone will have a profound impact on many areas of
research and applications. Quantum advantage is generally
intended as the capability of quantum computing devices
to outperform classical computers, providing exponential
speedups in solving a given task, which would otherwise
be unsolvable, even using the best classical machine and
algorithm [1–6]. In recent years, a large part of the quan-
tum computing community has been gravitating toward a
more concrete definition of quantum advantage, namely,
practical quantum advantage (PQA), also propelled by the
growing interest from technology firms and companies in
various application domains. Practical quantum advantage
indicates the quest for quantum machines that can solve
problems of practical interest that are not tractable for
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traditional computers [7,8]. In other words, practical quan-
tum advantage is the ability of a quantum system to per-
form a useful task faster or better than is possible with
any existing classical system [9]. As long as the superi-
ority is demonstrated in the real-world setting, under the
real constrains and problem size of interest, one can waive
the need for demonstrating an asymptotic scaling with
problem size, which is the usual emphasis in algorithmic
quantum speedup [10]. Our work focuses on further spec-
ifying and measuring practical quantum advantage in the
context of generative models, which have been identified
as promising candidates for harnessing the power of quan-
tum computers [11]. There have been several contributions
that outline the potential benefits and limitations of using
quantum generative models as alternative or enhancers to
classical models [12–22]. However, we still lack a unitary
vision of what practical quantum advantage exactly means
when it comes to generative models.

We aim to provide such a vision and equip it with quan-
titative tools to evaluate progress toward its accomplish-
ment. We suggest that generative models’ performance be
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assessed by their capability to generalize, i.e., generate
new high-scoring diverse solutions for the task of interest
[23,24]. We highlight that our definition of generalization
differs from that outlined within the theoretical setting of
computational learning theory [20–22,25], i.e., a model’s
ability to learn the ground truth probability distribution
given a limited set of training data. Our approach fol-
lows closely the definitions and frameworks used by other
machine learning practitioners (see, e.g., Refs. [23,26]),
which focus on practical sample-based methods to evalu-
ate the performance of generative models. We believe that
the two approaches complement each other in a practical
context, and in Appendix E, we provide a demonstration
of the correlation between the approaches.

In this work, we present a fundamental tool that can be
applied to a very difficult, open challenge in the field of
quantum machine learning: we develop a robust frame-
work to assess the generalization performance of classical
and quantum generative models under the same condi-
tions. We compare our practical vision of generalization
to the computational learning theory standpoint (Sec. II A)
and to previously developed frameworks (Sec. II B). In
Sec. III, we propose our quantitative definition of general-
ization, while Sec. IV illustrates our discrete-dataset-based
framework to assess this capability. By leveraging dis-
crete datasets relevant to many application domains [27],
we can unequivocally measure the generalization capabil-
ities of generative models for practical tasks. In Sec. V
we introduce robust sample-based metrics that allow one
to conduct a comprehensive quantitative assessment of
a model’s practical generalization capabilities and detect
common pitfalls associated with the training process. Fur-
thermore, in Secs. VI and VII we illustrate our approach
by comparing models from two separate regimes, namely,
fully classical generative adversarial networks (GANs) and
quantum-inspired tensor network born machine (TNBM)
architectures, for a specific task with relevance in financial
asset management.

In this work, we contribute an approach that combines a
heuristic based analysis with an application-based dataset
to quantitatively evaluate generalization of unsupervised
generative models and to directly compare classical and
quantum-inspired models side by side in search for practi-
cal quantum advantage.

II. RELATED WORKS

Generative models are powerful and widespread algo-
rithms, but the evaluation of their performance, especially
on real-world datasets, is an open challenge. A huge vari-
ety of metrics and studies have been proposed to evaluate
generative models, which can be found in two distinct
subfields of machine learning (ML) research: computa-
tional learning theory [25,28,29] and models’ performance
benchmarking [23,26,30–32]. First, we aim to give a brief

overview of these two areas of research, and to draw a
clear distinction between them, pointing to the advantages
and challenges of each for evaluating unsupervised gen-
erative models. Subsequently, as this work predominantly
contributes to the models’ performance benchmarking sub-
field, we focus on providing an overview of the main
evaluation strategies that exist in this literature domain,
pointing to Refs. [30,33] for a thorough review.

A. Two evaluation approaches

The language utilized in the subfields of computational
learning theory and models’ performance benchmarking
varies greatly when discussing the evaluation approaches
of unsupervised learning algorithms. There is a common
goal of finding the best model (i.e., the one that “gen-
eralizes” best); however, the optimal criterion and the
generalization definition differ in the two perspectives.

In the context of computational learning theory, the
optimal model is the one that has best approximately
learned the ground truth probability distribution from the
available training data [34]. Thus, generalization coin-
cides with good inference capability. Upon taking this to
be the definition of generalization, the model is able to
achieve high-quality performance if its output distribu-
tion post-training is sufficiently close to the (unknown)
ground truth. By using the probably approximately correct
(PAC) approach [34], one can derive worst-case general-
ization error bounds for a very broad range of models.
These insights are incredibly useful for identifying clear
cases in which models will not provide value, especially
in the search for circumstances where quantum algorithms
might exhibit an advantage over classical ones [21,22,29].
On real-world datasets, this definition of generalization
can be extended to evaluating the difference between the
trained model distribution and the empirical approximation
of the ground truth, using a quantitative distance metric of
choice.

However, we note that this is where the definition of
generalization in the context of computational learning the-
ory diverges from that of the models’ performance bench-
marking domain. For many practical problems, indeed,
the optimal generative model is the one that can gener-
ate unseen high-quality data points that are solutions to
a specific task, i.e., samples drawn from the ground truth
distribution, but that did not exist in the empirical dis-
tribution used for training [23,24,35]. This implies that
the emphasis is on the model being able to produce sam-
ples that come from the unseen part of the ground truth
distribution: this capability of generating novel, diverse,
and good solutions is what is defined as generalization in
this practical context [23]. Hence, if a model is provided
with the complete set of solutions in the training process,
it cannot generalize. Instead, since all the samples from
the support of the ground truth distribution are given, the
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model would be restricted to exhibiting a behavior that
we describe as memorization, in even the best training
scenario. In computational learning theory, this behavior
would still be seen as a form of high-quality generaliza-
tion performance, as long as the model learned the right
features of the distribution. This is usually a case of inter-
est in density estimation tasks; however, in many contexts,
this behavior is distinct from practical generalization such
that it can be detected when it is not useful for specific real-
world applications, where the generative model is trained
with the purpose of generating novel samples from the
ground truth distribution. In these scenarios, one is usually
interested in comparing the capabilities of several distinct
models side by side (e.g., quantum or quantum inspired
against classical). While checking the success of a model
in learning the ground truth is complex in high dimensions,
a sample-based framework offers an alternative method to
approximate the model’s performance, and can be used
to understand which model, after training, is closer to the
ground truth, while not necessarily being a small δ away
from it, as measured by metrics that become intractable in
high dimensions.

In summary, the main difference between the two
approaches is that in the models’ performance benchmark-
ing domain, the goal is to capture the model’s gener-
alization performance as a novel sample generator from
the ground truth (“efficient generator”), not as a ground
truth learning algorithm (“efficient learner”), as it is the
case in computational learning theory. We highlight that
an “efficient learner” does not always imply an “efficient
generator” for a practical task at hand, and vice versa. The
exact relation between the two approaches, especially its
rigorous proof, is out of the scope of this paper (despite
a first empirical demonstration in Table I below), but it
is certainly an exciting avenue to bridge the gap between
the two communities. We believe that the practical eval-
uation schemes, further described in Sec. II B below, can
augment our understanding of models’ performance by
providing a detailed picture, based on evaluating specific
desired features of generated data, as well as by highlight-
ing their tendency to exhibit training failures. However,
we recognize that this practical evaluation does not pro-
vide the same insights with regards to scaling complexity
as those in computational learning theory. This is a regime
where computational learning theory adds a large amount
of value to our existing knowledge. Therefore, we strongly
emphasize that both research subfields are necessary to
fully evaluate generative models, and that, when possible,
results from both realms should be included. For the pur-
poses of PQA, we adopt and build on the more practical
performance benchmarking approaches to generalization,
which are meaningful enough to industrial real-world gen-
erative applications.

As we have seen the definition of generalization to take
on slightly different meanings depending on the research

domain, we now formally distinguish this practical gen-
eralization from that defined in computational learning
theory by providing the names validity-based generaliza-
tion and quality-based generalization when defining our
framework.

B. Models’ performance benchmarking

A common approach to evaluate generative models
uses statistical divergences, such as the Kullback-Leibler
(KL) divergence [36] and the total variation distance [22].
Unfortunately, the sample complexity of such quantities
scales poorly with the dimensionality of the distribution
under examination, proving them inadequate in high-
dimensional spaces. To overcome this limitation, alter-
native evaluation metrics with polynomial sample com-
plexity have been proposed, such as the inception score
[37], Frechét inception distance [38], and kernel incep-
tion distance [39]. Additional strategies include utilizing
kernel methods such as measuring the maximum mean dis-
crepancy [28], or neural networks to estimate statistical
divergences [40].

The main limitation affecting divergence-based met-
rics lies in that a single number summary is used to
score a model, thus being unable to distinguish its dif-
ferent modes of failure. In light of this consideration,
Sajjadi et al. [41] introduced precision and recall as met-
rics to evaluate generative models, hence proposing a
two-dimensional (2D) evaluation to disentangle the var-
ious scenarios that can arise after training. Follow-up
contributions have attempted to extend this idea from dis-
crete to arbitrary probability distributions [42], and to
improve precision and recall definitions and computation
[43,44].

This plethora of methods suggests how challenging it
is to evaluate generative models. Evaluating the evalua-
tion metrics themselves is an even more complicated task,
despite the paramount importance of choosing the right
metric for drawing the right conclusions [45]. Xu et al.
[46] addressed such a problem, identifying a few necessary
conditions that a metric should satisfy in order to qualify as
a good performance estimator. One of these conditions is
the ability of a metric to detect overfitting. As highlighted
in Ref. [47], overfitting is basically equivalent to memo-
rization, i.e., antigeneralization, and it is not always well
defined, despite its importance.

While being well established in the context of image
classification, notions of generalization are less standard-
ized for generative models. Initial studies on this topic
in the context of generative models can be found in
Refs. [40,48]. Nonetheless, none of the available metrics
is specifically tailored to assessing generalization capa-
bilities, or, in other words, to detect overfitting upon
occurrence [32]. So far, very few contributions have been
proposed to address the interesting problem of studying
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and quantifying generalization from a real-world appli-
cation perspective for generative models. This knowl-
edge gap becomes exceedingly evident when looking at
the recent literature contributions to the field of quan-
tum generative modeling. Several of these works have
hinted at the concept of generalization, but have ultimately
restricted their results to replicating a given target prob-
ability distribution [24,49–52]. Leaving such a question
for future research indicates the difficulty in benchmarking
both classical and quantum models on real-world datasets
for their generalization capabilities. Our work aims at
filling this gap: we propose a well-defined approach to
practical generalization, deepening insights gathered from
Ref. [26], and adequate metrics to quantify such capabil-
ity, following up on the authenticity metric proposed in
Ref. [31].

Zhao et al. [26] proposed a strategy to analyze general-
ization in generative models, which consists in probing the
input-output behavior of generative models by projecting
data onto carefully chosen low-dimension feature spaces.
By comparing the training and the generated distribution in
these spaces, it is possible to assess whether a model can
generate out-of-training samples. However, this contribu-
tion focuses only on spotting unseen (i.e., nonmemorized)
samples, without questioning whether these new samples
are meaningful data for the task being solved, or useless
noise. Xuan et al. [53] hinted at this limitation, referring
to some of the results in Ref. [26] as anomalous general-
ization behavior, where the generated distribution differs
significantly from the training distribution. The approach
we propose in this work takes off from these two con-
tributions. It goes deeper into the formal definition of
generalization, identifying different regimes that allow us
to assess if a generative model can generate samples that
are new high-quality solutions to the problem at hand.
Our approach is able to discriminate between anomalous
generalization and generalization to valid and good sam-
ples. Inspired by the numerosity feature map proposed in
Ref. [26], we focus our work on discrete probability dis-
tributions. This choice allows us to avoid the introduction
of complicated embeddings, which are instead required for
most of the evaluation metrics proposed so far, and it is
also more in line with our interest in extending the gener-
alization study to quantum models in search for practical
quantum advantage.

