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Conversion of chemical energy into mechanical work is the fundamental mechanism of several natural
phenomena at the nanoscale, like molecular machines and Brownian motors. Quantum mechanical effects
are relevant for optimizing these processes and to implement them at the atomic scale. This paper focuses
on engines that transform chemical work into mechanical work through energy and particle exchanges with
thermal sources at different chemical potentials. Irreversibility is introduced by modeling the engine trans-
formations with finite-time dynamics generated by a time-dependent quantum master equation. Quantum
degenerate gases provide maximum efficiency for reversible engines, whereas the classical limit implies
small efficiency. For irreversible engines, both the output power and the efficiency at maximum power
are much larger in the quantum regime than in the classical limit. The analysis of ideal homogeneous
gases grasps the impact of quantum statistics on the above performances, which are expected to persist in
the presence of interactions and more general trapping. The performance dependence on different types
of Bose-Einstein condensates (BECs) is also studied. The BECs under consideration are standard BECs
with a finite fraction of particles in the ground state, and generalized BECs where eigenstates with parallel
momenta, or those with coplanar momenta, are macroscopically occupied according to the confinement
anisotropy. Quantum gases are therefore a resource for enhanced performances of converting chemical
into mechanical work.
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I. INTRODUCTION

Energy conversion is at the basis of fundamental natural
phenomena and ubiquitous or breakthrough technologies
[1,2]. A paradigmatic model is represented by heat engines
that convert heat into work with the limitations implied by
the second law of thermodynamics [3,4]. Similarly, chem-
ical engines transform several kinds of chemical energy
into other forms of energy. For instance, mechanical work,
e.g., volume expansion or directed drifts and rotations, is
generated from chemical potential gradients [5–11], from
the splitting of chemical bonds (molecular motors) [12,13]
as in adenosine triphosphate (ATP) hydrolysis, from ther-
mal diffusion modeled by the Langevin and Fokker-Planck
equations (Brownian motors) [10,14,15], and from surface
energy in interface phenomena like “tears of wine,” beat-
ing oil lenses, and self-oscillating pendant droplets [16].
Recent technologically oriented applications are syngas
production [17], capacitive deionization for desalinization
of brackish water [18,19], CO2 capture by carbonation-
decarbonation cycles [20], solar-driven CO2 reduction
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[21], chemical looping for hydrogen production [22,23]
and for energy and carbon storage [24,25], low-grade heat
harvesting [26–28], and pyrolytic reactions to increase the
efficiency of turbine engines [29].

Heat engines have been investigated also in the quan-
tum domain both at thermal equilibrium [30–38] and out
of equilibrium [39–49]. Quantum effects become relevant
already in systems at the nanoscale and in modern nan-
otechnologies that exhibit intermediate behavior between
the classical and quantum regimes [14,50,51]. Consider-
able advances have been made to observe the intermediate
regime by tuning system parameters [52–56]. Chemical
engines are indeed realized at these size scales, where
quantum effects improve the performance of existing syn-
thetic molecular motors [57–60]. Nanomotors based on
quantum dots have been conceived for charge pumping
[8,61,62], and for converting electric work into mechan-
ical work with high efficiency [63–65]. Quantum statistics
is also relevant for metabolic activity and related diseases
[66–70] and in solar energy conversion [71,72]. Therefore,
investigating the impact of fundamental quantum features
on small-sized engines enables us to understand the deep
quantum regime of these machines and the transition to the
classical regime.
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A. Overview of the paper

Taking inspiration from thermodynamic cycles model-
ing heat engines, this paper focuses on quantum engines
that convert the chemical work of a working substance
into mechanical work, by means of energy and particle
exchanges with thermochemical sources that control exter-
nal driving (e.g., temperature, chemical potential, volume,
or particle number). These machines, henceforth called
thermochemical engines, are analogous to heat engines,
where heat, temperature, and entropy are replaced, respec-
tively, by chemical work, chemical potential, and par-
ticle number. Nevertheless, the second law of thermo-
dynamics does not prevent the transformation of all the
supplied chemical work into mechanical work without
waste. Irreversibility due to finite-time dynamics is intro-
duced through quantum master equations that generalize
the Langevin and Fokker-Planck equations of Brownian
motors.

The results presented in this paper show that quan-
tum degenerate gases as working substances provide
maximum efficiency, i.e., without energy waste, while
small efficiency and mechanical work output are obtained
in the classical regime. Quantum degenerate gases also
imply large output power for finite-time irreversible cycles
that perturb quasistatic processes. Particular attention is
devoted to the roles of standard and generalized Bose-
Einstein condensates (BECs). Standard BECs occur when
a macroscopic particle number occupies the ground state
[73,74], and have been experimentally realized with ultra-
cold atoms [75–77] or molecules [78,79], photons [80],
and quasiparticles (polaritons [80–82], magnons [83,84],
and phonons [85,86]) even at room temperature. Gener-
alized BECs consist in large occupation of effective low-
dimensional gases in the presence of highly anisotropic
confinement volumes [87–97]. Generalized BECs describe
liquid helium in thin films [98–102], the magnetic flux
of superconducting rings [103], and gravito-optical traps
[104,105], and have stimulated experimental advances
with ultracold atoms [106–109].

The above experimental realizations, together with
recent progress in quantum simulators [110,111], repre-
sent a plethora of platforms to implement thermochemical
engines that are optimized in the deep quantum regime.
Of particular interest at the nanoscale are BEC imple-
mentations with plasmon polaritons in a lattice of metal
nanoparticles, which show ultrafast condensation at the
subpicosecond scale [112,113], and with magnon BECs in
ferromagnetic nanostructures [114,115]. Implementations
with atomic gases exchanging particles and with highly
anisotropic confinement allow for new atomtronic compo-
nents [116] based on high-performance energy conversion.

The quantitative aspects of this paper are shown for
ideal homogeneous gases, but similar behaviors remain
valid for more general models. Indeed, they rely on
physical conditions, on the chemical potentials, and on

mathematical properties of the average particle number
that persist in the presence of different trapping potentials,
density of states, and interactions, as discussed later.

The rest of the paper is organized as follows. Section II
describes the general scheme of thermochemical engines.
Sections II A and II B are dedicated to equilibrium
machines, called isothermal chemical Carnot cycle and
isothermal chemical Otto cycle following the aforemen-
tioned analogy between thermochemical and heat engines.
The effect of irreversibility as a perturbation of quasistatic
processes on the efficiency and on the output power is dis-
cussed in Sec. III. Conclusions are drawn in Sec. IV, and
technical details are provided in six appendices.

II. THERMOCHEMICAL ENGINES

The state of the working substance in thermochemical
engines at thermodynamic equilibrium is determined by
the conjugated couples (P, V), (T, S), and (μ,N ), where P
is the pressure, V the volume, T the absolute temperature,
S the entropy, μ the chemical potential, and N the average
particle number. At thermal equilibrium the substance is
described by the grand canonical statistical ensemble, with
density matrix � = e−β(H−μN )/Z, Hamiltonian operator H ,
particle number operator N = ∑

k a†
kak (with k labeling an

orthogonal set of system modes), β = 1/(kBT) the inverse
temperature, and Z = Tr e−β(H−μN ) the partition function.

The grand canonical ensemble provides a more trans-
parent treatment of the effects of quantum statistics, and
accounts for statistical fluctuating energy and particle num-
ber. Allowing also for statistical fluctuations of the volume,
the relevant ensemble is the so-called μPT ensemble [117–
119], studied for small systems and nanothermodynamics
[120–126], which predicts equations of state equivalent to
the grand canonical ones. Therefore the optimal perfor-
mances of quantum thermochemical engines, proved in
the following for the grand canonical ensemble, can be
straightforwardly generalized to the μPT ensemble.

Thermodynamic transformations are parameterized by
the free parameters of the grand canonical ensemble, i.e.,
V, β, and μ. The other thermal quantities are determined
by the partition function:

βPV = ln Z, (1)

N = Tr(�N ) = 1
β

∂ ln Z
∂μ

, (2)

U = Tr(�H) = −∂ ln Z
∂β

+ μN , (3)

S = −kB Tr(� ln �) = (U + PV − μN )/T. (4)

Quasistatic transformations, where the system is always at
thermal equilibrium, are described by a curve in the param-
eter space. Examples considered here are transformations
fixing two of the aforementioned free parameters [127].
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The variation of the internal energy during a thermody-
namic process is �U = Q − WM − WC, where Q = ´

T dS
is the heat, WM = ´

P dV is the mechanical work due to
volume variations, and WC = − ´

μ dN is the chemical
work due to particle exchanges. Fluxes of these energy
contributions are generated when the working substance
is put in contact with thermochemical sources. Consider
thermodynamic cycles consisting of several strokes, where
�Uj , Qj , WM

j , and WC
j are the energy exchanges during

the j th stroke, and Pj , Vj , μj , Nj , and ρj = Nj /Vj are the
thermal quantities at the beginning of the j th stroke. The
product of a cycle, also called load, is the total mechan-
ical work, which is positive if it is done by the working
substance on the surroundings. The energy supplied to the
working substance is the absorbed chemical work, i.e., the
positive contribution to the internal energy due to parti-
cle exchanges, WC

in = −∑j WC
j �(−WC

j ), where �(·) is
the Heaviside function. The energy released to the sources,
WC

out = ∑
j WC

j �(WC
j ), contributes negatively to the inter-

nal energy. The energy WC
out is released to sources different

from those that supply chemical work: the released chem-
ical work can be delivered back to the substance only with
a further energetic cost, so that WC

out is the waste generated
for bringing the substance to the initial condition after a
cycle. Consistently, and in analogy with heat engines, the
thermochemical efficiency is the ratio between the load and
the supplied energy [16]:

η = WM

WC
in

= 1 − WC
out + �U − Q

WC
in

, (5)

where �U and Q are the internal energy and the heat
variations, respectively, during a cycle.

When reversible cycles are considered, the figures of
merit are the load per volume, WM/Vmax, and the efficiency
(5) with the condition �U = 0. These figures of merit will
be used to compare the performances of quantum and clas-
sical engines. Moreover, assuming that the temperature
is kept constant along the cycle, infinitesimal heat vari-
ations are exact differentials and so Q = T

´
cycle dS = 0.

Therefore, the efficiency for reversible isothermal cycles
becomes

ηrev = 1 − WC
out

WC
in

, (6)

and the load per volume is

WM

Vmax
= − WC

Vmax
= WC

in − WC
out

Vmax
. (7)

The maximum efficiency ηrev → 1 is then achieved if the
chemical potential is non-negative when the particles are
injected into the working substance and is negative when
the substance particles decrease. These conditions imply

that WC
out = 0, recalling that WC = − ´

μ dN for each
transformation.

Ideal and interacting fermionic gases can exhibit both
negative (at low density or high temperature) and positive
(at high density or low temperature) chemical potentials
[128,129], so that the thermochemical sources can fix their
signs in order to obtain ηrev = 1. Ideal bosonic gases face a
similar situation with positive chemical potentials replaced
by vanishing chemical potentials in BEC phases, since the
non-negativity of energy eigenstate occupancies implies
the non-positivity of the chemical potential. Bosonic
gases with interactions also achieve maximum efficiency.
Indeed, repulsing particles approaching the BEC transi-
tion show positive chemical potentials, proportional to
the interaction strength and to the density, under several
approximations, like the Bogoliubov, Hartree-Fock, and
Thomas-Fermi approximations [73,74,130], and effective
mean-field [131,132] and hard-core models [133], and with
scattering length much larger than the interparticle distance
(unitary gases) [134]. Quantum van der Waals interactions
with a hard-core potential [135,136] increase the chemical
potential for repulsive interactions or for small attractive
interactions (see Appendix C). Therefore, the efficiency is
maximized (ηrev = 1) for both fermions and bosons in the
deep quantum regime.

Classical gases, especially with repulsive interactions,
can also exhibit both negative and positive chemical poten-
tials [137]. Nevertheless, the effects of quantum statistics
can be neglected when (see Appendix A)

N � V
(

2mK
�2N

)3/2

, (8)

where � is the Planck constant, m is the particle mass,
K is the average kinetic energy of the substance, and
K/N is an intensive quantity, e.g., K/N = 3kBT/2 for
classical gases. The condition (8) bounds the mechani-
cal work of reversible isothermal engines: WM = −WC =´

cycle μ dN � O(Vmax), where Vmax is the maximum vol-
ume attained during the cycle (see Appendix A). Since
quantum gases are not constrained by Eq. (8), quantum
engines provide a load per volume (7) much larger than
classical engines at comparable masses and energy densi-
ties. Another consequence of the constraint (8) is that the
chemical potential of the classical van der Waals gas is
always negative, thus preventing maximum efficiency, as
detailed in Appendix A, contrary to what happens with the
quantum van der Waals gas (see Appendix C).

The rest of the paper is dedicated to concrete cycles
where the efficiency ηrev is maximized with quantum
degenerate gases, while small efficiency and load are
obtained in the classical regime. Ideal homogeneous gases
are discussed, and similar behaviors extend to interacting
models that do not limit the efficiency range (as those dis-
cussed above), and in the presence of general trapping
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potentials and densities of states [138–142] that do not
alter the qualitative behaviors of homogeneous gases (e.g.,
the monotonicity and the (un)boundedness of the average
particle number discussed in Appendix B).

A. Isothermal chemical Carnot cycle

From the analogy with heat engines with the roles
of heat and temperature replaced by chemical work and
chemical potential, the isothermal chemical Carnot cycle
is defined by the following strokes:

(1) particle release at constant temperature T and con-
stant chemical potential μ1 = μ2,

(2) compression at constant temperature T and constant
particle number N2 = N3,

(3) particle injection at constant temperature T and
constant chemical potential μ3 = μ4, and

(4) expansion at constant temperature T and constant
particle number N4 = N1.

