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The research experimentally demonstrates the direct electric current control of hyperchaotic packets of
dissipative dark envelope solitons that are self-generated in a microwave active ring resonator containing
two nonlinear elements: a one-dimensional magnonic crystal (MC) with dynamic line defect and a transis-
tor amplifier. The hyperchaotic packets of dissipative dark envelope solitons are formed at a magnetostatic
surface spin wave (MSSW) propagating in the MC and taking part both in three-wave nonlinear spin-wave
processes of decay and confluence. The transistor amplifier operates in output-power saturation mode. The
direct electric current flowing through a copper wire placed along the longitudinal axis of the MC creates
the dynamic line defect that effectively controls a duty factor of dissipative dark envelope soliton packets
and their hyperchaotic properties at the MC band gap only. The hyperchaotic nature of dissipative soliton
packets is confirmed by an estimation of the two highest Lyapunov exponents from the experimental time
series. The modified Vyshkind-Rabinovich model demonstrates the self-generation of a dark pulse train
at a decaying wave (MSSW) and a bright pulse train at the parametrically excited waves (the exchange
spin waves) due to two saturation mechanisms. One of them is connected with the parametric instability,
whereas the other one is caused by the increment nonlinearity. The developed self-generator may be of
great interest to reservoir-computing that is based on the concept of “computation at the edge of chaos.”

DOI: 10.1103/PhysRevApplied.21.044008

I. INTRODUCTION

Magnonic crystals (MCs) are one of the varieties of
the magnetic metamaterials [1] containing an artificially
created periodic structure, the period T of which is com-
parable to the spin-wave (SW) length λ [2–7]. The SW
with a wave number satisfying the Bragg resonance con-
dition (kB = nπ/T, where kB is the Bragg wave number,
n = 1, 2, 3 · · · is the index of the Bragg resonance) is
reflected from the periodic structure and does not pass to
the MC output. It leads to the formation of band gaps in the
SW spectrum that are analogues of the forbidden energy
bands of a solid crystal lattice. The loss at the MC band-
gap frequencies depend on the periodic structure length
and tend to infinitely large values for the periodic structure
of infinite length.

Nowadays, the one-dimensional (1D) [4,5,8], two-
dimensional (2D) [3,5,8,9], and even three-dimensional
(3D) [10] MCs have been created. Such MCs contain
either one (single-component) [4,5,8] or two (bicompo-
nent) [11,12] magnetic materials as well as the various
types of the static defects [13–17]. The properties of the
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MCs were studied experimentally by the use of both
microwave [4,14,17] and Brillouin light-scattering [5,8,17]
techniques. The spin-wave mode localization appearing in
such static MCs was caused by the presence of the demag-
netizing fields arising at the edges of the periodic structure
elements [8].

In magnonics, the dynamic MCs (DMCs) providing the
band-gap control by a direct electric current are of great
interest for the information storage systems and magnon
logic [18,19]. In the first DMC construction, the direct
electric current created the dynamic periodic structure due
to the spatial periodic modulation of an internal magnetic
field of an yttrium-iron-garnet (YIG) film. It led to the for-
mation of the band gaps, the parameters of which (depth
and width) were dynamically controlled by the changing
value and polarity of the electric current [18]. In another
DMC construction, the periodic structure was formed by
etching the width of the YIG waveguide according to the
periodic law and was static [19]. A magnonic band gap
was located inside the magnetostatic surface spin-wave
(MSSW) spectrum and was dynamically controlled by
the direct electric current flowing through two conduct-
ing wires. Both wires were placed on a homogeneous part
of the YIG waveguide near to its periodically modulated
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edges and were oriented perpendicularly to an external
static magnetic field. In this case, the conducting wires cre-
ated an additional static magnetic field that had opposite
direction to the external static magnetic field. As a result,
the internal magnetic field of the DMC had two minimums
in the places of the conducting wire locations and their
depths depended on the current values. Thus, the increase
in the direct current values led to the fact that the periodic
structure did not affect the MSSW propagation. However,
in both DMC designs, the band gaps were dynamically
controlled only in the linear regime.

In nonlinear magnonics, the MCs supporting four-wave
nonlinear spin-wave interactions are used both to form the
envelope gap solitons [20–23] and to create the various
types of nonlinear functional devices: the signal-to-noise
enhancers, the nonlinear phase shifters, and the switches
[24,25]. The linear and nonlinear properties of the MCs
are also used in the active ring resonators either to select a
dominant ring eigenmode [26], or to reduce the phase noise
of an oscillator [27], or to generate the chaotic dissipative
envelope solitons [28]. In the last case, the chaotic pulse
trains are formed inside the MC first band gap, when three-
and four-wave nonlinear spin-wave interactions coexist.

In recent years, an active ring resonator based on a YIG
waveguide supporting the MSSW propagation have been
considered as the object for practical reservoir-computing
(RC) applications [29]. Such a RC system exploited the
delayed response and strong nonlinearity of the MSSW
damping at high microwave power levels, for which the
active ring resonator operated in the single-mode genera-
tion regime. However, there is a concept of “computation
at the edge of chaos” that a RC system possesses maximal
computational power at a phase transition between regular
and chaotic regimes [30,31]. There is an analogy with the
brain, which maximizes own information capacity operat-
ing near such a critical state [32]. In Ref. [33], the authors
proposed the RC system based on the quenched chaos,
that was observed in the coupled chaotic Lorenz oscilla-
tors. The “explosive death” of chaotic oscillations ensured
the transition to the regular oscillations. In this case, the
reservoirs still remained in a regular regime during com-
putation, but were close enough to chaos. The information
capacity values obtained for the RC system using the cou-
pled chaotic oscillators were significantly higher than the
ones obtained for the RC system based on the coupled
regular phase oscillators.