In addition to defining the approach, we introduce sev-
eral quantifiable measures of the practical generalization
concepts we formalize. The proposal of Alaa et al. [31]
of the authenticity metric to identify data-copied samples
paved the way for our generalization metrics. We share
their starting point that precision and recall are independent
of generalization capabilities, as the latter is not properly
assessed by the former. Additionally, we share their point
on the importance of the novelty feature of the samples
generated by a model. The metrics we propose, though,

go beyond the authenticity metric in that they aim at
equipping the “novelty space” with estimators that quan-
tify important features, i.e., fidelity, rate, and coverage of
such an unseen space. The focus of our evaluation met-
rics revolves around the out-of-training generated samples,
disregarding the known data.

To better contextualize our metrics with respect to previ-
ous works, we highlight that we share the starting point of
Ref. [41]. Hence, we propose multiple generalization met-
rics to disentangle different features and modes of failure.
Additionally, our metrics satisfy the conditions expressed
in Ref. [46]: they are able to detect overfitting and mode
collapse. The generalization metrics proposed in this work
aim at starting a new thread in comparing classical and
quantum generative models on real-world applications,
focused on assessing if they are able to generate new valid
and valuable data. We see this approach as a necessary
step forward in the models’ performance benchmarking
domain for demonstrating practical quantum advantage,
not necessarily to be used in isolation to determine over-
all quality, but rather alongside other evaluation metrics
and insights obtained from computational learning theory
to provide a comprehensive assessment of these powerful
data generators.

III. GENERALIZATION

Unsupervised generative models aim at capturing
implicit correlations among unlabeled training data in
order to generate samples with the same underlying fea-
tures. In this work, we focus on binary encodings of
datasets with discrete values, and, therefore, discrete prob-
ability distributions. This is needed to facilitate the com-
parison of quantum and classical generative models, and to
allow for a more accurate and unambiguous evaluation of
generalization as opposed to the continuous case, as further
clarified in Sec. III C below.

More concretely, given a dataset DTrain = {x1, x2, . . . ,
xT}, where each sample xt is an N -dimensional binary
vector such that xt ∈ {0, 1}N with t = 1, 2, . . . , T, we
can train a generative model to resemble the unknown
probability distribution P(x) from which the samples in
DTrain were drawn. We denote these samples as DGen =
{x1, x2, . . . , xG}, where each xg is again an N -dimensional
binary bitstring, with g = 1, 2, . . . , G. As will be shown
later, the only requirement for the data distribution P(x) is
to have a support, which is a “valid” sector, and a comple-
ment, which is a set of noise or undesirable features. Many
real-world datasets can be represented this way: for exam-
ple, portfolio optimization as demonstrated in our work, as
well as molecular design problems [54]. Remarkably, the
notion of a constraint that defines valid and invalid spaces
arises naturally within the context of combinatorial opti-
mization as the constraint is usually part of the problem
definition [27,55].
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Since the goal of the present work is to compare the gen-
eralization performance of models for measuring practical
quantum advantage, we introduce formal definitions and
metrics in Sec. V below to quantify different aspects of
the practical behaviors that arise when we sample from the
generative model. To further distinguish these definitions
from those in computational learning theory, we provide
contextual names: validity-based and quality-based gener-
alization. Here, we provide a brief high-level introduction
of them, presenting the essential concepts for studying
various flavors of generalization.

A. Pregeneralization

We refer to pregeneralization as the generative model’s
ability to go beyond the training set DTrain by producing
unseen outputs. More precisely, for any level of general-
ization to occur, it is necessary—but not sufficient—that
there exist some points xg such that

xg ∈ DGen ∧ xg /∈ DTrain. (1)

However, these outputs may not be samples distributed
according to P(x); for example, they may just be mean-
ingless noise instead. In other words, pregeneralization is
the model’s ability to generate any new output—whether
it is distributed according to P(x) or not (Fig. 1). Note that
we consider this behavior to be a prerequisite for a model
to be able to generalize, and not generalization in and of
itself. As mentioned above and further specified below, to
have any kind of generalization, a model must first be able
to generate data beyond the training set, and the general-
ization potential is higher if the amount of unseen data is
maximized. This implies that the training set cannot be
exhaustive, i.e., the number of unique [56] training bit-
strings must be less than the number of unique bitstrings
that can be sampled from P(x). To discover new data, the
training dataset should not consist of all of the bitstrings
that could be sampled from the original distribution (i.e.,
its support).

The pregeneralization behavior can be verified with our
exploration metric E, defined in Sec. V A below, that quan-
tifies how many generated samples were not included in
the training set. We note that this quantity has a similar
definition to the authenticity metric in Ref. [31], which
captures sample novelty. However, our exploration metric
is computed directly from samples rather than requiring an
embedding scheme and a separate classification network.
This quantity allows one to investigate the following gen-
eral questions: can the model reach out-of-training data
points, and with which frequency?

B. Validity-based generalization

We refer to validity-based generalization as the genera-
tive model’s ability to go beyond the training set DTrain and
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FIG. 1. A visual representation of generalization-related con-
cepts. The figure shows the different behaviors a model can
exhibit when generating data, using a 3 × 3 bars-and-stripes
dataset as an example. The top two rows display a set of samples
x distributed according to the data distribution P(x); note that
only a subset of the 3 × 3 bars-and-stripes dataset is displayed,
rather than the full set of patterns. The third row contains samples
that do not belong to this dataset (noise). The fourth row contains
a subset of samples xt ∈ DTrain used for training and distributed
according to PTrain(xt), while the bottom row shows a new set of
samples xg produced by the model and living in DGen. Note that
each sample contains an associated toy score that corresponds
to the samples’ associated cost. In this toy example, the samples
are assigned a real-valued score in (0, 1), except for noisy sam-
ples that do not have an associated cost as they are not part of
the valid solution space. The bottom row displays four samples
from the generated queries, each of which is tagged with a dif-
ferent model behavior: memorizing data from DTrain (blue dot),
producing data outside of DTrain that may be noise (yellow dot),
generalizing to new data distributed according to P(x) (purple
dot), and generalizing to new data distributed according to P(x)
that contains a minimum value to an associated cost function (red
dot).

effectively produce new bitstrings living in a given solu-
tion space with the underlying distribution P(x) (Fig. 1).
In other words, the model is able to learn a fixed particular
feature about bitstrings drawn from P(x) and produce new
samples with the same feature, where this feature is spec-
ified via a constraint on the bitstrings. More precisely, the
generative model outputs samples xg such that

xg /∈ DTrain ∧ xg ∈ support of P(x). (2)

We remark here that this approach for validity-based gen-
eralization is task independent, as the metrics are exclu-
sively sample based and agnostic to the specific use case,
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or, more specifically, independent of the quality associ-
ated with each bitstring. In Sec. IV below we highlight the
essential conditions one needs to meet when defining an
appropriate task to study validity-based generalization.

We evaluate the validity-based generalization behav-
ior introducing the three metrics of fidelity F , rate R,
and coverage C. In a nutshell, F quantifies the probabil-
ity that a model generates unseen samples that are valid
results rather than unwanted noise. Rate R quantifies the
frequency at which a model produces unseen and valid
results. Coverage C quantifies the fraction of unseen and
valid results retrieved among all the potential valid and
unseen samples. These metrics allow one to answer the fol-
lowing general questions, respectively linked to the three
generalization estimators presented above.

(1) F: how effectively can the model distinguish
between noisy and valid unseen results?

(2) R: how efficiently can the model reach unseen and
valid results?

(3) C: how effectively can the model reach all unseen
and valid results?

C. Quality-based generalization

We refer to quality-based generalization as the gener-
ative model’s ability to go beyond the training set DTrain
and effectively produce bitstrings living in a given solu-
tion space with underlying distribution P(x), where the
new bitstrings can be mapped to a real number indicat-
ing their quality. While there can be many examples of
functional maps that one could use to assign each bitstring
a score to be maximized, we emphasize optimization as
a natural choice for assigning such a value to each sam-
ple, as proposed in Refs. [23,24,57]. In this case, the score
is quantified by a cost to be minimized. In other words,
optimization provides a natural framework to introduce
quantitative estimators of generalization, as a generative
task can be equipped with a well-defined cost function,
indicating the quality of samples. The framework pre-
sented here combines generalization and optimization as
a promising strategy towards the definition of quantitative
metrics. We highlight that if one uses a generative model
as an optimizer, the success of the algorithm depends on
the generation of high-quality solution candidates, rather
than inferring the ground truth data distribution, as is the
case in computational learning theory.

When focusing on quality-based generalization, one is
interested in generating samples that satisfy a validity
criterion, but also have associated costs that minimize
a given objective function (Fig. 1). When considering
continuous data distributions (e.g., in image generation
tasks), assessing the quality of samples is particularly chal-
lenging, as embedding and nontrivial transformations are
needed in order to utilize the available metrics (see, e.g.,

Refs. [26,31]). Hence, on purpose we limit the scope of this
work to discrete datasets, since this setting provides a more
accurate and unambiguous evaluation of the generalization
capabilities.

A generative model thus exhibits quality-based gener-
alization if it is able to produce at least some unseen and
valid samples that have on average similarly low (or lower)
cost values than those associated with at least some of the
training samples. More precisely,

xg satisfies Eq. (2) ∧ f [DGen, c(x)] < f [DTrain, c(x)] (3)

for a given suitable function f [e.g., the minimum sample
cost c(x) in each sample set] that depends on how strict the
cost minimization requirements are for the problem under
examination (see Sec. V C below).

Developing metrics for assessing quality-based gener-
alization is a task-dependent challenge as it allows one
to evaluate the model’s sample quality, according to a
specific task and measured by its associated cost function.

In Sec. V C below, we introduce two versions of the
sample quality metric, induced by a different choice of
f : the first one evaluates the model’s ability to generate
a minimum cost value that is lower than anything in the
training set, whereas the second accounts for a diversity
of samples whose cost is below a user-defined percentile
threshold. Even though the former could seem more ade-
quate to quantify the generator’s ability to go beyond the
sample quality available in the training set, it may be the
case that producing the lowest cost value is not the only
desired behavior of the task. For instance, it may be that the
desired behavior is to generate diversity of new samples
with a cost comparable to the lowest values found in the
training set. In this scenario, the latter version allows one to
reward alternative solutions without restricting the model
only toward values below the training threshold. Since, for
many practical optimization tasks, one cares about reach-
ing a diverse pool of high-quality solutions, we also see
value in considering the number of unique samples with
a lower cost value than a user-defined threshold in the
training set (e.g., the minimum value in the training set).

The quality-based generalization metrics allow us to
investigate the following general question: can the model
reach unseen and valid results that are more or just as
valuable than the best in the training set?

IV. GENERALIZATION TASK DEFINITION

In order to properly assess generalization from the prac-
tical perspective, the generative model’s task must meet
some essential requirements. Such assumptions do not
limit the scope of our approach as they simply provide a
robust definition of the task at hand.

As previously specified, we focus our analysis on binary
encodings of discrete datasets DTrain = {x1, x2, . . . , xT}
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with xt ∈ {0, 1}N . We can thus identify a search space U
of size 2N that contains all possible N -dimensional bit-
strings. For validity-based generalization, there must exist
a subspace of U containing the set of bitstrings we would
like our trained model to generate. We refer to this as the
valid solution space S , which includes all the samples that
exhibit a given desired feature. Hence, the model aims
to approximate the underlying unknown data distribution,
defined as

P(x) = 1
|S| for all x ∈ S . (4)

We highlight that the notion of validity produces a nontriv-
ial distribution of valid samples across the overall search
space U , adding complexity to the problem despite the data
distribution being uniform over the solution space S . We
emphasize that this general solution space S will contain
different bitstrings for various representational datasets of
interest. For instance, Fig. 1 displays samples from the
well-known bars-and-stripes dataset [58]: in this case, the
solution space S would contain all valid bar and stripe
patterns, some of which are shown in the top row of the
figure. Alternative datasets could focus on solution spaces
defined by a parity constraint, by a cardinality constraint,
or by any other property of interest. We highlight that the
solution space must have a well-defined notion of valid-
ity that can be evaluated for each of the bitstrings in U to
verify whether or not they live in its subset S .

The model’s task is therefore to generate novel samples
in S , after a learning process involving a limited num-
ber T of unique training samples, i.e., T = ε|S|, where the
seen portion ε � 1 is a small parameter quantifying the
percentage of S that gets seen during training. Note that
this is a necessary requirement for generalization because
it guarantees that the training set is not exhaustive.