This cycle has the advantage of fixing the chemical poten-
tials when chemical work is done, as depicted in Fig. 1,
so that the condition for achieving ηrev = 1 is directly
controlled.

The supplied chemical work WC
in, the released chemical

work WC
out, and the efficiency ηrev are, respectively,

WC
in =

⎧
⎪⎨

⎪⎩

−WC
1 = μ1(N2 − N1) if μ1,3 < 0,

−WC
3 = μ3(N4 − N3) if μ1,3 > 0,

−WC
1 − WC

3 = WM if μ1 < 0 and μ3 � 0,
(9)

WC
out =

⎧
⎪⎨

⎪⎩

WC
3 = μ3(N3 − N4) if μ1,3 < 0,

WC
1 = μ1(N1 − N2) if μ1,3 > 0,

0 if μ1 < 0 and μ3 � 0,
(10)

ηrev =

⎧
⎪⎨

⎪⎩

1 − μ3/μ1 if μ1,3 < 0,
1 − μ1/μ3 if μ1,3 > 0,
1 if μ1 < 0 and μ3 � 0.

(11)

The load per volume,

WM

V1
= (μ3 − μ1)

(

1 − N3

N1

)

ρ1, (12)

increases with the initial density ρ1 and with the difference
of chemical potentials fixed by the sources, μ3 − μ1.

We focus now on the isothermal chemical Carnot cycle
working with ideal homogeneous gases whose thermal
quantities are reported in Appendix B. The classical limit
holds for small fugacities z = eβμ = λ3

Tρ � 1, thus at
negative chemical potentials and low densities. This con-
dition implies small efficiency and load per volume. On
the other hand, fermionic gases do not have restrictions on
the chemical potentials and densities, so that ηrev = 1 and
arbitrary load per volume are achieved by fixing μ1 < 0
and μ3 � 0. For bosonic particles, the chemical poten-
tials are non-positive and approach zero at the formation
of BECs. Therefore, maximum efficiency ηrev = 1, without
restrictions on the load per volume, is attained if μ3 → 0,
namely when the working substance is a BEC during the
third stroke.

Figure 2 shows the pressure-volume diagrams for
fermions (a) and bosons (b), rescaled using factors kept
constant during the cycle in order to plot dimension-
less variables. The line integral, namely the area, of the
closed line in the pressure-volume diagram is the exten-
sive load and increases when μ3 increases, in accordance
with Eq. (12).

The analysis so far has revealed that the performances of
the isothermal chemical Carnot cycle are optimized when
the substance is in the deep quantum regime during the
particle injection (third stroke), while the classical regime
greatly underperforms.

FIG. 1. Pictorial representation of the isothermal chemical Carnot cycle as described in the text: (1) particle release at constant
temperature T and chemical potential μ1 = μ2; (2) compression at constant temperature T and particle number N2 = N3; (3) particle
injection at constant temperature T and chemical potential μ3 = μ4; and (4) expansion at constant temperature T and particle number
N4 = N1.
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(a)

(c) (d) (e)

(b)

FIG. 2. Rescaled pressure-volume diagrams of the isothermal chemical Carnot cycle: the numbers in parentheses indicate the strokes
of the cycle corresponding to the closest curve. (a) Fermionic gas with N1 = 1000, N3 = 500, z1 = eβμ1 = 0.1, and z3 = eβμ3 =
0.6, 1.1, and 1.6. (b) Bosonic gas with N1 = 1000, N3 = 500, z1 = eβμ1 = 0.1, and z3 = eβμ3 = 0.4, 0.7, and 1. (c)–(e) Bosonic
gases always in the same BEC phase during the cycle with N1 = 1000, N3 = 500, z1 = eβμ1 = 0.9, and z3 = eβμ3 = 0.99: (c) two-
dimensional BEC with increasing Lz/λT = 10, 20, 30, 40, 50, and 60 in the direction of the arrow; (d) one-dimensional BEC with
increasing LyLz/λ

2
T = 10, 20, 30, 40, and 50 in the direction of the arrow; and (e) standard ground-state BEC here called zero-

dimensional BEC.

When the substance is a BEC also during the first
stroke, i.e., μ1 → 0, the efficiency depends on the geome-
try of the confinement volume V = LxLyLz. This geometric
effect on thermodynamic quantities of BECs is detailed in
Appendix B. Briefly, if the confinement sizes Lx, Ly , Lz are
much larger in a number d of directions than the others,
the whole set of excited states with moments in the less
confined d directions is macroscopically occupied below
a critical temperature. In this case, the BEC is described
by a d-dimensional bosonic gas and is called dD-BEC in
the rest of this paper. The terminology dD-BEC therefore
refers to the spatial dimensionality of the modes forming
the BEC, and is useful to make some equations and nota-
tion of this paper more compact. Consistently, a 0D-BEC
is the standard BEC consisting only in the ground state,
and occurs in isotropic volumes as there are no (d = 0)
directions much larger than the others. Consider now three
different settings corresponding to standard ground-state
BECs (0D-BECs), one-dimensional BECs (1D-BECs),
and two-dimensional BECs (2D-BECs), provided Lx �
Ly � Lz.

If Lx ∼ Ly ∼ Lz during the cycle, the BECs consist in
the macroscopic occupation of the ground state (0D-BEC).

The chemical potential scales as μ � −(βf N )−1, where
f = 1 − ρc/ρ = 1 − (T/Tc)

3/2 is the condensate fraction,
ρc is the critical density (i.e., the smallest density in the
BEC phase), and Tc is the condensation temperature [see
Eq. (B7)]. The efficiency becomes, using also μ1 = μ2 and
N2 = N3,

ηrev = 1 − N2 − ρcV2

N2 − ρcV3
. (13)

If Lx � α′LyLz, for a constant α′, the BECs are effective
one-dimensional gases consisting of states with momenta
parallel to Lx (1D-BEC). The chemical potentials are
−βμ � π(f λTN /Lx)

−2, and the efficiency reads

ηrev = 1 − (N2 − ρcV2)
2 L2

x,3

(N2 − ρcV3)2 L2
x,2

. (14)

If Ly � eαLz poly(Lz), where α is a constant and poly(Lz)

stands for a polynomial in Lz, the BECs are effective two-
dimensional gases made of states with momenta in the
x-y plane (2D-BEC). The chemical potentials are −βμ �
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e−f λ2
TN /(LxLy ) and the efficiency

ηrev = 1 − e(ρc−ρ3)Lz,3λ2
T−(ρc−ρ2)Lz,2λ2

T (15)

approaches 1 in the thermodynamic limit, e.g., if Lz,3 =
Lz,2 or Lx,3Ly,3 = Lx,2Ly,2 recalling V3 < V2.

If the substance is in a dD-BEC during the first stroke
and in a d′D-BEC in the third stroke, with d′ < d, Lx �
α′LyLz for the 1D-BEC, and Ly � eαLz poly(Lz) for the 2D-
BEC, then ηrev → 1 in the thermodynamic limit.

The rescaled pressure-volume diagrams are plotted in
Fig. 2 for substances always in a 2D-BEC (c), in a 1D-BEC
(d), and in a 0D-BEC (e). The load, i.e., the area enclosed
within the closed curve, is subextensive but the efficiency
can achieve large values as shown above.

B. Isothermal chemical Otto cycle

Following the aforementioned analogy between heat
and thermochemical engines, the isothermal chemical Otto
cycle consists in the following strokes:

(1) particle release at constant temperature T and con-
stant volume V1 = V2,

(2) compression at constant temperature T and constant
particle number N2 = N3,

(3) particle injection at constant temperature T and
constant volume V3 = V4, and

(4) expansion at constant temperature T and constant
particle number N4 = N1.

This cycle has the advantage of fixing extensive quantities,
Vj and Nj (see Fig. 3), that are easily controllable in some
implementations.

Thermal quantities for ideal homogeneous gases are detailed in Appendix B. Using them in the general form of chemical
work exchanged during the isothermal-isochoric strokes, shown in Appendix D, one obtains

WC
1 = ± V1

βλ3
T

(
Li5/2Li−1

3/2(±λ3
Tρ2) − Li5/2Li−1

3/2(±λ3
Tρ1) − λ3

Tρ2 ln
(
±Li−1

3/2(±λ3
Tρ2)

)
+ λ3

Tρ1 ln
(
±Li−1

3/2(±λ3
Tρ1)

))
,

(16)

WC
3 = ± V3

βλ3
T

(
Li5/2Li−1

3/2(±λ3
Tρ4) − Li5/2Li−1

3/2(±λ3
Tρ3) − λ3

Tρ4 ln
(
±Li−1

3/2(±λ3
Tρ4)

)
+ λ3

Tρ3 ln
(
±Li−1

3/2(±λ3
Tρ3)

))
,

(17)

where the upper (lower) signs refer to the bosonic gas
without BEC (fermionic gas), Lis(z) is the polylogarithm
function [143], and Li−1

s (z) its inverse (LisLi−1
s (z) = z).

The chemical work in Eqs. (16) and (17), and thus the effi-
ciency (6) and the load per volume (7), depend only on
λ3

Tρ3, λ3
Tρ4, and v = V3/V1 = ρ1/ρ4 = ρ2/ρ3 < 1.

The load is the area within the closed line in the
pressure-volume diagram plotted in Fig. 4 for fermions (a)
and bosons (b). As happens for the chemical Carnot cycle,
the load is extensive and increases when the deep quantum
regime is approached during the third stroke. The actual
maximum is achieved at small ρ3 and large ρ4, which

FIG. 3. Pictorial representation of the isothermal chemical Otto cycle as described in the text: (1) particle release at constant tem-
perature T and volume V1 = V2; (2) compression at constant temperature T and particle number N2 = N3; (3) particle injection at
constant temperature T and volume V3 = V4; and (4) expansion at constant temperature T and particle number N4 = N1.
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(a)

(c) (d) (e)

(b)

FIG. 4. Rescaled pressure-volume diagrams of the isothermal chemical Otto cycle: the numbers in parentheses indicate the strokes
of the cycle corresponding to the closest curve. (a) Fermionic gas with N1 = 1000, N3 = 500, V1/λ

3
T = 5000, and V3/λ

3
T = 500,

2000, and 3500. (b) Bosonic gas with N1 = 1000, N3 = 500, V1/λ
3
T = 5000, and V3/λ

3
T = N1/ζ(3/2), 2000, and 3500. The value

V3/λ
3
T = N1/ζ(3/2) is attained when bosonic substances are in a BEC phase at the end of the third stroke. (c)–(e) Bosonic gases

always in the same BEC phase during the cycle with N1 = 1000 and N3 = 1.5V1ρc = 3V3ρc = 500: (c) 2D-BEC with increasing
Lz/λT = 2, 3, 4, 5, 6, and 7 in the direction of the arrow; (d) 1D-BEC with increasing LyLz/λ

2
T = 10, 20, 30, 40, and 50 in the direction

of the arrow; and (e) standard ground-state BEC here called 0D-BEC.

corresponds to the third stroke curve in Fig. 4 (the leftmost
continuous vertical line) ranging from small to high pres-
sures. The efficiency ηrev is plotted in Fig. 5 with v = 1/3
for fermions (green) and bosons (red, yellow, brown, and
purple). The plots for different values of v are qualitatively
similar.

The classical limit, zj = eβμj = λ3
Tρj ∝ ε � 1, implies

vanishingly small efficiency ηrev ∝ −1/ln ε. In the quan-
tum regime, the efficiency ηrev assumes all values in the
interval [0, 1] at different densities. For the fermionic gas,
ηrev has a plateau at 1 when the signs of chemical potentials
allow for WC

1,3 < 0.
The chemical potential of the bosonic gas is always non-

positive, then WC
1 = −WC

in, WC
3 = WC

out (with and without
BECs). If the system is a BEC during the third stroke
(λ3

Tρ3,4 � λ3
Tρc = ζ(3/2)) but not during the first stroke

(λ3
Tρ1,2 = vλ3

Tρ4,3 < λ3
Tρc = ζ(3/2)), then WC

in 	= 0 and
WC

out � 0 because μ3 and μ4 approach zero and P3 � P4
(see Appendix B). Therefore, the efficiency is maximized,
ηrev � 1. Within this parameter region, the maximum load
per volume is attained when ρ3 = ρc.

If the system is a BEC also during the first
stroke (λ3

Tρ1,2 = vλ3
Tρ4,3 � λ3

Tρc = ζ(3/2)), one derives

WC
1,3 � 0 from the thermodynamic quantities of different

BEC phases reported in Appendix B. The load is subexten-
sive as shown in the pressure-volume diagram (see Fig. 4)
for substances always in a 2D-BEC (c), in a 1D-BEC (d),
and in a 0D-BEC (e). Nevertheless, the efficiency plotted in
Fig. 5 for different types of BECs can achieve large values.

For the ground-state BEC (0D-BEC), namely Lx ∼
Ly ∼ Lz, the chemical work is

WC
1,0D-BEC = 1

β
ln

vρ3 − ρc

vρ4 − ρc
, (18)

WC
3,0D-BEC = 1

β
ln

ρ4 − ρc

ρ3 − ρc
, (19)

and the efficiency ηrev is plotted in purple in Fig. 5(a) and
as the purple full curve in Fig. 5(b). Note that, if ρj � ρc
for all j = 1, 2, 3, 4, then ηrev → 0.