In the paper, we represent a potential candidate for the
RC applications that are based on the concept of “compu-
tation at the edge of chaos.” It is the microwave active ring
resonator with a delayed feedback loop that contains two
nonlinear elements: a 1D MC supporting both three-wave
nonlinear spin-wave processes of decay and confluence
as well as a transistor amplifier operating in the output-
power saturation mode. The 1D MC contains a dynamic
line-defect—a conducting wire that is placed on the 1D

MC surface. Such auto-oscillation system self-generates
the sequences of hyperchaotic packets of dissipative dark
envelope solitons, inside of which the envelope has chaotic
behavior and outside them the envelope is approximately
constant. The direct electric current flowing through the
conducting wire greatly influences the durations of enve-
lope time intervals of constant and chaotic amplitudes
only when the self-generated signal is inside the MC band
gap.

II. EXPERIMENT

A. Generator setup

In Fig. 1, there is a scheme of the active ring resonator
that contains the 1D MC with the dynamic line defect, an
amplifying stage consisting of three amplifiers and a vari-
able attenuator. The 1D MC is the periodic structure of
crests and grooves with T = 200 µm, that is formed on
an YIG film surface with the use of etching and lithog-
raphy techniques. The crests and grooves have the same
width of 100 µm. The grooves are characterized by an
etch depth of 1 µm. The 1D MC possessing a length of
4 mm is made from a 10-µm-thick YIG film with a width
of 4 mm and a saturation magnetization of 1750 G. The
dynamic line defect is created by the direct electric current
flowing through a copper wire with a diameter of 100 µm
and a length of 4.5 mm that is placed along the longitudi-
nal symmetry axes of the MC. The distance between the
conducting wire and the YIG surface is of about 100 µm,
which makes it possible to exclude the effect of heating
through the MSSW propagation. The excitation and detec-
tion of the MSSW propagating in the MC is realized by
the use of two (input and output) microstrip transduc-
ers. Each transducer is 30 µm wide and 6 mm long. The
distance between them is 6 mm. The external static mag-
netic field H0 is in the plane and it is perpendicularly to
both the direction of MSSW propagation and the copper
wire. The choice of the bias magnetic field strength is due
to creating conditions for three-wave nonlinear spin-wave
interactions.

The amplifying stage consists of an input amplifier that
is a five-resonant drift-klystron amplifier as well as the
intermediate and output amplifiers that are the transistor
amplifiers. A signal power level at the MC entrance is
regulated by the variable attenuator and is measured by a
two-channel power meter. It also controls a signal power
level at the entrance of the output transistor amplifier oper-
ating in output-power saturation mode. A self-generated
microwave signal is fed through the directional couplers
to the entrances of a spectrum analyzer and a real-time
oscilloscope for analysis and further processing. The oscil-
loscope is characterized by a 10 GHz passband, a signal
sampling rate, and a memory depth equal to 20 GS/s and 2
million dots, respectively.
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FIG. 1. The scheme of the active ring resonator containing the
amplifying stage and the 1D magnonic crystal with dynamic line
defect.

B. Magnonic crystal with dynamic line defect

In Figs. 2(a) and 2(b), the amplitude-frequency
responses (AFRs) of the 1D MC measured by a net-
work analyzer in linear operation mode are presented. The
results are obtained for two values of H0. For each H0
value, three cases of the direct current applying to the
copper wire are considered: (1) the direct current is not
applied to the copper wire (I = 0); (2) the direct current
of positive polarity (the current direction coincides with
the direction of the MSSW propagation) is applied to the
copper wire (I > 0); and (3) the direct current of negative
polarity (the current direction is opposite to the direction
of the MSSW propagation) is applied to the copper wire
(I < 0). As follows from the results presented in Figs. 2(a)
and 2(b), the MSSW spectra measured in the absence of
direct current contain only one clear stopband correspond-
ing to the MC first band gap with kB1 = 157 cm−1 at n = 1.
For H01 = 356 Oe [see Fig. 2(a)], the stopband central
frequency is f01 = 2797 MHz and for H02 = 408 Oe [see
Fig. 2(b)] it is f02 = 3000 MHz.

There is an insert in Fig. 2(a) that shows a part of the
AFR measured near the first band-gap frequency f01, when
the direct current of different polarities is applied to the
wire. It can be seen that for the positive polarity current, the
first band gap is shifted towards the low frequencies and
for the negative polarity current it is shifted towards the
high frequencies. In both cases, the direct current induces
the magnetic induction (or the additional static magnetic
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FIG. 2. The AFRs (a),(b) and the amplitude responses (c),(d)
of the 1D MC measured in the absence (green solid lines) and
the presence (red and blue solid lines) of the direct electric cur-
rent. In (a),(c), the responses are obtained for H01 = 356 Oe and
in (b),(d) they are obtained for H02 = 408 Oe. In (c), the mea-
surements are carried out for fop ∼= f01 and in (d) for fop � f02.
The inserts in (a),(b) demonstrate the parts of the AFRs measured
in the absence and the presence of the direct electric current of
different polarities.

field Hdc), the direction of which either is opposite to the
H0 direction (see corresponding illustration in Fig. 1 for the
positive polarity current) or coincides with the H0 direction
(see corresponding illustration in Fig. 1 for the negative
polarity current). The dependence of Hdc orientation on
the direct current polarity is the main cause of the internal
static magnetic field (Hint) manipulation in the line-defect
region. For the positive polarity current, the Hint value in
the line-defect region must be decreased and for the neg-
ative polarity current it must be increased. Further, we
will confirm our assumptions with the results of numerical
simulations.

An insert in Fig. 2(b) shows a part of the AFR mea-
sured far from the first band-gap frequency f02 at two direct
current polarities. Although the influence of the induced
magnetic field Hdc on the internal magnetic field Hint has
the same character as in the previous case, however in con-
trast to the latter, the attenuation curve changes are less
pronounced. In this case, the resonant properties of the
band gap do not affect the signal attenuation levels.