With T training samples, the model has access to only
an approximated version of the data distribution, which we
call the training distribution:

PTrain(x) = 1
T

for all x ∈ DTrain. (5)

For quality-based generalization, there is an additional
requirement as this behavior depends not only on the valid-
ity of the bitstrings, but also on the value associated with
each pattern, according to a cost function c(x). As such,
in order to assess quality-based generalization, it is neces-
sary for the task of interest to have a well-defined objective
function that indicates the cost of each bitstring, in search
for minimum values.

As we would like for our model to learn the valid bit-
string patterns as well as to generate patterns with low cost
values, it is integral to reweight the dataset distribution in
Eq. (4). Here we use a softmax function in order to intro-
duce cost-related information in the training dataset. In this

scenario, the training samples approximate the following
reweighted training distribution:

P(w)
Train(x) = e−βmc(x)

∑T
i=1 e−βmc(x)

for all x ∈ DTrain. (6)

Following Ref. [24], 1/βm was chosen to be the standard
deviation of the costs in the training data, whereas c(x) is
the cost of each sample bitstring.

In summary, the two main essentials for respectively
evaluating validity-based and quality-based generalization
are the following.

(a) There exists a well-defined solution space S , con-
taining bitstring patterns that are valid according to easy to
specify and verify constraints.

(b) There exists a well-defined cost function c(x) that
can be computed to assess the generalization for all valid
bitstring patterns.

It is important to note that knowing |S| in advance is
not necessary to apply our metrics. For example, while
in the case of the cardinality-constrained and other sim-
ple datasets |S| can be estimated exactly, there are several
real-world instances where it is easy to determine whether
a sample belongs to the valid space, but it is intractable
to determine a priori the size of the support |S|. Exam-
ples of this class of problems can be found in Appendix
6 of Garey and Johnson’s comprehensive book on NP-
complete problems [59]. For example, the zero-one integer
programming problem described as MP1 in Appendix 6 is
an NP-complete problem where it is easy to check whether
a given sample satisfies the constraints, but where it is
intractable to find the whole set of bitstrings that satisfy
the constraints.

V. METRICS FOR EVALUATING PRACTICAL
GENERALIZATION

As described in Secs. III and IV, practical generalization
occurs when a model generates novel samples that display
desired features and belong to the support of some under-
lying distribution. To give quantitative definitions of the
validity- and quality-based generalization metrics, we first
need to clarify the nomenclature of all the spaces involved.
We have already defined the collection of all queries
generated by a trained generative model as DGen, where
|DGen| = Q. We then call Gsol the multiset of all valid and
unseen queries, which reflect the model’s validity-based
generalization capability. We further define a subset of Gsol
that contains all its unique bitstring solutions as gsol; thus,
the only difference between Gsol and gsol is that in the lat-
ter each bitstring appears only once, whereas in the former
there can be many occurrences of the same sample. Lastly,
we define the multisubset of unseen queries as Gnew, where
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Search space

Train

gsolSolution space

sol

new

FIG. 2. A visual representation of all possible spaces where
a generated query might be located. Each query is represented
by a color-coded dot, where the color code is the same as in
Fig. 1 (data copying, blue; pregeneralization, yellow; validity-
based generalization, purple) and the color shade represents a
unique bitstring sample. We take all nonunique queries outside
of the training set to be in the multisubset Gnew (inside the yellow
oval), whether they are in the solution space S or not. Further-
more, we take Gsol to be all nonunique queries that exist in the
solution space (inside the pink oval) and gsol to be all of the
unique queries among Gsol (enlarged view). Lastly, if a query
exists in DTrain, it is a memorized count from the training set.
We note that the quality-based queries (not shown) must exist
inside of the solution space.

some of these queries might be unwanted noise and hence
reflect the model’s exploration capability. Note that we use
uppercase variables for multisets and lowercase variables
for unique sets, and a visual representation of the sets in
play can be found in Fig. 2.

Having clarified the nomenclature of the spaces
involved in the task, we can now proceed to the definition
of the generalization metrics.

A. Evaluating pregeneralization

While a model’s capability to generate unseen samples
that are not valid or valuable solutions to the task at hand is
not considered generalization behavior in and of itself, it is
an important prerequisite for generalization from the prac-
tical perspective. If the model is not able to go beyond the
training set, even just to produce noisy outputs, then the
model is not passing the first requirement for generaliza-
tion—the ability to produce novel data points. To conduct a
pregeneralization evaluation prior to assessing for any kind
of validity-based or quality-based generalization, we intro-
duce the exploration metric E that quantifies the fraction
of generated queries that are new data points, namely,

E = |Gnew|
Q

. (7)

If E ≈ 0, the model will not pass the first required check
for practical generalization. This may be due to an intrin-
sic property of the model, i.e., the inability to generate

novel data, or it can be an artifact of the training set being
(almost) exhaustive, because nothing new can be generated
if the training data cover (almost) all the entire valid space.

B. Evaluating validity-based generalization

We introduce three sample-based metrics that describe
each model’s validity-based generalization behavior after
training: fidelity F , rate R, and coverage C.

Fidelity describes the model’s ability to distinguish an
unseen and valid sample in S from a meaningless output
(i.e., noise) and it quantifies the fraction of unseen queries
that fall into the unseen solution space. It is defined as

F = |Gsol|
|Gnew| . (8)

Rate describes the model’s ability to efficiently produce
unseen and valid samples and it quantifies the fraction of
all queries that fall into the unseen solution space, namely,

R = |Gsol|
Q

. (9)

Coverage describes the model’s ability to recover all
unique unseen and valid samples and it quantifies how
much of the solution space that was unexplored gets cov-
ered by the generative model’s queries. It is defined as
follows, where we highlight that the ratio does not take into
account the queries’ frequencies, as a single occurrence has
the same weight as one that appears multiple times:

C = |gsol|
|S| − T

. (10)

We note that computing the normalization of the coverage
by enumeration of the solution space S is not necessary
when comparing models, which is the most adequate set-
ting for these metrics to be informative. In that setting,
indeed, what matters most is the ratio of the coverages
of different models since one is interested in identifying
the “winner,” and therefore there is no need to compute
the normalization. As also implied by Sec. IV, all that is
needed is an efficient way to establish whether a bitstring
sample is valid according to the constraints of the problem.

We highlight that one should expect the value of these
metrics to depend on the number of queries Q that are
retrieved from the trained model. For example, to have a
quality coverage of a space, i.e., C → 1, one should have
enough samples that fall in the entire unexplored space.
However, this dependency does not constitute a limitation
for drawing a comparison between models, as we can fix
the number of queries for all the models under investiga-
tion, and evaluate and fairly compare their generalization
performance at the given number of queries. Moreover, in
Sec. VII B below, we further showcase the values of C as
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we increase the number of queries toward and beyond the
size of the solution space. We see a clear trend towards
the metric ideal limit C → 1 as we increase the number
of queries. Conversely, in Appendix D we demonstrate
that fidelity and rate are not dependent on the number of
generated samples, despite being sample-based metrics.

We note that the different metrics are not completely
independent, as there are mutual relations between them.
For instance, it can be noted that rate and fidelity are cor-
related, as R = EF . Rate is the same as fidelity whenever a
model generates exclusively unseen queries, which only
holds in the case of perfect generalization (or in patho-
logical cases such as mode collapse to unseen and valid
queries). Another example of mutual relation between
the metrics is that C ≤ EQ/|S − T|, which implies that
C < E for large solution spaces and a limited query
budget.

To further clarify the expected metrics’ values for a
well-generalizing model, we highlight that these metrics
will be exactly 1 when evaluated for a model that exhibits
the highest validity-based generalization. However, in a
practical sense, this might be difficult to achieve; we
are then equipped with a theoretical upper bound of 1
for all metrics, with the understanding that one should
aim to reach this limit to obtain a robust model for
generalization.

Lastly, we note that the pregeneralization condition in
Eq. (1) impacts the validity metrics; hence, exploration E
is directly related to (F , R, C). For F , the pregeneralization
condition in Eq. (1) must be met in order for the met-
ric to be well defined. When the condition is not met, F
will be null, and C, R = 0. Therefore, our metrics rely on
the model’s ability to go beyond the training set, and will
indicate if the model is only data copying. Other proper-
ties from the model can be inferred from these metrics, as
demonstrated in Table V in Appendix B. For example, a
metric that measures the degree of data copying could be
defined as D = 1 − E; hence, perfect memorization would
mean that E = 0. We highlight that, in this framework, one
can additionally use our proposed metrics to detect alter-
native and complementary behaviors to generalization and
define additional metrics that are tailored towards specific
properties one would like to investigate.

In conclusion, we propose to utilize the metrics (F , R, C)
to introduce a 3D quantitative investigation of the gener-
alization capabilities mentioned in Sec. III B, which we
report here for convenience.

(a) Fidelity F evaluates how effectively the model can
distinguish between unseen valid and invalid bitstrings.

(b) Rate R evaluates how efficiently the model can
produce unseen and valid bitstrings.

(c) Coverage C evaluates how effectively the model can
retrieve all unseen and valid patterns.

C. Evaluating quality-based generalization

To quantify the quality-based generalization proper-
ties of a generative model, we propose adequate metrics
addressing the sample quality of the generated samples,
which speaks to how many of the queries are more valu-
able results in the context of a specific application domain,
i.e., how many bitstrings have a low enough associated
cost. Since the quality of a result depends on a given cost
function, this metric is task specific, as opposed to the
validity-based generalization case that only requires the
notion of validity of a query, according to a well-defined
hard constraint.

More precisely, we introduce different nuances of this
sample quality metric for our quality-based generaliza-
tion assessment, proposing two different versions with
slightly different implementations of f in the right-hand
side condition of Eq. (3).

Firstly, we consider the minimum value (MV) of the
costs associated with the queries generated by the model
as a relevant evaluation metric, since in many optimiza-
tion applications the main goal is to find the solution that
minimizes the cost, or, equivalently, the sample with the
best quality. This corresponds to choosing f = min, so that
condition (3) becomes

xg satisfies Eq. (2) ∧ min
xg∈DGen

c(xg) < min
xt∈DTrain

c(xt). (11)

Despite its practical impact, this punctual metric can be
highly unstable if it is not supported by enough statistics
as the metric relies on generating one specific value, the
lowest. Since generating the query with the lowest cost is
highly dependent on the selected batch b of queries, we
define this metric as an average across B batches of queries
to avoid biasing the results due to an anomalous batch.
In other words, for each generative model evaluated, we
define

MV = 1
B

B∑

b=1

min
xg∈Gb

sol

c(xg).

For the results presented in this work, we fixed B = 5.
Including such average in the definition of the MV met-
ric itself contributes to alleviate its intrinsic instability,
thus making it more robust for quality-based generalization
evaluation.

Secondly, we define the utility U as the average cost of
a user-defined set Pt of unseen and valid samples from the
generative model. Specifically, Pt(D) is the set obtained
from taking the t% of samples with the best quality (low-
est costs) in D. Setting t = 5, this corresponds to choosing
f = 〈·〉 on the set P5, and condition (3) reads

xg satisfies Eq. (2) ∧ 〈
c(xg)

〉
xg∈P5(Gsol)

< 〈c(xt)〉xt∈P5(DTrain)
.

(12)
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Given its set-based definition, this metric is much more
stable than the previous one.

Lastly, we note that it is possible to give another
definition of sample quality, which simply consists in
counting the number of unseen and valid queries whose
cost is lower than a specific critical cost value c′(x) in
the training set. For example, one could take c′(x) to
be the lowest cost value in the training set, i.e., c′(xt) =
minxt∈DTrain c(xt). When utilizing this estimator, one is
interested in verifying the condition

|{xg such that c(xg) < c′(xt)}| > 0 for xt ∈ DTrain, (13)

where clearly a higher value of the left-hand side implies a
better sample quality. Even though this quantity can carry
interesting information, we do not include it among our
quality-based generalization metrics as it is a harsh restric-
tion to impose and may only be important for optimization
tasks that are looking for many potential MV bitstrings. We
highlight that our framework is not limited to the metrics
proposed so far, but allows one to define several other fig-
ures of merit that can be relevant for specific applications
at hand.

We use these metrics to introduce insights into a model’s
quality-based generalization capabilities, and determine
which models are able to generate the most value for task-
specific challenges. We emphasize again that this approach
can be utilized beyond cost minimization problems, as long
as there is a quantitative quality scale associated with each
bitstring in the valid subspace.

VI. APPROACH DEMONSTRATION

To present the robustness of our approach in evaluat-
ing and comparing generative models, we choose a well-
defined task and two families of models: classical GANs
and quantum-inspired TNBMs. The following sections
outline the specific use case (Sec. VI A) and the gener-
ative models (Sec. VI B) selected for our experimental
demonstrations.