For the one-dimensional BEC (1D-BEC), namely Lx �
α′LyLz,

WC
1,1D-BEC = πL2

x,1

βλ2
TV1

ρ2 − ρ1

(ρ2 − ρc)(ρ1 − ρc)
, (20)
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(a) (b)

FIG. 5. Efficiency ηrev of the isothermal chemical Otto cycle with v = 1/3 and for ideal homogeneous gases. (a) Fermions (green);
bosons without BECs (ρj < ρc) and with a BEC during the third stroke (ρ1,2 < ρc � ρ3,4) (red); and bosons in dD-BEC during the
whole cycle (ρj � ρc) with (i) d = 2, Lz,3/λT � 1, Lx,3Ly,3/(Lx,1Ly,1) = vr′ , and r′ � 0 (yellow), (ii) d = 1, Lx,3/Lx,1 = vr, and r � 0
(brown), and (iii) d = 0, i.e., standard ground-state BECs (purple). (b) Section of the left panel for ρ4 = (1 + 4/v)ρc and with a dD-
BEC during the whole cycle. The brown dashed curves are the efficiencies for d = 1 and r ranging from 0 (lowermost curve) to 1
(uppermost curve) with a step of 0.1; the brown shading above the top brown curve corresponds to values r > 1. The yellow dotted
curves are the efficiencies for d = 2 with r′ = 0 and r′ = 1: the two curves overlap almost perfectly as they are exponentially close
to 1. For completeness, also the efficiency for the 2D-BEC with Lz,3/λ

2
T = 1 and r′ = −0.2 (thin yellow full curve) and that for the

1D-BEC with r = −0.2 (brown dash-dotted curve) are also plotted.

WC
3,1D-BEC = πL2

x,3

βλ2
TV3

ρ4 − ρ3

(ρ3 − ρc)(ρ4 − ρc)
. (21)

The corresponding efficiency ηrev depends on the ratio
between the 3D volumes V3/V1 = v and on the ratio
between the 1D volumes Lx,3/Lx,1 = vr. The brown region
in Fig. 5(a) and the brown dashed lines and brown shading
in Fig. 5(b) represent ηrev for r � 0: within this interval,
the efficiency increases with r, approaching 1 very fast for
r > 1. When r < 0 [brown dash-dotted curve in Fig. 5(b)],
ηrev decreases to zero and then assumes negative values,
implying negative total mechanical work. These behaviors
are more explicit in the asymptotic regime ρj � ρc for all
j = 1, 2, 3, 4, where ηrev → 1 − v2r.

For the two-dimensional BEC (2D-BEC), namely Ly �
eαLz poly(Lz), the chemical work is

WC
1,2D-BEC = V1 eρcλ2

TLz,1

βλ2
TLz,1

(
e−ρ1λ2

TLz,1 − e−ρ2λ2
TLz,1

)
, (22)

WC
3,2D-BEC = V3 eρcλ2

TLz,3

βλ2
TLz,3

(
e−ρ3λ2

TLz,3 − e−ρ4λ2
TLz,3

)
. (23)

The efficiency as a function of λ3
Tρ3,4, plotted in yellow

in Fig. 5, depends on the ratio between the 3D vol-
umes V3/V1 = v, on the ratio between the 2D volumes
Lx,3Ly,3/(Lx,1Ly,1) = vr′ (such that Lz,3/Lz,1 = v1−r′), and
on the parameter Lz,3/λT. The ηrev value is exponentially
close to 1 for the physically relevant condition Lz,3/λT � 1
and for r′ � 0 [yellow region in Fig. 5(a) and yellow dotted

curves in Fig. 5(b)], while it decreases to zero and becomes
negative for r′ < 0 [thin yellow curve in Fig. 5(b)]. If ρj �
ρc for all j = 1, 2, 3, 4, then ηrev � 1 − vr′e(vr′−1)ρ3λ2

TLz,3 if
r′ 	= 0 and ηrev � 1 − e(1−1/v)ρcλ2

TLz,3 if r′ = 0.
Also in the isothermal chemical Otto cycle, ηrev → 1 if

the substance is in a dD-BEC during the first stroke and in
a d′D-BEC in the third stroke with d′ < d, provided Lx �
α′LyLz for the 1D-BEC, and Ly � eαLz poly(Lz) for the 2D-
BEC.

In conclusion, if the substance is a BEC only during
the third stroke, the load WM = −WC is extensive and
the efficiency is maximum ηrev � 1, while the classical
limit entails poor performances. If the system remains in
a BEC phase also during the first stroke, the load is subex-
tensive, but the engine works at maximum efficiency for
generalized BECs.

III. IRREVERSIBLE CYCLES

Quasistatic transformations require infinite time and
vanishing output power. Therefore, realistic engines con-
sist in irreversible transformations implemented in finite
time, τj for the j th transformation (j = 1, 2, 3, 4), which
provide finite output power π = WM/

∑
j τj . Work and

heat definitions for systems exchanging energy and par-
ticles due to irreversible transformations are detailed in
Appendix D. This section is devoted to show that working
substances in the quantum regime provide higher power
and higher efficiency at maximum power than in the
classical limit.
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Irreversible transformations are described by the
dynamics of open systems in contact with a grand canoni-
cal bath. During the substance-bath interaction, the chem-
ical potential μ(t) and the system volume V(t) (and Lx(t),
Ly(t), and Lz(t)) slowly change in time. For isothermal
cycles, such as those considered in Sec. II, the bath tem-
perature β is constant. The time evolution is the solution
of a time-dependent master equation with instantaneous
relaxation times, θ(t), that are the relaxation times as if
the explicit dependence on t (through μ(t) and V(t)) were
frozen. We define also the maximum relaxation time θ̄ =
maxt θ(t). Following Ref. [144], irreversible effects are
treated perturbatively when the dynamics is slow com-
pared to the instantaneous relaxation, namely τj � θ̄ .
Within this regime, the limit of equilibrium quasistatic
transformations is recovered for infinite times τj /θ̄ → ∞
when grand canonical states with the same temperature
and chemical potential of the bath are unique steady states
at each time. This condition is met in master equations
derived within the standard weak-coupling regime (i.e.,
Born, Markov, and secular approximations) [145], as in the
concrete model discussed in the following.

The energy exchanges during irreversible transforma-
tions in the above perturbative regime are

WM/C
j = WM/C

j ,rev + θ̄

τj
WM/C

j ,irr , (24)

Qj = Qj ,rev + θ̄

τj
Qj ,irr, (25)

�Uj = �Uj ,rev + θ̄

τj
�Uj ,irr, (26)

where the subscript “rev” denotes energy exchanges of
reversible transformations. The dependence on the initial
state is an exponential decay in τj /θ̄ and therefore con-
tributes to much higher orders than those in Eqs. (24), (25),
and (26). In other words, the final state of each irreversible
process at the first order in θ̄/τj depends only on the ini-
tial state of the corresponding quasistatic transformation.
Consequently, the internal energy variation may not van-
ish after the first irreversible cycle, but the initial and the
final states of all the subsequent cycles coincide without
further internal energy variations. Therefore, the internal
energy variation �U after many cycles is negligible with
respect to the total mechanical work.

The output power can be rewritten as

π = 1
∑

j τj

⎛

⎝WM
rev +

∑

j

Qj ,irr − WC
j ,irr

τj

⎞

⎠ , (27)

where WM
rev is the total mechanical work of the reversible

cycle. Power π is maximized at times

τ ∗
j =

2 θ̄
√

WC
j ,irr − Qj ,irr

WM
rev

∑

k

√
WC

k,irr − Qk,irr, (28)

where the physically relevant condition WC
j ,irr − Qj ,irr � 0

has been considered. This condition implies that the irre-
versibility contributions decrease the internal energy and
that the optimal times τ ∗

j are finite.
The thermochemical engine then operates with the opti-

mal times τ ∗
j (28) for each stroke. These optimal times

should also be compatible with the validity regime of the
long-time perturbative approach, namely τ ∗

j � θ̄ . In the
following, we compare the size scalings of optimal times
and power of bosonic quantum gases with those in the
classical limit. In some cases, the times τ ∗

j have the same
scaling of the relaxation time θ̄ , violating the requirement
τ ∗

j � θ̄ . In these cases, therefore, let us consider the max-
imum power within the region τ ∗

j � θ̄ , that is, at times as
close as possible to θ̄ , as the power decreases with increas-
ing time. The optimal times at stake are then τ ∗

j = θ̄/s
with arbitrary size-independent s � 1, which preserves the
optimal size scaling while remaining within the validity
region of the approximation.

As a concrete model, consider that the substance
is an ideal bosonic homogeneous gas and the bath
is made of harmonic oscillators, with Hamiltonian
HB = �

´
dω ωb†

ωbω, and canonical commutation rela-
tions [bω, b†

ω′] = δ(ω − ω′). The substance-bath interac-
tion Hamiltonian is of the form HI = λ

∑
p

´
dω h(�ωx +

�ωy + �ωz)Tω,p (a†
p bω + b†

ωap ), where the coefficients Tω,p
belong to a large set discussed in Appendix E. The master
equation of the substance dynamics in the weak-coupling
regime and its long-time dynamics are also reported in
Appendix E. In particular, instantaneous relaxation times
scale as θ̄ = O(Lz/V), where Lx, Ly , Lz, and V denote typ-
ical values during the cycle here and in the following size
scalings.

The first-order corrections of work (24) and heat (25) are
explicitly written in Eqs. (E32), (E33), and (E34), whose
size scalings are estimated in Sec. E 5 in Appendix E.
These estimations are used to derive the size scalings of
the optimal times τ ∗

j , of the maximum power denoted
by π∗, and of the efficiency at maximum power η∗ (see
Appendix F).

In the following subsections, the performances π∗ and
η∗ of irreversible chemical Carnot and Otto cycles in quan-
tum regimes are shown to outperform those in the classical
limit. The size scalings of the optimal power normalized
to its classical limit, π∗/πclass, are summarized in Fig. 6 for
Carnot (a) and Otto (b) cycles. Cycles without BECs and
with a 0D-BEC in the third stroke have the same scaling of
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(b)(a)

FIG. 6. Size scaling of the maximum power normalized to its classical limit. (a) Irreversible isothermal chemical Carnot cycle with
2D-BEC (yellow dotted), with 1D-BEC (brown dashed) with Lx = O(LyLz)

χ and χ = 1.01, 1.5, and 2 from the uppermost to the
lowermost curve, with 0D-BEC or without BECs (red full line). (b) Irreversible isothermal chemical Otto cycle with 1D-BEC (brown
dashed) with Lx = O(LyLz)

χ and χ = 2.01, 2.5, and 3 from the uppermost to the lowermost curve, with other BECs or without BECs
(red full line). The black dash-dotted line is the classical limit, zcl is the fugacity in the classical limit, and s > zcl/|ln zcl| has been
considered.

the power (red solid line). The Otto cycle with a 2D-BEC
in the third stroke also shows the same scaling, while the
Carnot cycle with the same BEC results in a much larger
output power (yellow dotted curve). The power scaling
with a 1D-BEC in the third stroke depends on the strength
of the anisotropy: setting Lx = O(LyLz)

χ , the power can be
much larger than the power without BECs when χ > 1 for
the Carnot cycle and when χ > 2 for the Otto cycle (brown
dashed curves). Moreover, the values of π∗/πclass in the
quantum regime are always very large since the parameter
zcl in the y axis of Fig. 6 is the fugacity in the classical
limit, and zcl � 1 as discussed below.

A. Irreversible cycles without BECs and in the
classical limit

In the absence of BEC phases during the cycle, the com-
putations in Sec. E 5 in Appendix E and in Appendix F
prove that the maximum power scales as π∗ = O(sV2/Lz)

and the efficiency as η∗ = ηrev + O(sV0). The factor s � 1
has been introduced in order to remain in the perturbative
regime, when the optimal times in Eq. (28) scale as the
relaxation times θ̄ = O(Lz/V), as discussed above.

In the classical limit, the condition (8), which reads
N � zclV/λ3

T with small fugacity zcl = eβμcl � 1 for ideal
gases (see Appendices A and B), affects the above scal-
ings. In particular, the optimal time from Eq. (28) is
τclass = O((Lz/V)|ln zcl|), the maximum power is πclass =
O(zclV2/(|ln zcl|Lz)), and the efficiency at maximum
power reads ηclass = O(zcl).

In the cycles discussed in Sec. II, ηrev is finite and
approaches 1 close to BEC transitions, and thus the quan-
tum regime even without BECs exhibits much higher

efficiency than the classical limit and larger power if s >

zcl/|ln zcl|.

B. Irreversible cycles with BECs

When the working substance of the engine under-
goes a BEC transition, one has to carefully consider the
confinement anisotropy that leads to standard or gener-
alized BECs, in order to rephrase the size scalings in
terms of the volume. In the following, three different
anisotropic boxes are considered, each one favoring a
different BEC phase. The sizes Lz = O(ln V) and Lx �
Ly = O(

√
V/ln V) favors the formation of a 2D-BEC. The

emergence of a 1D-BEC is studied when Lx = O(LyLz)
χ

with χ � 1, such that Lx = O(Vχ/(χ+1)) and Ly ∼ Lz =
O(V1/(2χ+2)). Lastly, assume the scaling Lx ∼ Ly ∼ Lz =
O(

3√V) when the substance is a 0D-BEC.
The size scaling of the work and heat corrections in

Eqs. (24) and (25) depend on the function h(ε), and are
explicitly computed in Sec. E 5 in Appendix E assuming
h(εp) 	= 0 and that h(0) is finite. The condition h(εp) 	= 0
guarantees that the grand canonical ensemble is the unique
steady state at every time, otherwise also the instanta-
neous Hamiltonian eigenstates with energy εp such that
h(εp) = 0 are steady states. This large class of functions
contains the constant function, the exponential decay, and
the Lorentzian.

The performances of the isothermal chemical Carnot
and Otto cycles are reported explicitly in the following,
when the substance is a BEC only during the third stroke.
These configurations show efficiency and output power
overcoming the classical ones. The cases of the work-
ing substance always being in a BEC are discussed in
Appendix F.
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1. Irreversible chemical Carnot cycle with a BEC during
the third stroke

The size scalings of irreversible energy corrections
imply the following efficiency at maximum power for the
isothermal chemical Carnot cycle with a BEC only during
particle injection (see Appendix F):

η∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ηrev

2
+ O

(
(ln V)5

V

) 1
4

2D-BEC,

ηrev

2
+ O

(
1

V
χ−1
2χ+2

)

1D-BEC, χ > 1,

ηrev + O(sV0) other BECs.