Figures 2(c) and 2(d) demonstrate the management of
the 1D MC amplitude responses by applying the direct
electric current to the conducting wire. The measurements
are carried out at an operating frequency fop = 2790 MHz
that is placed either inside the first band gap (the frequency
fop is slightly below the frequency f01 for H0 = 356 Oe), or
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outside the first band gap (the frequency fop is placed far
from the frequency f02 for H0 = 408 Oe). For two H0 val-
ues, the amplitude responses contain both linear and non-
linear sections. The linear section corresponds to the linear
MSSW loss level and the nonlinear section corresponds to
the nonlinear MSSW loss. The input-power threshold Pth
possessing the microwatt values determines the beginning
of the MC nonlinear operation mode due to the parametric
three-wave decay of MSSW. This parametric three-wave
process satisfies the following conditions:

ωp = ω1 + ω2 + δ,

kp = k1 + k2,
(1)

where ωp , kp are the frequency and wave number of a
pump wave (in our case, it is the decayed MSSW), ω1,2,
k1,2 are the frequencies and wave numbers of the para-
metrically excited waves and δ is a detuning of the para-
metrically excited wave frequencies from the half-value
frequency of the decayed wave (the frequency detuning
from synchronism). For the degenerate case, when ω1 =
ω2 = ωs and δ = 0, the frequency ωs is equal to ωp/2.

In Fig. 3, the dispersion characteristics of the dipole
MSSW and the parametrically excited dipole-exchanged
SWs (DESWs) are presented. The MSSW dispersion curve
was calculated by the use of the Damon-Eschbach the-
ory [34], and the DESW curves were calculated by the
use of a dispersion equation obtained by Kalinkos and
Slavin in the unpinnned surface spin approximation [35].
It can be seen, that the operating frequency fop corre-
sponding to the pump frequency is located in the MSSW
spectrum and the half-value of the operating frequency
(fop/2) is placed in both the dipole backward volume MSW
(BVMSW) and exchanged SW (ESW) spectra. If the oper-
ating frequency is fixed, then the increase in the H0 value
leads to the decrease in the MSSW wavenumber value kop
corresponding to the frequency fop . In the last case, the fre-
quency fop/2 tends to the “bottom” of the DESW spectrum.
It should be noted that the parametrically excited dipole
BVMSW and ESWs propagating in the YIG film plane
transversally to the MSSW direction of propagation can
take part simultaneously in three-wave parametric conflu-
ence processes that can lead to the appearance of satellites
of the first and second types [36,37].

Three-wave parametric decay of MSSW is a nonlinear
process that begins from the threshold power level pos-
sessing a minimal value relative to the higher-order (for
instance, four-wave) parametric spin-wave interactions.
This threshold depends on the frequency, external static
magnetic field, MSW wavenumber and saturation magne-
tization. For the fixed operating frequency located in the
MSSW spectrum, the power threshold is decreased with
increasing of H0 value. It is due to the power threshold
has a minimal value for the MSSW wave numbers placed
near the ferromagnetic resonance frequency. The similar
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FIG. 3. The dispersion characteristics of the dipole MSSW
and three first modes of the dipole-exchanged SWs obtained for
two values of H0: (a) 356 Oe and (b) 408 Oe. The calculation
results are plotted on a semilogarithmic scale and performed for
f|| = γH0, f⊥ = √

f||(f|| + fm), fm = 4πγM0, γ = 2.8 MHz/Oe,
4πM0 = 1750 G, as well as for the YIG thickness 10 µm and for
the exchange constant q = 3 × 10−12 cm2.

trend is observed for the three-wave power thresholds pre-
sented in Figs. 2(c) and 2(d) in the absence of the direct
current. So at H0 = 356 Oe, the power threshold Pth has a
value of −15 dBm that is decreased to a value of −20 dBm
at H0 = 408 Oe. Note, that the reflective properties of the
MC first band gap do not affect the threshold of three-wave
parametric processes, since the latter begin at the YIG film
entrance before the start of the MSSW reflection from the
periodic structure. The changes in the direct-current value
from +500 to −500 mA give the same changes of the
input-power thresholds of about 2 dB for two H0 values.
As a result, the dynamic range of the input-power threshold
does not depend on the band-gap resonant properties.

In turn, the band-gap resonant properties great influence
both linear and nonlinear MSSW loss. From the results
presented in Fig. 2(c) it follows that the MSSW linear
loss level is increased significantly for the direct current
of positive polarity and decreased for the direct current
of negative polarity. As a result, the dynamic range of the
MSSW linear loss is of about 4 dB. It can be explained that
for the positive polarity current, the band-gap frequency
tends to the operating frequency and for the negative polar-
ity current the band-gap frequency tends to move away
from the operating frequency. As follows from the results
presented in Fig. 2(d), the band-gap resonance proper-
ties do not greatly affect the MSSW linear loss level. In
this case, the dynamic range of the MSSW linear loss is
decreased to the value of 1.5 dB.

The highest dynamic range for the MSSW nonlinear loss
is also observed for H0 = 356 Oe. It has a maximum value
of about 3 dB, when the input power exceeds the Pth (for
I = 0) by 1 dB, and this value is practically constant for
all higher Pin values. For H0 = 408 Oe, the dynamic range
of the MSSW nonlinear loss depends on the current polar-
ity, only when the input power exceeds the Pth (for I = 0)
no more than 7 dB only. For Pin > −12 dBm, the MSSW
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nonlinear losses do not depend on the current polarity and
remain constant. Thus, by applying the direct electric cur-
rent of different polarity to the wire conductor, it becomes
possible to control not only the MSSW linear loss, but also
the MSSW nonlinear loss levels.