A. Use case

To demonstrate a practical application of our approach,
we choose an important use case in the finance sector that
addresses the challenge of cardinality-constrained portfo-
lio optimization. The goal of such a task is to minimize
the risk σ associated with a collection of assets, randomly
selected from the S&P500 market index, for a fixed desired
return ρ. Below, we highlight how this task is amenable to
the framework and requirements described in Sec. IV.

Given a fixed size N of the asset universe, a portfo-
lio candidate can be encoded into a bitstring of length N ,
where each bit corresponds to an asset either being selected

in the portfolio (1) or left out of the portfolio (0). There-
fore, the search space U of all possible portfolios grows
exponentially with the asset universe size, i.e., |U | = 2N .

To assess validity-based generalization within this task,
we define the solution space S to be composed of all bit-
strings containing a fixed number k = N/2 of selected
assets, i.e., a candidate solution must be a bitstring with
a fixed Hamming weight equal to k.

With such a k-cardinality constraint, the problem solu-
tion set S contains all possible portfolio bitstrings x that fit
this constraint. Thus, its cardinality is

|S| =
(

N
k

)

. (14)

To further assess quality-based generalization, we define
an objective function that encodes the quality of each
bitstring, namely, the financial risk σ associated with
each portfolio, which in the case of the mean-variance
Markowitz model [60] can be efficiently computed by
means of mixed integer quadratic programming [61].
Unlike when investigating validity-based generalization,
we use σ to reweight the training dataset with the softmax
function described in Eq. (6).

As such, this task satisfies both the previously intro-
duced conditions necessary to evaluate validity-based and
quality-based generalization. We again emphasize that our
framework can be applied to any task that meets the essen-
tial requirements in Sec. IV, and is not limited to this
financial application.

B. Generative models

We focus our investigation on GANs and TNBMs.
This choice is motivated by several reasons. On the one
hand, GANs constitute one of the most popular and top
utilized classical generative models, notwithstanding the
challenges that plague their training such as mode collapse
[62], convergence issues [63], and vanishing gradients
[64]. Moreover, they are made up of several components
that can be independently and successfully promoted to
a quantum model [19], thus paving the way to the study
of hybrid quantum-classical generative models. On the
other hand, recent results for training TNBM architec-
tures show that such models are promising candidates to
exhibit both validity-based and quality-based generaliza-
tion behaviors [24]. We started our generalization study
choosing these two models, but our approach can be lever-
aged to characterize any other state-of-the-art generative
model of interest, and we do hope other interesting works
will spin out from this initial proposal to evaluate quantita-
tively their generalization power. Future work can include
an analysis of fully quantum models, even trained on
hardware, once current limitations in training large and
deep circuits are overcome. We highlight that this anal-
ysis must be extended to other state-of-the-art classical
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models beyond GANs in order to declare any quantum or
quantum-inspired advantage. This work focuses on intro-
ducing a concrete framework, relying on useful and prac-
tical model-agnostic metrics, which opens the possibility
of quantifying practical quantum advantage in generative
modeling and illustrates its results on the two classes of
models. However, there is no limitation in the features of
the model or the problem size that can be assessed using
this framework, and more ambitious and complete analy-
ses are needed to demonstrate stronger evidence towards
practical quantum advantage.

1. Generative adversarial network

Our classical model consists of a GAN architecture with
a normal prior distribution, and we conduct the training
as typically described in the literature [65–67]. GANs are
trained as two neural networks, a discriminator D and a
generator G, competing against one another for optimal
performance in an adversarial game. Samples from a prior
distribution q(z) are fed into the generator’s input layer,
and throughout training the generator attempts to produce
new data x that can fool the discriminator into classify-
ing x as a real rather than an artificially created data point.
The goal of training is to maximize the generator’s score
and minimize the discriminator’s score, as described by the
loss function

LGAN = min
G

max
D

[Ex∼PTrain(x)[log D(x)]

+ Ez∼q(z)(log{1 − D[G(z)]})]. (15)

For both the generator and the discriminator, we utilize
a feed-forward architecture with fully connected linear
layers (details are listed in Table IV in Appendix A).

2. Tensor network born machine

Our quantum-inspired generative model is a TNBM,
whose underlying architecture is chosen to be a matrix
product state (MPS), a well-known 1D tensor network
characterized by a low level of entanglement [49]. A
TNBM takes unlabeled N -dimensional training bitstrings
from the dataset {xt}T

t=1, and aims to encode the underly-
ing probability distribution in a quantum wave function
ψ , expressing the correlations between samples in the
amplitude of a quantum state, namely,

|ψ〉 =
∑

{s}

∑

{α}
As1
α1

As2
α1α2

· · · AsN
αN

|s1s2 · · · sN 〉. (16)

To motivate this representation, we note that an N -
dimensional bitstring can be interpreted as a possible real-
ization of the spin state (0, 1) of N particles |s1s2 · · · sN 〉,
and therefore the full quantum state can be written as a
superposition of all the possible spin states. Rather than

using the exact coefficient matrix to build |ψ〉, we approx-
imate it by the product of smaller parameterized single-
particle matrices Asi , where the dimensions {α} are known
as bond dimensions. The summation across α determines
the probability amplitude for each superposition state of
individual sites; thus, the bond dimensions control the
expressivity of the TNBM.

We use a similar training method as described in
Ref. [49], where models are trained via a DMRG-like
algorithm with the loglikelihood cost function

L(θ) = − 1
T

∑

t

log[pθ (xt)]. (17)

During training, samples are generated from the wave
function according to the Born rule:

pθ (xt) = |〈xt|ψ〉|2; (18)

the goal of the learning process is to find an optimal TNBM
parametrization θ such that pθ (xt) → PTrain(xt).

A TNBM is known as a quantum-inspired technique as
it builds upon fundamental concepts and formalism of the
quantum-mechanical theory, but it is executed entirely on
a classical platform.

VII. RESULTS AND DISCUSSION

Having defined several quantitative metrics that allow
one to conduct a generalization analysis of generative
models from a practical perspective, we use them to inves-
tigate the performance of TNBM and GAN architectures.
We present the results of our simulations, whose details
are specified in Sec. VII A. We demonstrate the robustness
of our proposed metrics (Sec. VII B), show their ability to
spot common pitfalls in model training (Sec. VII C), and
introduce insights into the validity-based and quality-based
generalization capabilities of each model (Sec. VII D).

A. Simulation details

For our experiments, we consider a specific instance of a
cardinality-constrained portfolio optimization task, where
we aim at minimizing the associated risk σ for a given
target return ρ = 0.002, such that the asset universe from
which one can pick to build a new candidate portfolio has
size N = 20. Here, assets are randomly selected from the
S&P500 index, as previously done in Refs. [24,61], and the
return level ρ is the same as used in previous studies. We
impose the cardinality constraint that each portfolio must
have a fixed Hamming weight k = N/2 = 10. As previ-
ously stated, such an essential restriction creates a subset
of the search space U , of size 2N ∼ O(106), defining a
solution space S of size

(N
k

) ∼ O(105). The choice of these
values allows for a big enough space so that generalization
capabilities can be probed.
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Given the solution space of portfolio candidates, the data
distribution P(x) given in Eq. (4) used to assess validity-
based generalization is automatically defined. To build a
nonexhaustive PTrain(x) as in Eq. (5), only a fixed number
T = ε|S| of training samples is randomly selected from the
solution space, thus making the task of learning the distri-
bution P(x) highly nontrivial (despite it being defined as a
uniform distribution over the valid bitstrings). Specifically,
all generative models are trained for a fixed number of
epochs nepochs = 100 with a fixed value of T that equals 1%
of the solution space (i.e., ε = 0.01), leaving the remaining
99% of the space available for testing generalization capa-
bilities. Several values of this hyperparameter have been
investigated, and we found this particular percentage to
be a good choice as it gives the models many chances of
generalizing, while providing enough samples T ∼ O(103)

for the learning process to be successful. In order to assess
quality-based generalization, we conduct the same process
outlined above, with the addition of a preprocessing step
that uses a softmax function to introduce risk-based infor-
mation in the training dataset, so that low-risk portfolios
are assigned a higher probability, and sampled with higher
frequency.

We investigate the generalization behaviors of differ-
ent versions of the TNBM and GAN architectures, using
various hyperparameter sets. In the case of the TNBM,
we consider different values for the bond dimension α, as
this is the main parameter that affects the model quality.
For GANs, the choice of hyperparameters is significantly
more challenging [68]. Therefore, in addition to identify-
ing hyperparameters via a trial-and-error procedure, we
investigate whether automated hyperparameter optimiza-
tion using Optuna [69] could significantly improve the per-
formance. We propose three different GANs that only differ
in their hyperparameters as per Table IV in Appendix A,
and show generalization behaviors for all of them. From
here onward, we refer to a GAN that has a mode collapsed
onto one seen and valid bitstring as GAN-MC and to the
Optuna-enhanced GAN as GAN+.

As mentioned above, all models have been trained for a
fixed number of epochs and the associated generalization
metrics have been computed based on a fixed number Q =
105 of queries retrieved from the trained model returned
after the last epoch. Other strategies can be employed,
such as considering the set of weights associated with the
lowest loss function during training, or including more
advanced training techniques such as early stopping. We
decided to leverage a simple training scheme to avoid
introducing any training bias and allow for the fairest
comparison of the two models under examination. We
also chose to sample this high magnitude of queries since
this was not a limitation for the problem size considered
here. However, in Appendix D we present the behavior
of our sample-based metrics as a function of the number
of queries. All of the numerical experiments in this work

were carried out with Orquestra� [70] for workflow and
data management.

B. Metric robustness

The first step to validate our approach consists in show-
ing the robustness of our sample-based metrics. To verify
this, we conduct a statistical analysis of the generaliza-
tion metrics’ values and investigate the statistical errors
associated with them. In addition, we propose an initial
numerical investigation of the relationship between the
values of our sample-based metrics and the distance mea-
sure from the model’s distribution to the ground truth data
distribution, in order to understand how the models’ per-
formance benchmarking approach connects with that of
computational learning theory.

We focus the robustness analysis on one instance of
each of the two generative models presented in Sec. VI.
Specifically, we consider a TNBM model with fixed bond
dimension α = 7, which has proven to be a good choice for
generalization purposes, as will be explained in Sec. VII C
below. For GAN, we consider the set of hyperparameters
displayed in the first column of Table IV in Appendix A,
which were selected as reasonable values via a trial-and-
error procedure (i.e., without leveraging automated hyper-
parameter optimization). The analysis can be extended to
other instances to further strengthen the evidence of the
robustness of our metrics.

After training these two model instances using gradient-
based optimizers (see Table IV in Appendix A), we per-
form 30 independent query retrievals and compute our
generalization metrics on these distinct sample sets. We
then evaluate the relative percentage error [71] associated
with each of the metrics to assess their statistical robust-
ness. For each of the two models, the error values for
both validity-based and quality-based metrics are shown
in Fig. 3.

The errors associated with the different metrics assume
similar values for the TNBM and GAN: this supports our
claim that our metrics are model agnostic and can be used
to evaluate generalization capabilities for any generative
model of interest. Furthermore, we can see in Fig. 3 that
the relative errors are less than 1%, thus suggesting that
our metrics show significant robustness when computed
on different sets of queries. Hence, we can affirm that the
metrics proposed in this work are sample based but not
sample dependent across different query batches of the
same size.

The latter statement requires further clarification in the
case of the coverage metric in Eq. (10). In this case, even
though the coverage does not depend on the set of queries,
it does depend on the number of queries that are retrieved
from the trained model, as suggested in Sec. V B. The ideal
coverage value of 1 is reached in the limit of a large num-
ber of queries, when the trained model has the opportunity
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FIG. 3. Robustness of the generalization metrics. The plot
shows the relative percentage error associated with each of the
generalization metrics proposed in Sec. V, listed on the x axis.
The errors are estimated as the relative standard deviation of
independent metric values computed on 30 sets of queries gen-
erated by trained TNBM (pink) and GAN (green) models. The
proposed metrics show their statistical robustness: the associated
error is small, suggesting that our approach is sample based but
not sample dependent. Henceforth, new independent same-size
query batches from the trained model will produce similar metric
results.

to generate enough samples to cover most of the solution
space. However, we note that, given a query budget Q, the
effective upper bound (UB) to the coverage value is set by

UB = min(Q, |S|)
|S| ≤ 1,

thus implying that the ideal value of 1 can be reached only
with a sufficiently high number of queries, i.e., Q ≥ |S|.
We investigated if the models considered so far show this
trend as we increase the number of queries retrieved after
training from 104 to 3 × 106. The results of the simula-
tions are displayed in Fig. 4; in Appendix C we compare
them with the baseline given by random sampling from the
search space U . Results for how the other metrics vary with
the number of queries Q are shown in Appendix D.