(29)

Recall that ηrev = 1 − μ3/μ1 � 1 for large size, as dis-
cussed in Sec. II A, and finite size corrections (through
those of μ3 in the BEC phases) are smaller that those
due to irreversibility in Eq. (29). Therefore, the efficien-
cies (29) are much larger than in the classical limit ηclass =
O(zcl) � 1, where zcl is the classical fugacity.

The ratio between the maximum power in BEC phases
and the maximum power in the classical limit with the
same Lx,y,z is

π∗
πclass

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
⎛

⎝ |ln zcl|
zcl

(ln V)
5
2√

V

⎞

⎠ 2D-BEC,

O
(

|ln zcl|
zclV

2χ−2
2χ+2

)

1D-BEC, χ > 1,

O
(

s|ln zcl|
zcl

)

other BECs.

(30)

The output power is larger than the classical limit
if V/(ln V)5 < |ln zcl|2/z2

cl for 2D-BECs, if V < (|ln zcl|/
zcl)

(2χ+2)/(2χ−2) for 1D-BECs with χ > 1, and when s >

zcl/|ln zcl| for 0D-BECs and 1D-BECs with χ = 1.

2. Irreversible chemical Otto cycle with a BEC during
the third stroke

The size scalings for the irreversible isothermal chem-
ical Otto cycle, with BECs only when chemical work is
released, provide the following efficiency at maximum
power (see Appendix F):

η∗ =

⎧
⎪⎪⎨

⎪⎪⎩

ηrev

2
+ O

(
1

V
χ−2
2χ+2

)

1D-BEC, χ > 2,

ηrev + O(sV0) other BECs.

(31)

From Fig. 5, ηrev � 1, so that the efficiencies (31) are much
larger than in the classical limit ηclass = O(zcl) � 1, where
zcl is the classical fugacity.

The maximum power in BEC phases normalized to that
in the classical limit with the same Lx,y,z is

π∗
πclass

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O
(

|ln zcl|
zcl V

χ−2
χ+1

)

1D-BEC, χ > 2,

O
(

s|ln zcl|
zcl

)

other BECs.

(32)

Therefore, the output power is larger than the classical
limit if V < (|ln zcl|/zcl)

(χ+1)/(χ−2) for 1D-BECs with χ >

2, and when s > zcl/|ln zcl| for other BECs.

IV. CONCLUSIONS AND DISCUSSION

This paper explores the performances of quantum ther-
mochemical engines, which convert chemical work into
mechanical work by putting a working substance in contact
with thermochemical sources. The sources control differ-
ent thermodynamic quantities of the substance, allowing
for several thermodynamic strokes. For the sake of con-
creteness, the isothermal chemical Carnot and Otto cycles
are discussed in detail.

When the working substance is a quantum (either
fermionic or bosonic) degenerate gas, the above cycles
achieve the full range of efficiency η ∈ [0, 1] and approach
the maximum efficiency for a wide region of system
parameters. On the other hand, the classical limit implies
low efficiency and small output mechanical work. In other
words, the chemical potential values that minimize the
wasted chemical work leave the validity domain of the
classical limit. Therefore, the quantum behavior of iden-
tical particles enhances thermochemical engine perfor-
mances, as already proven for heat engines [146–152],
batteries [153], metrology [154–159], and information
protocols [160–162].

This paper presents a detailed analysis for ideal homo-
geneous gases in the grand canonical ensemble. Special
attention has been devoted to the role of BEC phases
where the ground state alone, or eigenstates with parallel
momenta, or those with coplanar momenta, are macroscop-
ically occupied according to the confinement anisotropy.
The presence of BEC phases only during the particle
injection entails maximum efficiency and extensive out-
put mechanical work for reversible bosonic cycles. If the
substance is in BEC phases during the entire cycle, the effi-
ciency is maximum for a larger parameter region but with
subextensive output mechanical work.

These results can be generalized in several directions.
Firstly, although the grand canonical ensemble provides
the simplest description of quantum gases, equivalent
equations of state and chemical potential ranges are found
in the so-called μPT ensemble [117–119], which allows
also for volume statistical fluctuations and have been stud-
ied for small systems and nanothermodynamics [120–126].
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Therefore, the aforementioned quantum enhanced perfor-
mances of thermochemical engines are observed also in the
μPT ensemble.

A second generalization is the presence of general trap-
ping potentials and densities of states [138–142]. In these
cases the range of chemical potentials is not changed and
the equations of state show the same qualitative behavior
of the ideal homogeneous gas, e.g., with upper-bounded
bosonic particle number in the continuum approximation
and the emergence of BEC phases above critical densities
and at vanishing chemical potentials. Also these general-
izations allow for enhanced performances for converting
chemical into mechanical work in quantum regimes.

Interacting systems can be taken into account for a
further generalization; nevertheless, they are often ana-
lytically intractable. The computation of thermodynamic
quantities in general requires numerical approaches [163],
also within some approximation schemes that involve self-
consistent relations. Alternatively, one can resort to exactly
solvable models that reduce the computational cost to
that of more tractable problems [164–166], but often still
rely on numerics for explicit computations. Fortunately,
the inclusion of interactions under several approximations
does not limit the accessible range of chemical poten-
tials [73,74,128,129]. In particular, the general conditions
to achieve maximum efficiency ηrev → 1 are allowed:
enhanced performances of thermochemical engines are
again observed in the quantum regime. The emergence
of standard BECs and the analytical estimation of some
thermodynamic quantities at low temperature have been
intensively studied for interacting gases under the Bogoli-
ubov, Hartree-Fock and Thomas-Fermi approximations.
Standard as well as generalized BECs are proven also
in effective mean-field models [131] and van der Waals
interactions (see Appendix C) above a critical density.
The features of quantum gases, which can be employed
as a resource for thermochemical engines, then persist in
several physical models.

The quasistaticity of reversible cycles implies vanish-
ing output power, and points to the need to consider
irreversible cycles. Irreversible cycles have been mod-
eled through interactions with a grand canonical bath
and slowly varying control parameters for process dura-
tions much larger than instantaneous relaxation times. The
classical limit still provides small efficiency and output
mechanical work, while quantum gases, especially with
BECs during particle injection, entail much larger effi-
ciencies and much larger output power at comparable
volumes.

The main challenge for experimental realizations of
thermochemical engines described here is the control
of substance parameters. The confinement volume can
be controlled by superimposing optical and magnetic
potentials also achieving highly anisotropic confinements
and generalized BECs [167–169]. Other experimentally

feasible strategies for controlling external parameters, such
as those determining the confinement volume, have been
developed and realized within the framework of opti-
mal control theory [170–173]. Atoms can be pumped
in external potentials, e.g., by overlapping optical dipole
traps and magneto-optical traps [174,175]. Particle injec-
tion and release in quasiparticle systems can be achieved
by the same techniques employed for preparing grand
canonical occupation numbers. For instance, magnons can
be excited and annihilated through microwave magnetic
fields [83,84], rapid cooling of phonons interacting with
magnons [176], nuclear magnetic resonance [177], spin-
polarized current induced by temperature gradients [178],
or by the spin Hall effect [179,180]. A proposal for the con-
trol of the chemical potential is based on the application of
time-periodic external potentials [181].

In conclusion, the aforementioned results indicate a
quantum advantage for the efficiency and the power
of machines that convert chemical work into mechan-
ical work. Exploiting existing realizations of quantum
degenerate gases [73,74,128,129] and recent developments
in quantum simulators [110,111], the thermochemical
engines discussed in this paper could open the way for
the development of new quantum enhanced engines and
motors. Moreover, quantum advantages occur also without
the need for a BEC but away from the classical limit, and
could shed light on phenomena at the border between the
quantum and the classical domains.
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APPENDIX A: CLASSICAL LIMIT OF QUANTUM
STATISTICAL MECHANICS

Quantum systems behave as classical models when fun-
damental aspects of quantum mechanics have negligible
effects. In statistical mechanics, this condition is real-
ized when elementary cells in the single-particle phase
space, with volume �3, can be approximated with points
[182], for instance, when the number of particles is much
smaller than the number of elementary cells. Therefore, at
most one particle lies in an elementary cell and quantum
statistics due to indistinguishability reduces to Boltzmann
statistics.

The number of elementary cells is the extension of the
thermal state in the single-particle phase space, e.g., esti-
mated by the variances of canonical variables, divided by
�3. The above condition then reads

N � �x�y�z�px�py�pz

�3 , (A1)
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where (x, y, z) and (px, py , pz) are the position and momen-
tum operators of just one particle, �x =

√
〈x2〉 − 〈x〉2,

�px = √〈p2
x 〉 − 〈px〉2, and similarly for the other vari-

ances with grand canonical averages 〈 · 〉. The symmetry
under particle permutation in systems of identical particles
implies that every particle provides the same variances in
Eq. (A1).

The product V∗ = �x�y�z is proportional to the vol-
ume occupied by the system: e.g., it can be easily com-
puted that V∗ ∝ LxLyLz for a homogeneous gas, and V∗ ∝
(m3β3ω2

xω
2
yω

2
z )

−1/2 for an ideal gas in a harmonic potential
where the large-volume limit is ωx,y,z → 0 and the density
is proportional to Nωxωyωz [183]. Moreover, V∗ increases
when repulsive interactions dominate, and decreases for
strong attractive interactions. If the Hamiltonian is invari-
ant under time reversal (p ↔ −p), for instance, for
momentum-independent interactions and external poten-
tials, then 〈px,y,z〉 = 0, and one estimates �2px,y,z =
〈p2

x,y,z〉 � 〈p2
x 〉 + 〈p2

y 〉 + 〈p2
z 〉 � 2mK/N , where K is the

average kinetic energy of the system. Therefore, the con-
dition (A1) becomes

N � V∗

(
2mK
�2N

)3/2

∝ V
(

2mK
�2N

)3/2

, (A2)

or, after simple manipulations,

N � V
(

2mK
�2V

)3/5

, (A3)

where K/N and K/V are intensive quantities.
The expectations 〈p2

x,y,z〉 can be written in a mathemat-
ically elegant form, known as the quantum counterpart
of the equipartition theorem [184,185], which reduces to
the classical formula 〈p2

x,y,z〉 = mkBT for high tempera-
ture or for an ideal homogeneous gas. Since Eq. (A1) is
the condition for quantum gases behaving classically, it is
meaningful to plug the classical formula 〈p2

x,y,z〉 = mkBT
there, thus obtaining N � V/λ3

T up to a multiplicative
constant, where λT =

√
2π�2β/m is the thermal wave-

length. This form is equivalent to small fugacities z =
eβμ � 1 for ideal gases (see Appendix B).

The constraint implied by the classical limit impinges on
the work production of thermochemical cycles. Indeed, the
chemical work during each stroke is estimated using the
integral mean-value theorem: denoting the integral along
the j th stroke by

´
j , and recalling that Nj is the particle

number at the beginning of the j th stroke (withNJ+1 = N1
for a cycle consisting of J strokes), one obtains

|WC
j | =

∣
∣
∣
∣

ˆ

j
μ dN

∣
∣
∣
∣ =

∣
∣
∣μ̄j
(Nj +1 − Nj

)∣∣
∣

� |μ̄j |O
(

max{Vj , Vj +1}
)
, (A4)

where μ̄j is an average chemical potential during the j th
stroke. For reversible isothermal thermochemical cycles,
the load, namely the mechanical work, is then WM =
−WC � O(Vmax), where Vmax is the maximum volume
attained during the cycle.

APPENDIX B: IDEAL HOMOGENEOUS GAS

An ideal homogeneous gas consists in non-interacting
particles confined in a cube of size Lx,y,z [186]. The
gas Hamiltonian is H = ∑

p εpa†
p ap with εp = (p2

x + p2
y +

p2
z )/(2m) = p2/(2m), and the momenta p = (px, py , pz) =

2π� (nx/Lx, ny/Ly , nz/Lz) label its eigenmodes (nx,y,z ∈ Z

and [ap , a†
p ′] = δp ,p ′). Thermodynamic quantities satisfy

the following relations:

U = ± 3V
2βλ3

T
Li5/2(±eβμ) = 3

2
PV, (B1)

N = ± V
λ3

T
Li3/2(±eβμ). (B2)

Here the upper signs hold for bosonic particles and the
lower signs for fermions, λT =

√
2π�2β/m is the thermal

wavelength, m is the particle mass,

Lis(z) =
∞∑

k=1

zk

ks = 1
�(s)

ˆ ∞

0
dt

ts−1

z−1et − 1
(B3)

is the polylogarithm function [143], and �(s) is the Gamma
function. The following series representations [143] will
be used for estimating thermal quantities at small chemical
potentials:

Lis(eβμ) = �(1 − s)(−βμ)s−1 +
∞∑

k=0

ζ(s − k)
k!

(βμ)k

(B4)

if s /∈ N+, and

Lis(eβμ) = (βμ)s−1

(s − 1)!
(
Hs−1 − ln(−βμ)

)

+
∞∑

k=0
k 	=s−1

ζ(s − k)
k!

(βμ)k (B5)

if s ∈ N+, where Hs = ∑s
n=1 1/n is the harmonic number.

The condition for the energy eigenstate occupancies of
bosonic gases, (eβ(εp −μ) − 1)−1 � 0, constrains the chem-
ical potential to non-positive values, approaching zero at
the formation of a Bose-Einstein condensate. The chemi-
cal potential of the fermionic gas has no restrictions. The
classical limit is achieved for small fugacities z = eβμ �
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1, thus at negative chemical potentials, which implies
Lis(z) � z and the known equation of state PV = N kBT
from Eqs. (B1) and (B2).