To confirm our assumptions about influence of the direct
electric current polarity on the internal magnetic field
transformation in the dynamic line-defect region, we cal-
culated the spatial distributions of the Hint intensity for
two values of both the current polarity and external static
magnetic field. The calculations were performed using the
COMSOL Multiphysics. The results of these calculations are
presented in Figs. 4(a) and 4(b). It is shown that in the
absence of the direct current, the Hint intensity is practi-
cally equal to the H0 intensity (Hint ∼= H0) for the central
part of the YIG waveguide that is typical for the tangen-
tially magnetized YIG waveguides. The presence of the
direct current of positive polarity leads to the decrease in
the Hint intensity in the dynamic line-defect region, where
Hint ∼= H0 − Hdc, and, vice versa, for the negative polar-
ity current, the Hint intensity is increased in this region,
where now Hint ∼= H0 + Hdc. For both values of H0, the
transformation of Hint value in the line-defect region is of
about 10 Oe for I = ±800 mA and of about 2.5 Oe for
I = ±200 mA.

(a) (b)

(c) (d)

H0 = 356 Oe H0 = 408 Oe

H0 = 356 Oe H0 = 408 Oe

fop f01
thth fop

th f02
th

FIG. 4. (a),(b) The spatial distributions of the internal mag-
netic field intensity in the cross section of the 1D MC and (c),(d)
the AFRs of the 1D MC calculated for the absence (solid green
curves 4) and the presence (dashed curves) of the direct elec-
tric current of different polarities. Dashed red curves 1, 2, and 3
correspond to the positive polarity current of +200, +500, and
+800 mA, respectively. Dashed blue curves 1’, 2’, and 3’ corre-
spond to the negative polarity current of −200, −500, and −800
mA, respectively. In (a),(b), the results are obtained for d/2 and
in (c),(d), the ones are obtained for I = ±800 mA. In (a),(c),
H0 = 356 Oe and in (b),(d), H0 = 408 Oe.

In the next step, we use the Hint profiles obtained in
the COMSOL Multiphysics for various current polarities to
simulate the 1D MC AFRs in the MuMax. In Fig. 4(c),
there are simulation results that show how the Hint trans-
formation affects the MC first band-gap shift for H0 =
356 Oe. It is shown that for the positive polarity cur-
rent, the band gap is shifted towards the low frequencies
and, vice versa, for the negative polarity current the band
gap is shifted towards the high frequencies. If the fitted
operating frequency f th

op is slightly lower than the calcu-
lated first band-gap frequency f th

01 [see black dashed lines
in Fig. 4(c)], then the MSSW linear losses are increased
for the positive polarity current, and, vice versa, for the
negative polarity current they are decreased. These results
confirm the dependencies of the MSSW linear loss on the
current polarity obtained in the experiment [see Fig. 2(c)].

In Fig. 4(d), we demonstrate the management of the
MSSW linear loss in the absence of the calculated first
band-gap frequency f th

02 near the operating frequency f th
op .

The AFR simulation was performed for H0 = 408 Oe. It
can be seen that, in contrast to the previous case, apply-
ing the direct current of different polarity does not lead
to a significant change in the MSSW linear loss level
near the frequency f th

op . These results are in a good agree-
ment with the experimental data presented in Fig. 2(d).
Thus, the obtained simulation results clearly illustrate the
transformation both the internal magnetic field and MSSW
linear loss under the action of the direct electric current of
different polarities.

C. Drift-Klystron and transistor amplifiers

The amplifying stage consists of the two broadband
transistor amplifiers operating in the frequency range 2–4
GHz and the narrowband drift-klystron amplifier operat-
ing at the frequency of about 2.8 GHz. The drift-klystron
amplifier and the intermediate (transistor) amplifier oper-
ate in the linear amplification mode and the output (tran-
sistor) amplifier operates in the output power saturation
mode. In Fig. 5(a), the AFR of the drift-klystron ampli-
fier measured in the linear operation mode is presented.
It is shown, that the maximum signal amplification is
observed at a central frequency of the klystron amplifier
f0 = 2797 MHz. When the drift-klystron amplifier is used
in the ring generator scheme, the first band gap of the
1D MC is tuned to the frequency f0. This is necessary in
order to create the amplitude and phase conditions for the
pulse signal generation in the band gap, where a duty fac-
tor of the pulse signal will be most effectively controlled
by the direct electric current. The amplitude response of
the transistor amplifier, that is the output amplifier of the
amplifying stage, is shown in Fig. 5(b). The amplitude
response measured at the frequency f0 contains the non-
linear section, where the output power is saturated and
remains practically constant in all input power region. In
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FIG. 5. (a) The AFR of the drift-klystron amplifier measured at
the input power Pin = −30 dBm and (b) the amplitude response
of the output transistor amplifier measured at the frequency f0 =
2797 MHz.

this nonlinear mode, the output amplifier operates in the
ring generator.

D. Self-generation of hyperchaotic dissipative dark
envelope solitons inside the band gap

1. Current control is absent

In Fig. 6, the power spectrum, time series, and phase
portrait of the chaotic packets of dissipative dark envelop
solitons are presented. The pulse trains are obtained at the
ring gain G = K − A = 31 dB (where K is an amplifying
stage gain and A is the total loss in the ring), when the
direct electric current is not applied to the copper conduc-
tor (I = 0). In this case, the average power of the pulse
signal measured at the MC entrance is Pin = +3 dBm
exceeds the threshold of three-wave parametric decay by
18 dB. This is a value of a supercriticality parameter. The
average power of the pulse signal measured at the out-
put amplifier entrance (the second nonlinear element) is
Pin = +5 dBm that corresponds to the saturation mode of
the output power [see Fig. 5(b)].

From the results presented in Fig. 6(a), it follows that
a microwave signal with a noiselike spectrum is self-
generated at a ring resonator dominant eigenmode only,
because the klystron amplifier limits the wide spectrum of
the ring eigenmodes and does not allow the development
of the multimode self-generation. The central frequency of
the noiselike spectrum is located near the frequency f01.
In the time domain [see Fig. 6(b)], a dark envelope pulse
packet train is formed. The pulse packets are self-generated
through a balance between amplification and MSSW non-
linear loss produced by the nonlinear three-wave paramet-
ric decay. The MSSW dispersion is not involved in this
balance. Such localized in time domain structures that are
formed in an open, nonlinear, and nonequilibrium system
can be classified as the dissipative solitons [38].