The data show that the TNBM coverage closely resem-
bles the UB trend for any given value of Q and saturates to
the ideal value of 1 for a large enough number of queries,
implying that this model is able to achieve excellent cover-
age. Conversely, the GAN coverage is further from the UB
and slowly increases without getting to the desired thresh-
old, thus suggesting that significantly more queries would
need to be taken to achieve a perfect coverage of all the
unseen and valid patterns. Since there is no guarantee that
the desired threshold is reached with a finite number of
queries, this result might as well indicate that the model is

FIG. 4. Coverage trends for an increasing number of queries.
The plot displays the behaviors of the coverage metric for both
TNBM (pink) and GAN (green) as we increase the number of
queries Q retrieved from the trained models. The dashed black
line shows the upper bound (UB) for each number of queries
selected—i.e., the number of queries selected over the total size
of the solution space. In the case of the TNBM, we observe that
the coverage value follows the UB curve and saturates to the
ideal value of 1 for large numbers of Q, corresponding to the
scenario in which the trained model is able to generate all unseen
and valid samples. In the case of the GAN, we still observe that
the coverage value gets closer to UB and the ideal threshold of
1 when more and more queries are drawn from the model. How-
ever, it remains further from UB and never reaches the desired
threshold, suggesting that our GAN requires more queries than
the TNBM to be able to reach all the unseen samples in the
solution space.

quite poor at generalizing due to a high number of unreach-
able patterns. This is particularly relevant in the case of
very large solution spaces S . In this circumstance, the cov-
erage metric has an intrinsic limitation: its low value might
indicate that the number of generated queries is insufficient
(Q � |S| − T), rather than being due to poor generaliza-
tion (|gsol| ≈ 0). Therefore, in order to mitigate the above
issue when evaluating single models in the case of large
problem sizes, we envision the denominator in C to be
replaced by the number of queries Q. This solution will
slightly distort the meaning of coverage in Eq. (10) to a
new metric quantifying the rate at which the model gener-
ates unique unseen and valid samples. When extending to
large problem sizes, we see this as a more relevant evalua-
tion metric as one cares more about the diversity of unique
unseen and valid samples the model can reach rather than
reaching all of them, which would be impossible without
the number of queries being at least the size of the solu-
tion space. However, as our experiments are conducted
with a midsized problem space, we stick to the definition
in Eq. (10) for our evaluation.
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Even though the coverage metric is dependent on the
number of queries and its interpretation in terms of gener-
alization is affected by the size of the solution space, we
can draw a fair comparison between the coverage of dif-
ferent models. Indeed, we can compare TNBM and GAN
models if we keep the number of queries generated from
each fixed, as reported in Sec. VII D below, where it will be
shown that the quantum-inspired model outperforms this
GAN model when given the same sample budget.

Lastly, we put forth an initial investigation on the corre-
lation between our metrics and the model’s ability to infer
the ground truth, as is the goal in computational learning
theory discussed in Sec. II. In Table I, we report the aver-
age values of (F , R, C) that result from five independent
trainings of TNBMs with α = 7. To take into account the
fact that we span over a few ε values, we also show a nor-
malized version of the rate value, given by R̃ = R/(1 − ε).
Alongside the (F , R, C) values, we record two versions of
the KL divergence: the quantity KLTrain, computed as usual
between the model’s output distribution and the training
distribution in Eq. (5), and the quantity KLTarget, computed
between the model’s output distribution and the uniform
ground truth data distribution in Eq. (4). Note that the latter
is not usually available in real-world scenarios, since the
ground truth is unknown; however, we find it relevant to
analyze this quantity to validate our practical approach to
generalization by relating it to computational learning the-
ory. We see that, with access to very little data (ε = 0.01),

TABLE I. The relationship between the validity-based metrics
and learning the ground truth for the TNBM. Down each column,
we record the final average (F , R, C) metrics’ values (including
the normalized rate R̃) along with the average KL divergences
of the model output distribution relative to the training distri-
bution, denoted KLTrain, and to the data distribution, denoted
KLTarget. We see that there is a good correlation between the
high-scoring metrics’ values and learning the ground truth dis-
tribution, even in multiple data regimes. We see that the largest
discrepancy between the two frameworks exists when ε = 1,
where KLTarget = KLTrain reaches a low value, but the other met-
rics are either zero or undefined. This is a case of memorization,
where the model still scores high in the context of learning the
ground truth, while demonstrating poor performance from a prac-
tical generalization standpoint. This is expected from a practical
perspective: the generative model cannot add value in terms of
generating novel samples, since all of them were given as part
of the training set. All relative percentages errors are computed
across five independent trainings.

Metric ε = 0.01 ε = 0.5 ε = 1.0

F 0.979 (0.38%) 0.986 (0.06%) 0.0
R 0.969 (0.39%) 0.497 (0.28%) 0.0
R̃ 0.979 (0.39%) 0.993 (0.28%) nan
C 0.405 (0.52%) 0.416 (0.32%) nan
KLTrain 4.575 (0.07%) 0.702 (0.01%) 0.009 (0.36%)
KLTarget 0.074 (13.28%) 0.009 (0.56%) 0.009 (0.36%)

the model yields high (F , R, C) values and gets closer
to the data distribution than the training distribution—as
KLTarget < KLTrain. When we increase ε to half of the solu-
tion space, we see that the (F , R, C) metrics increase and
the model is also able to approximate the ground truth
more closely, since KLTarget decreases. Hence, we see a
promising correlation between our metrics’ values and the
model’s ability to infer the ground truth in both of these
data regimes.

The main discrepancy between the two approaches
occurs when the model is provided all of the data dur-
ing training (ε = 1). In this case, we see that KLTarget =
KLTrain, and thus there is no room for generalization to
occur, as defined in Sec. III. Therefore, the metrics’ val-
ues are either zero or undefined (nan) in this instance.
Despite this, we still see that the model is able to learn
the ground truth well, as indicated by a low KL value.
The ability to assess this memorization behavior is the
main distinction between our practical approach in eval-
uating generalization and that utilized in computational
learning theory. From a practical standpoint, being able to
identify this behavior is highly relevant, thus supporting
the need for a more practical approach to generaliza-
tion to be considered in parallel to the theoretical one.
In Appendix E, we show multiple plots that report our
metrics’ values throughout the entire training alongside
the KLTrain, KLTarget values for a more complete analysis.
Remarkably, the different panels in Fig. 18 in Appendix E
demonstrate excellent correlations between the theoreti-
cal and practical approaches, while also highlighting the
value of having a multidimensional evaluation perspec-
tive, which provides enhanced explainability when assess-
ing strengths and weaknesses of generative models. We
note that while this example indicates a good correlation
between our metrics’ values and the ground truth inference
ability, more investigations are necessary to strengthen
the understanding of this relationship, potentially includ-
ing theoretical proofs that establish precise connections
between the two approaches.

C. Spotting pitfalls in generative model training

We further demonstrate that we can use our metrics to
detect common pitfalls that are known to affect the training
of the TNBM and GAN models. This result strengthens the
validity of our approach, which turns out not only to be a
good framework for quantifying generalization of genera-
tive models, but also to enhance the study of their trainabil-
ity. In the following sections, we show an example of this
study for each of the models. For the TNBM, we analyze
the relation between the bond dimension α, our generaliza-
tion metrics, and the trainability of the model. Conversely,
for the GAN, we investigate the relation between our met-
rics and mode collapse. Additional results to compare the
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training stability of the two classes of models are shown in
Fig. 17 in Appendix A.

1. TNBM bond dimension and trainability

In the TNBM architecture, the bond dimension α of the
MPS plays an important role in the model’s ability to gen-
erate good quality samples as it is directly correlated with
the expressive power of the model. Typically, increasing
the bond dimension leads to a better model approxima-
tion. We take this one step further and directly connect
bond dimension to the model’s generalization behavior and
trainability.

In light of this goal, we train five different instances of
the TNBM architecture on a fixed training dataset with
various bond dimensions α ∈ {3, 5, 7, 9, 11}. For a given
α value, we select a typical [72] training and build a model
with the last set of parameters retrieved after the learning
process. We then generate 15 independent query batches
from the trained model and compute our validity-based
generalization metrics (F , R, C). We show the results in
Fig. 5, where we display the average metric evaluations for
each bond dimension α. In the plot legend, we report the
last loss function value during training (complete training
loss curves can be found in Appendix A).

From Fig. 5, it can be seen that the median value of
the KL divergence occurs for α = 7: this result motivates
the usage of such a value in Sec. VII B, as it suggests that
the training is most typical for this choice of the hyperpa-
rameter value. It is not surprising that the lowest value of
the loss function, obtained for α = 5, does not correspond
to the best validity-based generalization performance, as
shown in Fig. 5, because this loss is relative to the train-
ing rather than the data distribution. If the model was to
perfectly fit the training distribution, we would see data
copying rather than generalization behavior—which is a
form of overfitting. We expect that our metrics will be able
to identify similar overfitting behaviors when associated
with an extremely successful training curve (Table V in
Appendix B).

As the bond dimension grows, we see an increase in
(F , R, C) up to α = 7, and then the metrics’ values begin
to decrease. Thus, it seems that we are hitting a trainabil-
ity Goldilocks region around α ≈ 7, with α < 7 leading
to underperforming models and α > 7 being too expres-
sive for the model to be able to generalize successfully.
These results demonstrate that we can use our metrics to
identify thresholds in hyperparameter tuning and to get
insights into the trainability of the model as it relates to
generalization.

2. Mode collapse in GAN

One of the major issues that affects GAN training is
the so-called mode collapse behavior [62]. This undesired
phenomenon occurs when the generator learns to produce

= 11, KL = 4.660
= 9, KL = 4.700
= 5, KL = 4.618

= 7, KL = 4.703
= 3, KL = 4.717

FIG. 5. Training and generalization behaviors of the TNBM
with different bond dimensions. The plot displays the 3D eval-
uation of the validity-based generalization capabilities of the
TNBM models with various α ∈ {3, 5, 7, 9, 11}. Each data point
corresponds to the average metrics’ values, whose associated
error is too small to be visible on the plot. The legend connects
each α to the last KL divergence value in the training after 100
epochs. The plot demonstrates that, for various α values, there
is a connection between KL divergence values of the model
distribution to the training distribution, thus establishing a link
between this capability and trainability properties of generative
models.

a very limited number (sometimes only one) of highly
plausible outputs, thus affecting the ability of the gener-
ative model to further explore the solution space. Since
mode collapse is a well-known pitfall, several strategies
have been proposed to mitigate this issue in the con-
text of GANs, among which a promising algorithm is the
Wasserstein GAN [73,74].

We propose an example of how our metrics are able to
detect mode collapse, when it occurs. We fine tune our
hyperparameters such that the GAN exhibits mode col-
lapse behavior (see details in Table IV in Appendix A)
for a fixed training dataset. We run a typical [75] train-
ing of this GAN-MC architecture, and then sample 15
query batches from the trained model to compute our
generalization metrics (F , R, C).

We display the validity-based metrics for the GAN and
GAN-MC in Table II. For the GAN-MC, we see that
fidelity and rate are the ideal value of 1, thus suggest-
ing that the model generates exclusively unseen samples
with the desired cardinality. However, the coverage value
is close to 0; thus, it is far from its ideal threshold, since the
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TABLE II. Pregeneralization and validity-based generalization metrics for all models. We display the average exploration E and
the average (F , R, C) values for each best model run with an average and the associated relative percentage error across 15 query
batches. All the models exhibit a high exploration rate, thus showing that data copying is not occurring. We see that our TNBM
model outperforms our GAN and GAN+ models by more than 70 percentage points for F and R. Coverage C is about 68 times larger
for TNBM than for GAN models. We further include the ratio of the coverage C to the ideal expected coverage C to highlight the
large difference between the TNBM’s and GAN’s ability to successfully learn the underlying data distribution P(x). Additionally, for
GAN-MC, we see perfect F and R and a near zero C value, indicating mode collapse behavior. Note that no error is provided for
the GAN-MC as all the models produce exactly the same values for the metric, except for the coverage whose associated error is
negligible.