The density ρ = N /V of the bosonic gas, from Eq. (B2),
has an upper bound when z = 1 or μ = 0:

ρ = N
V

� 1
λ3

T
ζ(3/2) ≡ ρc, (B6)

also called critical density, where ζ(s) is the Riemann zeta
function. For densities larger than ρc, N > ρcV, or equiv-
alently when the temperature is lowered below the critical
one, i.e.,

Tc = 2π�2

mkB

(
ρ

ζ(3/2)

)2/3

, (B7)

the chemical potential approaches zero, and the fraction of
particles

f = N − ρcV
N = 1 −

(
T
Tc

)3/2

(B8)

accumulates in a Bose-Einstein condensate (BEC).
The nature of the BEC depends on the relative scal-

ing of the box sizes. The BEC consists in a macroscopic
number of particles in the ground state for isotropic con-
finement volume [73,74], but is modeled by a two- or
one-dimensional gas in highly anisotropic external poten-
tials [87–97]. Assuming Lx � Ly � Lz, there are three
different scenarios.

(i) If Ly � eαLz poly(Lz), where α is a constant and
poly(Lz) stands for a polynomial in Lz, the BEC con-
sists in the macroscopic occupation of the effective two-
dimensional gas made of states with momenta perpendicu-
lar to Lz (2D-BEC). For this reason, O(λ2

T/L2
y) � −βμ �

λ2
T/L2

z . Moreover, the condensate occupation is

f N = LxLy

λ2
T

Li1(eβμ) = −LxLy

λ2
T

ln(1 − eβμ)

�
μ�0

−LxLy

λ2
T

ln(−βμ), (B9)

such that the chemical potential is −βμ � e−f ρLzλ2
T . Using

this scaling of μ, the total pressure of the noncondensed
part of the gas and of the 2D-BEC is

P = Li5/2(eβμ)

βλ3
T

+ Li2(eβμ)

βλ2
TLz

�
μ�0

ζ(5/2)

βλ3
T

+ ζ(2)

βλ2
TLz

− μ ln(−βμ)

λ2
TLz

+ μ

λ2
TLz

. (B10)

(ii) If Lx � α′LyLz, for a constant α′, the BEC is formed by
an effective one-dimensional gas consisting of states with

momenta parallel to Lx (1D-BEC). Therefore, O(λ2
T/L2

x) �
−βμ � λ2

T/L2
y . The condensate occupation is

f N = Lx

λ2
T

Li1/2(eβμ) �
μ�0

Lx

λ2
T

√
π

−βμ
, (B11)

and consequently the chemical potential is −βμ �
π(f ρLyLzλT)

−2. The correction to the pressure due to the
1D-BEC at the lowest orders is

P = Li5/2(eβμ)

βλ3
T

+ Li3/2(eβμ)

βλTLyLz

�
μ�0

ζ(5/2)

βλ3
T

+ ζ(3/2)

βλTLyLz
+
√

−μ

β

�(−1/2)

λTLyLz
. (B12)

(iii) If Lx ∼ Ly ∼ Lz, a standard BEC with the ground
state macroscopically occupied is created (0D-BEC), with
condensate number

f N = 1
e−βμ − 1

�
μ�0

− 1
βμ

, (B13)

and chemical potential −βμ = (f ρV)−1. The pressure of
the noncondensed gas and the 0D-BEC is

P = Li5/2(eβμ)

βλ3
T

+ Li1(eβμ)

βLxLyLz
�

μ�0

ζ(5/2)

βλ3
T

− ln(−βμ)

βV
.

(B14)

If the volume sizes fulfill more that one among the above
scalings, subsequent BEC transitions happen from a dD-
BEC to a d′D-BEC with d′ < d when the temperature
decreases or the density increases.

Quantum gases in more general trapping potentials and
densities of states exhibit average particle numbers similar
to Eq. (B2), with the polylogarithm function Li3/2(±eβμ)

replaced by Lis(±eβμ) and a model-dependent parameter
s [138–140]. The average particle number is expressed
in terms of these functions also in several weak, mean-
field, and hard-core interactions [130–133,135] (see, for
instance, Appendix C). This mathematical analogy allows
us to extend some qualitative features of homogeneous
gases to more general systems. In particular, BECs above a
critical density occur when the polylogarithm functions in
the expressions of N are bounded from above, i.e., s > 1
[see Eq. (B4)]. BECs above a critical density also occur
with different mathematical forms of N [141,142].

APPENDIX C: VAN DER WAALS GASES

The classical van der Waals model describes hard-core
particles interacting through the Lennard-Jones poten-
tial within a mean-field approximation [187,188]. The
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equation of state is

(P + aρ2)(1 − bρ) = ρkBT, (C1)

where b > 0 is the volume excluded for each particle by
other hard-core particles, and a, i.e., the average interaction
per unit density, is proportional to b and to a characteristic
energy scale, φ, of the potential. The chemical potential is

μ = kBT ln(λ3
Tρ) − kBT ln(1 − bρ) + kBTbρ

1 − bρ
− 2aρ.

(C2)

The first contribution in Eq. (C2) is the chemical poten-
tial of the ideal gas, kBT ln(ρλ3

T), which is negative with
large magnitude from the classical limit ρ = N /V �
1/λ3

T derived in Appendix A. Moreover, bρ � 1 from
the definition of b, and the maximum density ρ = 1/b is
approached at vanishing temperature, i.e., 1 − bρ ∝ kBT
from Eq. (C1). Consequently, the second and third terms
in Eq. (C2) are positive and bounded. Indeed, at bρ ≈ 1,
the particles have very little space in which to move, thus
small average kinetic energy and low temperature. Never-
theless, the classical limit is achieved at high temperature,
otherwise, for example, there would be substantial devi-
ations from the equipartition theorem [184,185]. The last
term in Eq. (C2) is negative (positive) for attractive (repul-
sive) interactions a > 0 (a < 0), and its magnitude is fixed
by the microscopic details, 2|a|ρ ∝ |φ|bρ � |φ|, and does
not dominate kBT ln(ρλ3

T) in the classical limit λ3
Tρ � 1.

In conclusion, the chemical potential of the van der Waals
gas is negative.

A quantum extension of the van der Waals model [135,
136] is described by the equation of state

P(T, μ) = Pid(T, μ′) − aρ2, (C3)

where the subscript “id” denotes the functional forms of
ideal (either bosonic or fermionic) gases, and

μ′(ρ, T) = μid

(
ρ

1 − bρ
, T
)

. (C4)

Moreover, μid and ρid fulfill

μ′ = μ − bPid(T, μ′) + 2aρ, (C5)

ρ(T, μ) = ρid(T, μ′)
1 + bρid(T, μ′)

. (C6)

With μ′ being the chemical potential of an ideal gas, it
ranges over (−∞, 0]. Therefore, the chemical potential
μ can be positive for repulsive interactions (a < 0) or
for small attractive interactions (a > 0) if bPid(T, μ′) >

2aρ ∝ φbρ.

Note from Eq. (C6) that ρ(T, μ) has a finite maximum
when also ρid(T, μ′) is maximum. Consequently, the mech-
anism of BEC formation is inherited from that of the ideal
bosonic gas, shown in Appendix B, when μ′ → 0. The
critical density of the bosonic van der Waals gas is obtained
by replacing ρid with its maximum in Eq. (C6),

ρc = ζ(3/2)

λ2
T + b ζ(3/2)

, (C7)

which is smaller than the critical density of the ideal gas.

APPENDIX D: THERMODYNAMIC
TRANSFORMATIONS

In this appendix, general formulas for energy exchanges
are derived. We start with a general thermodynamic
transformation in the Schrödinger picture, where the
density matrix evolves quasistatically and is described
by a grand canonical ensemble, � = e−β(H−μN )/Z, at
every time. Plugging the grand canonical state into S =
−kB Tr(� ln �), one obtains the following form for the heat:

Q =
ˆ

T dS =
ˆ

Tr
(
(H − μN ) d�

)
. (D1)

In isothermal transformations, such as those considered
here, the heat exchange is

Q = T(Sf − Si)

= Uf − Ui + PfVf − PiVi − μfNf + μiNi, (D2)

where the subscripts “i” and “f” indicate, respectively,
the initial and final quantities of the transformation. The
Hamiltonian H and the number operator N depend on
the volume, through their eigenvectors and the eigenval-
ues of H , but do not depend on the temperature and on
the chemical potential, which are thermodynamic forces.
Consequently, the chemical work is

WC = −
ˆ

μ dN = −
ˆ

μ Tr(N d� + � dN )

= −
ˆ

μ

(

Tr(N d�) + Tr
(

�
∂N
∂V

)

dV
)

. (D3)

Using U = Tr(H�), the first law of thermodynamics
�U = Q − WM − WC, and expressions (D1) and (D3), one
derives the following expression for the mechanical work:

WM = −
ˆ

Tr(�(dH − μ dN ))

= −
ˆ

Tr
(

�

(
∂H
∂V

− μ
∂N
∂V

))

dV. (D4)

We now apply the above equations to work exchanges for
the reversible transformations exploited in the cycles under
consideration.
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(a) Transformation at constant temperature T and con-
stant chemical potential μ = μi = μf:

WC
iso-Tμ = −μ(Nf − Ni), (D5)

WM
iso-Tμ = PfVf − PiVi. (D6)

(b) Transformation at constant temperature T and constant
particle number N = Ni = Nf:

WC
iso-TN = 0, (D7)

WM
iso-TN = PfVf − PiVi − (μf − μi)N . (D8)

(c) Transformation at constant temperature T and constant
volume V = Vi = Vf:

WC
iso-TV = (Pf − Pi)V − μf Nf + μi Ni, (D9)

WM
iso-TV = 0. (D10)

Equations (D3) and (D4) and the identification of heat with
the right-hand side of Eq. (D1) are extended to nonequilib-
rium transformations. These energy exchanges generalize
the usual definitions of quantum thermodynamics [189] to
the presence of particle fluxes, and are analogous to those
discussed in Ref. [190]. There, however, the number oper-
ator N does not depend on the external driving, whereas
the engines considered in this paper require one to account
for the changes of N with volume.

APPENDIX E: IRREVERSIBLE
TRANSFORMATIONS

In this appendix, irreversible transformations are mod-
eled by finite-time dynamics of the engine substance inter-
acting with a grand canonical thermal bath. In the limit
of infinite time, these transformations reduce to reversible,
quasistatic transformations. The total Hamiltonian is H +
HB + HI , where H = ∑

p εpa†
p ap is the substance Hamil-

tonian for an ideal homogeneous gas with εp = (p2
x +

p2
y + p2

z )/(2m) = p2/(2m), momenta p = (px, py , pz) =
2π� (nx/Lx, ny/Ly , nz/Lz) with nx,y,z ∈ Z, and canonical
commutation relations [ap , a†

p ′] = δp ,p ′ .
The bath is made of harmonic oscillators with Hamilto-

nian HB = ∑
m∈N3 � m · � b†

mbm, with m = (mx, my , mz),
� = (�x, �y , �z), and discrete modes ([bm, b′†

m] = δm,m′).

In the continuum limit �x,y,z → 0 with the new
variables ωx,y,z = mx,y,z�x,y,z and ω = (ωx, ωy , ωz), one
defines the continuous bosonic modes bω = bm/

√
�x�y�z

([bω, b†
ω′] → δ(ω − ω′)), and the bath Hamiltonian

becomes HB → �
´

dω (ωx + ωy + ωz) b†
ωbω.

The substance-bath interaction is bilinear in the system
and bath bosonic operators: HI = λ

∑
p

´
dω h(�ωx +

�ωy + �ωz)Tω,p (a†
p bω + b†

ωap ). The following computa-
tions for general irreversible dynamics can be very convo-
luted. Let us therefore describe a class of system-bath inter-
actions, through mathematical properties of the coefficients
Tω,p , that greatly simplify the computations. Consider any
injective function w : p → w(p) = (wx(p), wy(p), wz(p))

such that wx(p) + wy(p) + wz(p) = εp/�. Consider also
ω′ and ω′′ in the image of w, i.e., if there exist vectors
p ′ and p ′′ with ω′ = w(p ′) and ω′′ = w(p ′′), then assume
that the interaction coefficients satisfy the following con-
ditions:

∑

p
εp =ε

Tw(p ′),p Tw(p ′′),p = 0 if p ′ 	= p ′′, (E1)

Mp ′ =
∑

p
εp =ε

|Tw(p ′),p |2 ∼
∑

p
εp =ε

1 ≡ Mε, (E2)

where the bar stands for complex conjugation. More-
over, Tω,p are arbitrary if ωx + ωy + ωz 	= εp/�. When
ωx + ωy + ωz = εp/� but ω is not in the image of w, then
Tω,p = 0: this set of ω values has vanishing measure when
the moments p vary continuously (i.e., for infinitely large
size Lx,y,z), because the function w becomes surjective in
R3. A specific example from the above defined class of
coefficients Tω,p has been considered in the different con-
text of permutationally invariant generalizations of Jacobi
coordinates in many-body problems [191].