The amplitude and phase profiles of the dark pulse pack-
ets are calculated on the basis of the experimental time
series, which are the first subject to digital processing
for filtering of quantization noise, and then to the Hilbert
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FIG. 6. The characteristics of the hyperchaotic train of pulse
packets consisting of the dissipative dark envelope solitons mea-
sured for H0 = 356 Oe: (a) the microwave power spectrum,
(b),(d),(e),(f) the time series of the amplitude (upper panel) and
phase (lower panel) of the envelope, and (c) the projections of
a phase portrait on the parameter plane (A(t), A(t + τd)), where
τd = 100 ns—a time delay of the ring resonator.

transformation. As a result of the mathematical processing,
the microwave filling has been excluded from the further
consideration and the phase ψ of the envelope has been
determined as ψ = ψ0 − ωct, where ψ0 is the total phase
of the Hilbert-conjugated signals and ωc is the frequency
corresponding to that of the “center of masses” of the
microwave signal spectrum. Note that the instantaneous
phase determination via the Hilbert-conjugated signal is
correct even in the case of the chaotic signal generation,
since the signal spectrum contains a well-pronounced fre-
quency for which the notion of instantaneous phase can be
used [39].

As follows from the results presented in Figs. 6(b),
6(d)–6(f), the time intervals of approximately constant
envelope are interrupted unpredictably by the time inter-
vals of envelope chaotic oscillations. However, the time
intervals of chaotic oscillations are much shorter than the
time intervals of constant amplitude. Such unpredictable
disruptions in the microwave signal generation can be clas-
sified as the “explosive death” of oscillations possessing
the approximately constant amplitude and appearance of
chaotic oscillations. This critical regime is the inverse of
the “amplitude death” of large-amplitude chaotic oscil-
lations [40], but also can be used in the RC systems
supporting the concept of “computation at the edge of
chaos.”

Each dark envelope pulse packet has the averaged width
Td1 of about 0.9 µs and the averaged repetition rate fam1
of about 100 kHz, which corresponds to the automodu-
lation frequency of the ESWs parametrically excited by
the decaying MSSW. The averaged duty factor q of the
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pulse packets is about of 11. Each packet consists of sev-
eral narrow “dips,” the intensity and repetition interval of
which are varied chaotically. The amplitude and phase pro-
files of the dips look like the amplitude and phase profiles
of the dark envelope solitons. Usually, one of the dips
of each packet, has the amplitude that drops to zero, and
the phase that undergoes a jump of 180◦ inside the dip.
The dip is similar to the black envelope soliton possess-
ing a duration Td2 of about 30 ns that is determined by the
bandwidth of the drift-klystron amplifier. For the remain-
ing dips of a packet, the amplitude does not drop strictly
to zero, and the phase inside it does not undergo a 180◦
jump. These dips look like the gray envelope solitons. As
shown in Figs. 6(d)–6(f), the dark (gray) envelope pulses
inside each packet have the averaged repetition rate fam2 of
about 8 MHz, that corresponds to the first-order satellites
[36]. Such satellites are the secondary MSSWs produced
as a result of three-wave confluence processes of paramet-
rically excited ESWs [37]. The four-wave nonlinear inter-
actions are probably not observed in this experiment, since
in the investigated single-mode system there is no multi-
mode frequency comb inherent for such interactions [41].
The complex dynamics of the ring generator is evidenced
by the “blurred” structure of the attractor [see Fig. 6(c)].
The phase portrait is plotted using the experimental time
series and the Takens theorem [42], which is employed
for attractor reconstruction from the experimental time
series.

To confirm the chaotic nature of the envelope pulse
packet train, two large LEs were calculated from the exper-
imental time series. The calculations were carried out
according to the algorithm described in Ref. [43]. It was
found that both LEs are positive and have the values of
λ1 = 1.61 µs−1 and λ2 = 0.09 µs−1. Their positive val-
ues indicate that the self-generated pulse packets of the
dissipative dark envelope solitons are hyperchaotic.

In contrast to the hyperchaotic dark multisoliton com-
plexes described in Ref. [44], the hyperchaotic dark pulse
packets presented here possess more duration and have
not partial chaotic synchronization of both the ring eigen-
modes and the spin-wave automodulation frequencies.
As a result, the narrow dark pulses embedded in long
dark pulses do not have a clear quasiperiod, and their
amplitude varies chaotically. Besides, two highest LEs
calculated for the hyperchaotic dark multisoliton com-
plexes described in Ref. [44] have the same order of
magnitude, but in our case they differ by an order of
magnitude.

Next, we will show the management both of the
average duty factor of hyperchaotic pulse packets and
the partial chaotic synchronization of the narrow dark
envelope pulses inside the packets thought the change
in the MSSW nonlinear loss level by applying the
direct current of different polarities to the line-defect
region.
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FIG. 7. The amplitude (upper panel) and phase (lower panel)
profiles of the hyperchaotic train of pulse packets consisting of
the dissipative dark envelope solitons measured for H0 = 356 Oe
for the direct electric current I of positive polarity: (a) +320 mA,
(b) +800 mA and of negative polarity: (c) −100 mA and (d)
−200 mA.

2. Current control is present

In Fig. 7, we demonstrate the dynamic control of the
hyperchaotic packets of the dissipative dark envelope soli-
tons by applying the direct electric current of different
polarity to the wire conductor. At the positive polarity cur-
rent I = +320 mA [see Fig. 7(a)], the averaged repetition
rate of the pulse packets is increased to a value of about
fam1 ∼= 250 kHz (the averaged duty factor is decreased to
q ∼= 4.4), but the pulse packet width does not change. For
this current polarity, the MSSW nonlinear loss level is
increased [see Fig. 2(c)] and it leads to the increase in both
the supercriticality parameter and associated with him the
automodulation frequency of the parametrically excited
SWs. The duration of the narrow dark envelope solitons
embedded in the long dark pulses is not changed and their
intensity and repetition interval vary still chaotically.