Metric TNBM GAN GAN-MC GAN+

E 0.989 (0.02%) 0.995 (0.02%) 1.0 1.0 (0.003%)
F 0.989 (0.03%) 0.263 (0.6%) 1.0 0.243 (0.4%)
R 0.978 (0.03%) 0.261 (0.6%) 1.0 0.243 (0.4%)
C 0.409 (0.15%) 0.006 (1.7%) 5.5 × 10−6 0.001 (2.5%)
C/C 0.971 0.014 1.0 × 10−5 0.002

model is only able to produce one single pattern and does
not have the ability to explore the solution space and cover
it as much as possible. Such an anomaly in the validity-
based generalization metrics’ values is not present if the
training of a GAN does not exhibit training pitfalls, as
displayed by the GAN results in the same table.

We note that these metrics’ values only capture mode
collapse behavior for models that collapse onto an unseen
and valid bitstring. If the model were to collapse onto a
seen bitstring (in-training mode collapse), F would not
be well defined and both C and R would equal zero.
These metrics’ values would be indistinguishable from
the perfect memorization regime. In order to avoid this,
one should also compare the number of individual queries

generated, |dgen|, to the size of the training set T. This
would provide the additional information necessary to
detect any form of mode collapse. Expected metrics’
values for various mode collapse behaviors along with
other model training pitfalls are displayed in Table V in
Appendix B. In summary, our metrics reflect mode col-
lapse upon occurrence and therefore they can provide
insights into the training progress of generative models.

In order to better visualize the difference between the
two aforementioned models and detect the mode collapse
phenomenon, in Fig. 6(a) we display the cardinality distri-
bution of the generated queries for the two GAN variants
under examination: for GAN, the distribution is centered
around the correct cardinality, but shows a larger spread

(a) (b)

FIG. 6. Visualization of mode collapse in GAN training. Panel (a) shows the cardinality distribution of generated queries for GAN
and GAN-MC, indicating that GAN-MC produces only samples with the desired cardinality (dashed line), whereas the GAN queries
populate a larger subset of the cardinality domain. Hence, GAN-MC is associated with perfect fidelity F = 1 and rate R = 1. However,
in (b) the queries’ diversity is displayed, where the x axis represents the set of distinct generated bitstrings (for readability, bitstring
labels are not shown, and only bitstrings with counts > 50 have been included in the histogram). We can see that GAN-MC always
generates the same unseen and valid query (mode collapse phenomenon), as opposed to GAN, which is able to cover a significantly
larger portion of the solution space, as reflected by the metrics’ values in Table II. Note the different scales for the y axes in (a) and (b).
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compared to the case of GAN-MC, where all the queries
satisfy the cardinality constraint. Nevertheless, Fig. 6(b)
allows one to identify the occurrence of mode collapse
onto an unseen and valid bitstring: the GAN-MC model
always generates the same query, as opposed to the diver-
sity of samples retrieved from GAN.

These results demonstrate that we can use our metrics
to identify the occurrence of a very well-known pitfall
affecting the learning process of GANs, thus providing an
insightful tool for the challenging task of monitoring the
training of generative models.

D. Evaluating and comparing models

We use our quantitative metric-based approach to eval-
uate the validity-based and quality-based generalization
capabilities across different generative models and com-
pare their performance.

We run 30 independent trainings for a fixed training
dataset and choose the best run, which we define as the run
with the lowest loss function at the end of the trainings.
Then, we generate 15 query batches from such a trained
model, for each of the generative models under examina-
tion. We note that while we use a fixed training dataset to
compare models, this evaluation method holds across mul-
tiple training datasets that could be selected from a specific
problem instance. Indeed, each dataset is characterized by
the same asset universe, cardinality, and seen portion ε, but
different datasets can be built by simply uniformly draw-
ing independent bitstring subsets from the support of P(x).
We perform this analysis in Appendix D, showing that
validity-based and quality-based generalization metrics for
15 different training datasets display similar values, thus
showcasing the robustness of the models’ behavior, and
the conclusions shown in this work.

For validity-based generalization, we construct DTrain
by sampling from a P(x) that is uniform over the solu-
tion space of cardinality-constrained bitstrings, whereas
for quality-based generalization, DTrain is reweighted with
cost-related information, i.e., from P(w)

Train(x), as in Eq. (6).
As stated previously, we use one fixed dataset for our
evaluations in Secs. VII D 1 and VII D 2 below. Post train-
ing, Q = 105 queries are collected from each model for
comparison.

1. Validity-based generalization

We first show the validity-based generalization results
for each type of model. While we present these results as
both an evaluation and comparison of models, we empha-
size that our results do not speak for all GAN or TNBM
models, as each type of model may contain various hyper-
parameters, multilayered architectures, and other variances
that would lead to different results. Thus, we restrict our
comparison to the specific models we trained, as described
in Sec. VI with GAN hyperparameters listed in Table IV

FIG. 7. Three-dimensional evaluation of validity-based gen-
eralization metrics for different generative models. The plot
displays results for four models, namely, the TNBM with α =
7 (pink), GAN (light green), GAN-MC (medium green), and
GAN+ (dark green). The filled circles show the average (F , R, C)
values across 15 query batches, whose associated error is too
small to be visible in the plot. We see that our TNBM is the clear
winner compared to our GAN models.

(Appendix A). We choose to focus on using these mod-
els to demonstrate the robustness of our framework and
metrics, such that, when exploring various GAN, TNBM,
or alternative model architectures, this approach can be
replicated.

Results for (F , R, C) are listed in Table II, along with
the values of the exploration E; the corresponding results
for the metrics’ baseline given by random sampling from
the search space are reported in Appendix C. Additionally,
we visualize the average validity-based metrics in Fig. 7
through a 3D representation. Lastly, Fig. 15 in Appendix E
gives an intuition of how the two models perform and
allows us to visualize their different abilities in reconstruct-
ing the data distribution P(x), showing the remarkable
performance of the TNBM as reflected in the metrics’
values.

In evaluating our models, we see that the TNBM is
a clear winner with average values (0.989, 0.978, 0.409).
The model achieves near-perfect rate and fidelity. As the
maximum coverage one can achieve is the number of
queries over the size of the solution space (UB = 0.54), the
TNBM performs remarkably well. Indeed, the ratio of the
average coverage to the upper bound UB for the TNBM is
high, i.e., C/UB = 76%. However, we note that the upper
bound represents a scenario that would rarely happen in
practice, thus representing a pessimistic reference value.
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A more realistic reference can be derived if one consid-
ers the ideal expected coverage C when sampling from
the data distribution P(x). By means of simple statistical
considerations (see, e.g., Refs. [76,77]), it can be shown
that

C = 1 −
(

1 − 1
|S| − T

)Q

,

and this estimator indicates which coverage C one should
expect when the generative model has perfectly learned
the data distribution and generates samples accordingly.
When comparing the average TNBM coverage to this more
realistic reference value, we obtain a surprisingly high
value of 97%, which shows that the model has learned
an extremely good approximation of the data distribution
P(x). In Table II, we include C/C values for all models in
order to highlight how well each model’s average cover-
age compares to the ideal expected coverage. The limit of
C/C → 1.0 holds for models with perfect generalization.

As shown in Fig. 4, the TNBM is able to achieve an
improved coverage when sampling up to three million
queries. The model has a high exploration rate of 98.9%,
i.e., E = 0.989, such that most of the generated samples
were not fed to the model during training. The GAN has
much poorer average (F , R, C) values with a slightly higher
exploration rate than the TNBM, thus showing that nei-
ther of them is performing mere data copying. The GAN
achieves metric values (0.263, 0.261, 0.006), but 99.5%
of its generated samples are outside of the training set.
One can conclude that while the GAN has the potential to
produce novel samples, it requires improved optimization
strategies in order to avoid generating noisy samples—i.e.,
samples that do not match the cardinality constraint—so
that fidelity and rate can grow to larger values. The GAN
is not able to learn the underlying features as well as the
TNBM, and thus is not able to generalize as well. Lastly,
we compute the TNBM-to-GAN ratios for the validity-
based metrics, and see that the TNBM is (3.76, 3.75, 68.2)
times better than the GAN across (F , R, C) values, respec-
tively. We would like to highlight that using metric ratios,
rather than absolute values, allows one to have a clearer
picture of the relation between different models, and this
strategy is especially useful when considering the cover-
age, whose absolute value has been shown to be more
heavily affected by the number of collected queries Q.

As explained in Sec. VII C 2, we further show visually
that our metrics detect mode collapse in GANs. The GAN-
MC has an exploration rate of 100% (E = 1), demonstrat-
ing that the single generated sample was not introduced
in the training set. Without the prior knowledge that the
model exhibits mode collapse, we can use the average
(F , R, C) values (1.0, 1.0, 5.5 × 10−6) to detect this behav-
ior. If perfect fidelity and rate are achieved, with a coverage
near zero, we can conclude that the model has focused in
too closely on one or a few unseen and valid bitstrings.

In general, whenever C → 0 we can safely identify the
behavior as mode collapse.

Then, we consider the (F , R, C) values of the GAN+
and see that while the GAN+ is able to explore slightly
more than the GAN, the (F , R, C) values are very similar,
namely, (0.243, 0.243, 0.001), showing that the optimiza-
tion scheme with Optuna does not bring a significant
improvement for our specific GAN model in terms of
generalization.

Lastly, we note that F and R are highly correlated for
each trained model. This is the case only because in all
of the models studied here the exploration E is quite high
(E ≈ 1). In this limit, and given that R = EF , then we have
R ≈ F . It is important to note that there is no reason to
expect a value of E to be similar across all models, as
happened for the GAN and TNBM explored here.

2. Quality-based generalization

We evaluate our generative models’ ability to gener-
ate high-quality samples using our quality-based approach
and metrics. The models (TNBM and GAN) are evalu-
ated across the two sample quality metrics described in
Sec. V C: MV and utility (U). Note that, for calculating
the MV, as discussed in Sec. V C, five batches of Q =
105 queries were used. Hence, the total number of query
retrievals used to compute this metric is 5 times the number
of query sets one would desire for gathering statistics (in
our case, 15 × 5 = 75 query sets, but this can be adjusted
according to the available sampling budget).

When averaged over the 15 independent query
retrievals, both the TNBM and the GAN meet the condi-
tions in Eqs. (11) and (12), as shown in Table III.

We see that our TNBM exhibits a lower MV than our
GAN, even though both beat the training set on average.
Thus, our TNBM model shows slightly enhanced perfor-
mance when searching for a minimum value of the cost
function c(x), which is assumed to be the financial risk
σ(x) in the specific application we are considering. While
this may be relevant when one aims at finding the lowest

TABLE III. Quality-based generalization metrics for TNBM
and GAN models. The first column shows values obtained by
averaging over all 15 query retrievals for the TNBM’s sample
quality performance, along with the associated relative percent-
age error. The second column displays the metrics’ values and
relative percentage error for the GAN model. The last column
displays the training threshold, defined as the MV and U com-
puted for the samples in DTrain. We see that both the TNBM and
the GAN meet the conditions in Eqs. (11) and (12).

Metric TNBM GAN Threshold

MV 0.1017 (0.01%) 0.1024 (0.17%) 0.1035
U 0.1049 (0.017%) 0.1048 (0.02%) 0.1059
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possible minimum in an optimization task, it may not be
the most important condition for alternative tasks that are
simply looking for multiple low-cost options—not neces-
sarily the lowest. For example, when looking for a large
frequency of low-cost samples, the condition in Eq. (12)
may be more important and robust for comparing mod-
els. Note that the value of the utility threshold parameter
t can be set according to the task at hand. In our task, we
take t = 5% as an appropriate threshold for demonstrating
the model’s ability to obtain the tail end of the distribution
over low-risk samples.

From Table III, we observe that the GAN and the TNBM
have practically the same U, despite having such a large
difference in (F , R, C) values. We conclude that while both
models generate new portfolios that happen to be similarly
low in risk when taking the smallest 5% of unseen and
valid portfolio risks, the TNBM is simply able to generate
more of them than the GAN (TNBM generates 4556 and
GAN generates 843, i.e., TNBM generates 5.4 times more
than GAN). We display these utility samples for TNBM in
Fig. 8, demonstrating the comparison of U relative to the
training distribution PTrain. We include the same figure for
the GAN in Appendix E.

Hence, the GAN is able to generalize to similarly low-
risk portfolios as the TNBM, but fewer in number and
less diverse than those of the TNBM. Our (F , R, C) met-
rics support that this generalization diversity is one of
the largest differences between our TNBM and our GAN.
Therefore, our TNBM model achieves superior perfor-
mance when looking to produce a large diversified batch
of new low-risk valid portfolios. We note that it remains
an open question as to why the TNBM’s performance is of
such high quality. Investigating the nature of the model’s
inductive bias remains an ongoing research effort and
opens an interesting opportunity to understand the power
of quantum and quantum-inspired models when compared
to their classical counterparts.