1. Master equation

Consider the bath in the grand canonical state and so
large that it is not substantially perturbed by the interaction
with the substance. The master equation of the substance
dynamics is then derived by tracing out the bath degrees
of freedom and applying the standard weak-coupling
regime (Born, Markov, and secular approximations
[192,193]):

d�

dt
= L[�] = − i

�
[H + λ2HLS, �] +

∑

p ,p ′,p ′′
εp =εp ′=εp ′′

λ2

�2 γp
(
n(εp) + 1

)
Tw(p ′′),p T†

w(p ′′),p ′

(

ap� a†
p ′ − 1

2

{
a†

p ′ap , �
})

+
∑

p ,p ′,p ′′
εp =εp ′=εp ′′

λ2

�2 γp n(εp)T
†
w(p ′′),p Tw(p ′′),p ′

(

a†
p� ap ′ − 1

2

{
ap ′a†

p , �
})

, (E3)
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where γp = 2πh2(εp), the occupation number of the bath
mode with energy ε is n(ε) = (eβ(ε−μ) − 1)−1, and

HLS =
∑

p ,p ′,p ′′
εp =εp ′=εp ′′

�p Tw(p ′′),p T†
w(p ′′),p ′ a†

p ap ′ (E4)

is the Lamb shift Hamiltonian induced by the interaction
with the bath, with

�p =
 

dω
h2(�ω)

εp − �ω
(E5)

(where
ffl

stands for the Cauchy principal value).
In order to decouple the dynamical degrees of freedom,

it is convenient to rewrite Eq. (E3) in terms of the rotated
modes defined by the bosonic operators

Ap = 1
√

Mp

∑

p ′
εp ′=εp

Tw(p),p ′ ap ′ (E6)

with Mp = O(Mεp ) from Eq. (E2), and [Ap , A†
p ′] = δp ,p ′ .

One then computes

d�

dt
= L[�] = − i

�
[H + λ2HLS, �] + λ2

�2

∑

p

γp Mp

×
[

(n(εp) + 1)

(

Ap� A†
p − 1

2 {A†
p Ap , �}

)

+ n(εp)

(

A†
p� Ap − 1

2 {Ap A†
p , �}

)]

, (E7)

HLS =
∑

p

�p Mp A†
p Ap , (E8)

H =
∑

p

εp A†
p Ap , (E9)

which describe the dissipative dynamics of independent
bosonic modes whose steady state is the grand canonical
state [145].

In thermochemical engines, the system volume V(t) (and
Lx(t), Ly(t), and Lz(t)), the chemical potential μ(t), and the
inverse temperature β(t) of the bath change in time, so that
the master equation generator L is time-dependent (similar
to those derived in Refs. [194–198]) and the steady state at
time t is the time-dependent grand canonical state

�rev(t) = e−β(t)
(

H(t)−μ(t)N (t)
)

Tr
(
e−β(t)

(
H(t)−μ(t)N (t)

)) . (E10)

Recall that the Hamiltonian H and the number operator
N depend on the volume, through their eigenvectors and
the eigenvalues of H , and therefore vary in time. Slow

dynamics described by the master equation (E3) approx-
imates equilibrium quasistatic transformations if �rev(t) is
the unique instantaneous steady state. Note, however, that,
if γp̃ = 0 for some value p̃ , also the instantaneous eigen-
states of the Hamiltonian H where all particles occupy
modes with momenta p and p2 = p̃2 are instantaneous
steady states. We therefore assume γp 	= 0 for all finite p ,
in order to ensure that �rev(t) is the unique instantaneous
steady state at time t.

Before deriving the dynamics at long times, the next
subsection introduces some approximations for large vol-
umes that will be used later, e.g., for approximating the
volume derivatives of H and N .

2. Continuum approximation

The limit of large size allows for approximating the dis-
crete momenta p = 2π� (nx/Lx, ny/Ly , nz/Lz) with contin-
uous variable p = (px, py , pz) ∈ R3. One then estimates
the unconstrained sum of p with arbitrary operators f :

∑

p

f (p) � V
(2π�)3

ˆ
dp f (p). (E11)

Applications are as follows:

H � V
(2π�)3

ˆ

R3
dp εpa†

p ap , (E12)

N � V
(2π�)3

ˆ

R3
dpa†

p ap . (E13)

Within the continuum approximation, momenta are con-
tinuous variables that range over a volume-independent
domain, i.e., R3, so that the energy εp as well as the
creation and annihilation operators, a†

p and ap , no longer
depend on the volume. Therefore, this approximation pro-
vides a simple estimation of the following volume deriva-
tives:

∂H
∂V

� H
V

, (E14)

∂N
∂V

� N
V

. (E15)

The sum of p ′ constrained to 2mεp ′ = (2π�)2(n′2
x /L2

x +
n′2

y /L2
y + n′2

z /L2
z ) = p2 = 2mεp , as in the master equation

(E3), is approximated with the surface integral over the
ellipsoid with semiaxes (2π�)2/(pLx)

2, (2π�)2/(pLy)
2,

and (2π�)2/(pLz)
2, when the energy εp is larger than

λ2
T/(βL2

z ). This energy value is the energy contribution due
to the smallest nonzero component of the momentum along
the z axis. Below this energy, particles have vanishing
momenta along the z axis, and the sum of p ′ is constrained
to (2π�)2(n′2

x /L2
x + n′2

y /L2
y) = p2, and approximated with

the surface integral over the ellipse with semiaxes
(2π�)2/(pLx)

2 and (2π�)2/(pLy)
2 when εp � λ2

T/(βL2
y).

If εp < λ2
T/(βL2

y), also momenta along the y axis vanish,
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and the sum of p ′ is constrained to (2π�n′
x/Lx)

2 = p2, when εp � λ2
T/(βL2

x). All particles with energy smaller than
λ2

T/(βL2
x) have vanishing momenta such that εp = εp ′ = 0. Therefore, one obtains

∑

p ′
εp =εp ′

f (p , p ′) =
∑

n′
x ,n′

y ,n′
z

f (p , p ′) δ
(2π�)2

(
n′2

x
L2

x
+ n′2

y
L2

y
+ n′2z

L2z

)

, p2
= f (0, 0) +

∑

n′
x 	=0

f (p , p ′) δ(
2π�n′

x
Lx

)2
, p2

+
∑

n′
x ,n′

y 	=0

f (p , p ′) δ
(2π�)2

(
n′2

x
L2

x
+ n′2

y
L2

y

)

, p2
+

∑

n′
x ,n′

y ,n′
z 	=0

f (p , p ′) δ
(2π�)2

(
n′2

x
L2

x
+ n′2

y
L2

y
+ n′2z

L2z

)

, p2

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LxLyp2

(2π�)2

ˆ π

0
sin ϑ dϑ

ˆ 2π

0
dϕ f (p , p ′)

√

cos2 ϑ + L2
z

L2
x

sin2 ϑ cos2 ϕ + L2
z

L2
y

sin2 ϑ sin2 ϕ if εp � λ2
T

βL2
z

,

Lxp
2π�

ˆ 2π

0
dϕ f (p , p ′)

√

sin2 ϕ + L2
y

L2
x

cos2 ϕ if
λ2

T

βL2
y

� εp <
λ2

T

βL2
z

,

f (p , p) + f (p , −p) if
λ2

T

βL2
x

� εp <
λ2

T

βL2
y

,

f (0, 0) if εp = 0.
(E16)

Here p ′ is identified in spherical coordinates by the polar
and the azimuthal angles with respect to the equatorial
x-y plane, ϑ and ϕ respectively, and the modulus p ′ =
p . Recall that Lx � Ly � Lz, such that the square roots
in Eq. (E16) are bounded. The careful treatment of the
energy scales λ2

T/(βL2
x,y,z) allows us to identify the relevant

contributions to heat and work corrections in irreversible
transformations with dD-BECs.

Equation (E16) is also used to approximate Mεp
and thus to estimate the size scaling of Mp in
Eq. (E2). Indeed, using f (p , p ′) = 1 in Eq. (E16), one
obtains

Mεp �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LxLy p2

(2π�)2 C if εp � λ2
T

βL2
z

,

Lx p
2π�

G if
λ2

T

βL2
y

� εp <
λ2

T

βL2
z

,

2 if
λ2

T

βL2
x

� εp <
λ2

T

βL2
y

,

1 if εp = 0,

(E17)

with

C =
ˆ π

0
sin ϑ dϑ

ˆ 2π

0
dϕ

×
√

cos2 ϑ + L2
z

L2
x

sin2 ϑ cos2 ϕ + L2
z

L2
y

sin2 ϑ sin2 ϕ,

(E18)

G =
ˆ 2π

0
dϕ

√

sin2 ϕ + L2
y

L2
x

cos2 ϕ. (E19)

3. Instantaneous relaxation times

The instantaneous relaxation time is the time the dynam-
ics takes to approach the steady state as if the master
equation (E3) had time-independent coefficients evaluated
at t. From the structure of single-mode master equations
that are quadratic in the bosonic operators [199,200], as
in Eq. (E7), the relaxation time of each mode (Ap , A†

p ) is
θp (t) = �2/(λ2 γp Mp ), where γp = 2πh2(εp) and Mp is
given in Eq. (E2). Recall that Mp ∼ Mεp from Eq. (E2),
and the size scaling of Mp is given by Eq. (E17). There-
fore, the instantaneous relaxation times for εp � λ2

T/βL2
z

are estimated at large size by

θp ∼ 4π2�4

λ2γpp2LxLy

(ˆ π

0
sin ϑ dϑ

ˆ 2π

0
dϕ

×
(

cos2 ϑ + L2
z

L2
x

sin2 ϑ cos2 ϕ

+ L2
z

L2
y

sin2 ϑ sin2 ϕ

)1/2
⎞

⎠

−1

. (E20)

For later convenience, we also define the maxi-
mum relaxation time θ̄ = maxp ,t θp (t) which scales
as O(Lz/V).
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The number of bosonic modes with energy εp < λ2
T/βL2

z
is vanishingly small for large size and they provide negli-
gible contributions to the substance state and to instanta-
neous relaxation times (E20) without BECs. These con-
tributions are negligible also in 2D-BEC or 1D-BEC
phases where the condensates consist of all momenta
lying respectively in the x-y plane or along the x direc-
tion. The 0D-BEC consists only of the ground state
which contributes to thermodynamic quantities with van-
ishing energy ε0 = 0, and with particle number relaxing
to 〈a†

0a0〉 = f N = N − Vρc when the number of non-
condensed particles approaches the critical value Vρc. As
Eq. (E20) gives the relevant instantaneous relaxation times
for almost all excited states (except the aforementioned
vanishingly small number of modes), it does also for
0D-BECs.

4. Time evolution

For infinitely slow dynamics compared to the instan-
taneous relaxation rates, relaxation to ρrev(t) at each t
happens in negligible time, recovering an equilibrium qua-
sistatic transformation. Given a large but finite total time
of the dynamics τ , the time evolution is a perturbation
of the quasistatic transformation [144]. Consider then the
following perturbative expansion:

�(t) = �rev(t) + θ̄

τ
�irr(t) + O

(
θ̄

τ

)2

. (E21)

Defining t′ = t/τ ∈ [0, 1], the master equation reads
d�/dt′ = τ L[�]. Plugging the expansion (E21) into this
master equation provides a self-consistency condition:

d�rev

dt′
= θ̄ L[�irr]. (E22)

The left-hand side of the self-consistency condition
(E22) is

d�rev

dt′
= ∂μ

∂t′
β
(
N − Tr(N�rev)

)
�rev

− ∂V
∂t′

β

(
∂(H − μN )

∂V

− Tr
(

�rev
∂(H − μN )

∂V

))

�rev

− ∂β

∂t′
(
H − μN − Tr((H − μN )�rev)

)
�rev.

(E23)

The contribution proportional to ∂t′β vanishes in isother-
mal transformations, as those considered in this paper. The
volume derivatives within the continuum approximation
are expressed in Eqs. (E14) and (E15).

The self-consistency condition (E22) will be exploited
to derive the first-order correction to the quasistatic evo-
lution, namely �irr. First, write the general form of �irr,
by noting that the master equation (E3) [or equivalently
Eq. (E7)] is quadratic in the field operators {ap , a†

p }p , as
well as in {Ap , A†

p }p , and therefore preserves the Gaussian-
ity of �. Consequently, the exact state can be written as

�(t) = exp[−βH(t) + βμ(t)N (t) + (βθ̄/τ )X (t)]
Tr exp[−βH(t) + βμ(t)N (t) + (βθ̄/τ )X (t)]

,

(E24)

with a quadratic Hermitian operator X = ∑
p ,p ′ χp ,p ′A†

p Ap ′ .
Expanding in powers of θ̄/τ [201],

e−β
(

H−μN− θ̄
τ X

)

= e−β(H−μN ) + θ̄

τ

ˆ β

0
ds e−s(H−μN )Xe−(β−s)(H−μN )

+ O
(

θ̄

τ

)2

, (E25)

Tr
(

e−β
(

H−μN− θ̄
τ X

))

= Tr
(
e−β(H−μN )

)+ βθ̄

τ
Tr
(
Xe−β(H−μN )

)

+ O
(

θ̄

τ

)2

, (E26)

and using canonical commutation relations of bosonic
operators, [Ap , A†

p ′] = δp ,p ′ , one obtains for �irr

�irr � τ(� − �rev)

� −β Tr(X �rev)�rev

+ 1
Zrev

ˆ β

0
ds e−s(H−μN )Xe−(β−s)(H−μN )

=
∑

p ,p ′

eβ(εp ′−εp ) − 1
εp ′ − εp

χp ,p ′A†
p Ap ′�rev

− β Tr(X �rev)�rev. (E27)

Using the expression (E27) and after algebraic manipula-
tions of bosonic operators, one finds

L[�irr] = − i
�

∑

p ,k

eβ(εk−εp ) − 1
εk − εp

χp ,k(εp

+ λ2Mp�p)A†
p Ak�rev

034003-19



UGO MARZOLINO PHYS. REV. APPLIED 21, 034003 (2024)

+ i
�

∑

p ,k

eβ(εp−εk) − 1
εp − εk

χk,p (εp

+ λ2Mp�p)A
†
kAp�rev

+ λ2β

�2

∑

p

γp Mpχp ,p n(εp)�rev

− λ2

2�2

∑

p ,k

eβ(εk−εp ) − 1
εk − εp

γpMpχp ,kA†
p Ak�rev

− λ2

2�2

∑

p ,k

eβ(εp−εk) − 1
εp − εk

γpMpχk,p A†
kAp�rev.