The characteristics of the envelope pulse packets begin
to change strongly at I = +800 mA [see Fig. 7(b)]. In
this case, the averaged repetition rate and the averaged
width of the envelope pulse packets are increased to fam1 ∼=
350 kHz (q ∼= 1.6). The number of narrow dark enve-
lope pulses in each packet is increased and these envelope
pulses have a clear quasiperiod. Some pulse packets have
the form of a multisoliton complex, which contains repeat-
ing sequences of six narrow dark envelope solitons, the
phase between them is varied by a value of about π/3.
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Such pulse behavior can be explained by the creation of
strong inhomogeneous decreasing internal magnetic field
in the line-defect region at I = +800 mA [see Fig. 4(a)].
We believe that at the band-gap frequencies in the absence
of the positive polarity current, the MSSW parametrically
excites DESWs only near the microstrip line due to the
MSSW reflection from the periodic structure, i.e., in the
line-defect region at I = 0, there is no three-wave paramet-
ric decay of the MSSW. The applying of the positive polar-
ity current leads to the decrease in the MSSW parametric
threshold in the line-defect region (a MSSW wave number
is increased here) and, as a consequence, to the parametric
excitation of the ESWs in the line-defect region. The wave
numbers of these ESWs are greater than the wave num-
bers of the ESWs parametrically excited by MSSW near
the microstrip line, where the internal magnetic field inten-
sity does not change. As a result, the frequency detuning
�f from the frequency fop/2 for such short-wave ESWs
is decreased [45] in the line-defect region. In turn, the fre-
quency detuning �f determines the value of the frequency
fam2 appearing due to the three-wave parametric confluence
processes. Thus, at I = +800 mA the interval of values
of the automodulation frequency fam2 expands because the
interval of ESW wave number expands too. It leads to the
mutual overlap of the automodulation frequencies fam2 and
their partial synchronization as well as to the increase in
the pulse packet width.

For the positive polarity current, both LEs are positive
and have the values of λ1 = 2.45 µs−1, λ2 = 1.28 µs−1 for
I = +320 mA and λ1 = 8.88 µs−1, λ2 = 5.17 µs−1 for
I = +800 mA. For this current polarity, both LEs grows
and the difference between them is decreased. The LE val-
ues calculated for I = +800 mA practically correspond to
the LE values obtained for hyperchaotic dark multisoliton
complexes in Ref. [44].

For comparison, Fig. 8 shows the hyperchaotic dark
multisoliton complexes obtained in two different experi-
ments. One of them exploits the positive current-controlled
1D MC active ring resonator and the other uses the active
ring resonator based on a L-shaped magnonic waveguide
[44]. It is shown that in both experiments the amplitude
of the narrow dark envelope pulses is increased from the
edge of the long dark pulse to its central part. In contrast
to the multisoliton complex shown in Fig. 8(a), the mul-
tisoliton complex presented in Fig. 8(b) contains repeated
sequences of four narrow dark envelope pulses, the phase
between which is varied by π/2.

For the negative polarity current [see Figs. 7(c) and
7(d)], the averaged repetition rate of the pulse packets
is decreased and reaches the minimum value of about
fam1 = 13 kHz (the averaged duty factor is increased to the
maximum value q ∼= 80) at I = −200 mA [see Fig. 7(d)].
The automodulation frequency fam2 appearing due to the
three-wave parametric confluence processes and the pulse-
packet width are practically constant in this case. It has the
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panel) profiles of the hyperchaotic dark multisoliton complexes
obtained in the active ring resonators containing in a feedback
loop either (a) the 1D MC possessing the dynamic line defect (for
I = +800 mA and H0 = 356 Oe) or (b) the L-shaped magnonic
waveguide without dynamic control [44].

following explanation. In this case, the increasing internal
magnetic field in the line-defect region [see Fig. 4(a)] pro-
vides the decrease in both the supercriticality parameter
[see Fig. 2(c)] and associated with it the automodulation
frequency fam1 appearing due to the three-wave paramet-
ric decay processes. The MSSW parametric threshold is
increased in the line-defect region (a MSSW wave num-
ber is decreased) and ESWs are not excited here. Thus,
the frequency detuning �f and associated with it the
automodulation frequency fam2 does not change.

We also calculated the two highest LEs for the neg-
ative polarity current and found that for I = −100 mA
they remain positive and equal to λ1 = 1.68 µs−1, λ2 =
0.11 µs−1. However, for I = −200 mA, only one large
LE is positive λ1 = 0.3 µs−1, while the other one becomes
negative λ2 = −0.87 µs−1. Thus, the variation of the cur-
rent polarity from positive to negative leads not only to
an increase in the duty factor of pulse packets by 50
times, but also to the change of the generation mode from
hyperchaotic to chaotic.

E. Self-generation of hyperchaotic dissipative dark
envelope solitons outside the band gap

1. Current control is absent

In Fig. 9, there are the results of the microwave pulse
signal self-generation, when its carrier frequency is located
outside the MC band gap. The dark pulse packets are
obtained at the ring gain G = 25.5 dB, when the direct
electric current is not applied to the copper conductor
(I = 0). In this case, the average power of the pulse sig-
nal measured at the MC entrance is Pin = +3 dBm and
at the output amplifier entrance is Pin = +1.5 dBm. For
these power levels, both nonlinear elements operate in the
nonlinear mode. As follows from the results presented in
Fig. 9(a), the microwave signal with a noiselike spectrum
is also self-generated at the frequency of the dominant ring
eigenmode, which is located near the frequency f01. In the
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FIG. 9. The characteristics of the hyperchaotic train of pulse
packets consisting of the dissipative dark envelope solitons mea-
sured for H0 = 408 Oe: (a) the microwave power spectrum,
(b),(d),(e),(f) the time series of the amplitude (upper panel) and
phase (lower panel) of the envelope, and (c) the projections of a
phase portrait on the parameter plane (A(t), A(t + τd)).