Lastly, we calculate the number of unique portfolios
each model is able to produce that have a lower associ-
ated risk than a critical cost in the training set c′(x). When
this critical value is equivalent to the sample with the low-
est risk in the training set, our TNBM on average is able
to beat our GAN with a 61:4 ratio. In other words, our
TNBM model is able to generalize to 61 unique portfolios
that have a lower risk than the lowest risk in the train-
ing set, while the GAN can only produce 4 (i.e., about
15 times less). We introduce this condition in Eq. (13)
on top of the other two metrics in order to have an addi-
tional layer to determine whether a model is suitable for
generalization. Note that one could adjust this critical cost
threshold c′(x) to relax the restriction. For example, when
c′(x) is equivalent to the risk taken at cutoff of the lowest
5% of samples in the training set, the TNBM-to-GAN ratio
becomes 6709:345 on average (about 19 times greater than
the GAN).

FIG. 8. Visualization of quality-based metrics for TNBM-
generated queries. The plot displays the number of portfolio
counts associated with given risk values. The pink spikes rep-
resent valid TNBM queries, whereas the gray spikes represent
the samples from the training set. Note that, for calculating our
metrics, we used Q = 105 queries, but the training distribution
only contains O(103) samples. We normalize the counts on the
y axis to provide a fair visual comparison between distributions,
and we set the utility threshold to t = 5%. Because the training
distribution is reweighted to favor lower risk values, the model
distribution learns this feature in the dataset, and generates an
even higher frequency of low risk values. The model queries
have a lower utility (pink dashed) than the training set (black
dashed), and the model is able to produce samples that have
lower risks than those in the training set. We see that our TNBM
model is able to effectively generalize to low-risk samples.

While the model might meet the sample quality require-
ments in Eqs. (11) and (12), it might be poor at finding
many samples with lower cost than c′(x), which is not ideal
when one is not only concerned with the global minimum,
but also with generating a large quantity of low-cost sam-
ples. Our GAN works well under these requirements. On
the other hand, our TNBM model shows good quality per-
formance for generalizing to both valid and quality-based
portfolios with high diversity and frequency.

VIII. SUMMARY AND OUTLOOK

In this work, we study the generalization performance
of generative models in the context of measuring practi-
cal quantum advantage. We highlight that developing new
approaches and frameworks to characterize the general-
ization capabilities of unsupervised generative models is
still an ongoing research area in both the classical and
quantum machine learning communities [31,33,41,43,44].
Thus, we first unify nomenclature for discussing practical
generalization in generative models, providing a relevant
summary of how our work diverges and complements the
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body of literature found in computational learning theory,
then introduce a novel quantitative framework with metrics
for identifying various behaviors with discrete datasets,
and, finally, demonstrate the robustness of our approach
by evaluating and comparing the generalization capabili-
ties of two well-known generative models: classical GANs
and quantum-inspired TNBMs. We highlight that the main
goal of our work is to provide this fundamental tool that
can be applied to a very difficult, open challenge in the
field of quantum machine learning: a robust framework
to assess classical and quantum generative models under
the same conditoins. This framework can then be used
to quantitatively compare classical and quantum-inspired
models for their generalization capabilities from a practical
perspective.

In future work, we are looking to use this approach to
evaluate and compare the practical generalization capa-
bilities of alternative models. We see the value in further
optimizing the hyperparameters of the GAN architecture,
and potentially consider different types of networks such
as recurrent neural networks and variational autoencoders,
to push their generalization capabilities. As our frame-
work is tailored towards discrete datasets, we are looking
to use this approach in the near future on hybrid and
fully quantum generative architectures as well. Previously,
it has been a challenge to develop frameworks that can
detect generalization in quantum circuits as we are capped
with training small-depth circuits [78]. With new meta-
learning techniques [79–81] among other pretraining and
initialization strategies [82], one may be able to train

FIG. 9. TNBM training curves for different bond dimensions.
We plot the KL divergence to monitor the training of the TNBM
for bond dimensions α ∈ {3, 5, 7, 9, 11}. The typical KL value
is achieved for α = 7 after 100 epochs, thus motivating our
choice to utilize this value for further studies and model compar-
isons. The inset provides a more detailed view of the loss curve
ordering.

TABLE IV. GAN hyperparameter values. The values labeled
with G (D) refer to the generator (discriminator). The hidden size
indicates the number of nodes in each hidden layer within G and
D, approximated to the same significant digit.

Hyperparameter GAN GAN-MC GAN+

Prior size 20 8 12
Hidden size (G) 20 6 6
Number of layers (G) 1 4 1
Learning rate (G) 0.02 0.051 0.001
Hidden size (D) 20 9 9
Number of layers (D) 1 3 1
Learning rate (D) 0.02 0.008 0.006
Negative slope (D) 0.02 0.007 0.010
Dropout (D) 10−5 0.024 0.107
Batch size 50 71 56

larger quantum circuits and use our approach to evaluate
generalization. Additionally, demonstrating generalization
capabilities on real quantum hardware would open up
interesting questions as to how noise may impact the gen-
eralization capabilities of the quantum circuit models. We
can use this framework as a fair comparison between
quantum models and their classical counterparts and we
can look into further applications where generalization
can deliver commercial value. Lastly, future research with
respect to improving the metrics themselves can be con-
ducted. We acknowledge that these metrics are a step
forward for the quantum community and should not be
taken as an end-all be-all solution. It would be interest-
ing to consider how the framework could be expanded; an
example of this would be introducing an additional met-
ric that measures the distance between data points in the
solution space.

In summary, the most prominent contribution of
this work is to introduce and use a framework to

TABLE V. Metrics’ values across various model behaviors.
The table displays the E and (F , R, C) values one obtains across
different model behaviors such as perfect generalization, per-
fect memorization/overfitting, generating predominantly noise
referred to as anomalous pregeneralization, and mode collaps-
ing (MC) on various bitstring types. We see that F will be null in
the cases where the number of unseen generated samples is zero.
Additionally, we provide an extra check that allows us to distin-
guish between cases in which the generalization metrics yield the
same results.

Model behavior E (F , R, C) Extra check

Perfect generalization 1 (1, 1, 1) Not Applicable
Perfect memorization 0 (null, 0, 0) |dgen| ∼ T
Anomalous pregeneralization ∼1 (0, 0, 0) |dgen| ∼ T
MC (unseen and valid) ∼1 (1, 1, ∼0) Not Applicable
MC (unseen and invalid) ∼1 (0, 0, 0) |dgen| � T
MC (seen and (in)valid) 0 (null, 0, 0) |dgen| � T
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unambiguously define and demonstrate generalization-
based practical quantum advantage in the generative mod-
eling domain. Generalization is the gold standard for
measuring the quality of a machine learning model. With
generative modeling having an edge over supervised mod-
els in the race for quantum advantage [11], we hope
this work opens the possibility to start this race on a
solid ground, and on datasets with commercial relevance
[27]. As shown here, training GANs and other state-of-
the-art classical generative models can be challenging to
the point that we report a superior performance from the
quantum-inspired generative models used here. Although

(a)

(b)

FIG. 10. Cardinality distribution for the GAN and random
sampler. The plots show the percentage of queries with differ-
ent cardinalities generated by the GAN (a) and by the random
sampler (b). We note that the GAN is able to produce a higher
number of queries with the correct cardinality k = 10 (or its
vicinity), thus showing that the training process allowed the GAN
to partially learn the validity pattern in the training dataset. The
black line represents the probability to draw a query with a given
cardinality when randomly sampling from the search space U .

TABLE VI. Pregeneralization and validity-based generaliza-
tion metrics. We display the average exploration E and the
average (F , R, C) values for each best model run with an aver-
age and the associated relative percentage error across 15 query
batches. Both the TNBM and the GAN achieve better perfor-
mance than the random sampler for all the different metrics,
except for the GAN coverage, as pointed out in the main text.

Metric TNBM GAN Random

E 0.989 (0.02%) 0.995 (0.02%) 0.998 (0.013%)
F 0.989 (0.03%) 0.263 (0.6%) 0.17 (0.50%)
R 0.978 (0.03%) 0.261 (0.6%) 0.17 (0.50%)
C 0.409 (0.15%) 0.006 (1.7%) 0.09 (0.48%)

we expect potentially better results from other classical
proposals, there is room as well to improve the quantum-
inspired versions explored here. There are also exciting
possibilities expected from purely quantum generative
models such as quantum circuit born machines [83], as
has been explored in recent subsequent work [36,84]. We
hope that this work incites both quantum and classical
ML experts to use this framework to enhance the perfor-
mance and design of their models, in this now quantitative
race towards demonstrating practical quantum advantage
in generative modeling.
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FIG. 12. Rate trends for an increasing number of queries. The
plot displays the constant behavior of rate R for both TNBM
(pink) and GAN (green) as we increase the number of queries Q
retrieved from the trained models. The dashed black line shows
the ideal metric value of 1. In both models, R is independent of
the number of generated queries.
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requires more samples than the TNBM to dip under the threshold.

FIG. 14. Utility trends for an increasing number of queries.
The plot displays the constant behavior of utility U for both
TNBM (pink) and GAN (green) as we increase the number of
queries Q retrieved from the trained models. The dashed black
line shows the threshold value of the training set U. Both the
GAN and TNBM remain under the threshold, independent of the
number of queries.
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APPENDIX A: TRAINING DETAILS

Here, we provide additional details on the training pro-
cess for both the quantum-inspired and the classical model.

TABLE VII. TNBM pregeneralization and validity-based gen-
eralization metrics’ values across multiple training datasets from
the same problem instance. We see that the metrics have similar
values across the ten datasets under examination with rela-
tive percentage errors (0.5%, 0.5%, 0.5%) for (F , R, C) values,
respectively. Thus, our metrics produce similar values across
multiple training datasets, demonstrating that they are indepen-
dent of the portion of training samples selected from the valid
space.

E F R C

0.989 0.982 0.971 0.405
0.989 0.978 0.968 0.406
0.989 0.971 0.961 0.401
0.989 0.984 0.973 0.407
0.989 0.983 0.973 0.406
0.989 0.985 0.975 0.407
0.989 0.978 0.967 0.405
0.989 0.977 0.967 0.404
0.989 0.987 0.977 0.406
0.989 0.987 0.977 0.409
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TABLE VIII. GAN pregeneralization and validity-based gen-
eralization metrics’ values across multiple training datasets from
the same problem instance. We see that the metrics have similar
values across the ten datasets under examination with mean stan-
dard deviations (13%, 13%, 30%) for (F , R, C) values, respec-
tively. Despite not being nearly as stable as the TNBM, we see
that our metrics produce similar values across multiple training
datasets, demonstrating that they are independent of the portion
of training samples selected from the valid space.

E F R C

0.999 0.249 0.249 0.0062
0.996 0.236 0.235 0.0062
0.996 0.309 0.307 0.0063
0.998 0.233 0.233 0.0042
0.995 0.181 0.179 0.0049
0.999 0.232 0.232 0.0061
0.997 0.274 0.274 0.0110
0.997 0.276 0.275 0.0071
0.999 0.239 0.239 0.0066
0.994 0.251 0.249 0.0077

The TNBM, whose underlying architecture is an MPS,
is trained with a DMRG approach [49] with the negative
loglikelihood cost function given in Eq. (17), and the opti-
mization is performed via stochastic gradient descent with
learning rate η = 1 × 10−2. The number of parameters for
the worst case in the TNBM is 1864 for our specific model
of α = 7. As the bond dimensions for each site are adjusted
throughout training, we see that the TNBM does not reach
the worst case, and instead has a total number of 1152
parameters. The total number of parameters can be cal-
culated by summing over the squared bond dimensions at
each site, and multiplying by a factor of 2.

In Fig. 9, we show the training curves for the TNBM
with several values of the bond dimension α, reporting the

TABLE IX. TNBM quality-based metrics’ values across vari-
ous training datasets from the same problem instance. The second
and last columns display the values for the training set, defined
as the U and the MV computed for the samples in DTrain. We
see that the TNBM’s U and MV are always less than the training
threshold. Additionally, the same low MV value that exists in the
fixed problem universe is generated independent of the training
set.