(E28)

Since the operators A†
p Ap ′�rev for all p , p ′, and �rev form an

operator basis in the self-consistency condition (E22), χp ,p ′
are determined by equating the coefficients of these opera-
tors between the left- and right-hand sides of Eq. (E22). At
this point, note that the master equation (E3) is symmet-
ric with respect to rotations of momenta p and p ′ where
p = p ′, and so is the time evolution �(t) (if the initial state
has the same symmetry), and thus χp ,p ′ ≡ χp are the same
for all such p and p ′. Let us focus on the derivation of
χp ,p = χp , which appears in the coefficient of the opera-
tor A†

p Ap�rev in Eq. (E28). This coefficient must be equal
to the similar coefficient in Eq. (E23), according to the
self-consistency condition (E22). Notice also that the sub-
stance Hamiltonian and particle number operators can be
rewritten as H = ∑

p εpA†
p Ap and N = ∑

p A†
p Ap , respec-

tively, since the rotated modes Ap are linear combinations
of all the original modes ap corresponding to the same
energy.

The computation sketched above results in

χp = 2�2

λ2βθ̄Mp
(ξμ + ξ̃ εp), (E29)

where

ξ = − β

V
∂V
∂t′

− ∂β

∂t′
− β

μ

∂μ

∂t′
, (E30)

ξ̃ =β

V
∂V
∂t′

+ ∂β

∂t′
(E31)

depend on the bath external parameters (volume, chemical
potential, and temperature) and their time derivatives. Note
that ξ and ξ̃ are intensive and remain finite also in BEC
phases where μ → 0.

Recalling that Mp ∼ Mεp , Mp are estimated by
Eq. (E17), whose size scalings are used later in the com-
putation of work and heat corrections in the noncondensed
and in the dD-BEC phases. Moreover, only the terms with

p = p ′ in the expression (E27) contribute to the first cor-
rections to work and heat given by ρirr, as shown in the
next subsection.

5. Work and heat corrections

The heat and work exchanges of irreversible transforma-
tions are the right-hand sides of Eqs. (D1), (D3), and (D4).
Plugging there the expansion (E21), the approximations
(24) and (25) are derived with the following first-order
contributions in θ̄/τ :

WM
irr = −

ˆ 1

0
dt′ Tr

(

�irr

(
∂H
∂t′

− μ
∂N
∂t′

))

, (E32)

WC
irr = −

ˆ 1

0
dt′ μ Tr

(

N
∂�irr

∂t′
+ �irr

∂N
∂t′

)

= μ(0) Tr
(
�irr(0)N (0)

)− μ(τ) Tr
(
�irr(τ )N (τ )

)

+
ˆ 1

0
dt′

∂μ

∂t′
Tr(N�irr), (E33)

Qirr =
ˆ 1

0
dt′ Tr

(

(H − μN )
∂�irr

∂t′

)

= Tr
(
(H(τ ) − μ(τ)N (τ ))�irr(τ )

)

− Tr
(
(H(0) − μ(0)N (0))�irr(0)

)

−
ˆ 1

0
dt′ Tr

(

�irr
∂(H − μN )

∂t′

)

, (E34)

where integration by parts has been used. Note that the
traces involving the time derivatives of N and H can be
written, by virtue of Eqs. (E14) and (E15), as

Tr
(

�irr
∂N
∂t′

)

= Tr
(

�irr
∂N
∂V

)
∂V
∂t′

� Tr(N�irr)

V
∂V
∂t′

,

(E35)

Tr
(

�irr
∂H
∂t′

)

= Tr
(

�irr
∂H
∂V

)
∂V
∂t′

� Tr(H�irr)

V
∂V
∂t′

.

(E36)

Therefore, the traces Tr(N�irr) and Tr(H�irr) are the only
relevant traces to be computed in Eqs. (E32), (E33),
and (E34). Since the operators H and N are linear combi-
nations of A†

p Ap , only the terms with p = p ′ in the expres-
sion (E27) for �irr contribute to the computation of these
traces. Using the expression (E27), Tr((A†

p Ap )2�rev) =
2n2(εp) + n(εp), and the continuum approximation, one
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obtains

Tr(N�irr) = β
∑

p

χp
(
n2(εp) + n(εp)

)

� βV
(2π�)3

ˆ
dp χp

(
n2(εp) + n(εp)

)

+ βVdD

(2π�)d

ˆ
dp δ(p − pdD)χp

× (
n2(εp) + n(εp)

)
, (E37)

Tr(H�irr) = β
∑

p

εpχp
(
n2(εp) + n(εp)

)

� βV
(2π�)3

ˆ
dp εpχp

(
n2(εp) + n(εp)

)

+ βVdD

(2π�)d

ˆ
dp δ(p − pdD)εpχp

× (
n2(εp) + n(εp)

)
. (E38)

The last terms in Eqs. (E37) and (E38) are the contribu-
tions of the dD-BEC, as described in Appendix B, formed
of energy eigenstates with momenta pdD, where p2D =
(px, py , 0) are momenta in the x-y plane, p1D = (px, 0, 0)

are momenta along the x axis, and p0D = (0, 0, 0), and
V2D = LxLy , V1D = Lx, and V0D = 1. These contributions
emerge only after the trace and not in the operators because
of the singularity of bosonic occupancies when eβμ → 1.
On the other hand, if eβμ 	= 1, the BEC contributions are
negligible.

After plugging the coefficient χp in Eq. (E29) into
Eqs. (E37) and (E38), one has to assume the functional
form of γp in order to compute the integrals. There-
fore, consider the general power series γ −1

p = ∑
j κj ε

αj
p .

Furthermore, the change of variable p → εp =: ε in
Eqs. (E37) and (E38) results in the following types of
integrals:

ˆ
dp f (p) = (2m)3/2π

ˆ ∞

0
dε

√
ε f
(√

2mε
)
,

(E39)
ˆ

dp δ
(
p − pdD) f (p) = (2πm)d/2

�
( d

2

)

×
ˆ ∞

0
dε εd/2−1 f

(√
2mε

)
,

(E40)
ˆ

dp δ
(
p − p0D) f (p) = f (0), (E41)

with d = 1, 2 in Eq. (E40). The traces (E37) and (E38)
are then linear combinations of the following prototypical

integrals:

I A
a =

ˆ ∞

A
dε εa(n2(ε) + n(ε)

)

=
ˆ ∞

A
dε εa

∞∑

j =1

jej β(μ−ε) =
∞∑

j =1

ej βμ

j aβa+1 �(a + 1, j βA),

(E42)

where A is one of the energy bounds in Eq. (E16), and
�(s, z) is the incomplete Gamma function. The series
representation

�(s, z) =
ˆ ∞

z
dt ts−1e−t

= �(s)

(

1 − zse−z
∞∑

k=0

zk

�(s + k + 1)

)

if −s /∈ N

(E43)

implies the following series:

I A
a = �(a + 1)

βa+1

(

Lia(eβμ)

−
∞∑

k=0

(βA)a+k+1

�(a + k + 2)
Li−k−1

(
eβ(μ−A)

)
)

if −a /∈ N+.

(E44)

For a = −1, the sum on the right-hand side of Eq. (E42) is
approximated by an integral

I A
−1 =

ˆ ∞

1
dj jej βμ�(0, j βA) = 1

β2μ2(A − μ)

×
[

μeβ(μ−A) + (A − μ)
(
(1 − βμ)eβμ�(0, βA)

− �(0, βA − βμ)
)
]

, (E45)

where A > 0 and μ < 0 for the ideal Bose gas have been
used. We also define

I A,B
a =

ˆ B

A
dε εa(n2(ε) + n(ε)

) = I A
a − I B

a . (E46)

With all these manipulations, Eqs. (E37) and (E38)
become
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Tr(N�irr) � 2�2√πβLz

λ2λTθ̄

∑

j

Cκj

(

ξμI
λ2

T/βL2
z

αj −1/2 + ξ̃ I
λ2

T/βL2
z

αj +1/2

)

+ (δd,2 + δd,1)

⎛

⎝ 2π�2βd/2−1VdD

�(d/2)λ2λd−2
T θ̄LxLy

∑

j

Cκj

(

ξμI
λ2

T/βL2
z

αj +d/2−2 + ξ̃ I
λ2

T/βL2
z

αj +d/2−1

)

+ 2
√

π�2β(d−1)/2VdD

�(d/2)λ2λd−1
T θ̄Lx

∑

j

Gκj

(

ξμI
λ2

T/βL2
y ,λ2

T/βL2
z

αj +(d−3)/2 + ξ̃ I
λ2

T/βL2
y ,λ2

T/βL2
z

αj +(d−1)/2

)
⎞

⎠

+ δd,1
4�2βd/2VdD

�(d/2)λ2λd
Tθ̄

∑

j

κj

(

ξμI
λ2

T/βL2
x ,λ2

T/βL2
y

αj +d/2−1 + ξ̃ I
λ2

T/βL2
x ,λ2

T/βL2
y

αj +d/2

)

+ δd,0
2�2

λ2γ0,0θ̄

ξμeβμ

(eβμ − 1)2 , (E47)

Tr(H�irr) = 2�2√πβLz

λ2λTθ̄

∑

j

Cκj

(

ξμI
λ2

T/βL2
z

αj +1/2 + ξ̃ I
λ2

T/βL2
z

αj +3/2

)

+ (δd,2 + δd,1)

⎛

⎝ 2π�2βd/2−1VdD

�(d/2)λ2λd−2
T θ̄LxLy

∑

j

Cκj

(

ξμI
λ2

T/βL2
z

αj +d/2−1 + ξ̃ I
λ2

T/βL2
z

αj +d/2

)

+ 2
√

π�2β(d−1)/2VdD

�(d/2)λ2λd−1
T θ̄Lx

∑

j

Gκj

(

ξμI
λ2

T/βL2
y ,λ2

T/βL2
z

αj +(d−1)/2 + ξ̃ I
λ2

T/βL2
y ,λ2

T/βL2
z

αj +(d+1)/2

)
⎞

⎠

+ δd,1
2�4βd/2VdD

�(d/2)λ2λd
Tθ̄

∑

j

κj

(

ξμI
λ2

T/βL2
x ,λ2

T/βL2
y

αj +d/2 + ξ̃ I
λ2

T/βL2
x ,λ2

T/βL2
y

αj +d/2+1

)

. (E48)

In the absence of a BEC, only the first sum in Eqs. (E47) and (E48) contributes for large size, with I
λ2

T/βL2
z

a replaced by I 0
a .

In the classical limit (z = eβμ � 1 for ideal gases), one obtains I 0
a = O(z) from Eq. (B3), so that Tr(N�irr) and Tr(H�irr)

scale as O(Vz ln z), recalling the size scaling of the relaxation time (E20). These scalings in Eqs. (E33) and (E34) imply
WC

k,irr = O(Vz ln2 z) and WC
k,irr − Qk,irr = O(Vz ln z). In the quantum regime, the chemical potential is finite, the integrals

I 0
a are finite, and Tr(N�irr) and Tr(H�irr) scale as O(V), and consequently WC

k,irr = O(V) and WC
k,irr − Qk,irr = O(V). If the

system is in a BEC phase (see Appendix B), then μ � 0 and is much smaller than some of the λ2
T/L2

x,y,z, and the integrals
I A
a must be evaluated for both A = λ2

T/(βL2
x,y,z) and μ approaching zero at large size:

I A
a �

μ�0
A�0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
βa+1 �(a + 1)ζ(a) + πa

sin(πa)

(−μ)a−1

β2 − 1
a + 1

Aa+1

β2(A − μ)2 if 1 < a < 2,

− ln(−βμ)

β2 − 1
2β2(1 − μ/A)2 if a = 1,

πa
sin(πa)

(−μ)a−1

β2 − 1
a + 1

Aa+1

β2(A − μ)2 if a < 1 and − a /∈ N+,

1
β2μ2 ln

(μ

A

)
if a = −1 and − μ � A,

1
2β2A2 if a = −1 and − μ � A.