time domain [see Fig. 9(b)], the dark pulse packets con-
taining the black and gray dissipative envelope solitons are
formed. The averaged repetition rate of the pulse packets
and their averaged duty factor q are the same values as
for H0 = 356 Oe. As shown in Figs. 9(d)–9(f), the dark
(gray) envelope pulses located inside each packet have
also the same repetition rate as in the previous case. For
H0 = 408 Oe, the complex dynamics of the ring generator
is evidenced by the “blurred” structure of the attractor [see
Fig. 9(c)]. It has a similar view as for H0 = 356 Oe [see
Fig. 6(c)]. Thus, the hyperchaotic packets of dissipative
dark envelope solitons self-generated at I = 0 both inside
and outside the MC band gap have similar characteristics
at the same input-power level.

2. Current control is present

In Fig. 10, the dynamic control of the pulse packets
through the applying the direct electric current of differ-
ent polarity to the wire conductor is demonstrated. At the
positive and negative polarity of the direct current, the
averaged width Td1 and the averaged repetition rate fam1
are increased. In both cases, fam1 ∼= 300 kHz and q ∼= 1.7.
Besides, for both current polarity, the dark pulse packets
become wider than in the absence of current control. We
have the following explanations for the observed phenom-
ena. We assume that at the frequencies outside the band
gap, in the absence of current, the DESWs can be para-
metrically excited by MSSW not only near the microstripe
line, but also in the line-defect region, because there is
no MSSW reflection from the periodic structure. Apply-
ing the direct current of different polarity leads to the
excitation of DESWs, the wave numbers of which in the
line-defect region differ from the wave numbers of DESWs
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FIG. 10. The amplitude (upper panel) and phase (lower panel)
profiles of the dissipative dark envelope soliton trains measured
at H0 = 408 Oe different type current polarity: (a) I = +300 mA
and (b) I = −300 mA.

excited near the microstrip line. It should be noted that the
MSSW propagating in the line-defect region will have a
power above the parametric threshold even for the negative
polarity current. In this regard, the parametrically excited
DESWs affect the width of dark pulse packets both for the
positive and negative polarity current, that is observed in
the experiment. Also we note, that the change in the current
polarity leads to the increase in both the MSSW nonlinear
loss level and the supercriticality parameter [see Fig. 2(d)].
As a result, the automodulation frequency fam1 is increased
for both current polarities.

In contrast to the direct current control of the MSSW
nonlinear loss level inside the band gap, two highest LEs
remain positive both for positive and negative current
polarity, when the direct current control of the MSSW non-
linear loss level is realized outside the band gap. So for the
positive current polarity (I = +300 mA), λ1 = 2.21 µs−1,
λ2 = 0.68 µs−1 and for the negative current polarity (I =
−300 mA), λ1 = 4.22 µs−1, λ2 = 2.21 µs−1. Thus, if both
the MSSW nonlinear loss level is increased only, then the
transition from the hyperchaotic generation mode to the
chaotic one is not observed.

III. MODIFIED VYSHKIND-RABINOVICH
MODEL

The Vyshkind-Rabinovich model is a well-known para-
metric model created to describe turbulence in a dissipa-
tive medium with a hydrodynamic type of nonlinearity
[46]. In this model, one of three parametrically interac-
tion waves possessing linear increment is decayed into two
waves that have damping in a linear approximation. The
Vyshkind-Rabinovich model is described by three first-
order ordinary differential equations that are written for the
real variables. In Ref. [47], a similar model with one and a
half freedom degrees was constructed for a ferromagnetic
film active ring resonator supporting both the parametric
decay of the MSSW into ESWs and the MSSW linear
amplification. This model was developed on the basis of
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the joint integration of the nonlinear motion equation of
magnetization and the magnetostatic equations using the
decomposition of the variable magnetization in terms of
spin-wave modes and Green’s tensor functions of the mag-
netostatic equations. Our modification of the Vyshkind-
Rabinovich model is to use a nonlinear gain function. This
approach allows us to describe the amplitude characteris-
tic of a transistor amplifier, which does not have a falling
section.

The suggested modified Vyshkind-Rabinovich model is
developed to describe the formation of deep dips on the
constant envelope background of the direct MSSW cir-
culating in the active ring resonator. The model does not
describe the interaction of direct and reflected MSSWs
propagating in the 1D MC and it is valid only for the direct
MSSW interacting with the parametrically excited SWs at
some point in space. In such simple model, the MC band-
gap influence on the direct MSSW nonlinear loss level
and its dependence on the direct-current polarity will be
taken into account through the fitting the frequency detun-
ing from synchronism δ [see (1)]. As is well known, the
parameter δ tends to the minimal values with decreasing of
the supercriticality parameter and to the maximum values
with increasing of it.

A model diagram of an active ring resonator containing
two nonlinear elements is shown in Fig. 11. One of them
is a ferromagnetic medium that supports the parametric
decay of a high-frequency mode into two lower-frequency
modes, for which condition (1) is satisfied. The other
nonlinear element is an inertia-free amplifier, the output
amplitude of which is saturated and remains constant with
the increase in the input amplitude. It is assumed that
the output and entrance of the previous nonlinear ele-
ment are series connected with the entrance and output of
the subsequent nonlinear element without delay. For such
ring resonator, a modified Vyshkind-Rabinovich model is

FIG. 11. The model diagram of the active ring resonator con-
taining two nonlinear elements: a ferromagnetic medium sup-
porting parametric three-wave decay (top element of the dia-
gram) and a nonlinear amplifier (bottom element of the diagram).

written as

∂m(t)
∂t

= −c0b1(t)b2(t) exp(−j δt)− ηm(t)+ γ×
× {1 − tanh[α|m(t)|]}m(t),

∂b1(t)
∂t

= c1m(t)b∗
2(t) exp(j δt)− νb1(t),

∂b2(t)
∂t

= c2m(t)b∗
1(t) exp(j δt)− νb2(t),

(2)

where m(t) is the envelope complex amplitude of the
decayed wave, b1,2(t) are the envelope complex amplitudes
of two parametrically excited waves, γ is the linear incre-
ment of the decayed wave, α is its increment nonlinearity
parameter, η is the decrement of the decayed wave, ν is the
decrement of the parametrically excited waves, c0, c1, and
c2—the arbitrary coefficients.