U UT MV MVT

0.1049 0.1064 0.1017 0.1018
0.1049 0.1065 0.1017 0.1034
0.1048 0.1067 0.1017 0.1018
0.1049 0.1064 0.1017 0.1031
0.1047 0.1062 0.1017 0.1033
0.1049 0.1065 0.1017 0.1027
0.1051 0.1068 0.1017 0.1036
0.1049 0.1065 0.1017 0.1029
0.1048 0.1064 0.1017 0.1039
0.1049 0.1062 0.1017 0.1021

KL divergence at each training epoch, that complete the
data presented in Sec. VII C 1. Once more, we stress that
we can detect trainability issues with our metrics that are
confirmed by the learning curve trends. However, if we
consider models that are successfully trained, we expect
that our metrics should be able to detect the overfitting
and underfitting regimes when varying the hyperparame-
ters (e.g., the bond dimension α that controls the TNBM
expressivity).

In the case of the GAN, the architecture is set to be a
feed-forward neural network with linear layers. The gen-
erator uses a Gaussian prior, rectified linear unit activation
function in the hidden layers and a sigmoid cost function
in the output layer. The discriminator uses a leaky rectified
linear unit activation function in all layers, along with a
dropout operation before the final layer. The optimization
is performed via the Adam algorithm [85]. The values of
the hyperparameters are shown in Table IV. The number
of total parameters in the GAN is the sum of the parame-
ters in the discriminator and the generator. For our specific
architecture, the number of parameters is computed in each
layer for the discriminator and generator, respectively. For
our GAN with one hidden layer, we have a total of 4181
parameters.

APPENDIX B: METRICS AND MODEL
BEHAVIORS

In Table V we provide a short guide to what one could
expect to see in our metric values E and (F , R, C) when
a model exhibits various training behaviors. This “cheat
sheet” can be used to quickly check whether the model
is perfectly overfitting (i.e., memorizing), perfectly gen-
eralizing, exhibiting mode collapse in different nuances,
or generating too many novel but noisy samples (i.e.,
anomalous generalization).

TABLE X. GAN quality-based metrics’ values across various
training datasets from the same problem instance. The second
and last columns display the values for the training set, defined
as the U and the MV computed for the samples in DTrain. We
see that the GAN’s U is always less than the training threshold;
however, this is not always true for MV, as the GAN has a lower
MV value only 70% of the time.

U UT MV MVT

0.1041 0.1064 0.1032 0.1018
0.1040 0.1065 0.1021 0.1034
0.1042 0.1067 0.1019 0.1018
0.1038 0.1064 0.1019 0.1031
0.1029 0.1062 0.1017 0.1033
0.1044 0.1065 0.1018 0.1027
0.1043 0.1068 0.1028 0.1036
0.1048 0.1065 0.1024 0.1029
0.1044 0.1064 0.1017 0.1039
0.1056 0.1064 0.1038 0.1021
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APPENDIX C: RANDOM SAMPLING AS
METRICS’ BASELINE

To better characterize the performance of the generative
models under examination, we compare their generaliza-
tion capabilities to a simple baseline: we sample randomly

from the search space U , thus collecting queries to com-
pute the validity metrics, and we compare the results to
those associated with the TNBM and the GAN. The met-
rics’ values are summarized in Table VI: as expected, both
generative models perform better than random sampling,

(a) (b)

(c) (d)

Full target (180 000 samples) MPS input (1848 samples)

GAN output (three million queries)
MPS output (three million queries)

FIG. 15. Two-dimensional visualizations of distributions. Panel (a) shows the 2D visualization of the exact data distribution defined
by the solution space S , where we see that a specific pattern emerges from the cardinality. In (b), we display the 2D visualization for
the training distribution, where the same distribution was given to both the TNBM and the GAN models. As shown in (c), it is very
remarkable that, with this very limited number of training patterns provided to each model, the TNBM is able to generate the pattern
from the data distribution almost exactly (as reflected in the metric values too). On the contrary, in (d) we see that while the GAN is
able to learn portions of the pattern, it struggles to reproduce this data distribution.
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which suggests that during the training process the mod-
els were indeed able to learn successfully, despite having
different degrees of success. However, the coverage met-
ric in the case of random sampling seems to be higher
than the GAN, and this trend persists even when consid-
ering different numbers of queries Q. What motivates this
behavior is the fact that the GAN suffers from mode col-
lapse: its limited diversity impacts the coverage values,
whereas the performance of random sampling is favoured
by its higher diversity capabilities. However, Fig. 10 shows
that the GAN [Fig. 10(a)] is able to generate more samples
in the valid space or its vicinity than the random sam-
pler [Fig. 10(b)], thus explaining the higher fidelity of the
former as opposed to the latter.

APPENDIX D: METRICS’ TRENDS

To further demonstrate the power and stability of our
metrics, we provide additional details regarding how they
scale as we vary the number of queries Q generated from
the trained model. Specifically, in Figs. 11–14, we plot the
values of the validity-based and quality-based generaliza-
tion metrics and show that most of them do not change with
the number of queries—except for coverage, as already
shown in Fig. 4, and for the minimum value that is dis-
played in Fig. 13. The validity-based trend plots display
the constant behavior of the metrics for both TNBM and
GAN as Q increases, along with a dashed black line indi-
cating the ideal metric value of 1. The quality-based trend
plots display the constant behavior of the utility metric for
both TNBM and GAN as Q increases, and a decreasing
behavior for the minimum value as Q increases. The latter
is the expected trend: with more queries, one has a higher
probability of reaching a sample with a lower cost value.
For both of these plots, we include a dashed black line indi-
cating the training threshold. These data support our claim
that while our metrics are sample based, most of them are
not dependent on the number of queries.

We further propose an investigation on the stability
of our approach across various training datasets DTrain.
Since a training dataset contains a subset of samples of
size T drawn from the solution space S , it is possible to
build different datasets from the same problem instance by
randomizing this sample-drawing procedure.

We present the raw data of each of our metrics obtained
using ten distinct datasets built from the same fixed prob-
lem instance. Thus, all the datasets share the same asset
universe, cardinality, and seen portion ε as stated in
Sec. VII A, and they simply differ for the training bit-
strings that get sampled from P(x). Tables VII–X show
the results we obtained for the different pregeneralization
condition and validity-based and value-based generaliza-
tion metrics across the ten different datasets, where each
line corresponds to one dataset. We see that the TNBM

beats the GAN for all (F , R, C) values. The relative per-
centage errors across the datasets for (F , R, C) values are
smaller for the TNBM (0.5%, 0.5%, 0.5%) than the GAN
(13%, 13%, 30%), demonstrating that the TNBM produces
more stable results across datasets. However, both stan-
dard deviations are small enough to show that our metrics
produce similar results across various training data.

For the quality-based metrics, we see that the MV for
the TNBM is always either equal or less than that of the
GAN. However, for U, the TNBM and the GAN trade-off
in being the winner. This is not a surprise, as in Table III
the TNBM and the GAN produced very similar values for
the utility. The same argument from Sec. VII D holds such
that both the TNBM and GAN are able to generate low-
cost samples. Simply, the TNBM contains more diversified
high-quality samples, which is not captured by the metric
U. An additional analysis on the stability of the different
generative models would be the investigation of their gen-
eralization capabilities across different problem instances,
especially those characterized by larger asset universes,
e.g., N = 500 (which would correspond to all the assets

FIG. 16. Visualization of quality-based metrics for GAN-
generated queries. The plot displays the number of portfolio
counts associated with given risk values. The green spikes rep-
resent valid GAN queries, whereas the gray spikes represent the
samples from the training set. Note that, for calculating our met-
rics, we used Q = 105 queries, but the training distribution only
contains 1848 samples, and hence the need for normalizing the
histograms. Here, we set the utility threshold to t = 5%. Sim-
ilar to the TNBM, the model distribution learns the low-risk
“bias” encoded in the training set, and generates more values
of low risk. However, unlike the TNBM, the model frequency
counts per query are higher, and the sample diversity is quite low.
The queries have a lower utility (green dashed) than the train-
ing set (black dashed), thus meeting the condition in Eq. (12).
Ultimately, no matter the query count, we see that the GAN can
reach low-risk queries, but simply has less diversity among them
in contrast to the TNBM.
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in the S&P500 index). We highlight here that our approach
is not limited to the relatively small universe size consid-
ered in this work, i.e., N = 20, that was chosen to allow for
a practically feasible comparison with quantum generative
models in the near term.

APPENDIX E: SUPPLEMENTARY FIGURES

We include supplementary figures to further demon-
strate some of our results. Specifically, in Fig. 15 we pro-
vide 2D visualizations of the data distribution [Fig. 15(a)],
the training distribution [Fig. 15(b)], and the output dis-
tributions of the trained TNBM [Fig. 15(c)] and GAN
[Fig. 15(d)] for a N = 20, k = 10 problem instance. In
the 2D image, every pixel is associated with one of the
2N bitstrings in the search space U , and its color encodes
the associated probability value. We can see that the bidi-
mensional representation of the data distribution displays a

nontrivial pattern defined by the solution space S . Remark-
ably, provided the small amount of samples that do not
demonstrate a very clear pattern in the training distribu-
tion, the TNBM and GAN are able to learn the unknown
correlations: in particular, the TNBM is able to almost per-
fectly infer the patterns in the data distribution from very
little information. This result is in alignment with our find-
ings in Sec. VII B that suggest that TNBMs are able to
infer the ground truth distribution from few training data,
as indicated by the value of KLTarget.

In Fig. 16, we provide a visualization of the GAN
quality-based generalization metrics in analogy to Fig. 8.
By comparing the two plots, we can see that both mod-
els reach the low-risk section of the spectrum, but the
TNBM samples exhibit more diversity than the GAN
ones.

In Fig. 17 we display a comparison of the training sta-
bility of TNBM and all the three GANs considered in

FIG. 17. Cardinality distributions of queries generated by multiple models during independent trainings. We represent cardinality
histograms obtained when taking Q = 105 queries from three independently trained instances of each model family (TNBM, GAN,
GAN-MC, GAN+). Each plot displays the cardinality distribution of the retrieved queries, along with the desired cardinality k =
10. We can see that the three TNBM models generate queries that always learn accurately the cardinality constraint, whereas the
GAN models show less training stability, which is known to be one of the issues affecting this class of classical generative models.
Specifically, for GAN and GAN+, we see that while each model always produces at least some valid queries, the centers and tails of
the distributions vary greatly for each instance. For GAN-MC, distinct trainings collapse onto different cardinalities, implying that the
model is not always guaranteed to generate valid queries.
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this work, showing how good each model is in capturing
the correct cardinality pattern encoded in the dataset. We
can detect the higher instability affecting GAN models, as
opposed to the MPS performance, which appears remark-
able. We highlight that even if the TNBM produces only
queries with a given cardinality, similar to the GAN-MC
histograms, the quantum-inspired model is not exhibiting
mode collapse onto an unseen and valid bitstring, as the
coverage is not negligible, as in the GAN-MC case (see
Table II).

In Fig. 18, we showcase the full data from which values
in Table I are extracted. Here, we demonstrate the aver-
age (F , R, C) values throughout five independent TNBM
trainings of α = 7. We show that, with each training itera-
tion, the metrics improve towards optimal (F , R, C) values.
To complement this information, we also plot the KL
divergence of the model’s output distribution relative to

the unknown data distribution (KLTarget) as well as the
model’s output distribution relative to the training dis-
tribution (KLTrain) for ε ∈ {0.01, 0.5, 1.0}. As discussed
in Sec. II, according to computational learning theory, a
model is able to generalize well if it can successfully
infer the ground truth data distribution given the amount
of training data available: we encode this information in
KLTarget, even though other metrics may be used for the
same purpose, such as the total variation distance [22]. As
we see that KLTarget < KLTrain across ε values, we can con-
clude that, in various training data regimes, the model is
able to output data that are closer to the ground truth than
the training data provided. We showcase the KL diver-
gence alongside the (F , R, C) values during training to
emphasize that our metrics agree with proposed evalua-
tion schemes in computational learning theory discussed
in Sec. II.

(a) (b)

(c) (d)
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FIG. 18. TNBM’s generalization performance throughout training across various ε values. Here, we show the relationship between
the model’s ability to learn the ground truth distribution with access to a restricted portion ε of the solution space, and the (F , R, C)
values computed throughout the model’s training. In panel (a), we see that KLTrain is always higher than KLTarget across ε val-
ues—indicating good inference performance. Panels (b)–(d) show that the model’s (F , R, C) values increase throughout training [note
that coverage is not defined (nan) for ε = 1]. The concurrent relationship between approximating the ground truth and obtaining high
(F , R, C) values suggests a positive correlation between our practical models’ performance benchmarking approach and computational
learning theory.
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