(E49)

Recall now that γ0 	= 0 (required for the uniqueness of the steady state as discussed at the end of Sec. E 1) and assume
that γ0 is finite. Under these conditions, one finds the series γ −1

p = κ +∑
j κj ε

αj
p with κ > 0 and αj > 0 for all j : exam-

ples are the constant function γp = κ , the Lorentzian shapes γp = 1/(κ + κ ′εp) or h(εp) = 1/(
√

2πκ + κ ′′εp), and the
exponential functions γp = e−κ ′εp /κ or h(εp) = e−κ ′εp /

√
2πκ . In order to identify the leading terms in Eqs. (E47)
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and (E48), we exploit the scaling of the box sizes and the chemical potential in BEC phases: Ly � eαLz poly(Lz) and
−βμ � e−f ρLzλ2

T � O(λ2
T/L2

y) for 2D-BEC; Lx � α′LyLz and −βμ � π(f ρLyLzλT)
−2 � O(λ2

T/L2
x) for 1D-BEC; and

Lx ∼ Ly ∼ Lz and −βμ = (f ρV)−1 for 0D-BEC (see Appendix B). Equation (E47) becomes

Tr(N�irr) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2�2κ

λ2β2μθ̄

(

πCξ̃ + 2
√

πG

(

ξ + λ2
Tξ̃

3βμL2
y

))

2D-BEC,

�2CκλT

λ2θ̄Ly

√
π3

−β5μ3 (ξ̃ − 3ξ) + 8�2κξμLxL3
y√

πλ2λ4
T

1D-BEC,

2�2ξ

λ2γ0β2μθ̄
0D-BEC,

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�2κ

λ2βθ̄
ef ρLzλ2

T

(

π C ξ̃ + 2
√

πG

(

ξ − ξ̃λ2
Tef ρLzλ2

T

3L2
y

))

2D-BEC,

√
π�2κ

λ2βθ̄

(

C(ξ̃ − 3ξ)f 3ρ3λ4
TL2

yL3
z − 8κξ

f 2ρ2λ6
T

LxLy

L2
z

)

1D-BEC,

−2�2ξ f ρV
λ2γ0βθ̄

0D-BEC,

(E50)

where the first term of the 1D-BEC case dominates if α′LyLz � Lx < O(LyL5
z ) and the second term dominates when

Lx > O(LyL5
z ). The leading orders of Eq. (E48) are

Tr(H�irr) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�2√πκ

λ2β2θ̄

(
2Gξ̃Ly

5Lz
+ (

terms ∝ ξ̃ ln(−βμ) and ∝ ξ̃V0)− √
πCξ − Gξλ2

T

3βμL2
y

)

2D-BEC,

3πζ
( 3

2

)
�2Cκξ̃Lz

2λ2β2λTθ̄
+ �2λTCκ

λ2θ̄Ly

√
π3

−β5μ
(ξ̃ − ξ) + 8�2κξ̃Lx

5
√

πλ2β2θ̄Ly
+ 8�2κξμLxLy

3
√

πλ2βλ2
Tθ̄

1D-BEC,

3πζ
( 3

2

)
�2Cκξ̃Lz

2λ2β2λTθ̄
+ �2CκLz

λ2λTθ̄

√
−π3μ

β3 (3ξ̃ − ξ) 0D-BEC,

(E51)

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2�2√πκ

λ2β2θ̄

(
2Gξ̃Ly

5Lz
+ (

terms ∝ ξ̃Lz and ∝ ξ̃V0)− √
πCξ + Gξef ρLzλ2

T
λ2

T

3L2
y

)

2D-BEC,

�2κ

λ2β2θ̄

(
3πζ

( 3
2

)
Cξ̃Lz

2λT
+ √

πC(ξ̃ − ξ)f ρλ2
TLz + 8ξ̃Lx

5
√

πLy
− 8ξLx

3
√

π f 2ρ2λ4
TLyL2

z

)

1D-BEC,

π�2κ

λ2β2θ̄

(
3ζ
( 3

2

)
Cξ̃Lz

2λT
+ C(3ξ̃ − ξ)

√
π3Lz

f ρλ2
TLxLy

)

0D-BEC,

(E52)

where the third term in the 1D-BEC phase dominates
if Lx > O(LyLz) and the fourth term dominates the first
two terms if Lx > O(LyL3

z ). Higher-order terms relevant
in isothermal-isochoric transformations, where ξ̃ = 0, are
explicitly written.

The above expressions for Tr(N�irr) and Tr(H�irr),
together with Eqs. (E35) and (E36), provide the size

scaling of work and heat corrections in Eqs. (E32),
(E33), and (E34). Using these scalings, one esti-
mates the maximum power of irreversible cycles in
the perturbative regime discussed here, the optimal
times of each stroke, and the efficiency at max-
imum power, as reported in Appendix F and in
Sec. III.
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APPENDIX F: IRREVERSIBLE
THERMOCHEMICAL CYCLES

In this appendix, the size scaling of the first-order work
and heat corrections in Eqs. (E32), (E33), and (E34) are
used to derive the size scalings of the optimal times τ ∗

j ,
of the maximum power π∗, and of the corresponding
efficiency η∗ for irreversible thermochemical cycles.

1. Irreversible cycles without BEC and in the classical
limit

In the absence of BEC phases during the cycle, the
computations in Sec. E 5 in Appendix E result in WC

k,irr =
O(V) and WC

k,irr − Qk,irr = O(V) for all k. The load of
the reversible cycles was proven to be extensive, WM

rev =
O(V), in Sec. II. These scalings imply that the optimal
times in Eq. (28) for every stroke have the same size scal-
ing of the relaxation time θ̄ = O(Lz/V). The output power
is therefore maximized, within the perturbative regime
τ ∗

j � θ̄ , for the scaling τ ∗
j = O(Lz/sV) with s � 1. Con-

sequently, the maximum power scales as π∗ = O(sV2/Lz),
the corresponding load as WM

∗ = WM
rev + O(sV), and the

efficiency as η∗ = ηrev + O(sV0).
The size scalings in the classical limit are obtained

from those without BECs imposing the condition (8). This
condition for ideal gases reads N � zclV/λ3

T with small
fugacity zcl = eβμ � 1 (see Appendices A and B). The
classical limit and the first law of thermodynamics for
reversible isothermal cycles then imply W(M )

rev = −W(C)
rev =

O(zclV), while irreversible energy corrections are WC
k,irr =

O(Vzcl ln2 zcl) and WC
k,irr − Qk,irr = O(Vzcl ln zcl). The opti-

mal time in Eq. (28) is τclass = O(Lz/V|ln zcl|), the max-
imum power is πclass = O(zcl V2/|ln zcl|Lz), and the effi-
ciency at maximum power scales as ηclass = O(zcl).

In the cycles discussed in Sec. II, ηrev is finite and
approaches 1 close to BEC transitions, and thus the quan-
tum regime even without BECs exhibits much higher
efficiency than the classical limit and larger power if s >

zcl/|ln zcl|.

2. Irreversible cycles with BECs

Different BEC phases of the working substance emerge
at different confinement anisotropies. The three cases con-
sidered in Sec. III B for dD-BECs are:

d = 2: Lz = O(ln V) and Lx � Ly = O(√V/ ln V
)
;

d = 1: Lx = O
(

V
χ

χ+1
)

and Ly ∼ Lz = O(V 1
2χ+2

)
with

χ � 1, i.e., Lx = O(LyLz)
χ ; and

d = 0: Lx ∼ Ly ∼ Lz = O(
3√V).

The size scaling of the work and heat corrections in
Eqs. (E32), (E33), and (E34) depend on the function h(ε),
and are explicitly computed in Sec. E 5 in Appendix E

assuming h(εp) 	= 0 (or γp 	= 0) and finite h(0). The condi-
tion h(εp) 	= 0 guarantees that the grand canonical ensem-
ble is the unique steady state at every time, otherwise also
the instantaneous Hamiltonian eigenstates with energy εp
such that h(εp) = 0 are steady states. This large class of
functions contains the constant function, the exponential
decay, and the Lorentzian.

The result for the corrections to the chemical work in
Eq. (E33) is

WC
k,irr =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

O
(

V
Lz

)

2D-BEC,

O(V) + O
(

L2
x

L4
z

)

1D-BEC,

O
(

V
Lz

)

0D-BEC,

(F1)

where the first (second) term for the 1D-BEC dominates
if Lx < O(LyL5

z ) (if Lx > O(LyL5
z )). The other energy cor-

rections used in the computation of (28), namely WC
k,irr −

Qk,irr, have different size scalings for isothermal-isochoric
transformations compared to the other strokes. Indeed, the
leading orders for all other strokes are

WC
k,irr − Qk,irr =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

O
(

LxL2
y

Lz

)

2D-BEC,

O(L2
x) 1D-BEC,

O(V) 0D-BEC.

(F2)

Nevertheless, these size scalings originate from orders
that multiply ξ̃ , namely, the time derivative of the tem-
perature or that of the volume, and these contributions
vanish for isothermal-isochoric processes. The size scaling
for isothermal-isochoric transformations, resulting from
computations in Sec. E 5 in Appendix E with ξ̃ = 0, is

WC
k,irr − Qk,irr =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O
(

V
Lz

)

2D-BEC,

O(V) + O
(

L2
x

L2
z

)

1D-BEC,

O(
√

V) 0D-BEC,

(F3)

with the first (second) term of the 1D-BEC dominating
when Lx < O(LyL3

z ) (when Lx > O(LyL3
z )).

The isothermal chemical Carnot and Otto cycles are
treated separately in the following, because isothermal-
isochoric transformations are part only of the latter.

a. Irreversible chemical Carnot cycle with a BEC
during the third stroke

If the system is a BEC only when chemical work is
released (during the third stroke), the reversible load (12)
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is extensive, WM
rev = O(V), such that the scaling (F2) and

that without BECs imply

τ ∗
1,2,4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

1
4√V3 ln V

)

2D-BEC,

O
(

1

sV
3
4

)

1D-BEC, χ = 1,

O
(

1

V
χ+2
2χ+2

)

1D-BEC, χ > 1,

O
(

1

sV
2
3

)

0D-BEC,

(F4)

and

τ ∗
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

1
√

V(ln V)3

)

2D-BEC,

O
(

1

sV
3
4

)

1D-BEC, χ = 1,

O
(

1

V
3

2χ+2

)

1D-BEC, χ > 1,

O
(

1

sV
2
3

)

0D-BEC.

(F5)

The factor s � 1 has been introduced in order to remain in
the perturbative regime, when the optimal times in Eq. (28)
scale as the relaxation time θ̄ = O(Lz/V), as discussed in
Sec. F 1.

Using the scalings of WM
rev, τ ∗

j , and (F1), one derives
the efficiency at maximum power and the maximum power
normalized to the classical limit of Sec. III B 1.

b. Irreversible chemical Carnot cycle with a BEC
during all the strokes

If the system is in the same BEC phase during the entire
chemical Carnot cycle, the load in the reversible limit is
subextensive. Applying the above scalings of the chemical
potential and of the box size Lx,y,z to the work done during
the entire chemical Carnot cycle (see Sec. II A) at finite
density, one obtains

WM
rev = (μ3 − μ1)(N1 − N3)

=

⎧
⎪⎪⎨

⎪⎪⎩

O(ln V) 2D-BEC,

O
(

V
χ−1
χ+1

)

1D-BEC,

O(V0) 0D-BEC,

(F6)

where it has been assumed in the 2D-BEC case that
the chemical potential saturates its lower bound, −βμ �
O(λ2

T/L2
y), which provides a lower bound for the scaling

of WM
rev and consequently an upper bound for the times τ ∗

j

[see Eq. (28)]. Therefore, the time needed for every stroke
is

τ ∗
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O
(√

V
(ln V)5

)

2D-BEC,

O
(

V
1

2χ+2
)

1D-BEC,

O
(

V
1
3

)
0D-BEC.

(F7)

The efficiency at maximum power is

η∗ = ηrev

2
+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(√

(ln V)3

V

)

2D-BEC,

O
(

1

V
χ−1
χ+1

)

1D-BEC, 1 � χ � 3,

O
(

1

V
2

χ+1

)

1D-BEC, χ � 3,

O
(

1

V
1
3

)

0D-BEC.

(F8)

As discussed in Sec. II A, the efficiency ηrev is finite
when the substance is always in the same BEC phase and
approaches 1 for 2D-BEC and large size. Therefore, the
efficiency at maximum power in (F8) is again much larger
than the classical limit ηclass = O(zcl) � 1. Nevertheless,
the subextensive load (F6) and the scaling of optimal times
(F7) imply small output power.

c. Irreversible chemical Otto cycle with a BEC during
the third stroke

In the chemical Otto cycle, the first and the third strokes
are isothermal-isochoric processes, and one has to con-
sider the corrections (F3) instead of (F2). If the system is a
BEC only during the third stroke, as discussed in Sec. II B,
the load is extensive, WM

rev = O(V). Therefore, the optimal
times for each stroke are

τ ∗
1,2,4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

ln V
sV

)

2D-BEC,

O
(

1

sV
2χ+1
2χ+2

)

1D-BEC, χ � 2,

O
(

1

V
χ+3
2χ+2

)

1D-BEC, χ � 2,

O
(

1

sV
2
3

)

0D-BEC,

(F9)
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and

τ ∗
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

ln V
sV

)

2D-BEC,

O
(

1

sV
2χ+1
2χ+2

)

1D-BEC, χ � 2,

O
(

1

V
5

2χ+2

)

1D-BEC, χ � 2,

O
(

1

V
11
12

)

0D-BEC.

(F10)

Recall that, when the times in Eq. (28) do not fulfill the
condition τ ∗

j � θ̄ , the optimal times within the perturba-
tive regime are τ ∗

j = θ̄/s = O(Lz/sV) with s � 1.
Using the scalings derived so far, one obtains the

efficiency at maximum power and the maximum power
normalized to the classical limit of Sec. III B 2.

d. Irreversible chemical Otto cycle with a BEC during
all the strokes

When the system is in the same BEC phase during the
entire cycle, Eqs. (18), (19), (20), (21), (22), and (23) imply
that the reversible load, WM

rev = −WC
1,rev − WC

3,rev, scales as

WM
rev =

⎧
⎪⎨

⎪⎩

O(V0) 2D-BEC,

O(V
χ−1
χ+1 ) 1D-BEC,

O(V0) 0D-BEC.

(F11)

Therefore, the times needed for each stroke are

τ ∗
1,3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

V
(ln V)3

) 1
4

2D-BEC,

O
(

V
2−χ
2χ+2

)

1D-BEC, χ � 2,

O(V0) 1D-BEC, χ � 2,

O
(

V
1
12

)
0D-BEC,

(F12)

and

τ ∗
2,4 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

O
(√

V
(ln V)3

)

2D-BEC,

O
(

V
1

2χ+2
)

1D-BEC,

O
(

V
1
3

)
0D-BEC.

(F13)

The efficiency at maximum power is

η∗ = ηrev

2
+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(

(ln V)3

V

) 1
4

2D-BEC,

O
(

1

V
χ−1
2χ+2

)

1D-BEC, 1 � χ � 2,

O
(

1

V
2χ−3
2χ+2

)

1D-BEC, 2 � χ � 3,

O
(

1

V
3

2χ+2

)

1D-BEC, χ � 3,

O
(

1

V
1
12

)

0D-BEC.

(F14)

As for the chemical Carnot cycle, the efficiency at maxi-
mum power in (F14) is again much larger than the classical
limit, ηclass = O(zcl) � 1, but with small output power
because of the subextensive load (F11) and of the scaling
of optimal times (F12) and (F13).
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