If the increment nonlinearity parameter is equal to zero
(α = 0), then the modified Vyshkind-Rabinovich model
(2) corresponds to the well-known Vyshkind-Rabinovich
model [46,47]. The model (2) describes the dynamics of
the dissipative systems possessing two saturation mecha-
nisms. One of them due to the parametric decay and the
other one is connected with the output amplitude saturation
of the amplifier [see Fig. 5(b)].

The fitting of the frequency detuning from synchronism
δ will be done for the one experimental case only, when
the pulse sequences are self-generated inside the band gap.
The fit will be considered as good, when the automodu-
lation frequency fam1 of the calculated and experimental
pulse sequences will coincide with each other.

IV. CALCULATION RESULTS

The system (2) of the first-order ordinary differential
equations was solved by the fourth-order Runge-Kutta
method. The values of the parameters c0, c1, and ν were
taken from Ref. [47]. The increment nonlinearity param-
eter a was chosen in such a way that the amplitude of
the decayed wave was limited by nonlinear amplification.
We assume that the amplitudes of parametrically excited
waves are equal to each other. In Fig. 12, there are the
calculation results obtained for the modified Vyshkind-
Rabinovich model, when the frequency detuning from
synchronism δ is varied. It is shown that simultaneous
presence of two saturation mechanisms is the reason for
the formation of a flat amplitude plateau at the decayed
wave. On this plateau, the periodic sequence of the nar-
row “dips” corresponding to the dark envelope pulses is
observed. In contrast, the periodic sequence of the bright
envelope pulses is formed on the parametrically excited
waves. For the frequency detuning δ = 10−55 µs−1 [see
Fig. 12(a)], the repetition rate of both dark and bright enve-
lope pulses is of about 100 kHz that well corresponds to
the experimental value of fam1 obtained for the long dark
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FIG. 12. The periodic sequences of the dark envelope pulses
(upper panel) and bright envelope pulses (lower panel) calcu-
lated for two values of frequency detuning δ : 10−55 µs−1 (a)
and 10−20 µs−1 (b). The calculations were performed for c0 =
1497 µs−1, c1 = c2 = 745 µs−1, γ = 45 µs−1, ν = 9 µs−1,
η = 5 µs−1, and α = 50.

pulse self-generation at I = 0 [see Fig. 6(b)]. Reducing
the frequency detuning to δ = 10−20 µs−1 [see Fig. 12(b)]
leads to increasing in the repetition rate of the dark and
bright envelope pulses to the value of about 250 kHz. This
value also well corresponds to the experimental value of
fam1 obtained for the dark pulse self-generation in the band
gap at I = +320 mA [see Fig. 7(a)]. As a result of numer-
ical simulation of the experimental data obtained with the
negative current polarity, we failed to obtain the repeti-
tion rate of about 10 kHz for the stationary pulse mode
at the decreasing frequency detuning. This requires further
improvement of the modified model to obtain a correspon-
dence between the simulation results and the experimental
data measured for I = −200 mA [see Fig. 7(d)].

V. CONCLUSIONS

In the paper, we experimentally investigated the criti-
cal regimes of the active ring resonator based on the 1D
MC with the dynamic line defect. These regimes demon-
strate the “explosive death” of the microwave oscillations
of approximately constant amplitude and the birth of the
chaotic amplitude oscillations in the dips of the envelope.
The dip formation is a result of the joint action of two
saturation mechanisms, one of which is caused by the out-
put amplitude saturation of the nonlinear amplifier, and
the other one by the amplitude saturation of the MSSW,
leading to the parametric excitation of the dipole-exchange
SWs. Both mechanisms of dip formation are confirmed by
the calculation results obtained by the use of the modified
Vyshkind-Rabinovich model. The nature of the chaotic
oscillations inside the dips is connected with the nonlin-
ear parametric three-wave confluence of the ESWs. The
averaged period and the width of the dips depend on the
MSSW nonlinear loss level that is controlled by the direct
electric current flowing through the line-defect aria.

The direct electric current control of the MSSW loss
level is based on the manipulation of the internal magnetic

field intensity in the line-defect region. For the positive
and negative polarity current, the internal magnetic field
intensity is decreased and increased in this region, respec-
tively, because the static magnetic field induced by the
direct current has opposite direction to and coincides with
the external static magnetic field direction. The current
manipulation of the internal magnetic field leads to the
band-gap shift towards the low and high frequencies for
the positive and negative polarity current, respectively.
If the self-generated signal frequency is inside the band
gap, then the time intervals of approximately constant
amplitude are either decreased or increased. In this case,
two largest Lyapunov exponents are either both positive
(the hyperchaotic mode) or one of them is positive and
another is negative (the chaotic mode). The time inter-
vals of approximately constant amplitude determine the
duration of the information signal that can be introduced
potentially to such magnonic reservoir for the reservoir
computing.

The results obtained in this investigation are of great
interest not only to specialists involved in the creation of
the reservoir-computing systems supporting the concept
of “computation at the edge of chaos” [30,31], but also
to researchers in the field of nonlinear dynamics. For the
last case, this is due to the experimental demonstration
of the transition from hyperchaotic to chaotic dynamics
in the auto-oscillation systems operating in the regime of
“amplitude death.”
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